xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Return arc hyperbole tangent for long double value. |
| 2 | Copyright (C) 1997-2016 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include <complex.h> |
| 21 | #include <math.h> |
| 22 | #include <math_private.h> |
| 23 | #include <float.h> |
| 24 | |
| 25 | /* To avoid spurious overflows, use this definition to treat IBM long |
| 26 | double as approximating an IEEE-style format. */ |
| 27 | #if LDBL_MANT_DIG == 106 |
| 28 | # undef LDBL_EPSILON |
| 29 | # define LDBL_EPSILON 0x1p-106L |
| 30 | #endif |
| 31 | |
| 32 | __complex__ long double |
| 33 | __catanhl (__complex__ long double x) |
| 34 | { |
| 35 | __complex__ long double res; |
| 36 | int rcls = fpclassify (__real__ x); |
| 37 | int icls = fpclassify (__imag__ x); |
| 38 | |
| 39 | if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) |
| 40 | { |
| 41 | if (icls == FP_INFINITE) |
| 42 | { |
| 43 | __real__ res = __copysignl (0.0, __real__ x); |
| 44 | __imag__ res = __copysignl (M_PI_2l, __imag__ x); |
| 45 | } |
| 46 | else if (rcls == FP_INFINITE || rcls == FP_ZERO) |
| 47 | { |
| 48 | __real__ res = __copysignl (0.0, __real__ x); |
| 49 | if (icls >= FP_ZERO) |
| 50 | __imag__ res = __copysignl (M_PI_2l, __imag__ x); |
| 51 | else |
| 52 | __imag__ res = __nanl (""); |
| 53 | } |
| 54 | else |
| 55 | { |
| 56 | __real__ res = __nanl (""); |
| 57 | __imag__ res = __nanl (""); |
| 58 | } |
| 59 | } |
| 60 | else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) |
| 61 | { |
| 62 | res = x; |
| 63 | } |
| 64 | else |
| 65 | { |
| 66 | if (fabsl (__real__ x) >= 16.0L / LDBL_EPSILON |
| 67 | || fabsl (__imag__ x) >= 16.0L / LDBL_EPSILON) |
| 68 | { |
| 69 | __imag__ res = __copysignl (M_PI_2l, __imag__ x); |
| 70 | if (fabsl (__imag__ x) <= 1.0L) |
| 71 | __real__ res = 1.0L / __real__ x; |
| 72 | else if (fabsl (__real__ x) <= 1.0L) |
| 73 | __real__ res = __real__ x / __imag__ x / __imag__ x; |
| 74 | else |
| 75 | { |
| 76 | long double h = __ieee754_hypotl (__real__ x / 2.0L, |
| 77 | __imag__ x / 2.0L); |
| 78 | __real__ res = __real__ x / h / h / 4.0L; |
| 79 | } |
| 80 | } |
| 81 | else |
| 82 | { |
| 83 | if (fabsl (__real__ x) == 1.0L |
| 84 | && fabsl (__imag__ x) < LDBL_EPSILON * LDBL_EPSILON) |
| 85 | __real__ res = (__copysignl (0.5L, __real__ x) |
| 86 | * (M_LN2l - __ieee754_logl (fabsl (__imag__ x)))); |
| 87 | else |
| 88 | { |
| 89 | long double i2 = 0.0; |
| 90 | if (fabsl (__imag__ x) >= LDBL_EPSILON * LDBL_EPSILON) |
| 91 | i2 = __imag__ x * __imag__ x; |
| 92 | |
| 93 | long double num = 1.0L + __real__ x; |
| 94 | num = i2 + num * num; |
| 95 | |
| 96 | long double den = 1.0L - __real__ x; |
| 97 | den = i2 + den * den; |
| 98 | |
| 99 | long double f = num / den; |
| 100 | if (f < 0.5L) |
| 101 | __real__ res = 0.25L * __ieee754_logl (f); |
| 102 | else |
| 103 | { |
| 104 | num = 4.0L * __real__ x; |
| 105 | __real__ res = 0.25L * __log1pl (num / den); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | long double absx, absy, den; |
| 110 | |
| 111 | absx = fabsl (__real__ x); |
| 112 | absy = fabsl (__imag__ x); |
| 113 | if (absx < absy) |
| 114 | { |
| 115 | long double t = absx; |
| 116 | absx = absy; |
| 117 | absy = t; |
| 118 | } |
| 119 | |
| 120 | if (absy < LDBL_EPSILON / 2.0L) |
| 121 | { |
| 122 | den = (1.0L - absx) * (1.0L + absx); |
| 123 | if (den == -0.0L) |
| 124 | den = 0.0L; |
| 125 | } |
| 126 | else if (absx >= 1.0L) |
| 127 | den = (1.0L - absx) * (1.0L + absx) - absy * absy; |
| 128 | else if (absx >= 0.75L || absy >= 0.5L) |
| 129 | den = -__x2y2m1l (absx, absy); |
| 130 | else |
| 131 | den = (1.0L - absx) * (1.0L + absx) - absy * absy; |
| 132 | |
| 133 | __imag__ res = 0.5L * __ieee754_atan2l (2.0L * __imag__ x, den); |
| 134 | } |
| 135 | |
| 136 | math_check_force_underflow_complex (res); |
| 137 | } |
| 138 | |
| 139 | return res; |
| 140 | } |
| 141 | weak_alias (__catanhl, catanhl) |