| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Software floating-point emulation. | 
|  | 2 | Basic two-word fraction declaration and manipulation. | 
|  | 3 | Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | 4 | This file is part of the GNU C Library. | 
|  | 5 | Contributed by Richard Henderson (rth@cygnus.com), | 
|  | 6 | Jakub Jelinek (jj@ultra.linux.cz), | 
|  | 7 | David S. Miller (davem@redhat.com) and | 
|  | 8 | Peter Maydell (pmaydell@chiark.greenend.org.uk). | 
|  | 9 |  | 
|  | 10 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 11 | modify it under the terms of the GNU Lesser General Public | 
|  | 12 | License as published by the Free Software Foundation; either | 
|  | 13 | version 2.1 of the License, or (at your option) any later version. | 
|  | 14 |  | 
|  | 15 | In addition to the permissions in the GNU Lesser General Public | 
|  | 16 | License, the Free Software Foundation gives you unlimited | 
|  | 17 | permission to link the compiled version of this file into | 
|  | 18 | combinations with other programs, and to distribute those | 
|  | 19 | combinations without any restriction coming from the use of this | 
|  | 20 | file.  (The Lesser General Public License restrictions do apply in | 
|  | 21 | other respects; for example, they cover modification of the file, | 
|  | 22 | and distribution when not linked into a combine executable.) | 
|  | 23 |  | 
|  | 24 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 25 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 27 | Lesser General Public License for more details. | 
|  | 28 |  | 
|  | 29 | You should have received a copy of the GNU Lesser General Public | 
|  | 30 | License along with the GNU C Library; if not, see | 
|  | 31 | <http://www.gnu.org/licenses/>.  */ | 
|  | 32 |  | 
|  | 33 | #ifndef SOFT_FP_OP_2_H | 
|  | 34 | #define SOFT_FP_OP_2_H	1 | 
|  | 35 |  | 
|  | 36 | #define _FP_FRAC_DECL_2(X)				\ | 
|  | 37 | _FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT | 
|  | 38 | #define _FP_FRAC_COPY_2(D, S)	(D##_f0 = S##_f0, D##_f1 = S##_f1) | 
|  | 39 | #define _FP_FRAC_SET_2(X, I)	__FP_FRAC_SET_2 (X, I) | 
|  | 40 | #define _FP_FRAC_HIGH_2(X)	(X##_f1) | 
|  | 41 | #define _FP_FRAC_LOW_2(X)	(X##_f0) | 
|  | 42 | #define _FP_FRAC_WORD_2(X, w)	(X##_f##w) | 
|  | 43 |  | 
|  | 44 | #define _FP_FRAC_SLL_2(X, N)						\ | 
|  | 45 | (void) (((N) < _FP_W_TYPE_SIZE)					\ | 
|  | 46 | ? ({								\ | 
|  | 47 | if (__builtin_constant_p (N) && (N) == 1)			\ | 
|  | 48 | {							\ | 
|  | 49 | X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE) (X##_f0)) < 0); \ | 
|  | 50 | X##_f0 += X##_f0;					\ | 
|  | 51 | }							\ | 
|  | 52 | else							\ | 
|  | 53 | {							\ | 
|  | 54 | X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \ | 
|  | 55 | X##_f0 <<= (N);					\ | 
|  | 56 | }							\ | 
|  | 57 | 0;							\ | 
|  | 58 | })								\ | 
|  | 59 | : ({								\ | 
|  | 60 | X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);		\ | 
|  | 61 | X##_f0 = 0;						\ | 
|  | 62 | })) | 
|  | 63 |  | 
|  | 64 |  | 
|  | 65 | #define _FP_FRAC_SRL_2(X, N)						\ | 
|  | 66 | (void) (((N) < _FP_W_TYPE_SIZE)					\ | 
|  | 67 | ? ({								\ | 
|  | 68 | X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \ | 
|  | 69 | X##_f1 >>= (N);						\ | 
|  | 70 | })								\ | 
|  | 71 | : ({								\ | 
|  | 72 | X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);		\ | 
|  | 73 | X##_f1 = 0;						\ | 
|  | 74 | })) | 
|  | 75 |  | 
|  | 76 | /* Right shift with sticky-lsb.  */ | 
|  | 77 | #define _FP_FRAC_SRST_2(X, S, N, sz)					\ | 
|  | 78 | (void) (((N) < _FP_W_TYPE_SIZE)					\ | 
|  | 79 | ? ({								\ | 
|  | 80 | S = (__builtin_constant_p (N) && (N) == 1			\ | 
|  | 81 | ? X##_f0 & 1						\ | 
|  | 82 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0);		\ | 
|  | 83 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N)); \ | 
|  | 84 | X##_f1 >>= (N);						\ | 
|  | 85 | })								\ | 
|  | 86 | : ({								\ | 
|  | 87 | S = ((((N) == _FP_W_TYPE_SIZE				\ | 
|  | 88 | ? 0						\ | 
|  | 89 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N))))		\ | 
|  | 90 | | X##_f0) != 0);					\ | 
|  | 91 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE));		\ | 
|  | 92 | X##_f1 = 0;						\ | 
|  | 93 | })) | 
|  | 94 |  | 
|  | 95 | #define _FP_FRAC_SRS_2(X, N, sz)					\ | 
|  | 96 | (void) (((N) < _FP_W_TYPE_SIZE)					\ | 
|  | 97 | ? ({								\ | 
|  | 98 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \ | 
|  | 99 | | (__builtin_constant_p (N) && (N) == 1		\ | 
|  | 100 | ? X##_f0 & 1					\ | 
|  | 101 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \ | 
|  | 102 | X##_f1 >>= (N);						\ | 
|  | 103 | })								\ | 
|  | 104 | : ({								\ | 
|  | 105 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE)		\ | 
|  | 106 | | ((((N) == _FP_W_TYPE_SIZE			\ | 
|  | 107 | ? 0					\ | 
|  | 108 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N))))	\ | 
|  | 109 | | X##_f0) != 0));				\ | 
|  | 110 | X##_f1 = 0;						\ | 
|  | 111 | })) | 
|  | 112 |  | 
|  | 113 | #define _FP_FRAC_ADDI_2(X, I)	\ | 
|  | 114 | __FP_FRAC_ADDI_2 (X##_f1, X##_f0, I) | 
|  | 115 |  | 
|  | 116 | #define _FP_FRAC_ADD_2(R, X, Y)	\ | 
|  | 117 | __FP_FRAC_ADD_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
|  | 118 |  | 
|  | 119 | #define _FP_FRAC_SUB_2(R, X, Y)	\ | 
|  | 120 | __FP_FRAC_SUB_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
|  | 121 |  | 
|  | 122 | #define _FP_FRAC_DEC_2(X, Y)	\ | 
|  | 123 | __FP_FRAC_DEC_2 (X##_f1, X##_f0, Y##_f1, Y##_f0) | 
|  | 124 |  | 
|  | 125 | #define _FP_FRAC_CLZ_2(R, X)			\ | 
|  | 126 | do						\ | 
|  | 127 | {						\ | 
|  | 128 | if (X##_f1)				\ | 
|  | 129 | __FP_CLZ ((R), X##_f1);			\ | 
|  | 130 | else					\ | 
|  | 131 | {					\ | 
|  | 132 | __FP_CLZ ((R), X##_f0);		\ | 
|  | 133 | (R) += _FP_W_TYPE_SIZE;		\ | 
|  | 134 | }					\ | 
|  | 135 | }						\ | 
|  | 136 | while (0) | 
|  | 137 |  | 
|  | 138 | /* Predicates.  */ | 
|  | 139 | #define _FP_FRAC_NEGP_2(X)	((_FP_WS_TYPE) X##_f1 < 0) | 
|  | 140 | #define _FP_FRAC_ZEROP_2(X)	((X##_f1 | X##_f0) == 0) | 
|  | 141 | #define _FP_FRAC_OVERP_2(fs, X)	(_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs) | 
|  | 142 | #define _FP_FRAC_CLEAR_OVERP_2(fs, X)	(_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs) | 
|  | 143 | #define _FP_FRAC_HIGHBIT_DW_2(fs, X)	\ | 
|  | 144 | (_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs) | 
|  | 145 | #define _FP_FRAC_EQ_2(X, Y)	(X##_f1 == Y##_f1 && X##_f0 == Y##_f0) | 
|  | 146 | #define _FP_FRAC_GT_2(X, Y)	\ | 
|  | 147 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) | 
|  | 148 | #define _FP_FRAC_GE_2(X, Y)	\ | 
|  | 149 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) | 
|  | 150 |  | 
|  | 151 | #define _FP_ZEROFRAC_2		0, 0 | 
|  | 152 | #define _FP_MINFRAC_2		0, 1 | 
|  | 153 | #define _FP_MAXFRAC_2		(~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0) | 
|  | 154 |  | 
|  | 155 | /* Internals.  */ | 
|  | 156 |  | 
|  | 157 | #define __FP_FRAC_SET_2(X, I1, I0)	(X##_f0 = I0, X##_f1 = I1) | 
|  | 158 |  | 
|  | 159 | #define __FP_CLZ_2(R, xh, xl)			\ | 
|  | 160 | do						\ | 
|  | 161 | {						\ | 
|  | 162 | if (xh)					\ | 
|  | 163 | __FP_CLZ ((R), xh);			\ | 
|  | 164 | else					\ | 
|  | 165 | {					\ | 
|  | 166 | __FP_CLZ ((R), xl);			\ | 
|  | 167 | (R) += _FP_W_TYPE_SIZE;		\ | 
|  | 168 | }					\ | 
|  | 169 | }						\ | 
|  | 170 | while (0) | 
|  | 171 |  | 
|  | 172 | #if 0 | 
|  | 173 |  | 
|  | 174 | # ifndef __FP_FRAC_ADDI_2 | 
|  | 175 | #  define __FP_FRAC_ADDI_2(xh, xl, i)	\ | 
|  | 176 | (xh += ((xl += i) < i)) | 
|  | 177 | # endif | 
|  | 178 | # ifndef __FP_FRAC_ADD_2 | 
|  | 179 | #  define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl)	\ | 
|  | 180 | (rh = xh + yh + ((rl = xl + yl) < xl)) | 
|  | 181 | # endif | 
|  | 182 | # ifndef __FP_FRAC_SUB_2 | 
|  | 183 | #  define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl)	\ | 
|  | 184 | (rh = xh - yh - ((rl = xl - yl) > xl)) | 
|  | 185 | # endif | 
|  | 186 | # ifndef __FP_FRAC_DEC_2 | 
|  | 187 | #  define __FP_FRAC_DEC_2(xh, xl, yh, yl)		\ | 
|  | 188 | do							\ | 
|  | 189 | {							\ | 
|  | 190 | UWtype __FP_FRAC_DEC_2_t = xl;			\ | 
|  | 191 | xh -= yh + ((xl -= yl) > __FP_FRAC_DEC_2_t);	\ | 
|  | 192 | }							\ | 
|  | 193 | while (0) | 
|  | 194 | # endif | 
|  | 195 |  | 
|  | 196 | #else | 
|  | 197 |  | 
|  | 198 | # undef __FP_FRAC_ADDI_2 | 
|  | 199 | # define __FP_FRAC_ADDI_2(xh, xl, i)	add_ssaaaa (xh, xl, xh, xl, 0, i) | 
|  | 200 | # undef __FP_FRAC_ADD_2 | 
|  | 201 | # define __FP_FRAC_ADD_2		add_ssaaaa | 
|  | 202 | # undef __FP_FRAC_SUB_2 | 
|  | 203 | # define __FP_FRAC_SUB_2		sub_ddmmss | 
|  | 204 | # undef __FP_FRAC_DEC_2 | 
|  | 205 | # define __FP_FRAC_DEC_2(xh, xl, yh, yl)	\ | 
|  | 206 | sub_ddmmss (xh, xl, xh, xl, yh, yl) | 
|  | 207 |  | 
|  | 208 | #endif | 
|  | 209 |  | 
|  | 210 | /* Unpack the raw bits of a native fp value.  Do not classify or | 
|  | 211 | normalize the data.  */ | 
|  | 212 |  | 
|  | 213 | #define _FP_UNPACK_RAW_2(fs, X, val)			\ | 
|  | 214 | do							\ | 
|  | 215 | {							\ | 
|  | 216 | union _FP_UNION_##fs _FP_UNPACK_RAW_2_flo;	\ | 
|  | 217 | _FP_UNPACK_RAW_2_flo.flt = (val);			\ | 
|  | 218 | \ | 
|  | 219 | X##_f0 = _FP_UNPACK_RAW_2_flo.bits.frac0;		\ | 
|  | 220 | X##_f1 = _FP_UNPACK_RAW_2_flo.bits.frac1;		\ | 
|  | 221 | X##_e  = _FP_UNPACK_RAW_2_flo.bits.exp;		\ | 
|  | 222 | X##_s  = _FP_UNPACK_RAW_2_flo.bits.sign;		\ | 
|  | 223 | }							\ | 
|  | 224 | while (0) | 
|  | 225 |  | 
|  | 226 | #define _FP_UNPACK_RAW_2_P(fs, X, val)			\ | 
|  | 227 | do							\ | 
|  | 228 | {							\ | 
|  | 229 | union _FP_UNION_##fs *_FP_UNPACK_RAW_2_P_flo	\ | 
|  | 230 | = (union _FP_UNION_##fs *) (val);		\ | 
|  | 231 | \ | 
|  | 232 | X##_f0 = _FP_UNPACK_RAW_2_P_flo->bits.frac0;	\ | 
|  | 233 | X##_f1 = _FP_UNPACK_RAW_2_P_flo->bits.frac1;	\ | 
|  | 234 | X##_e  = _FP_UNPACK_RAW_2_P_flo->bits.exp;	\ | 
|  | 235 | X##_s  = _FP_UNPACK_RAW_2_P_flo->bits.sign;	\ | 
|  | 236 | }							\ | 
|  | 237 | while (0) | 
|  | 238 |  | 
|  | 239 |  | 
|  | 240 | /* Repack the raw bits of a native fp value.  */ | 
|  | 241 |  | 
|  | 242 | #define _FP_PACK_RAW_2(fs, val, X)		\ | 
|  | 243 | do						\ | 
|  | 244 | {						\ | 
|  | 245 | union _FP_UNION_##fs _FP_PACK_RAW_2_flo;	\ | 
|  | 246 | \ | 
|  | 247 | _FP_PACK_RAW_2_flo.bits.frac0 = X##_f0;	\ | 
|  | 248 | _FP_PACK_RAW_2_flo.bits.frac1 = X##_f1;	\ | 
|  | 249 | _FP_PACK_RAW_2_flo.bits.exp   = X##_e;	\ | 
|  | 250 | _FP_PACK_RAW_2_flo.bits.sign  = X##_s;	\ | 
|  | 251 | \ | 
|  | 252 | (val) = _FP_PACK_RAW_2_flo.flt;		\ | 
|  | 253 | }						\ | 
|  | 254 | while (0) | 
|  | 255 |  | 
|  | 256 | #define _FP_PACK_RAW_2_P(fs, val, X)			\ | 
|  | 257 | do							\ | 
|  | 258 | {							\ | 
|  | 259 | union _FP_UNION_##fs *_FP_PACK_RAW_2_P_flo	\ | 
|  | 260 | = (union _FP_UNION_##fs *) (val);		\ | 
|  | 261 | \ | 
|  | 262 | _FP_PACK_RAW_2_P_flo->bits.frac0 = X##_f0;	\ | 
|  | 263 | _FP_PACK_RAW_2_P_flo->bits.frac1 = X##_f1;	\ | 
|  | 264 | _FP_PACK_RAW_2_P_flo->bits.exp   = X##_e;		\ | 
|  | 265 | _FP_PACK_RAW_2_P_flo->bits.sign  = X##_s;		\ | 
|  | 266 | }							\ | 
|  | 267 | while (0) | 
|  | 268 |  | 
|  | 269 |  | 
|  | 270 | /* Multiplication algorithms: */ | 
|  | 271 |  | 
|  | 272 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
|  | 273 |  | 
|  | 274 | #define _FP_MUL_MEAT_DW_2_wide(wfracbits, R, X, Y, doit)		\ | 
|  | 275 | do									\ | 
|  | 276 | {									\ | 
|  | 277 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_b);			\ | 
|  | 278 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_c);			\ | 
|  | 279 | \ | 
|  | 280 | doit (_FP_FRAC_WORD_4 (R, 1), _FP_FRAC_WORD_4 (R, 0),		\ | 
|  | 281 | X##_f0, Y##_f0);						\ | 
|  | 282 | doit (_FP_MUL_MEAT_DW_2_wide_b_f1, _FP_MUL_MEAT_DW_2_wide_b_f0,	\ | 
|  | 283 | X##_f0, Y##_f1);						\ | 
|  | 284 | doit (_FP_MUL_MEAT_DW_2_wide_c_f1, _FP_MUL_MEAT_DW_2_wide_c_f0,	\ | 
|  | 285 | X##_f1, Y##_f0);						\ | 
|  | 286 | doit (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),		\ | 
|  | 287 | X##_f1, Y##_f1);						\ | 
|  | 288 | \ | 
|  | 289 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 290 | _FP_FRAC_WORD_4 (R, 1), 0,			\ | 
|  | 291 | _FP_MUL_MEAT_DW_2_wide_b_f1,			\ | 
|  | 292 | _FP_MUL_MEAT_DW_2_wide_b_f0,			\ | 
|  | 293 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 294 | _FP_FRAC_WORD_4 (R, 1));				\ | 
|  | 295 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 296 | _FP_FRAC_WORD_4 (R, 1), 0,			\ | 
|  | 297 | _FP_MUL_MEAT_DW_2_wide_c_f1,			\ | 
|  | 298 | _FP_MUL_MEAT_DW_2_wide_c_f0,			\ | 
|  | 299 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 300 | _FP_FRAC_WORD_4 (R, 1));				\ | 
|  | 301 | }									\ | 
|  | 302 | while (0) | 
|  | 303 |  | 
|  | 304 | #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit)			\ | 
|  | 305 | do									\ | 
|  | 306 | {									\ | 
|  | 307 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_z);				\ | 
|  | 308 | \ | 
|  | 309 | _FP_MUL_MEAT_DW_2_wide ((wfracbits), _FP_MUL_MEAT_2_wide_z,	\ | 
|  | 310 | X, Y, doit);				\ | 
|  | 311 | \ | 
|  | 312 | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | 313 | were (bit B), we know that the msb of the of the product is	\ | 
|  | 314 | at either 2B or 2B-1.  */					\ | 
|  | 315 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_z, (wfracbits)-1,		\ | 
|  | 316 | 2*(wfracbits));					\ | 
|  | 317 | R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 0);		\ | 
|  | 318 | R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 1);		\ | 
|  | 319 | }									\ | 
|  | 320 | while (0) | 
|  | 321 |  | 
|  | 322 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. | 
|  | 323 | Do only 3 multiplications instead of four. This one is for machines | 
|  | 324 | where multiplication is much more expensive than subtraction.  */ | 
|  | 325 |  | 
|  | 326 | #define _FP_MUL_MEAT_DW_2_wide_3mul(wfracbits, R, X, Y, doit)		\ | 
|  | 327 | do									\ | 
|  | 328 | {									\ | 
|  | 329 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_b);			\ | 
|  | 330 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_c);			\ | 
|  | 331 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_wide_3mul_d;				\ | 
|  | 332 | int _FP_MUL_MEAT_DW_2_wide_3mul_c1;				\ | 
|  | 333 | int _FP_MUL_MEAT_DW_2_wide_3mul_c2;				\ | 
|  | 334 | \ | 
|  | 335 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 = X##_f0 + X##_f1;		\ | 
|  | 336 | _FP_MUL_MEAT_DW_2_wide_3mul_c1					\ | 
|  | 337 | = _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 < X##_f0;			\ | 
|  | 338 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 = Y##_f0 + Y##_f1;		\ | 
|  | 339 | _FP_MUL_MEAT_DW_2_wide_3mul_c2					\ | 
|  | 340 | = _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 < Y##_f0;			\ | 
|  | 341 | doit (_FP_MUL_MEAT_DW_2_wide_3mul_d, _FP_FRAC_WORD_4 (R, 0),	\ | 
|  | 342 | X##_f0, Y##_f0);						\ | 
|  | 343 | doit (_FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1),		\ | 
|  | 344 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0,				\ | 
|  | 345 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1);				\ | 
|  | 346 | doit (_FP_MUL_MEAT_DW_2_wide_3mul_c_f1,				\ | 
|  | 347 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, X##_f1, Y##_f1);		\ | 
|  | 348 | \ | 
|  | 349 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0					\ | 
|  | 350 | &= -_FP_MUL_MEAT_DW_2_wide_3mul_c2;				\ | 
|  | 351 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1					\ | 
|  | 352 | &= -_FP_MUL_MEAT_DW_2_wide_3mul_c1;				\ | 
|  | 353 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 354 | _FP_FRAC_WORD_4 (R, 1),				\ | 
|  | 355 | (_FP_MUL_MEAT_DW_2_wide_3mul_c1			\ | 
|  | 356 | & _FP_MUL_MEAT_DW_2_wide_3mul_c2), 0,		\ | 
|  | 357 | _FP_MUL_MEAT_DW_2_wide_3mul_d,			\ | 
|  | 358 | 0, _FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1)); \ | 
|  | 359 | __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 360 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0);		\ | 
|  | 361 | __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 362 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1);		\ | 
|  | 363 | __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 364 | _FP_FRAC_WORD_4 (R, 1),				\ | 
|  | 365 | 0, _FP_MUL_MEAT_DW_2_wide_3mul_d,		\ | 
|  | 366 | _FP_FRAC_WORD_4 (R, 0));				\ | 
|  | 367 | __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 368 | _FP_FRAC_WORD_4 (R, 1), 0,			\ | 
|  | 369 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f1,		\ | 
|  | 370 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0);		\ | 
|  | 371 | __FP_FRAC_ADD_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2),	\ | 
|  | 372 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f1,		\ | 
|  | 373 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0,		\ | 
|  | 374 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2));	\ | 
|  | 375 | }									\ | 
|  | 376 | while (0) | 
|  | 377 |  | 
|  | 378 | #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit)		\ | 
|  | 379 | do									\ | 
|  | 380 | {									\ | 
|  | 381 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_3mul_z);			\ | 
|  | 382 | \ | 
|  | 383 | _FP_MUL_MEAT_DW_2_wide_3mul ((wfracbits),				\ | 
|  | 384 | _FP_MUL_MEAT_2_wide_3mul_z,		\ | 
|  | 385 | X, Y, doit);				\ | 
|  | 386 | \ | 
|  | 387 | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | 388 | were (bit B), we know that the msb of the of the product is	\ | 
|  | 389 | at either 2B or 2B-1.  */					\ | 
|  | 390 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_3mul_z,			\ | 
|  | 391 | (wfracbits)-1, 2*(wfracbits));			\ | 
|  | 392 | R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 0);		\ | 
|  | 393 | R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 1);		\ | 
|  | 394 | }									\ | 
|  | 395 | while (0) | 
|  | 396 |  | 
|  | 397 | #define _FP_MUL_MEAT_DW_2_gmp(wfracbits, R, X, Y)	\ | 
|  | 398 | do							\ | 
|  | 399 | {							\ | 
|  | 400 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_x[2];		\ | 
|  | 401 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_y[2];		\ | 
|  | 402 | _FP_MUL_MEAT_DW_2_gmp_x[0] = X##_f0;		\ | 
|  | 403 | _FP_MUL_MEAT_DW_2_gmp_x[1] = X##_f1;		\ | 
|  | 404 | _FP_MUL_MEAT_DW_2_gmp_y[0] = Y##_f0;		\ | 
|  | 405 | _FP_MUL_MEAT_DW_2_gmp_y[1] = Y##_f1;		\ | 
|  | 406 | \ | 
|  | 407 | mpn_mul_n (R##_f, _FP_MUL_MEAT_DW_2_gmp_x,	\ | 
|  | 408 | _FP_MUL_MEAT_DW_2_gmp_y, 2);		\ | 
|  | 409 | }							\ | 
|  | 410 | while (0) | 
|  | 411 |  | 
|  | 412 | #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y)				\ | 
|  | 413 | do									\ | 
|  | 414 | {									\ | 
|  | 415 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_gmp_z);				\ | 
|  | 416 | \ | 
|  | 417 | _FP_MUL_MEAT_DW_2_gmp ((wfracbits), _FP_MUL_MEAT_2_gmp_z, X, Y);	\ | 
|  | 418 | \ | 
|  | 419 | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | 420 | were (bit B), we know that the msb of the of the product is	\ | 
|  | 421 | at either 2B or 2B-1.  */					\ | 
|  | 422 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_gmp_z, (wfracbits)-1,		\ | 
|  | 423 | 2*(wfracbits));					\ | 
|  | 424 | R##_f0 = _FP_MUL_MEAT_2_gmp_z_f[0];				\ | 
|  | 425 | R##_f1 = _FP_MUL_MEAT_2_gmp_z_f[1];				\ | 
|  | 426 | }									\ | 
|  | 427 | while (0) | 
|  | 428 |  | 
|  | 429 | /* Do at most 120x120=240 bits multiplication using double floating | 
|  | 430 | point multiplication.  This is useful if floating point | 
|  | 431 | multiplication has much bigger throughput than integer multiply. | 
|  | 432 | It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits | 
|  | 433 | between 106 and 120 only. | 
|  | 434 | Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set. | 
|  | 435 | SETFETZ is a macro which will disable all FPU exceptions and set rounding | 
|  | 436 | towards zero,  RESETFE should optionally reset it back.  */ | 
|  | 437 |  | 
|  | 438 | #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \ | 
|  | 439 | do									\ | 
|  | 440 | {									\ | 
|  | 441 | static const double _const[] =					\ | 
|  | 442 | {								\ | 
|  | 443 | /* 2^-24 */ 5.9604644775390625e-08,				\ | 
|  | 444 | /* 2^-48 */ 3.5527136788005009e-15,				\ | 
|  | 445 | /* 2^-72 */ 2.1175823681357508e-22,				\ | 
|  | 446 | /* 2^-96 */ 1.2621774483536189e-29,				\ | 
|  | 447 | /* 2^28 */ 2.68435456e+08,					\ | 
|  | 448 | /* 2^4 */ 1.600000e+01,					\ | 
|  | 449 | /* 2^-20 */ 9.5367431640625e-07,				\ | 
|  | 450 | /* 2^-44 */ 5.6843418860808015e-14,				\ | 
|  | 451 | /* 2^-68 */ 3.3881317890172014e-21,				\ | 
|  | 452 | /* 2^-92 */ 2.0194839173657902e-28,				\ | 
|  | 453 | /* 2^-116 */ 1.2037062152420224e-35				\ | 
|  | 454 | };								\ | 
|  | 455 | double _a240, _b240, _c240, _d240, _e240, _f240,			\ | 
|  | 456 | _g240, _h240, _i240, _j240, _k240;				\ | 
|  | 457 | union { double d; UDItype i; } _l240, _m240, _n240, _o240,	\ | 
|  | 458 | _p240, _q240, _r240, _s240;	\ | 
|  | 459 | UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0;		\ | 
|  | 460 | \ | 
|  | 461 | _FP_STATIC_ASSERT ((wfracbits) >= 106 && (wfracbits) <= 120,	\ | 
|  | 462 | "wfracbits out of range");			\ | 
|  | 463 | \ | 
|  | 464 | setfetz;								\ | 
|  | 465 | \ | 
|  | 466 | _e240 = (double) (long) (X##_f0 & 0xffffff);			\ | 
|  | 467 | _j240 = (double) (long) (Y##_f0 & 0xffffff);			\ | 
|  | 468 | _d240 = (double) (long) ((X##_f0 >> 24) & 0xffffff);		\ | 
|  | 469 | _i240 = (double) (long) ((Y##_f0 >> 24) & 0xffffff);		\ | 
|  | 470 | _c240 = (double) (long) (((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \ | 
|  | 471 | _h240 = (double) (long) (((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \ | 
|  | 472 | _b240 = (double) (long) ((X##_f1 >> 8) & 0xffffff);		\ | 
|  | 473 | _g240 = (double) (long) ((Y##_f1 >> 8) & 0xffffff);		\ | 
|  | 474 | _a240 = (double) (long) (X##_f1 >> 32);				\ | 
|  | 475 | _f240 = (double) (long) (Y##_f1 >> 32);				\ | 
|  | 476 | _e240 *= _const[3];						\ | 
|  | 477 | _j240 *= _const[3];						\ | 
|  | 478 | _d240 *= _const[2];						\ | 
|  | 479 | _i240 *= _const[2];						\ | 
|  | 480 | _c240 *= _const[1];						\ | 
|  | 481 | _h240 *= _const[1];						\ | 
|  | 482 | _b240 *= _const[0];						\ | 
|  | 483 | _g240 *= _const[0];						\ | 
|  | 484 | _s240.d =							      _e240*_j240; \ | 
|  | 485 | _r240.d =						_d240*_j240 + _e240*_i240; \ | 
|  | 486 | _q240.d =				  _c240*_j240 + _d240*_i240 + _e240*_h240; \ | 
|  | 487 | _p240.d =		    _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240; \ | 
|  | 488 | _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240; \ | 
|  | 489 | _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240;	\ | 
|  | 490 | _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240;		\ | 
|  | 491 | _l240.d = _a240*_g240 + _b240*_f240;				\ | 
|  | 492 | _k240 =   _a240*_f240;						\ | 
|  | 493 | _r240.d += _s240.d;						\ | 
|  | 494 | _q240.d += _r240.d;						\ | 
|  | 495 | _p240.d += _q240.d;						\ | 
|  | 496 | _o240.d += _p240.d;						\ | 
|  | 497 | _n240.d += _o240.d;						\ | 
|  | 498 | _m240.d += _n240.d;						\ | 
|  | 499 | _l240.d += _m240.d;						\ | 
|  | 500 | _k240 += _l240.d;							\ | 
|  | 501 | _s240.d -= ((_const[10]+_s240.d)-_const[10]);			\ | 
|  | 502 | _r240.d -= ((_const[9]+_r240.d)-_const[9]);			\ | 
|  | 503 | _q240.d -= ((_const[8]+_q240.d)-_const[8]);			\ | 
|  | 504 | _p240.d -= ((_const[7]+_p240.d)-_const[7]);			\ | 
|  | 505 | _o240.d += _const[7];						\ | 
|  | 506 | _n240.d += _const[6];						\ | 
|  | 507 | _m240.d += _const[5];						\ | 
|  | 508 | _l240.d += _const[4];						\ | 
|  | 509 | if (_s240.d != 0.0)						\ | 
|  | 510 | _y240 = 1;							\ | 
|  | 511 | if (_r240.d != 0.0)						\ | 
|  | 512 | _y240 = 1;							\ | 
|  | 513 | if (_q240.d != 0.0)						\ | 
|  | 514 | _y240 = 1;							\ | 
|  | 515 | if (_p240.d != 0.0)						\ | 
|  | 516 | _y240 = 1;							\ | 
|  | 517 | _t240 = (DItype) _k240;						\ | 
|  | 518 | _u240 = _l240.i;							\ | 
|  | 519 | _v240 = _m240.i;							\ | 
|  | 520 | _w240 = _n240.i;							\ | 
|  | 521 | _x240 = _o240.i;							\ | 
|  | 522 | R##_f1 = ((_t240 << (128 - (wfracbits - 1)))			\ | 
|  | 523 | | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104)));	\ | 
|  | 524 | R##_f0 = (((_u240 & 0xffffff) << (168 - (wfracbits - 1)))		\ | 
|  | 525 | | ((_v240 & 0xffffff) << (144 - (wfracbits - 1)))	\ | 
|  | 526 | | ((_w240 & 0xffffff) << (120 - (wfracbits - 1)))	\ | 
|  | 527 | | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96))	\ | 
|  | 528 | | _y240);						\ | 
|  | 529 | resetfe;								\ | 
|  | 530 | }									\ | 
|  | 531 | while (0) | 
|  | 532 |  | 
|  | 533 | /* Division algorithms: */ | 
|  | 534 |  | 
|  | 535 | #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y)				\ | 
|  | 536 | do									\ | 
|  | 537 | {									\ | 
|  | 538 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f2;				\ | 
|  | 539 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f1;				\ | 
|  | 540 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f0;				\ | 
|  | 541 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f1;				\ | 
|  | 542 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f0;				\ | 
|  | 543 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f1;				\ | 
|  | 544 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f0;				\ | 
|  | 545 | if (_FP_FRAC_GE_2 (X, Y))						\ | 
|  | 546 | {								\ | 
|  | 547 | _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1 >> 1;			\ | 
|  | 548 | _FP_DIV_MEAT_2_udiv_n_f1					\ | 
|  | 549 | = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;		\ | 
|  | 550 | _FP_DIV_MEAT_2_udiv_n_f0					\ | 
|  | 551 | = X##_f0 << (_FP_W_TYPE_SIZE - 1);				\ | 
|  | 552 | }								\ | 
|  | 553 | else								\ | 
|  | 554 | {								\ | 
|  | 555 | R##_e--;							\ | 
|  | 556 | _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1;				\ | 
|  | 557 | _FP_DIV_MEAT_2_udiv_n_f1 = X##_f0;				\ | 
|  | 558 | _FP_DIV_MEAT_2_udiv_n_f0 = 0;					\ | 
|  | 559 | }								\ | 
|  | 560 | \ | 
|  | 561 | /* Normalize, i.e. make the most significant bit of the		\ | 
|  | 562 | denominator set.  */						\ | 
|  | 563 | _FP_FRAC_SLL_2 (Y, _FP_WFRACXBITS_##fs);				\ | 
|  | 564 | \ | 
|  | 565 | udiv_qrnnd (R##_f1, _FP_DIV_MEAT_2_udiv_r_f1,			\ | 
|  | 566 | _FP_DIV_MEAT_2_udiv_n_f2, _FP_DIV_MEAT_2_udiv_n_f1,	\ | 
|  | 567 | Y##_f1);						\ | 
|  | 568 | umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, _FP_DIV_MEAT_2_udiv_m_f0,	\ | 
|  | 569 | R##_f1, Y##_f0);					\ | 
|  | 570 | _FP_DIV_MEAT_2_udiv_r_f0 = _FP_DIV_MEAT_2_udiv_n_f0;		\ | 
|  | 571 | if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, _FP_DIV_MEAT_2_udiv_r))	\ | 
|  | 572 | {								\ | 
|  | 573 | R##_f1--;							\ | 
|  | 574 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y,			\ | 
|  | 575 | _FP_DIV_MEAT_2_udiv_r);			\ | 
|  | 576 | if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y)			\ | 
|  | 577 | && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m,			\ | 
|  | 578 | _FP_DIV_MEAT_2_udiv_r))			\ | 
|  | 579 | {								\ | 
|  | 580 | R##_f1--;							\ | 
|  | 581 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y,			\ | 
|  | 582 | _FP_DIV_MEAT_2_udiv_r);			\ | 
|  | 583 | }								\ | 
|  | 584 | }								\ | 
|  | 585 | _FP_FRAC_DEC_2 (_FP_DIV_MEAT_2_udiv_r, _FP_DIV_MEAT_2_udiv_m);	\ | 
|  | 586 | \ | 
|  | 587 | if (_FP_DIV_MEAT_2_udiv_r_f1 == Y##_f1)				\ | 
|  | 588 | {								\ | 
|  | 589 | /* This is a special case, not an optimization		\ | 
|  | 590 | (_FP_DIV_MEAT_2_udiv_r/Y##_f1 would not fit into UWtype).	\ | 
|  | 591 | As _FP_DIV_MEAT_2_udiv_r is guaranteed to be < Y,		\ | 
|  | 592 | R##_f0 can be either (UWtype)-1 or (UWtype)-2.  But as we	\ | 
|  | 593 | know what kind of bits it is (sticky, guard, round),	\ | 
|  | 594 | we don't care.  We also don't care what the reminder is,	\ | 
|  | 595 | because the guard bit will be set anyway.  -jj */		\ | 
|  | 596 | R##_f0 = -1;							\ | 
|  | 597 | }								\ | 
|  | 598 | else								\ | 
|  | 599 | {								\ | 
|  | 600 | udiv_qrnnd (R##_f0, _FP_DIV_MEAT_2_udiv_r_f1,			\ | 
|  | 601 | _FP_DIV_MEAT_2_udiv_r_f1,				\ | 
|  | 602 | _FP_DIV_MEAT_2_udiv_r_f0, Y##_f1);		\ | 
|  | 603 | umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1,				\ | 
|  | 604 | _FP_DIV_MEAT_2_udiv_m_f0, R##_f0, Y##_f0);		\ | 
|  | 605 | _FP_DIV_MEAT_2_udiv_r_f0 = 0;					\ | 
|  | 606 | if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m,			\ | 
|  | 607 | _FP_DIV_MEAT_2_udiv_r))			\ | 
|  | 608 | {								\ | 
|  | 609 | R##_f0--;							\ | 
|  | 610 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y,			\ | 
|  | 611 | _FP_DIV_MEAT_2_udiv_r);			\ | 
|  | 612 | if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y)		\ | 
|  | 613 | && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m,		\ | 
|  | 614 | _FP_DIV_MEAT_2_udiv_r))		\ | 
|  | 615 | {							\ | 
|  | 616 | R##_f0--;						\ | 
|  | 617 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y,		\ | 
|  | 618 | _FP_DIV_MEAT_2_udiv_r);		\ | 
|  | 619 | }							\ | 
|  | 620 | }								\ | 
|  | 621 | if (!_FP_FRAC_EQ_2 (_FP_DIV_MEAT_2_udiv_r,			\ | 
|  | 622 | _FP_DIV_MEAT_2_udiv_m))			\ | 
|  | 623 | R##_f0 |= _FP_WORK_STICKY;					\ | 
|  | 624 | }								\ | 
|  | 625 | }									\ | 
|  | 626 | while (0) | 
|  | 627 |  | 
|  | 628 |  | 
|  | 629 | /* Square root algorithms: | 
|  | 630 | We have just one right now, maybe Newton approximation | 
|  | 631 | should be added for those machines where division is fast.  */ | 
|  | 632 |  | 
|  | 633 | #define _FP_SQRT_MEAT_2(R, S, T, X, q)				\ | 
|  | 634 | do								\ | 
|  | 635 | {								\ | 
|  | 636 | while (q)							\ | 
|  | 637 | {							\ | 
|  | 638 | T##_f1 = S##_f1 + (q);				\ | 
|  | 639 | if (T##_f1 <= X##_f1)					\ | 
|  | 640 | {							\ | 
|  | 641 | S##_f1 = T##_f1 + (q);				\ | 
|  | 642 | X##_f1 -= T##_f1;					\ | 
|  | 643 | R##_f1 += (q);					\ | 
|  | 644 | }							\ | 
|  | 645 | _FP_FRAC_SLL_2 (X, 1);				\ | 
|  | 646 | (q) >>= 1;						\ | 
|  | 647 | }							\ | 
|  | 648 | (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1);		\ | 
|  | 649 | while ((q) != _FP_WORK_ROUND)				\ | 
|  | 650 | {							\ | 
|  | 651 | T##_f0 = S##_f0 + (q);				\ | 
|  | 652 | T##_f1 = S##_f1;					\ | 
|  | 653 | if (T##_f1 < X##_f1					\ | 
|  | 654 | || (T##_f1 == X##_f1 && T##_f0 <= X##_f0))	\ | 
|  | 655 | {							\ | 
|  | 656 | S##_f0 = T##_f0 + (q);				\ | 
|  | 657 | S##_f1 += (T##_f0 > S##_f0);			\ | 
|  | 658 | _FP_FRAC_DEC_2 (X, T);				\ | 
|  | 659 | R##_f0 += (q);					\ | 
|  | 660 | }							\ | 
|  | 661 | _FP_FRAC_SLL_2 (X, 1);				\ | 
|  | 662 | (q) >>= 1;						\ | 
|  | 663 | }							\ | 
|  | 664 | if (X##_f0 | X##_f1)					\ | 
|  | 665 | {							\ | 
|  | 666 | if (S##_f1 < X##_f1					\ | 
|  | 667 | || (S##_f1 == X##_f1 && S##_f0 < X##_f0))		\ | 
|  | 668 | R##_f0 |= _FP_WORK_ROUND;				\ | 
|  | 669 | R##_f0 |= _FP_WORK_STICKY;				\ | 
|  | 670 | }							\ | 
|  | 671 | }								\ | 
|  | 672 | while (0) | 
|  | 673 |  | 
|  | 674 |  | 
|  | 675 | /* Assembly/disassembly for converting to/from integral types. | 
|  | 676 | No shifting or overflow handled here.  */ | 
|  | 677 |  | 
|  | 678 | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize)	\ | 
|  | 679 | (void) (((rsize) <= _FP_W_TYPE_SIZE)		\ | 
|  | 680 | ? ({ (r) = X##_f0; })			\ | 
|  | 681 | : ({					\ | 
|  | 682 | (r) = X##_f1;			\ | 
|  | 683 | (r) <<= _FP_W_TYPE_SIZE;		\ | 
|  | 684 | (r) += X##_f0;			\ | 
|  | 685 | })) | 
|  | 686 |  | 
|  | 687 | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)	\ | 
|  | 688 | do						\ | 
|  | 689 | {						\ | 
|  | 690 | X##_f0 = (r);				\ | 
|  | 691 | X##_f1 = ((rsize) <= _FP_W_TYPE_SIZE	\ | 
|  | 692 | ? 0				\ | 
|  | 693 | : (r) >> _FP_W_TYPE_SIZE);	\ | 
|  | 694 | }						\ | 
|  | 695 | while (0) | 
|  | 696 |  | 
|  | 697 | /* Convert FP values between word sizes.  */ | 
|  | 698 |  | 
|  | 699 | #define _FP_FRAC_COPY_1_2(D, S)		(D##_f = S##_f0) | 
|  | 700 |  | 
|  | 701 | #define _FP_FRAC_COPY_2_1(D, S)		((D##_f0 = S##_f), (D##_f1 = 0)) | 
|  | 702 |  | 
|  | 703 | #define _FP_FRAC_COPY_2_2(D, S)		_FP_FRAC_COPY_2 (D, S) | 
|  | 704 |  | 
|  | 705 | #endif /* !SOFT_FP_OP_2_H */ |