lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* __ieee754_lgamma_r(x, signgamp) |
| 13 | * Reentrant version of the logarithm of the Gamma function |
| 14 | * with user provide pointer for the sign of Gamma(x). |
| 15 | * |
| 16 | * Method: |
| 17 | * 1. Argument Reduction for 0 < x <= 8 |
| 18 | * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may |
| 19 | * reduce x to a number in [1.5,2.5] by |
| 20 | * lgamma(1+s) = log(s) + lgamma(s) |
| 21 | * for example, |
| 22 | * lgamma(7.3) = log(6.3) + lgamma(6.3) |
| 23 | * = log(6.3*5.3) + lgamma(5.3) |
| 24 | * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) |
| 25 | * 2. Polynomial approximation of lgamma around its |
| 26 | * minimun ymin=1.461632144968362245 to maintain monotonicity. |
| 27 | * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use |
| 28 | * Let z = x-ymin; |
| 29 | * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) |
| 30 | * where |
| 31 | * poly(z) is a 14 degree polynomial. |
| 32 | * 2. Rational approximation in the primary interval [2,3] |
| 33 | * We use the following approximation: |
| 34 | * s = x-2.0; |
| 35 | * lgamma(x) = 0.5*s + s*P(s)/Q(s) |
| 36 | * with accuracy |
| 37 | * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 |
| 38 | * Our algorithms are based on the following observation |
| 39 | * |
| 40 | * zeta(2)-1 2 zeta(3)-1 3 |
| 41 | * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... |
| 42 | * 2 3 |
| 43 | * |
| 44 | * where Euler = 0.5771... is the Euler constant, which is very |
| 45 | * close to 0.5. |
| 46 | * |
| 47 | * 3. For x>=8, we have |
| 48 | * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... |
| 49 | * (better formula: |
| 50 | * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) |
| 51 | * Let z = 1/x, then we approximation |
| 52 | * f(z) = lgamma(x) - (x-0.5)(log(x)-1) |
| 53 | * by |
| 54 | * 3 5 11 |
| 55 | * w = w0 + w1*z + w2*z + w3*z + ... + w6*z |
| 56 | * where |
| 57 | * |w - f(z)| < 2**-58.74 |
| 58 | * |
| 59 | * 4. For negative x, since (G is gamma function) |
| 60 | * -x*G(-x)*G(x) = pi/sin(pi*x), |
| 61 | * we have |
| 62 | * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) |
| 63 | * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 |
| 64 | * Hence, for x<0, signgam = sign(sin(pi*x)) and |
| 65 | * lgamma(x) = log(|Gamma(x)|) |
| 66 | * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); |
| 67 | * Note: one should avoid compute pi*(-x) directly in the |
| 68 | * computation of sin(pi*(-x)). |
| 69 | * |
| 70 | * 5. Special Cases |
| 71 | * lgamma(2+s) ~ s*(1-Euler) for tiny s |
| 72 | * lgamma(1)=lgamma(2)=0 |
| 73 | * lgamma(x) ~ -log(x) for tiny x |
| 74 | * lgamma(0) = lgamma(inf) = inf |
| 75 | * lgamma(-integer) = +-inf |
| 76 | * |
| 77 | */ |
| 78 | |
| 79 | #include "math.h" |
| 80 | #include "math_private.h" |
| 81 | |
| 82 | static const double |
| 83 | two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ |
| 84 | half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
| 85 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
| 86 | pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
| 87 | a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ |
| 88 | a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ |
| 89 | a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ |
| 90 | a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ |
| 91 | a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ |
| 92 | a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ |
| 93 | a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ |
| 94 | a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ |
| 95 | a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ |
| 96 | a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ |
| 97 | a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ |
| 98 | a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ |
| 99 | tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ |
| 100 | tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ |
| 101 | /* tt = -(tail of tf) */ |
| 102 | tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ |
| 103 | t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ |
| 104 | t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ |
| 105 | t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ |
| 106 | t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ |
| 107 | t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ |
| 108 | t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ |
| 109 | t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ |
| 110 | t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ |
| 111 | t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ |
| 112 | t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ |
| 113 | t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ |
| 114 | t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ |
| 115 | t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ |
| 116 | t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ |
| 117 | t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ |
| 118 | u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
| 119 | u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ |
| 120 | u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ |
| 121 | u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ |
| 122 | u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ |
| 123 | u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ |
| 124 | v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ |
| 125 | v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ |
| 126 | v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ |
| 127 | v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ |
| 128 | v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ |
| 129 | s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
| 130 | s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ |
| 131 | s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ |
| 132 | s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ |
| 133 | s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ |
| 134 | s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ |
| 135 | s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ |
| 136 | r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ |
| 137 | r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ |
| 138 | r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ |
| 139 | r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ |
| 140 | r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ |
| 141 | r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ |
| 142 | w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ |
| 143 | w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ |
| 144 | w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ |
| 145 | w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ |
| 146 | w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ |
| 147 | w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ |
| 148 | w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ |
| 149 | |
| 150 | static const double zero= 0.00000000000000000000e+00; |
| 151 | |
| 152 | static |
| 153 | #ifdef __GNUC__ |
| 154 | __inline__ |
| 155 | #endif |
| 156 | double sin_pi(double x) |
| 157 | { |
| 158 | double y,z; |
| 159 | int n,ix; |
| 160 | |
| 161 | GET_HIGH_WORD(ix,x); |
| 162 | ix &= 0x7fffffff; |
| 163 | |
| 164 | if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0); |
| 165 | y = -x; /* x is assume negative */ |
| 166 | |
| 167 | /* |
| 168 | * argument reduction, make sure inexact flag not raised if input |
| 169 | * is an integer |
| 170 | */ |
| 171 | z = floor(y); |
| 172 | if(z!=y) { /* inexact anyway */ |
| 173 | y *= 0.5; |
| 174 | y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */ |
| 175 | n = (int) (y*4.0); |
| 176 | } else { |
| 177 | if(ix>=0x43400000) { |
| 178 | y = zero; n = 0; /* y must be even */ |
| 179 | } else { |
| 180 | if(ix<0x43300000) z = y+two52; /* exact */ |
| 181 | GET_LOW_WORD(n,z); |
| 182 | n &= 1; |
| 183 | y = n; |
| 184 | n<<= 2; |
| 185 | } |
| 186 | } |
| 187 | switch (n) { |
| 188 | case 0: y = __kernel_sin(pi*y,zero,0); break; |
| 189 | case 1: |
| 190 | case 2: y = __kernel_cos(pi*(0.5-y),zero); break; |
| 191 | case 3: |
| 192 | case 4: y = __kernel_sin(pi*(one-y),zero,0); break; |
| 193 | case 5: |
| 194 | case 6: y = -__kernel_cos(pi*(y-1.5),zero); break; |
| 195 | default: y = __kernel_sin(pi*(y-2.0),zero,0); break; |
| 196 | } |
| 197 | return -y; |
| 198 | } |
| 199 | |
| 200 | double attribute_hidden __ieee754_lgamma_r(double x, int *signgamp) |
| 201 | { |
| 202 | double t,y,z,nadj=0,p,p1,p2,p3,q,r,w; |
| 203 | int i,hx,lx,ix; |
| 204 | |
| 205 | EXTRACT_WORDS(hx,lx,x); |
| 206 | |
| 207 | /* purge off +-inf, NaN, +-0, and negative arguments */ |
| 208 | *signgamp = 1; |
| 209 | ix = hx&0x7fffffff; |
| 210 | if(ix>=0x7ff00000) return x*x; |
| 211 | if((ix|lx)==0) { |
| 212 | if (signbit(x)) |
| 213 | *signgamp = -1; |
| 214 | return one/zero; |
| 215 | } |
| 216 | if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */ |
| 217 | if(hx<0) { |
| 218 | *signgamp = -1; |
| 219 | return -__ieee754_log(-x); |
| 220 | } else return -__ieee754_log(x); |
| 221 | } |
| 222 | if(hx<0) { |
| 223 | if(ix>=0x43300000) /* |x|>=2**52, must be -integer */ |
| 224 | return one/zero; |
| 225 | t = sin_pi(x); |
| 226 | if(t==zero) return one/zero; /* -integer */ |
| 227 | nadj = __ieee754_log(pi/fabs(t*x)); |
| 228 | if(t<zero) *signgamp = -1; |
| 229 | x = -x; |
| 230 | } |
| 231 | |
| 232 | /* purge off 1 and 2 */ |
| 233 | if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0; |
| 234 | /* for x < 2.0 */ |
| 235 | else if(ix<0x40000000) { |
| 236 | if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
| 237 | r = -__ieee754_log(x); |
| 238 | if(ix>=0x3FE76944) {y = one-x; i= 0;} |
| 239 | else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;} |
| 240 | else {y = x; i=2;} |
| 241 | } else { |
| 242 | r = zero; |
| 243 | if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */ |
| 244 | else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */ |
| 245 | else {y=x-one;i=2;} |
| 246 | } |
| 247 | switch(i) { |
| 248 | case 0: |
| 249 | z = y*y; |
| 250 | p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
| 251 | p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
| 252 | p = y*p1+p2; |
| 253 | r += (p-0.5*y); break; |
| 254 | case 1: |
| 255 | z = y*y; |
| 256 | w = z*y; |
| 257 | p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
| 258 | p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
| 259 | p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
| 260 | p = z*p1-(tt-w*(p2+y*p3)); |
| 261 | r += (tf + p); break; |
| 262 | case 2: |
| 263 | p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
| 264 | p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
| 265 | r += (-0.5*y + p1/p2); |
| 266 | } |
| 267 | } |
| 268 | else if(ix<0x40200000) { /* x < 8.0 */ |
| 269 | i = (int)x; |
| 270 | t = zero; |
| 271 | y = x-(double)i; |
| 272 | p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
| 273 | q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
| 274 | r = half*y+p/q; |
| 275 | z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ |
| 276 | switch(i) { |
| 277 | case 7: z *= (y+6.0); /* FALLTHRU */ |
| 278 | case 6: z *= (y+5.0); /* FALLTHRU */ |
| 279 | case 5: z *= (y+4.0); /* FALLTHRU */ |
| 280 | case 4: z *= (y+3.0); /* FALLTHRU */ |
| 281 | case 3: z *= (y+2.0); /* FALLTHRU */ |
| 282 | r += __ieee754_log(z); break; |
| 283 | } |
| 284 | /* 8.0 <= x < 2**58 */ |
| 285 | } else if (ix < 0x43900000) { |
| 286 | t = __ieee754_log(x); |
| 287 | z = one/x; |
| 288 | y = z*z; |
| 289 | w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
| 290 | r = (x-half)*(t-one)+w; |
| 291 | } else |
| 292 | /* 2**58 <= x <= inf */ |
| 293 | r = x*(__ieee754_log(x)-one); |
| 294 | if(hx<0) r = nadj - r; |
| 295 | return r; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * wrapper double lgamma_r(double x, int *signgamp) |
| 300 | */ |
| 301 | #ifndef _IEEE_LIBM |
| 302 | double lgamma_r(double x, int *signgamp) |
| 303 | { |
| 304 | double y = __ieee754_lgamma_r(x, signgamp); |
| 305 | if (_LIB_VERSION == _IEEE_) |
| 306 | return y; |
| 307 | if (!isfinite(y) && isfinite(x)) { |
| 308 | if (floor(x) == x && x <= 0.0) |
| 309 | return __kernel_standard(x, x, 15); /* lgamma pole */ |
| 310 | return __kernel_standard(x, x, 14); /* lgamma overflow */ |
| 311 | } |
| 312 | return y; |
| 313 | } |
| 314 | #else |
| 315 | strong_alias(__ieee754_lgamma_r, lgamma_r) |
| 316 | #endif |
| 317 | |
| 318 | /* __ieee754_lgamma(x) |
| 319 | * Return the logarithm of the Gamma function of x. |
| 320 | */ |
| 321 | double attribute_hidden __ieee754_lgamma(double x) |
| 322 | { |
| 323 | return __ieee754_lgamma_r(x, &signgam); |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * wrapper double lgamma(double x) |
| 328 | */ |
| 329 | #ifndef _IEEE_LIBM |
| 330 | double lgamma(double x) |
| 331 | { |
| 332 | double y = __ieee754_lgamma_r(x, &signgam); |
| 333 | if (_LIB_VERSION == _IEEE_) |
| 334 | return y; |
| 335 | if (!isfinite(y) && isfinite(x)) { |
| 336 | if (floor(x) == x && x <= 0.0) |
| 337 | return __kernel_standard(x, x, 15); /* lgamma pole */ |
| 338 | return __kernel_standard(x, x, 14); /* lgamma overflow */ |
| 339 | } |
| 340 | return y; |
| 341 | } |
| 342 | #else |
| 343 | strong_alias(__ieee754_lgamma, lgamma); |
| 344 | #endif |
| 345 | libm_hidden_def(lgamma) |
| 346 | |
| 347 | |
| 348 | /* NB: gamma function is an old name for lgamma. |
| 349 | * It is deprecated. |
| 350 | * Some C math libraries redefine it as a "true gamma", i.e., |
| 351 | * not a ln(|Gamma(x)|) but just Gamma(x), but standards |
| 352 | * introduced tgamma name for that. |
| 353 | */ |
| 354 | #ifndef _IEEE_LIBM |
| 355 | strong_alias(lgamma_r, gamma_r) |
| 356 | strong_alias(lgamma, gamma) |
| 357 | #else |
| 358 | strong_alias(__ieee754_lgamma_r, gamma_r) |
| 359 | strong_alias(__ieee754_lgamma, gamma) |
| 360 | #endif |
| 361 | |
| 362 | |
| 363 | /* double tgamma(double x) |
| 364 | * Return the Gamma function of x. |
| 365 | */ |
| 366 | double tgamma(double x) |
| 367 | { |
| 368 | int sign_of_gamma; |
| 369 | int32_t hx; |
| 370 | u_int32_t lx; |
| 371 | |
| 372 | /* We don't have a real gamma implementation now. We'll use lgamma |
| 373 | and the exp function. But due to the required boundary |
| 374 | conditions we must check some values separately. */ |
| 375 | |
| 376 | EXTRACT_WORDS(hx, lx, x); |
| 377 | |
| 378 | if (((hx & 0x7fffffff) | lx) == 0) { |
| 379 | /* Return value for x == 0 is Inf with divide by zero exception. */ |
| 380 | return 1.0 / x; |
| 381 | } |
| 382 | if (hx < 0 && (u_int32_t)hx < 0xfff00000 && rint(x) == x) { |
| 383 | /* Return value for integer x < 0 is NaN with invalid exception. */ |
| 384 | return (x - x) / (x - x); |
| 385 | } |
| 386 | if ((u_int32_t)hx == 0xfff00000 && lx == 0) { |
| 387 | /* x == -Inf. According to ISO this is NaN. */ |
| 388 | return x - x; |
| 389 | } |
| 390 | |
| 391 | x = exp(lgamma_r(x, &sign_of_gamma)); |
| 392 | return sign_of_gamma >= 0 ? x : -x; |
| 393 | } |
| 394 | libm_hidden_def(tgamma) |