| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Return arc tangent of complex long double value. | 
 | 2 |    Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
 | 3 |    This file is part of the GNU C Library. | 
 | 4 |    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | 
 | 5 |  | 
 | 6 |    The GNU C Library is free software; you can redistribute it and/or | 
 | 7 |    modify it under the terms of the GNU Lesser General Public | 
 | 8 |    License as published by the Free Software Foundation; either | 
 | 9 |    version 2.1 of the License, or (at your option) any later version. | 
 | 10 |  | 
 | 11 |    The GNU C Library is distributed in the hope that it will be useful, | 
 | 12 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 13 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 | 14 |    Lesser General Public License for more details. | 
 | 15 |  | 
 | 16 |    You should have received a copy of the GNU Lesser General Public | 
 | 17 |    License along with the GNU C Library; if not, see | 
 | 18 |    <http://www.gnu.org/licenses/>.  */ | 
 | 19 |  | 
 | 20 | #include <complex.h> | 
 | 21 | #include <math.h> | 
 | 22 | #include <math_private.h> | 
 | 23 | #include <float.h> | 
 | 24 |  | 
 | 25 | /* To avoid spurious overflows, use this definition to treat IBM long | 
 | 26 |    double as approximating an IEEE-style format.  */ | 
 | 27 | #if LDBL_MANT_DIG == 106 | 
 | 28 | # undef LDBL_EPSILON | 
 | 29 | # define LDBL_EPSILON 0x1p-106L | 
 | 30 | #endif | 
 | 31 |  | 
 | 32 | __complex__ long double | 
 | 33 | __catanl (__complex__ long double x) | 
 | 34 | { | 
 | 35 |   __complex__ long double res; | 
 | 36 |   int rcls = fpclassify (__real__ x); | 
 | 37 |   int icls = fpclassify (__imag__ x); | 
 | 38 |  | 
 | 39 |   if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) | 
 | 40 |     { | 
 | 41 |       if (rcls == FP_INFINITE) | 
 | 42 | 	{ | 
 | 43 | 	  __real__ res = __copysignl (M_PI_2l, __real__ x); | 
 | 44 | 	  __imag__ res = __copysignl (0.0, __imag__ x); | 
 | 45 | 	} | 
 | 46 |       else if (icls == FP_INFINITE) | 
 | 47 | 	{ | 
 | 48 | 	  if (rcls >= FP_ZERO) | 
 | 49 | 	    __real__ res = __copysignl (M_PI_2l, __real__ x); | 
 | 50 | 	  else | 
 | 51 | 	    __real__ res = __nanl (""); | 
 | 52 | 	  __imag__ res = __copysignl (0.0, __imag__ x); | 
 | 53 | 	} | 
 | 54 |       else if (icls == FP_ZERO || icls == FP_INFINITE) | 
 | 55 | 	{ | 
 | 56 | 	  __real__ res = __nanl (""); | 
 | 57 | 	  __imag__ res = __copysignl (0.0, __imag__ x); | 
 | 58 | 	} | 
 | 59 |       else | 
 | 60 | 	{ | 
 | 61 | 	  __real__ res = __nanl (""); | 
 | 62 | 	  __imag__ res = __nanl (""); | 
 | 63 | 	} | 
 | 64 |     } | 
 | 65 |   else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) | 
 | 66 |     { | 
 | 67 |       res = x; | 
 | 68 |     } | 
 | 69 |   else | 
 | 70 |     { | 
 | 71 |       if (fabsl (__real__ x) >= 16.0L / LDBL_EPSILON | 
 | 72 | 	  || fabsl (__imag__ x) >= 16.0L / LDBL_EPSILON) | 
 | 73 | 	{ | 
 | 74 | 	  __real__ res = __copysignl (M_PI_2l, __real__ x); | 
 | 75 | 	  if (fabsl (__real__ x) <= 1.0L) | 
 | 76 | 	    __imag__ res = 1.0L / __imag__ x; | 
 | 77 | 	  else if (fabsl (__imag__ x) <= 1.0L) | 
 | 78 | 	    __imag__ res = __imag__ x / __real__ x / __real__ x; | 
 | 79 | 	  else | 
 | 80 | 	    { | 
 | 81 | 	      long double h = __ieee754_hypotl (__real__ x / 2.0L, | 
 | 82 | 						__imag__ x / 2.0L); | 
 | 83 | 	      __imag__ res = __imag__ x / h / h / 4.0L; | 
 | 84 | 	    } | 
 | 85 | 	} | 
 | 86 |       else | 
 | 87 | 	{ | 
 | 88 | 	  long double den, absx, absy; | 
 | 89 |  | 
 | 90 | 	  absx = fabsl (__real__ x); | 
 | 91 | 	  absy = fabsl (__imag__ x); | 
 | 92 | 	  if (absx < absy) | 
 | 93 | 	    { | 
 | 94 | 	      long double t = absx; | 
 | 95 | 	      absx = absy; | 
 | 96 | 	      absy = t; | 
 | 97 | 	    } | 
 | 98 |  | 
 | 99 | 	  if (absy < LDBL_EPSILON / 2.0L) | 
 | 100 | 	    { | 
 | 101 | 	      den = (1.0L - absx) * (1.0L + absx); | 
 | 102 | 	      if (den == -0.0L) | 
 | 103 | 		den = 0.0L; | 
 | 104 | 	    } | 
 | 105 | 	  else if (absx >= 1.0L) | 
 | 106 | 	    den = (1.0L - absx) * (1.0L + absx) - absy * absy; | 
 | 107 | 	  else if (absx >= 0.75L || absy >= 0.5L) | 
 | 108 | 	    den = -__x2y2m1l (absx, absy); | 
 | 109 | 	  else | 
 | 110 | 	    den = (1.0L - absx) * (1.0L + absx) - absy * absy; | 
 | 111 |  | 
 | 112 | 	  __real__ res = 0.5L * __ieee754_atan2l (2.0L * __real__ x, den); | 
 | 113 |  | 
 | 114 | 	  if (fabsl (__imag__ x) == 1.0L | 
 | 115 | 	      && fabsl (__real__ x) < LDBL_EPSILON * LDBL_EPSILON) | 
 | 116 | 	    __imag__ res = (__copysignl (0.5L, __imag__ x) | 
 | 117 | 			    * (M_LN2l - __ieee754_logl (fabsl (__real__ x)))); | 
 | 118 | 	  else | 
 | 119 | 	    { | 
 | 120 | 	      long double r2 = 0.0L, num, f; | 
 | 121 |  | 
 | 122 | 	      if (fabsl (__real__ x) >= LDBL_EPSILON * LDBL_EPSILON) | 
 | 123 | 		r2 = __real__ x * __real__ x; | 
 | 124 |  | 
 | 125 | 	      num = __imag__ x + 1.0L; | 
 | 126 | 	      num = r2 + num * num; | 
 | 127 |  | 
 | 128 | 	      den = __imag__ x - 1.0L; | 
 | 129 | 	      den = r2 + den * den; | 
 | 130 |  | 
 | 131 | 	      f = num / den; | 
 | 132 | 	      if (f < 0.5L) | 
 | 133 | 		__imag__ res = 0.25L * __ieee754_logl (f); | 
 | 134 | 	      else | 
 | 135 | 		{ | 
 | 136 | 		  num = 4.0L * __imag__ x; | 
 | 137 | 		  __imag__ res = 0.25L * __log1pl (num / den); | 
 | 138 | 		} | 
 | 139 | 	    } | 
 | 140 | 	} | 
 | 141 |  | 
 | 142 |       math_check_force_underflow_complex (res); | 
 | 143 |     } | 
 | 144 |  | 
 | 145 |   return res; | 
 | 146 | } | 
 | 147 | weak_alias (__catanl, catanl) |