lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2015-2021 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <string.h> |
| 12 | #include <stdlib.h> |
| 13 | #include <ctype.h> |
| 14 | #include <openssl/evp.h> |
| 15 | #include <openssl/pem.h> |
| 16 | #include <openssl/err.h> |
| 17 | #include <openssl/x509v3.h> |
| 18 | #include <openssl/pkcs12.h> |
| 19 | #include <openssl/kdf.h> |
| 20 | #include "internal/numbers.h" |
| 21 | #include "testutil.h" |
| 22 | #include "evp_test.h" |
| 23 | |
| 24 | |
| 25 | typedef struct evp_test_method_st EVP_TEST_METHOD; |
| 26 | |
| 27 | /* |
| 28 | * Structure holding test information |
| 29 | */ |
| 30 | typedef struct evp_test_st { |
| 31 | STANZA s; /* Common test stanza */ |
| 32 | char *name; |
| 33 | int skip; /* Current test should be skipped */ |
| 34 | const EVP_TEST_METHOD *meth; /* method for this test */ |
| 35 | const char *err, *aux_err; /* Error string for test */ |
| 36 | char *expected_err; /* Expected error value of test */ |
| 37 | char *func; /* Expected error function string */ |
| 38 | char *reason; /* Expected error reason string */ |
| 39 | void *data; /* test specific data */ |
| 40 | } EVP_TEST; |
| 41 | |
| 42 | /* |
| 43 | * Test method structure |
| 44 | */ |
| 45 | struct evp_test_method_st { |
| 46 | /* Name of test as it appears in file */ |
| 47 | const char *name; |
| 48 | /* Initialise test for "alg" */ |
| 49 | int (*init) (EVP_TEST * t, const char *alg); |
| 50 | /* Clean up method */ |
| 51 | void (*cleanup) (EVP_TEST * t); |
| 52 | /* Test specific name value pair processing */ |
| 53 | int (*parse) (EVP_TEST * t, const char *name, const char *value); |
| 54 | /* Run the test itself */ |
| 55 | int (*run_test) (EVP_TEST * t); |
| 56 | }; |
| 57 | |
| 58 | |
| 59 | /* |
| 60 | * Linked list of named keys. |
| 61 | */ |
| 62 | typedef struct key_list_st { |
| 63 | char *name; |
| 64 | EVP_PKEY *key; |
| 65 | struct key_list_st *next; |
| 66 | } KEY_LIST; |
| 67 | |
| 68 | /* |
| 69 | * List of public and private keys |
| 70 | */ |
| 71 | static KEY_LIST *private_keys; |
| 72 | static KEY_LIST *public_keys; |
| 73 | static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst); |
| 74 | |
| 75 | static int parse_bin(const char *value, unsigned char **buf, size_t *buflen); |
| 76 | |
| 77 | /* |
| 78 | * Compare two memory regions for equality, returning zero if they differ. |
| 79 | * However, if there is expected to be an error and the actual error |
| 80 | * matches then the memory is expected to be different so handle this |
| 81 | * case without producing unnecessary test framework output. |
| 82 | */ |
| 83 | static int memory_err_compare(EVP_TEST *t, const char *err, |
| 84 | const void *expected, size_t expected_len, |
| 85 | const void *got, size_t got_len) |
| 86 | { |
| 87 | int r; |
| 88 | |
| 89 | if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0) |
| 90 | r = !TEST_mem_ne(expected, expected_len, got, got_len); |
| 91 | else |
| 92 | r = TEST_mem_eq(expected, expected_len, got, got_len); |
| 93 | if (!r) |
| 94 | t->err = err; |
| 95 | return r; |
| 96 | } |
| 97 | |
| 98 | /* |
| 99 | * Structure used to hold a list of blocks of memory to test |
| 100 | * calls to "update" like functions. |
| 101 | */ |
| 102 | struct evp_test_buffer_st { |
| 103 | unsigned char *buf; |
| 104 | size_t buflen; |
| 105 | size_t count; |
| 106 | int count_set; |
| 107 | }; |
| 108 | |
| 109 | static void evp_test_buffer_free(EVP_TEST_BUFFER *db) |
| 110 | { |
| 111 | if (db != NULL) { |
| 112 | OPENSSL_free(db->buf); |
| 113 | OPENSSL_free(db); |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * append buffer to a list |
| 119 | */ |
| 120 | static int evp_test_buffer_append(const char *value, |
| 121 | STACK_OF(EVP_TEST_BUFFER) **sk) |
| 122 | { |
| 123 | EVP_TEST_BUFFER *db = NULL; |
| 124 | |
| 125 | if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db)))) |
| 126 | goto err; |
| 127 | |
| 128 | if (!parse_bin(value, &db->buf, &db->buflen)) |
| 129 | goto err; |
| 130 | db->count = 1; |
| 131 | db->count_set = 0; |
| 132 | |
| 133 | if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null())) |
| 134 | goto err; |
| 135 | if (!sk_EVP_TEST_BUFFER_push(*sk, db)) |
| 136 | goto err; |
| 137 | |
| 138 | return 1; |
| 139 | |
| 140 | err: |
| 141 | evp_test_buffer_free(db); |
| 142 | return 0; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * replace last buffer in list with copies of itself |
| 147 | */ |
| 148 | static int evp_test_buffer_ncopy(const char *value, |
| 149 | STACK_OF(EVP_TEST_BUFFER) *sk) |
| 150 | { |
| 151 | EVP_TEST_BUFFER *db; |
| 152 | unsigned char *tbuf, *p; |
| 153 | size_t tbuflen; |
| 154 | int ncopy = atoi(value); |
| 155 | int i; |
| 156 | |
| 157 | if (ncopy <= 0) |
| 158 | return 0; |
| 159 | if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0) |
| 160 | return 0; |
| 161 | db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1); |
| 162 | |
| 163 | tbuflen = db->buflen * ncopy; |
| 164 | if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen))) |
| 165 | return 0; |
| 166 | for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen) |
| 167 | memcpy(p, db->buf, db->buflen); |
| 168 | |
| 169 | OPENSSL_free(db->buf); |
| 170 | db->buf = tbuf; |
| 171 | db->buflen = tbuflen; |
| 172 | return 1; |
| 173 | } |
| 174 | |
| 175 | /* |
| 176 | * set repeat count for last buffer in list |
| 177 | */ |
| 178 | static int evp_test_buffer_set_count(const char *value, |
| 179 | STACK_OF(EVP_TEST_BUFFER) *sk) |
| 180 | { |
| 181 | EVP_TEST_BUFFER *db; |
| 182 | int count = atoi(value); |
| 183 | |
| 184 | if (count <= 0) |
| 185 | return 0; |
| 186 | |
| 187 | if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0) |
| 188 | return 0; |
| 189 | |
| 190 | db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1); |
| 191 | if (db->count_set != 0) |
| 192 | return 0; |
| 193 | |
| 194 | db->count = (size_t)count; |
| 195 | db->count_set = 1; |
| 196 | return 1; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * call "fn" with each element of the list in turn |
| 201 | */ |
| 202 | static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk, |
| 203 | int (*fn)(void *ctx, |
| 204 | const unsigned char *buf, |
| 205 | size_t buflen), |
| 206 | void *ctx) |
| 207 | { |
| 208 | int i; |
| 209 | |
| 210 | for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) { |
| 211 | EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i); |
| 212 | size_t j; |
| 213 | |
| 214 | for (j = 0; j < tb->count; j++) { |
| 215 | if (fn(ctx, tb->buf, tb->buflen) <= 0) |
| 216 | return 0; |
| 217 | } |
| 218 | } |
| 219 | return 1; |
| 220 | } |
| 221 | |
| 222 | /* |
| 223 | * Unescape some sequences in string literals (only \n for now). |
| 224 | * Return an allocated buffer, set |out_len|. If |input_len| |
| 225 | * is zero, get an empty buffer but set length to zero. |
| 226 | */ |
| 227 | static unsigned char* unescape(const char *input, size_t input_len, |
| 228 | size_t *out_len) |
| 229 | { |
| 230 | unsigned char *ret, *p; |
| 231 | size_t i; |
| 232 | |
| 233 | if (input_len == 0) { |
| 234 | *out_len = 0; |
| 235 | return OPENSSL_zalloc(1); |
| 236 | } |
| 237 | |
| 238 | /* Escaping is non-expanding; over-allocate original size for simplicity. */ |
| 239 | if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len))) |
| 240 | return NULL; |
| 241 | |
| 242 | for (i = 0; i < input_len; i++) { |
| 243 | if (*input == '\\') { |
| 244 | if (i == input_len - 1 || *++input != 'n') { |
| 245 | TEST_error("Bad escape sequence in file"); |
| 246 | goto err; |
| 247 | } |
| 248 | *p++ = '\n'; |
| 249 | i++; |
| 250 | input++; |
| 251 | } else { |
| 252 | *p++ = *input++; |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | *out_len = p - ret; |
| 257 | return ret; |
| 258 | |
| 259 | err: |
| 260 | OPENSSL_free(ret); |
| 261 | return NULL; |
| 262 | } |
| 263 | |
| 264 | /* |
| 265 | * For a hex string "value" convert to a binary allocated buffer. |
| 266 | * Return 1 on success or 0 on failure. |
| 267 | */ |
| 268 | static int parse_bin(const char *value, unsigned char **buf, size_t *buflen) |
| 269 | { |
| 270 | long len; |
| 271 | |
| 272 | /* Check for NULL literal */ |
| 273 | if (strcmp(value, "NULL") == 0) { |
| 274 | *buf = NULL; |
| 275 | *buflen = 0; |
| 276 | return 1; |
| 277 | } |
| 278 | |
| 279 | /* Check for empty value */ |
| 280 | if (*value == '\0') { |
| 281 | /* |
| 282 | * Don't return NULL for zero length buffer. This is needed for |
| 283 | * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key |
| 284 | * buffer even if the key length is 0, in order to detect key reset. |
| 285 | */ |
| 286 | *buf = OPENSSL_malloc(1); |
| 287 | if (*buf == NULL) |
| 288 | return 0; |
| 289 | **buf = 0; |
| 290 | *buflen = 0; |
| 291 | return 1; |
| 292 | } |
| 293 | |
| 294 | /* Check for string literal */ |
| 295 | if (value[0] == '"') { |
| 296 | size_t vlen = strlen(++value); |
| 297 | |
| 298 | if (vlen == 0 || value[vlen - 1] != '"') |
| 299 | return 0; |
| 300 | vlen--; |
| 301 | *buf = unescape(value, vlen, buflen); |
| 302 | return *buf == NULL ? 0 : 1; |
| 303 | } |
| 304 | |
| 305 | /* Otherwise assume as hex literal and convert it to binary buffer */ |
| 306 | if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) { |
| 307 | TEST_info("Can't convert %s", value); |
| 308 | TEST_openssl_errors(); |
| 309 | return -1; |
| 310 | } |
| 311 | /* Size of input buffer means we'll never overflow */ |
| 312 | *buflen = len; |
| 313 | return 1; |
| 314 | } |
| 315 | |
| 316 | |
| 317 | /** |
| 318 | *** MESSAGE DIGEST TESTS |
| 319 | **/ |
| 320 | |
| 321 | typedef struct digest_data_st { |
| 322 | /* Digest this test is for */ |
| 323 | const EVP_MD *digest; |
| 324 | /* Input to digest */ |
| 325 | STACK_OF(EVP_TEST_BUFFER) *input; |
| 326 | /* Expected output */ |
| 327 | unsigned char *output; |
| 328 | size_t output_len; |
| 329 | } DIGEST_DATA; |
| 330 | |
| 331 | static int digest_test_init(EVP_TEST *t, const char *alg) |
| 332 | { |
| 333 | DIGEST_DATA *mdat; |
| 334 | const EVP_MD *digest; |
| 335 | |
| 336 | if ((digest = EVP_get_digestbyname(alg)) == NULL) { |
| 337 | /* If alg has an OID assume disabled algorithm */ |
| 338 | if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { |
| 339 | t->skip = 1; |
| 340 | return 1; |
| 341 | } |
| 342 | return 0; |
| 343 | } |
| 344 | if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat)))) |
| 345 | return 0; |
| 346 | t->data = mdat; |
| 347 | mdat->digest = digest; |
| 348 | return 1; |
| 349 | } |
| 350 | |
| 351 | static void digest_test_cleanup(EVP_TEST *t) |
| 352 | { |
| 353 | DIGEST_DATA *mdat = t->data; |
| 354 | |
| 355 | sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free); |
| 356 | OPENSSL_free(mdat->output); |
| 357 | } |
| 358 | |
| 359 | static int digest_test_parse(EVP_TEST *t, |
| 360 | const char *keyword, const char *value) |
| 361 | { |
| 362 | DIGEST_DATA *mdata = t->data; |
| 363 | |
| 364 | if (strcmp(keyword, "Input") == 0) |
| 365 | return evp_test_buffer_append(value, &mdata->input); |
| 366 | if (strcmp(keyword, "Output") == 0) |
| 367 | return parse_bin(value, &mdata->output, &mdata->output_len); |
| 368 | if (strcmp(keyword, "Count") == 0) |
| 369 | return evp_test_buffer_set_count(value, mdata->input); |
| 370 | if (strcmp(keyword, "Ncopy") == 0) |
| 371 | return evp_test_buffer_ncopy(value, mdata->input); |
| 372 | return 0; |
| 373 | } |
| 374 | |
| 375 | static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen) |
| 376 | { |
| 377 | return EVP_DigestUpdate(ctx, buf, buflen); |
| 378 | } |
| 379 | |
| 380 | static int digest_test_run(EVP_TEST *t) |
| 381 | { |
| 382 | DIGEST_DATA *expected = t->data; |
| 383 | EVP_MD_CTX *mctx; |
| 384 | unsigned char *got = NULL; |
| 385 | unsigned int got_len; |
| 386 | |
| 387 | t->err = "TEST_FAILURE"; |
| 388 | if (!TEST_ptr(mctx = EVP_MD_CTX_new())) |
| 389 | goto err; |
| 390 | |
| 391 | got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ? |
| 392 | expected->output_len : EVP_MAX_MD_SIZE); |
| 393 | if (!TEST_ptr(got)) |
| 394 | goto err; |
| 395 | |
| 396 | if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) { |
| 397 | t->err = "DIGESTINIT_ERROR"; |
| 398 | goto err; |
| 399 | } |
| 400 | if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) { |
| 401 | t->err = "DIGESTUPDATE_ERROR"; |
| 402 | goto err; |
| 403 | } |
| 404 | |
| 405 | if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) { |
| 406 | EVP_MD_CTX *mctx_cpy; |
| 407 | char dont[] = "touch"; |
| 408 | |
| 409 | if (!TEST_ptr(mctx_cpy = EVP_MD_CTX_new())) { |
| 410 | goto err; |
| 411 | } |
| 412 | if (!EVP_MD_CTX_copy(mctx_cpy, mctx)) { |
| 413 | EVP_MD_CTX_free(mctx_cpy); |
| 414 | goto err; |
| 415 | } |
| 416 | if (!EVP_DigestFinalXOF(mctx_cpy, (unsigned char *)dont, 0)) { |
| 417 | EVP_MD_CTX_free(mctx_cpy); |
| 418 | t->err = "DIGESTFINALXOF_ERROR"; |
| 419 | goto err; |
| 420 | } |
| 421 | if (!TEST_str_eq(dont, "touch")) { |
| 422 | EVP_MD_CTX_free(mctx_cpy); |
| 423 | t->err = "DIGESTFINALXOF_ERROR"; |
| 424 | goto err; |
| 425 | } |
| 426 | EVP_MD_CTX_free(mctx_cpy); |
| 427 | |
| 428 | got_len = expected->output_len; |
| 429 | if (!EVP_DigestFinalXOF(mctx, got, got_len)) { |
| 430 | t->err = "DIGESTFINALXOF_ERROR"; |
| 431 | goto err; |
| 432 | } |
| 433 | } else { |
| 434 | if (!EVP_DigestFinal(mctx, got, &got_len)) { |
| 435 | t->err = "DIGESTFINAL_ERROR"; |
| 436 | goto err; |
| 437 | } |
| 438 | } |
| 439 | if (!TEST_int_eq(expected->output_len, got_len)) { |
| 440 | t->err = "DIGEST_LENGTH_MISMATCH"; |
| 441 | goto err; |
| 442 | } |
| 443 | if (!memory_err_compare(t, "DIGEST_MISMATCH", |
| 444 | expected->output, expected->output_len, |
| 445 | got, got_len)) |
| 446 | goto err; |
| 447 | |
| 448 | t->err = NULL; |
| 449 | |
| 450 | err: |
| 451 | OPENSSL_free(got); |
| 452 | EVP_MD_CTX_free(mctx); |
| 453 | return 1; |
| 454 | } |
| 455 | |
| 456 | static const EVP_TEST_METHOD digest_test_method = { |
| 457 | "Digest", |
| 458 | digest_test_init, |
| 459 | digest_test_cleanup, |
| 460 | digest_test_parse, |
| 461 | digest_test_run |
| 462 | }; |
| 463 | |
| 464 | |
| 465 | /** |
| 466 | *** CIPHER TESTS |
| 467 | **/ |
| 468 | |
| 469 | typedef struct cipher_data_st { |
| 470 | const EVP_CIPHER *cipher; |
| 471 | int enc; |
| 472 | /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */ |
| 473 | int aead; |
| 474 | unsigned char *key; |
| 475 | size_t key_len; |
| 476 | unsigned char *iv; |
| 477 | size_t iv_len; |
| 478 | unsigned char *plaintext; |
| 479 | size_t plaintext_len; |
| 480 | unsigned char *ciphertext; |
| 481 | size_t ciphertext_len; |
| 482 | /* GCM, CCM and OCB only */ |
| 483 | unsigned char *aad; |
| 484 | size_t aad_len; |
| 485 | unsigned char *tag; |
| 486 | size_t tag_len; |
| 487 | int tag_late; |
| 488 | } CIPHER_DATA; |
| 489 | |
| 490 | static int cipher_test_init(EVP_TEST *t, const char *alg) |
| 491 | { |
| 492 | const EVP_CIPHER *cipher; |
| 493 | CIPHER_DATA *cdat; |
| 494 | int m; |
| 495 | |
| 496 | if ((cipher = EVP_get_cipherbyname(alg)) == NULL) { |
| 497 | /* If alg has an OID assume disabled algorithm */ |
| 498 | if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { |
| 499 | t->skip = 1; |
| 500 | return 1; |
| 501 | } |
| 502 | return 0; |
| 503 | } |
| 504 | cdat = OPENSSL_zalloc(sizeof(*cdat)); |
| 505 | cdat->cipher = cipher; |
| 506 | cdat->enc = -1; |
| 507 | m = EVP_CIPHER_mode(cipher); |
| 508 | if (m == EVP_CIPH_GCM_MODE |
| 509 | || m == EVP_CIPH_OCB_MODE |
| 510 | || m == EVP_CIPH_CCM_MODE) |
| 511 | cdat->aead = m; |
| 512 | else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) |
| 513 | cdat->aead = -1; |
| 514 | else |
| 515 | cdat->aead = 0; |
| 516 | |
| 517 | t->data = cdat; |
| 518 | return 1; |
| 519 | } |
| 520 | |
| 521 | static void cipher_test_cleanup(EVP_TEST *t) |
| 522 | { |
| 523 | CIPHER_DATA *cdat = t->data; |
| 524 | |
| 525 | OPENSSL_free(cdat->key); |
| 526 | OPENSSL_free(cdat->iv); |
| 527 | OPENSSL_free(cdat->ciphertext); |
| 528 | OPENSSL_free(cdat->plaintext); |
| 529 | OPENSSL_free(cdat->aad); |
| 530 | OPENSSL_free(cdat->tag); |
| 531 | } |
| 532 | |
| 533 | static int cipher_test_parse(EVP_TEST *t, const char *keyword, |
| 534 | const char *value) |
| 535 | { |
| 536 | CIPHER_DATA *cdat = t->data; |
| 537 | |
| 538 | if (strcmp(keyword, "Key") == 0) |
| 539 | return parse_bin(value, &cdat->key, &cdat->key_len); |
| 540 | if (strcmp(keyword, "IV") == 0) |
| 541 | return parse_bin(value, &cdat->iv, &cdat->iv_len); |
| 542 | if (strcmp(keyword, "Plaintext") == 0) |
| 543 | return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len); |
| 544 | if (strcmp(keyword, "Ciphertext") == 0) |
| 545 | return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len); |
| 546 | if (cdat->aead) { |
| 547 | if (strcmp(keyword, "AAD") == 0) |
| 548 | return parse_bin(value, &cdat->aad, &cdat->aad_len); |
| 549 | if (strcmp(keyword, "Tag") == 0) |
| 550 | return parse_bin(value, &cdat->tag, &cdat->tag_len); |
| 551 | if (strcmp(keyword, "SetTagLate") == 0) { |
| 552 | if (strcmp(value, "TRUE") == 0) |
| 553 | cdat->tag_late = 1; |
| 554 | else if (strcmp(value, "FALSE") == 0) |
| 555 | cdat->tag_late = 0; |
| 556 | else |
| 557 | return -1; |
| 558 | return 1; |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | if (strcmp(keyword, "Operation") == 0) { |
| 563 | if (strcmp(value, "ENCRYPT") == 0) |
| 564 | cdat->enc = 1; |
| 565 | else if (strcmp(value, "DECRYPT") == 0) |
| 566 | cdat->enc = 0; |
| 567 | else |
| 568 | return -1; |
| 569 | return 1; |
| 570 | } |
| 571 | return 0; |
| 572 | } |
| 573 | |
| 574 | static int cipher_test_enc(EVP_TEST *t, int enc, |
| 575 | size_t out_misalign, size_t inp_misalign, int frag) |
| 576 | { |
| 577 | CIPHER_DATA *expected = t->data; |
| 578 | unsigned char *in, *expected_out, *tmp = NULL; |
| 579 | size_t in_len, out_len, donelen = 0; |
| 580 | int ok = 0, tmplen, chunklen, tmpflen; |
| 581 | EVP_CIPHER_CTX *ctx = NULL; |
| 582 | |
| 583 | t->err = "TEST_FAILURE"; |
| 584 | if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new())) |
| 585 | goto err; |
| 586 | EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW); |
| 587 | if (enc) { |
| 588 | in = expected->plaintext; |
| 589 | in_len = expected->plaintext_len; |
| 590 | expected_out = expected->ciphertext; |
| 591 | out_len = expected->ciphertext_len; |
| 592 | } else { |
| 593 | in = expected->ciphertext; |
| 594 | in_len = expected->ciphertext_len; |
| 595 | expected_out = expected->plaintext; |
| 596 | out_len = expected->plaintext_len; |
| 597 | } |
| 598 | if (inp_misalign == (size_t)-1) { |
| 599 | /* |
| 600 | * Exercise in-place encryption |
| 601 | */ |
| 602 | tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH); |
| 603 | if (!tmp) |
| 604 | goto err; |
| 605 | in = memcpy(tmp + out_misalign, in, in_len); |
| 606 | } else { |
| 607 | inp_misalign += 16 - ((out_misalign + in_len) & 15); |
| 608 | /* |
| 609 | * 'tmp' will store both output and copy of input. We make the copy |
| 610 | * of input to specifically aligned part of 'tmp'. So we just |
| 611 | * figured out how much padding would ensure the required alignment, |
| 612 | * now we allocate extended buffer and finally copy the input just |
| 613 | * past inp_misalign in expression below. Output will be written |
| 614 | * past out_misalign... |
| 615 | */ |
| 616 | tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + |
| 617 | inp_misalign + in_len); |
| 618 | if (!tmp) |
| 619 | goto err; |
| 620 | in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + |
| 621 | inp_misalign, in, in_len); |
| 622 | } |
| 623 | if (!EVP_CipherInit_ex(ctx, expected->cipher, NULL, NULL, NULL, enc)) { |
| 624 | t->err = "CIPHERINIT_ERROR"; |
| 625 | goto err; |
| 626 | } |
| 627 | if (expected->iv) { |
| 628 | if (expected->aead) { |
| 629 | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, |
| 630 | expected->iv_len, 0)) { |
| 631 | t->err = "INVALID_IV_LENGTH"; |
| 632 | goto err; |
| 633 | } |
| 634 | } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) { |
| 635 | t->err = "INVALID_IV_LENGTH"; |
| 636 | goto err; |
| 637 | } |
| 638 | } |
| 639 | if (expected->aead) { |
| 640 | unsigned char *tag; |
| 641 | /* |
| 642 | * If encrypting or OCB just set tag length initially, otherwise |
| 643 | * set tag length and value. |
| 644 | */ |
| 645 | if (enc || expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late) { |
| 646 | t->err = "TAG_LENGTH_SET_ERROR"; |
| 647 | tag = NULL; |
| 648 | } else { |
| 649 | t->err = "TAG_SET_ERROR"; |
| 650 | tag = expected->tag; |
| 651 | } |
| 652 | if (tag || expected->aead != EVP_CIPH_GCM_MODE) { |
| 653 | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, |
| 654 | expected->tag_len, tag)) |
| 655 | goto err; |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | if (!EVP_CIPHER_CTX_set_key_length(ctx, expected->key_len)) { |
| 660 | t->err = "INVALID_KEY_LENGTH"; |
| 661 | goto err; |
| 662 | } |
| 663 | if (!EVP_CipherInit_ex(ctx, NULL, NULL, expected->key, expected->iv, -1)) { |
| 664 | t->err = "KEY_SET_ERROR"; |
| 665 | goto err; |
| 666 | } |
| 667 | |
| 668 | if (expected->aead == EVP_CIPH_CCM_MODE) { |
| 669 | if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) { |
| 670 | t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR"; |
| 671 | goto err; |
| 672 | } |
| 673 | } |
| 674 | if (expected->aad) { |
| 675 | t->err = "AAD_SET_ERROR"; |
| 676 | if (!frag) { |
| 677 | if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad, |
| 678 | expected->aad_len)) |
| 679 | goto err; |
| 680 | } else { |
| 681 | /* |
| 682 | * Supply the AAD in chunks less than the block size where possible |
| 683 | */ |
| 684 | if (expected->aad_len > 0) { |
| 685 | if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad, 1)) |
| 686 | goto err; |
| 687 | donelen++; |
| 688 | } |
| 689 | if (expected->aad_len > 2) { |
| 690 | if (!EVP_CipherUpdate(ctx, NULL, &chunklen, |
| 691 | expected->aad + donelen, |
| 692 | expected->aad_len - 2)) |
| 693 | goto err; |
| 694 | donelen += expected->aad_len - 2; |
| 695 | } |
| 696 | if (expected->aad_len > 1 |
| 697 | && !EVP_CipherUpdate(ctx, NULL, &chunklen, |
| 698 | expected->aad + donelen, 1)) |
| 699 | goto err; |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | if (!enc && (expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late)) { |
| 704 | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, |
| 705 | expected->tag_len, expected->tag)) { |
| 706 | t->err = "TAG_SET_ERROR"; |
| 707 | goto err; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | EVP_CIPHER_CTX_set_padding(ctx, 0); |
| 712 | t->err = "CIPHERUPDATE_ERROR"; |
| 713 | tmplen = 0; |
| 714 | if (!frag) { |
| 715 | /* We supply the data all in one go */ |
| 716 | if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len)) |
| 717 | goto err; |
| 718 | } else { |
| 719 | /* Supply the data in chunks less than the block size where possible */ |
| 720 | if (in_len > 0) { |
| 721 | if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1)) |
| 722 | goto err; |
| 723 | tmplen += chunklen; |
| 724 | in++; |
| 725 | in_len--; |
| 726 | } |
| 727 | if (in_len > 1) { |
| 728 | if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, |
| 729 | in, in_len - 1)) |
| 730 | goto err; |
| 731 | tmplen += chunklen; |
| 732 | in += in_len - 1; |
| 733 | in_len = 1; |
| 734 | } |
| 735 | if (in_len > 0 ) { |
| 736 | if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, |
| 737 | in, 1)) |
| 738 | goto err; |
| 739 | tmplen += chunklen; |
| 740 | } |
| 741 | } |
| 742 | if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) { |
| 743 | t->err = "CIPHERFINAL_ERROR"; |
| 744 | goto err; |
| 745 | } |
| 746 | if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len, |
| 747 | tmp + out_misalign, tmplen + tmpflen)) |
| 748 | goto err; |
| 749 | if (enc && expected->aead) { |
| 750 | unsigned char rtag[16]; |
| 751 | |
| 752 | if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) { |
| 753 | t->err = "TAG_LENGTH_INTERNAL_ERROR"; |
| 754 | goto err; |
| 755 | } |
| 756 | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, |
| 757 | expected->tag_len, rtag)) { |
| 758 | t->err = "TAG_RETRIEVE_ERROR"; |
| 759 | goto err; |
| 760 | } |
| 761 | if (!memory_err_compare(t, "TAG_VALUE_MISMATCH", |
| 762 | expected->tag, expected->tag_len, |
| 763 | rtag, expected->tag_len)) |
| 764 | goto err; |
| 765 | } |
| 766 | t->err = NULL; |
| 767 | ok = 1; |
| 768 | err: |
| 769 | OPENSSL_free(tmp); |
| 770 | EVP_CIPHER_CTX_free(ctx); |
| 771 | return ok; |
| 772 | } |
| 773 | |
| 774 | static int cipher_test_run(EVP_TEST *t) |
| 775 | { |
| 776 | CIPHER_DATA *cdat = t->data; |
| 777 | int rv, frag = 0; |
| 778 | size_t out_misalign, inp_misalign; |
| 779 | |
| 780 | if (!cdat->key) { |
| 781 | t->err = "NO_KEY"; |
| 782 | return 0; |
| 783 | } |
| 784 | if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) { |
| 785 | /* IV is optional and usually omitted in wrap mode */ |
| 786 | if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) { |
| 787 | t->err = "NO_IV"; |
| 788 | return 0; |
| 789 | } |
| 790 | } |
| 791 | if (cdat->aead && !cdat->tag) { |
| 792 | t->err = "NO_TAG"; |
| 793 | return 0; |
| 794 | } |
| 795 | for (out_misalign = 0; out_misalign <= 1;) { |
| 796 | static char aux_err[64]; |
| 797 | t->aux_err = aux_err; |
| 798 | for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) { |
| 799 | if (inp_misalign == (size_t)-1) { |
| 800 | /* kludge: inp_misalign == -1 means "exercise in-place" */ |
| 801 | BIO_snprintf(aux_err, sizeof(aux_err), |
| 802 | "%s in-place, %sfragmented", |
| 803 | out_misalign ? "misaligned" : "aligned", |
| 804 | frag ? "" : "not "); |
| 805 | } else { |
| 806 | BIO_snprintf(aux_err, sizeof(aux_err), |
| 807 | "%s output and %s input, %sfragmented", |
| 808 | out_misalign ? "misaligned" : "aligned", |
| 809 | inp_misalign ? "misaligned" : "aligned", |
| 810 | frag ? "" : "not "); |
| 811 | } |
| 812 | if (cdat->enc) { |
| 813 | rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag); |
| 814 | /* Not fatal errors: return */ |
| 815 | if (rv != 1) { |
| 816 | if (rv < 0) |
| 817 | return 0; |
| 818 | return 1; |
| 819 | } |
| 820 | } |
| 821 | if (cdat->enc != 1) { |
| 822 | rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag); |
| 823 | /* Not fatal errors: return */ |
| 824 | if (rv != 1) { |
| 825 | if (rv < 0) |
| 826 | return 0; |
| 827 | return 1; |
| 828 | } |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | if (out_misalign == 1 && frag == 0) { |
| 833 | /* |
| 834 | * XTS, CCM and Wrap modes have special requirements about input |
| 835 | * lengths so we don't fragment for those |
| 836 | */ |
| 837 | if (cdat->aead == EVP_CIPH_CCM_MODE |
| 838 | || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE |
| 839 | || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE) |
| 840 | break; |
| 841 | out_misalign = 0; |
| 842 | frag++; |
| 843 | } else { |
| 844 | out_misalign++; |
| 845 | } |
| 846 | } |
| 847 | t->aux_err = NULL; |
| 848 | |
| 849 | return 1; |
| 850 | } |
| 851 | |
| 852 | static const EVP_TEST_METHOD cipher_test_method = { |
| 853 | "Cipher", |
| 854 | cipher_test_init, |
| 855 | cipher_test_cleanup, |
| 856 | cipher_test_parse, |
| 857 | cipher_test_run |
| 858 | }; |
| 859 | |
| 860 | |
| 861 | /** |
| 862 | *** MAC TESTS |
| 863 | **/ |
| 864 | |
| 865 | typedef struct mac_data_st { |
| 866 | /* MAC type */ |
| 867 | int type; |
| 868 | /* Algorithm string for this MAC */ |
| 869 | char *alg; |
| 870 | /* MAC key */ |
| 871 | unsigned char *key; |
| 872 | size_t key_len; |
| 873 | /* Input to MAC */ |
| 874 | unsigned char *input; |
| 875 | size_t input_len; |
| 876 | /* Expected output */ |
| 877 | unsigned char *output; |
| 878 | size_t output_len; |
| 879 | /* Collection of controls */ |
| 880 | STACK_OF(OPENSSL_STRING) *controls; |
| 881 | } MAC_DATA; |
| 882 | |
| 883 | static int mac_test_init(EVP_TEST *t, const char *alg) |
| 884 | { |
| 885 | int type; |
| 886 | MAC_DATA *mdat; |
| 887 | |
| 888 | if (strcmp(alg, "HMAC") == 0) { |
| 889 | type = EVP_PKEY_HMAC; |
| 890 | } else if (strcmp(alg, "CMAC") == 0) { |
| 891 | #ifndef OPENSSL_NO_CMAC |
| 892 | type = EVP_PKEY_CMAC; |
| 893 | #else |
| 894 | t->skip = 1; |
| 895 | return 1; |
| 896 | #endif |
| 897 | } else if (strcmp(alg, "Poly1305") == 0) { |
| 898 | #ifndef OPENSSL_NO_POLY1305 |
| 899 | type = EVP_PKEY_POLY1305; |
| 900 | #else |
| 901 | t->skip = 1; |
| 902 | return 1; |
| 903 | #endif |
| 904 | } else if (strcmp(alg, "SipHash") == 0) { |
| 905 | #ifndef OPENSSL_NO_SIPHASH |
| 906 | type = EVP_PKEY_SIPHASH; |
| 907 | #else |
| 908 | t->skip = 1; |
| 909 | return 1; |
| 910 | #endif |
| 911 | } else |
| 912 | return 0; |
| 913 | |
| 914 | mdat = OPENSSL_zalloc(sizeof(*mdat)); |
| 915 | mdat->type = type; |
| 916 | mdat->controls = sk_OPENSSL_STRING_new_null(); |
| 917 | t->data = mdat; |
| 918 | return 1; |
| 919 | } |
| 920 | |
| 921 | /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */ |
| 922 | static void openssl_free(char *m) |
| 923 | { |
| 924 | OPENSSL_free(m); |
| 925 | } |
| 926 | |
| 927 | static void mac_test_cleanup(EVP_TEST *t) |
| 928 | { |
| 929 | MAC_DATA *mdat = t->data; |
| 930 | |
| 931 | sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free); |
| 932 | OPENSSL_free(mdat->alg); |
| 933 | OPENSSL_free(mdat->key); |
| 934 | OPENSSL_free(mdat->input); |
| 935 | OPENSSL_free(mdat->output); |
| 936 | } |
| 937 | |
| 938 | static int mac_test_parse(EVP_TEST *t, |
| 939 | const char *keyword, const char *value) |
| 940 | { |
| 941 | MAC_DATA *mdata = t->data; |
| 942 | |
| 943 | if (strcmp(keyword, "Key") == 0) |
| 944 | return parse_bin(value, &mdata->key, &mdata->key_len); |
| 945 | if (strcmp(keyword, "Algorithm") == 0) { |
| 946 | mdata->alg = OPENSSL_strdup(value); |
| 947 | if (!mdata->alg) |
| 948 | return -1; |
| 949 | return 1; |
| 950 | } |
| 951 | if (strcmp(keyword, "Input") == 0) |
| 952 | return parse_bin(value, &mdata->input, &mdata->input_len); |
| 953 | if (strcmp(keyword, "Output") == 0) |
| 954 | return parse_bin(value, &mdata->output, &mdata->output_len); |
| 955 | if (strcmp(keyword, "Ctrl") == 0) |
| 956 | return sk_OPENSSL_STRING_push(mdata->controls, |
| 957 | OPENSSL_strdup(value)) != 0; |
| 958 | return 0; |
| 959 | } |
| 960 | |
| 961 | static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx, |
| 962 | const char *value) |
| 963 | { |
| 964 | int rv; |
| 965 | char *p, *tmpval; |
| 966 | |
| 967 | if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) |
| 968 | return 0; |
| 969 | p = strchr(tmpval, ':'); |
| 970 | if (p != NULL) |
| 971 | *p++ = '\0'; |
| 972 | rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); |
| 973 | if (rv == -2) |
| 974 | t->err = "PKEY_CTRL_INVALID"; |
| 975 | else if (rv <= 0) |
| 976 | t->err = "PKEY_CTRL_ERROR"; |
| 977 | else |
| 978 | rv = 1; |
| 979 | OPENSSL_free(tmpval); |
| 980 | return rv > 0; |
| 981 | } |
| 982 | |
| 983 | static int mac_test_run(EVP_TEST *t) |
| 984 | { |
| 985 | MAC_DATA *expected = t->data; |
| 986 | EVP_MD_CTX *mctx = NULL; |
| 987 | EVP_PKEY_CTX *pctx = NULL, *genctx = NULL; |
| 988 | EVP_PKEY *key = NULL; |
| 989 | const EVP_MD *md = NULL; |
| 990 | unsigned char *got = NULL; |
| 991 | size_t got_len; |
| 992 | int i; |
| 993 | |
| 994 | #ifdef OPENSSL_NO_DES |
| 995 | if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) { |
| 996 | /* Skip DES */ |
| 997 | t->err = NULL; |
| 998 | goto err; |
| 999 | } |
| 1000 | #endif |
| 1001 | |
| 1002 | if (expected->type == EVP_PKEY_CMAC) |
| 1003 | key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len, |
| 1004 | EVP_get_cipherbyname(expected->alg)); |
| 1005 | else |
| 1006 | key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key, |
| 1007 | expected->key_len); |
| 1008 | if (key == NULL) { |
| 1009 | t->err = "MAC_KEY_CREATE_ERROR"; |
| 1010 | goto err; |
| 1011 | } |
| 1012 | |
| 1013 | if (expected->type == EVP_PKEY_HMAC) { |
| 1014 | if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) { |
| 1015 | t->err = "MAC_ALGORITHM_SET_ERROR"; |
| 1016 | goto err; |
| 1017 | } |
| 1018 | } |
| 1019 | if (!TEST_ptr(mctx = EVP_MD_CTX_new())) { |
| 1020 | t->err = "INTERNAL_ERROR"; |
| 1021 | goto err; |
| 1022 | } |
| 1023 | if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) { |
| 1024 | t->err = "DIGESTSIGNINIT_ERROR"; |
| 1025 | goto err; |
| 1026 | } |
| 1027 | for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) |
| 1028 | if (!mac_test_ctrl_pkey(t, pctx, |
| 1029 | sk_OPENSSL_STRING_value(expected->controls, |
| 1030 | i))) { |
| 1031 | t->err = "EVPPKEYCTXCTRL_ERROR"; |
| 1032 | goto err; |
| 1033 | } |
| 1034 | if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) { |
| 1035 | t->err = "DIGESTSIGNUPDATE_ERROR"; |
| 1036 | goto err; |
| 1037 | } |
| 1038 | if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) { |
| 1039 | t->err = "DIGESTSIGNFINAL_LENGTH_ERROR"; |
| 1040 | goto err; |
| 1041 | } |
| 1042 | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| 1043 | t->err = "TEST_FAILURE"; |
| 1044 | goto err; |
| 1045 | } |
| 1046 | if (!EVP_DigestSignFinal(mctx, got, &got_len) |
| 1047 | || !memory_err_compare(t, "TEST_MAC_ERR", |
| 1048 | expected->output, expected->output_len, |
| 1049 | got, got_len)) { |
| 1050 | t->err = "TEST_MAC_ERR"; |
| 1051 | goto err; |
| 1052 | } |
| 1053 | t->err = NULL; |
| 1054 | err: |
| 1055 | EVP_MD_CTX_free(mctx); |
| 1056 | OPENSSL_free(got); |
| 1057 | EVP_PKEY_CTX_free(genctx); |
| 1058 | EVP_PKEY_free(key); |
| 1059 | return 1; |
| 1060 | } |
| 1061 | |
| 1062 | static const EVP_TEST_METHOD mac_test_method = { |
| 1063 | "MAC", |
| 1064 | mac_test_init, |
| 1065 | mac_test_cleanup, |
| 1066 | mac_test_parse, |
| 1067 | mac_test_run |
| 1068 | }; |
| 1069 | |
| 1070 | |
| 1071 | /** |
| 1072 | *** PUBLIC KEY TESTS |
| 1073 | *** These are all very similar and share much common code. |
| 1074 | **/ |
| 1075 | |
| 1076 | typedef struct pkey_data_st { |
| 1077 | /* Context for this operation */ |
| 1078 | EVP_PKEY_CTX *ctx; |
| 1079 | /* Key operation to perform */ |
| 1080 | int (*keyop) (EVP_PKEY_CTX *ctx, |
| 1081 | unsigned char *sig, size_t *siglen, |
| 1082 | const unsigned char *tbs, size_t tbslen); |
| 1083 | /* Input to MAC */ |
| 1084 | unsigned char *input; |
| 1085 | size_t input_len; |
| 1086 | /* Expected output */ |
| 1087 | unsigned char *output; |
| 1088 | size_t output_len; |
| 1089 | } PKEY_DATA; |
| 1090 | |
| 1091 | /* |
| 1092 | * Perform public key operation setup: lookup key, allocated ctx and call |
| 1093 | * the appropriate initialisation function |
| 1094 | */ |
| 1095 | static int pkey_test_init(EVP_TEST *t, const char *name, |
| 1096 | int use_public, |
| 1097 | int (*keyopinit) (EVP_PKEY_CTX *ctx), |
| 1098 | int (*keyop)(EVP_PKEY_CTX *ctx, |
| 1099 | unsigned char *sig, size_t *siglen, |
| 1100 | const unsigned char *tbs, |
| 1101 | size_t tbslen)) |
| 1102 | { |
| 1103 | PKEY_DATA *kdata; |
| 1104 | EVP_PKEY *pkey = NULL; |
| 1105 | int rv = 0; |
| 1106 | |
| 1107 | if (use_public) |
| 1108 | rv = find_key(&pkey, name, public_keys); |
| 1109 | if (rv == 0) |
| 1110 | rv = find_key(&pkey, name, private_keys); |
| 1111 | if (rv == 0 || pkey == NULL) { |
| 1112 | t->skip = 1; |
| 1113 | return 1; |
| 1114 | } |
| 1115 | |
| 1116 | if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) { |
| 1117 | EVP_PKEY_free(pkey); |
| 1118 | return 0; |
| 1119 | } |
| 1120 | kdata->keyop = keyop; |
| 1121 | if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) { |
| 1122 | EVP_PKEY_free(pkey); |
| 1123 | OPENSSL_free(kdata); |
| 1124 | return 0; |
| 1125 | } |
| 1126 | if (keyopinit(kdata->ctx) <= 0) |
| 1127 | t->err = "KEYOP_INIT_ERROR"; |
| 1128 | t->data = kdata; |
| 1129 | return 1; |
| 1130 | } |
| 1131 | |
| 1132 | static void pkey_test_cleanup(EVP_TEST *t) |
| 1133 | { |
| 1134 | PKEY_DATA *kdata = t->data; |
| 1135 | |
| 1136 | OPENSSL_free(kdata->input); |
| 1137 | OPENSSL_free(kdata->output); |
| 1138 | EVP_PKEY_CTX_free(kdata->ctx); |
| 1139 | } |
| 1140 | |
| 1141 | static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx, |
| 1142 | const char *value) |
| 1143 | { |
| 1144 | int rv; |
| 1145 | char *p, *tmpval; |
| 1146 | |
| 1147 | if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) |
| 1148 | return 0; |
| 1149 | p = strchr(tmpval, ':'); |
| 1150 | if (p != NULL) |
| 1151 | *p++ = '\0'; |
| 1152 | rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); |
| 1153 | if (rv == -2) { |
| 1154 | t->err = "PKEY_CTRL_INVALID"; |
| 1155 | rv = 1; |
| 1156 | } else if (p != NULL && rv <= 0) { |
| 1157 | /* If p has an OID and lookup fails assume disabled algorithm */ |
| 1158 | int nid = OBJ_sn2nid(p); |
| 1159 | |
| 1160 | if (nid == NID_undef) |
| 1161 | nid = OBJ_ln2nid(p); |
| 1162 | if (nid != NID_undef |
| 1163 | && EVP_get_digestbynid(nid) == NULL |
| 1164 | && EVP_get_cipherbynid(nid) == NULL) { |
| 1165 | t->skip = 1; |
| 1166 | rv = 1; |
| 1167 | } else { |
| 1168 | t->err = "PKEY_CTRL_ERROR"; |
| 1169 | rv = 1; |
| 1170 | } |
| 1171 | } |
| 1172 | OPENSSL_free(tmpval); |
| 1173 | return rv > 0; |
| 1174 | } |
| 1175 | |
| 1176 | static int pkey_test_parse(EVP_TEST *t, |
| 1177 | const char *keyword, const char *value) |
| 1178 | { |
| 1179 | PKEY_DATA *kdata = t->data; |
| 1180 | if (strcmp(keyword, "Input") == 0) |
| 1181 | return parse_bin(value, &kdata->input, &kdata->input_len); |
| 1182 | if (strcmp(keyword, "Output") == 0) |
| 1183 | return parse_bin(value, &kdata->output, &kdata->output_len); |
| 1184 | if (strcmp(keyword, "Ctrl") == 0) |
| 1185 | return pkey_test_ctrl(t, kdata->ctx, value); |
| 1186 | return 0; |
| 1187 | } |
| 1188 | |
| 1189 | static int pkey_test_run(EVP_TEST *t) |
| 1190 | { |
| 1191 | PKEY_DATA *expected = t->data; |
| 1192 | unsigned char *got = NULL; |
| 1193 | size_t got_len; |
| 1194 | |
| 1195 | if (expected->keyop(expected->ctx, NULL, &got_len, |
| 1196 | expected->input, expected->input_len) <= 0 |
| 1197 | || !TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| 1198 | t->err = "KEYOP_LENGTH_ERROR"; |
| 1199 | goto err; |
| 1200 | } |
| 1201 | if (expected->keyop(expected->ctx, got, &got_len, |
| 1202 | expected->input, expected->input_len) <= 0) { |
| 1203 | t->err = "KEYOP_ERROR"; |
| 1204 | goto err; |
| 1205 | } |
| 1206 | if (!memory_err_compare(t, "KEYOP_MISMATCH", |
| 1207 | expected->output, expected->output_len, |
| 1208 | got, got_len)) |
| 1209 | goto err; |
| 1210 | |
| 1211 | t->err = NULL; |
| 1212 | err: |
| 1213 | OPENSSL_free(got); |
| 1214 | return 1; |
| 1215 | } |
| 1216 | |
| 1217 | static int sign_test_init(EVP_TEST *t, const char *name) |
| 1218 | { |
| 1219 | return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign); |
| 1220 | } |
| 1221 | |
| 1222 | static const EVP_TEST_METHOD psign_test_method = { |
| 1223 | "Sign", |
| 1224 | sign_test_init, |
| 1225 | pkey_test_cleanup, |
| 1226 | pkey_test_parse, |
| 1227 | pkey_test_run |
| 1228 | }; |
| 1229 | |
| 1230 | static int verify_recover_test_init(EVP_TEST *t, const char *name) |
| 1231 | { |
| 1232 | return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init, |
| 1233 | EVP_PKEY_verify_recover); |
| 1234 | } |
| 1235 | |
| 1236 | static const EVP_TEST_METHOD pverify_recover_test_method = { |
| 1237 | "VerifyRecover", |
| 1238 | verify_recover_test_init, |
| 1239 | pkey_test_cleanup, |
| 1240 | pkey_test_parse, |
| 1241 | pkey_test_run |
| 1242 | }; |
| 1243 | |
| 1244 | static int decrypt_test_init(EVP_TEST *t, const char *name) |
| 1245 | { |
| 1246 | return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init, |
| 1247 | EVP_PKEY_decrypt); |
| 1248 | } |
| 1249 | |
| 1250 | static const EVP_TEST_METHOD pdecrypt_test_method = { |
| 1251 | "Decrypt", |
| 1252 | decrypt_test_init, |
| 1253 | pkey_test_cleanup, |
| 1254 | pkey_test_parse, |
| 1255 | pkey_test_run |
| 1256 | }; |
| 1257 | |
| 1258 | static int verify_test_init(EVP_TEST *t, const char *name) |
| 1259 | { |
| 1260 | return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0); |
| 1261 | } |
| 1262 | |
| 1263 | static int verify_test_run(EVP_TEST *t) |
| 1264 | { |
| 1265 | PKEY_DATA *kdata = t->data; |
| 1266 | |
| 1267 | if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len, |
| 1268 | kdata->input, kdata->input_len) <= 0) |
| 1269 | t->err = "VERIFY_ERROR"; |
| 1270 | return 1; |
| 1271 | } |
| 1272 | |
| 1273 | static const EVP_TEST_METHOD pverify_test_method = { |
| 1274 | "Verify", |
| 1275 | verify_test_init, |
| 1276 | pkey_test_cleanup, |
| 1277 | pkey_test_parse, |
| 1278 | verify_test_run |
| 1279 | }; |
| 1280 | |
| 1281 | |
| 1282 | static int pderive_test_init(EVP_TEST *t, const char *name) |
| 1283 | { |
| 1284 | return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0); |
| 1285 | } |
| 1286 | |
| 1287 | static int pderive_test_parse(EVP_TEST *t, |
| 1288 | const char *keyword, const char *value) |
| 1289 | { |
| 1290 | PKEY_DATA *kdata = t->data; |
| 1291 | |
| 1292 | if (strcmp(keyword, "PeerKey") == 0) { |
| 1293 | EVP_PKEY *peer; |
| 1294 | if (find_key(&peer, value, public_keys) == 0) |
| 1295 | return -1; |
| 1296 | if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0) |
| 1297 | return -1; |
| 1298 | return 1; |
| 1299 | } |
| 1300 | if (strcmp(keyword, "SharedSecret") == 0) |
| 1301 | return parse_bin(value, &kdata->output, &kdata->output_len); |
| 1302 | if (strcmp(keyword, "Ctrl") == 0) |
| 1303 | return pkey_test_ctrl(t, kdata->ctx, value); |
| 1304 | return 0; |
| 1305 | } |
| 1306 | |
| 1307 | static int pderive_test_run(EVP_TEST *t) |
| 1308 | { |
| 1309 | PKEY_DATA *expected = t->data; |
| 1310 | unsigned char *got = NULL; |
| 1311 | size_t got_len; |
| 1312 | |
| 1313 | if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) { |
| 1314 | t->err = "DERIVE_ERROR"; |
| 1315 | goto err; |
| 1316 | } |
| 1317 | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| 1318 | t->err = "DERIVE_ERROR"; |
| 1319 | goto err; |
| 1320 | } |
| 1321 | if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) { |
| 1322 | t->err = "DERIVE_ERROR"; |
| 1323 | goto err; |
| 1324 | } |
| 1325 | if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH", |
| 1326 | expected->output, expected->output_len, |
| 1327 | got, got_len)) |
| 1328 | goto err; |
| 1329 | |
| 1330 | t->err = NULL; |
| 1331 | err: |
| 1332 | OPENSSL_free(got); |
| 1333 | return 1; |
| 1334 | } |
| 1335 | |
| 1336 | static const EVP_TEST_METHOD pderive_test_method = { |
| 1337 | "Derive", |
| 1338 | pderive_test_init, |
| 1339 | pkey_test_cleanup, |
| 1340 | pderive_test_parse, |
| 1341 | pderive_test_run |
| 1342 | }; |
| 1343 | |
| 1344 | |
| 1345 | /** |
| 1346 | *** PBE TESTS |
| 1347 | **/ |
| 1348 | |
| 1349 | typedef enum pbe_type_enum { |
| 1350 | PBE_TYPE_INVALID = 0, |
| 1351 | PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12 |
| 1352 | } PBE_TYPE; |
| 1353 | |
| 1354 | typedef struct pbe_data_st { |
| 1355 | PBE_TYPE pbe_type; |
| 1356 | /* scrypt parameters */ |
| 1357 | uint64_t N, r, p, maxmem; |
| 1358 | /* PKCS#12 parameters */ |
| 1359 | int id, iter; |
| 1360 | const EVP_MD *md; |
| 1361 | /* password */ |
| 1362 | unsigned char *pass; |
| 1363 | size_t pass_len; |
| 1364 | /* salt */ |
| 1365 | unsigned char *salt; |
| 1366 | size_t salt_len; |
| 1367 | /* Expected output */ |
| 1368 | unsigned char *key; |
| 1369 | size_t key_len; |
| 1370 | } PBE_DATA; |
| 1371 | |
| 1372 | #ifndef OPENSSL_NO_SCRYPT |
| 1373 | /* |
| 1374 | * Parse unsigned decimal 64 bit integer value |
| 1375 | */ |
| 1376 | static int parse_uint64(const char *value, uint64_t *pr) |
| 1377 | { |
| 1378 | const char *p = value; |
| 1379 | |
| 1380 | if (!TEST_true(*p)) { |
| 1381 | TEST_info("Invalid empty integer value"); |
| 1382 | return -1; |
| 1383 | } |
| 1384 | for (*pr = 0; *p; ) { |
| 1385 | if (*pr > UINT64_MAX / 10) { |
| 1386 | TEST_error("Integer overflow in string %s", value); |
| 1387 | return -1; |
| 1388 | } |
| 1389 | *pr *= 10; |
| 1390 | if (!TEST_true(isdigit((unsigned char)*p))) { |
| 1391 | TEST_error("Invalid character in string %s", value); |
| 1392 | return -1; |
| 1393 | } |
| 1394 | *pr += *p - '0'; |
| 1395 | p++; |
| 1396 | } |
| 1397 | return 1; |
| 1398 | } |
| 1399 | |
| 1400 | static int scrypt_test_parse(EVP_TEST *t, |
| 1401 | const char *keyword, const char *value) |
| 1402 | { |
| 1403 | PBE_DATA *pdata = t->data; |
| 1404 | |
| 1405 | if (strcmp(keyword, "N") == 0) |
| 1406 | return parse_uint64(value, &pdata->N); |
| 1407 | if (strcmp(keyword, "p") == 0) |
| 1408 | return parse_uint64(value, &pdata->p); |
| 1409 | if (strcmp(keyword, "r") == 0) |
| 1410 | return parse_uint64(value, &pdata->r); |
| 1411 | if (strcmp(keyword, "maxmem") == 0) |
| 1412 | return parse_uint64(value, &pdata->maxmem); |
| 1413 | return 0; |
| 1414 | } |
| 1415 | #endif |
| 1416 | |
| 1417 | static int pbkdf2_test_parse(EVP_TEST *t, |
| 1418 | const char *keyword, const char *value) |
| 1419 | { |
| 1420 | PBE_DATA *pdata = t->data; |
| 1421 | |
| 1422 | if (strcmp(keyword, "iter") == 0) { |
| 1423 | pdata->iter = atoi(value); |
| 1424 | if (pdata->iter <= 0) |
| 1425 | return -1; |
| 1426 | return 1; |
| 1427 | } |
| 1428 | if (strcmp(keyword, "MD") == 0) { |
| 1429 | pdata->md = EVP_get_digestbyname(value); |
| 1430 | if (pdata->md == NULL) |
| 1431 | return -1; |
| 1432 | return 1; |
| 1433 | } |
| 1434 | return 0; |
| 1435 | } |
| 1436 | |
| 1437 | static int pkcs12_test_parse(EVP_TEST *t, |
| 1438 | const char *keyword, const char *value) |
| 1439 | { |
| 1440 | PBE_DATA *pdata = t->data; |
| 1441 | |
| 1442 | if (strcmp(keyword, "id") == 0) { |
| 1443 | pdata->id = atoi(value); |
| 1444 | if (pdata->id <= 0) |
| 1445 | return -1; |
| 1446 | return 1; |
| 1447 | } |
| 1448 | return pbkdf2_test_parse(t, keyword, value); |
| 1449 | } |
| 1450 | |
| 1451 | static int pbe_test_init(EVP_TEST *t, const char *alg) |
| 1452 | { |
| 1453 | PBE_DATA *pdat; |
| 1454 | PBE_TYPE pbe_type = PBE_TYPE_INVALID; |
| 1455 | |
| 1456 | if (strcmp(alg, "scrypt") == 0) { |
| 1457 | #ifndef OPENSSL_NO_SCRYPT |
| 1458 | pbe_type = PBE_TYPE_SCRYPT; |
| 1459 | #else |
| 1460 | t->skip = 1; |
| 1461 | return 1; |
| 1462 | #endif |
| 1463 | } else if (strcmp(alg, "pbkdf2") == 0) { |
| 1464 | pbe_type = PBE_TYPE_PBKDF2; |
| 1465 | } else if (strcmp(alg, "pkcs12") == 0) { |
| 1466 | pbe_type = PBE_TYPE_PKCS12; |
| 1467 | } else { |
| 1468 | TEST_error("Unknown pbe algorithm %s", alg); |
| 1469 | } |
| 1470 | pdat = OPENSSL_zalloc(sizeof(*pdat)); |
| 1471 | pdat->pbe_type = pbe_type; |
| 1472 | t->data = pdat; |
| 1473 | return 1; |
| 1474 | } |
| 1475 | |
| 1476 | static void pbe_test_cleanup(EVP_TEST *t) |
| 1477 | { |
| 1478 | PBE_DATA *pdat = t->data; |
| 1479 | |
| 1480 | OPENSSL_free(pdat->pass); |
| 1481 | OPENSSL_free(pdat->salt); |
| 1482 | OPENSSL_free(pdat->key); |
| 1483 | } |
| 1484 | |
| 1485 | static int pbe_test_parse(EVP_TEST *t, |
| 1486 | const char *keyword, const char *value) |
| 1487 | { |
| 1488 | PBE_DATA *pdata = t->data; |
| 1489 | |
| 1490 | if (strcmp(keyword, "Password") == 0) |
| 1491 | return parse_bin(value, &pdata->pass, &pdata->pass_len); |
| 1492 | if (strcmp(keyword, "Salt") == 0) |
| 1493 | return parse_bin(value, &pdata->salt, &pdata->salt_len); |
| 1494 | if (strcmp(keyword, "Key") == 0) |
| 1495 | return parse_bin(value, &pdata->key, &pdata->key_len); |
| 1496 | if (pdata->pbe_type == PBE_TYPE_PBKDF2) |
| 1497 | return pbkdf2_test_parse(t, keyword, value); |
| 1498 | else if (pdata->pbe_type == PBE_TYPE_PKCS12) |
| 1499 | return pkcs12_test_parse(t, keyword, value); |
| 1500 | #ifndef OPENSSL_NO_SCRYPT |
| 1501 | else if (pdata->pbe_type == PBE_TYPE_SCRYPT) |
| 1502 | return scrypt_test_parse(t, keyword, value); |
| 1503 | #endif |
| 1504 | return 0; |
| 1505 | } |
| 1506 | |
| 1507 | static int pbe_test_run(EVP_TEST *t) |
| 1508 | { |
| 1509 | PBE_DATA *expected = t->data; |
| 1510 | unsigned char *key; |
| 1511 | |
| 1512 | if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) { |
| 1513 | t->err = "INTERNAL_ERROR"; |
| 1514 | goto err; |
| 1515 | } |
| 1516 | if (expected->pbe_type == PBE_TYPE_PBKDF2) { |
| 1517 | if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len, |
| 1518 | expected->salt, expected->salt_len, |
| 1519 | expected->iter, expected->md, |
| 1520 | expected->key_len, key) == 0) { |
| 1521 | t->err = "PBKDF2_ERROR"; |
| 1522 | goto err; |
| 1523 | } |
| 1524 | #ifndef OPENSSL_NO_SCRYPT |
| 1525 | } else if (expected->pbe_type == PBE_TYPE_SCRYPT) { |
| 1526 | if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len, |
| 1527 | expected->salt, expected->salt_len, expected->N, |
| 1528 | expected->r, expected->p, expected->maxmem, |
| 1529 | key, expected->key_len) == 0) { |
| 1530 | t->err = "SCRYPT_ERROR"; |
| 1531 | goto err; |
| 1532 | } |
| 1533 | #endif |
| 1534 | } else if (expected->pbe_type == PBE_TYPE_PKCS12) { |
| 1535 | if (PKCS12_key_gen_uni(expected->pass, expected->pass_len, |
| 1536 | expected->salt, expected->salt_len, |
| 1537 | expected->id, expected->iter, expected->key_len, |
| 1538 | key, expected->md) == 0) { |
| 1539 | t->err = "PKCS12_ERROR"; |
| 1540 | goto err; |
| 1541 | } |
| 1542 | } |
| 1543 | if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len, |
| 1544 | key, expected->key_len)) |
| 1545 | goto err; |
| 1546 | |
| 1547 | t->err = NULL; |
| 1548 | err: |
| 1549 | OPENSSL_free(key); |
| 1550 | return 1; |
| 1551 | } |
| 1552 | |
| 1553 | static const EVP_TEST_METHOD pbe_test_method = { |
| 1554 | "PBE", |
| 1555 | pbe_test_init, |
| 1556 | pbe_test_cleanup, |
| 1557 | pbe_test_parse, |
| 1558 | pbe_test_run |
| 1559 | }; |
| 1560 | |
| 1561 | |
| 1562 | /** |
| 1563 | *** BASE64 TESTS |
| 1564 | **/ |
| 1565 | |
| 1566 | typedef enum { |
| 1567 | BASE64_CANONICAL_ENCODING = 0, |
| 1568 | BASE64_VALID_ENCODING = 1, |
| 1569 | BASE64_INVALID_ENCODING = 2 |
| 1570 | } base64_encoding_type; |
| 1571 | |
| 1572 | typedef struct encode_data_st { |
| 1573 | /* Input to encoding */ |
| 1574 | unsigned char *input; |
| 1575 | size_t input_len; |
| 1576 | /* Expected output */ |
| 1577 | unsigned char *output; |
| 1578 | size_t output_len; |
| 1579 | base64_encoding_type encoding; |
| 1580 | } ENCODE_DATA; |
| 1581 | |
| 1582 | static int encode_test_init(EVP_TEST *t, const char *encoding) |
| 1583 | { |
| 1584 | ENCODE_DATA *edata; |
| 1585 | |
| 1586 | if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata)))) |
| 1587 | return 0; |
| 1588 | if (strcmp(encoding, "canonical") == 0) { |
| 1589 | edata->encoding = BASE64_CANONICAL_ENCODING; |
| 1590 | } else if (strcmp(encoding, "valid") == 0) { |
| 1591 | edata->encoding = BASE64_VALID_ENCODING; |
| 1592 | } else if (strcmp(encoding, "invalid") == 0) { |
| 1593 | edata->encoding = BASE64_INVALID_ENCODING; |
| 1594 | if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR"))) |
| 1595 | goto err; |
| 1596 | } else { |
| 1597 | TEST_error("Bad encoding: %s." |
| 1598 | " Should be one of {canonical, valid, invalid}", |
| 1599 | encoding); |
| 1600 | goto err; |
| 1601 | } |
| 1602 | t->data = edata; |
| 1603 | return 1; |
| 1604 | err: |
| 1605 | OPENSSL_free(edata); |
| 1606 | return 0; |
| 1607 | } |
| 1608 | |
| 1609 | static void encode_test_cleanup(EVP_TEST *t) |
| 1610 | { |
| 1611 | ENCODE_DATA *edata = t->data; |
| 1612 | |
| 1613 | OPENSSL_free(edata->input); |
| 1614 | OPENSSL_free(edata->output); |
| 1615 | memset(edata, 0, sizeof(*edata)); |
| 1616 | } |
| 1617 | |
| 1618 | static int encode_test_parse(EVP_TEST *t, |
| 1619 | const char *keyword, const char *value) |
| 1620 | { |
| 1621 | ENCODE_DATA *edata = t->data; |
| 1622 | |
| 1623 | if (strcmp(keyword, "Input") == 0) |
| 1624 | return parse_bin(value, &edata->input, &edata->input_len); |
| 1625 | if (strcmp(keyword, "Output") == 0) |
| 1626 | return parse_bin(value, &edata->output, &edata->output_len); |
| 1627 | return 0; |
| 1628 | } |
| 1629 | |
| 1630 | static int encode_test_run(EVP_TEST *t) |
| 1631 | { |
| 1632 | ENCODE_DATA *expected = t->data; |
| 1633 | unsigned char *encode_out = NULL, *decode_out = NULL; |
| 1634 | int output_len, chunk_len; |
| 1635 | EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL; |
| 1636 | |
| 1637 | if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) { |
| 1638 | t->err = "INTERNAL_ERROR"; |
| 1639 | goto err; |
| 1640 | } |
| 1641 | |
| 1642 | if (expected->encoding == BASE64_CANONICAL_ENCODING) { |
| 1643 | |
| 1644 | if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new()) |
| 1645 | || !TEST_ptr(encode_out = |
| 1646 | OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len)))) |
| 1647 | goto err; |
| 1648 | |
| 1649 | EVP_EncodeInit(encode_ctx); |
| 1650 | if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len, |
| 1651 | expected->input, expected->input_len))) |
| 1652 | goto err; |
| 1653 | |
| 1654 | output_len = chunk_len; |
| 1655 | |
| 1656 | EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len); |
| 1657 | output_len += chunk_len; |
| 1658 | |
| 1659 | if (!memory_err_compare(t, "BAD_ENCODING", |
| 1660 | expected->output, expected->output_len, |
| 1661 | encode_out, output_len)) |
| 1662 | goto err; |
| 1663 | } |
| 1664 | |
| 1665 | if (!TEST_ptr(decode_out = |
| 1666 | OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len)))) |
| 1667 | goto err; |
| 1668 | |
| 1669 | EVP_DecodeInit(decode_ctx); |
| 1670 | if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output, |
| 1671 | expected->output_len) < 0) { |
| 1672 | t->err = "DECODE_ERROR"; |
| 1673 | goto err; |
| 1674 | } |
| 1675 | output_len = chunk_len; |
| 1676 | |
| 1677 | if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) { |
| 1678 | t->err = "DECODE_ERROR"; |
| 1679 | goto err; |
| 1680 | } |
| 1681 | output_len += chunk_len; |
| 1682 | |
| 1683 | if (expected->encoding != BASE64_INVALID_ENCODING |
| 1684 | && !memory_err_compare(t, "BAD_DECODING", |
| 1685 | expected->input, expected->input_len, |
| 1686 | decode_out, output_len)) { |
| 1687 | t->err = "BAD_DECODING"; |
| 1688 | goto err; |
| 1689 | } |
| 1690 | |
| 1691 | t->err = NULL; |
| 1692 | err: |
| 1693 | OPENSSL_free(encode_out); |
| 1694 | OPENSSL_free(decode_out); |
| 1695 | EVP_ENCODE_CTX_free(decode_ctx); |
| 1696 | EVP_ENCODE_CTX_free(encode_ctx); |
| 1697 | return 1; |
| 1698 | } |
| 1699 | |
| 1700 | static const EVP_TEST_METHOD encode_test_method = { |
| 1701 | "Encoding", |
| 1702 | encode_test_init, |
| 1703 | encode_test_cleanup, |
| 1704 | encode_test_parse, |
| 1705 | encode_test_run, |
| 1706 | }; |
| 1707 | |
| 1708 | /** |
| 1709 | *** KDF TESTS |
| 1710 | **/ |
| 1711 | |
| 1712 | typedef struct kdf_data_st { |
| 1713 | /* Context for this operation */ |
| 1714 | EVP_PKEY_CTX *ctx; |
| 1715 | /* Expected output */ |
| 1716 | unsigned char *output; |
| 1717 | size_t output_len; |
| 1718 | } KDF_DATA; |
| 1719 | |
| 1720 | /* |
| 1721 | * Perform public key operation setup: lookup key, allocated ctx and call |
| 1722 | * the appropriate initialisation function |
| 1723 | */ |
| 1724 | static int kdf_test_init(EVP_TEST *t, const char *name) |
| 1725 | { |
| 1726 | KDF_DATA *kdata; |
| 1727 | int kdf_nid = OBJ_sn2nid(name); |
| 1728 | |
| 1729 | #ifdef OPENSSL_NO_SCRYPT |
| 1730 | if (strcmp(name, "scrypt") == 0) { |
| 1731 | t->skip = 1; |
| 1732 | return 1; |
| 1733 | } |
| 1734 | #endif |
| 1735 | |
| 1736 | if (kdf_nid == NID_undef) |
| 1737 | kdf_nid = OBJ_ln2nid(name); |
| 1738 | |
| 1739 | if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) |
| 1740 | return 0; |
| 1741 | kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL); |
| 1742 | if (kdata->ctx == NULL) { |
| 1743 | OPENSSL_free(kdata); |
| 1744 | return 0; |
| 1745 | } |
| 1746 | if (EVP_PKEY_derive_init(kdata->ctx) <= 0) { |
| 1747 | EVP_PKEY_CTX_free(kdata->ctx); |
| 1748 | OPENSSL_free(kdata); |
| 1749 | return 0; |
| 1750 | } |
| 1751 | t->data = kdata; |
| 1752 | return 1; |
| 1753 | } |
| 1754 | |
| 1755 | static void kdf_test_cleanup(EVP_TEST *t) |
| 1756 | { |
| 1757 | KDF_DATA *kdata = t->data; |
| 1758 | OPENSSL_free(kdata->output); |
| 1759 | EVP_PKEY_CTX_free(kdata->ctx); |
| 1760 | } |
| 1761 | |
| 1762 | static int kdf_test_parse(EVP_TEST *t, |
| 1763 | const char *keyword, const char *value) |
| 1764 | { |
| 1765 | KDF_DATA *kdata = t->data; |
| 1766 | |
| 1767 | if (strcmp(keyword, "Output") == 0) |
| 1768 | return parse_bin(value, &kdata->output, &kdata->output_len); |
| 1769 | if (strncmp(keyword, "Ctrl", 4) == 0) |
| 1770 | return pkey_test_ctrl(t, kdata->ctx, value); |
| 1771 | return 0; |
| 1772 | } |
| 1773 | |
| 1774 | static int kdf_test_run(EVP_TEST *t) |
| 1775 | { |
| 1776 | KDF_DATA *expected = t->data; |
| 1777 | unsigned char *got = NULL; |
| 1778 | size_t got_len = expected->output_len; |
| 1779 | |
| 1780 | if (!TEST_ptr(got = OPENSSL_malloc(got_len == 0 ? 1 : got_len))) { |
| 1781 | t->err = "INTERNAL_ERROR"; |
| 1782 | goto err; |
| 1783 | } |
| 1784 | if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) { |
| 1785 | t->err = "KDF_DERIVE_ERROR"; |
| 1786 | goto err; |
| 1787 | } |
| 1788 | if (!memory_err_compare(t, "KDF_MISMATCH", |
| 1789 | expected->output, expected->output_len, |
| 1790 | got, got_len)) |
| 1791 | goto err; |
| 1792 | |
| 1793 | t->err = NULL; |
| 1794 | |
| 1795 | err: |
| 1796 | OPENSSL_free(got); |
| 1797 | return 1; |
| 1798 | } |
| 1799 | |
| 1800 | static const EVP_TEST_METHOD kdf_test_method = { |
| 1801 | "KDF", |
| 1802 | kdf_test_init, |
| 1803 | kdf_test_cleanup, |
| 1804 | kdf_test_parse, |
| 1805 | kdf_test_run |
| 1806 | }; |
| 1807 | |
| 1808 | |
| 1809 | /** |
| 1810 | *** KEYPAIR TESTS |
| 1811 | **/ |
| 1812 | |
| 1813 | typedef struct keypair_test_data_st { |
| 1814 | EVP_PKEY *privk; |
| 1815 | EVP_PKEY *pubk; |
| 1816 | } KEYPAIR_TEST_DATA; |
| 1817 | |
| 1818 | static int keypair_test_init(EVP_TEST *t, const char *pair) |
| 1819 | { |
| 1820 | KEYPAIR_TEST_DATA *data; |
| 1821 | int rv = 0; |
| 1822 | EVP_PKEY *pk = NULL, *pubk = NULL; |
| 1823 | char *pub, *priv = NULL; |
| 1824 | |
| 1825 | /* Split private and public names. */ |
| 1826 | if (!TEST_ptr(priv = OPENSSL_strdup(pair)) |
| 1827 | || !TEST_ptr(pub = strchr(priv, ':'))) { |
| 1828 | t->err = "PARSING_ERROR"; |
| 1829 | goto end; |
| 1830 | } |
| 1831 | *pub++ = '\0'; |
| 1832 | |
| 1833 | if (!TEST_true(find_key(&pk, priv, private_keys))) { |
| 1834 | TEST_info("Can't find private key: %s", priv); |
| 1835 | t->err = "MISSING_PRIVATE_KEY"; |
| 1836 | goto end; |
| 1837 | } |
| 1838 | if (!TEST_true(find_key(&pubk, pub, public_keys))) { |
| 1839 | TEST_info("Can't find public key: %s", pub); |
| 1840 | t->err = "MISSING_PUBLIC_KEY"; |
| 1841 | goto end; |
| 1842 | } |
| 1843 | |
| 1844 | if (pk == NULL && pubk == NULL) { |
| 1845 | /* Both keys are listed but unsupported: skip this test */ |
| 1846 | t->skip = 1; |
| 1847 | rv = 1; |
| 1848 | goto end; |
| 1849 | } |
| 1850 | |
| 1851 | if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data)))) |
| 1852 | goto end; |
| 1853 | data->privk = pk; |
| 1854 | data->pubk = pubk; |
| 1855 | t->data = data; |
| 1856 | rv = 1; |
| 1857 | t->err = NULL; |
| 1858 | |
| 1859 | end: |
| 1860 | OPENSSL_free(priv); |
| 1861 | return rv; |
| 1862 | } |
| 1863 | |
| 1864 | static void keypair_test_cleanup(EVP_TEST *t) |
| 1865 | { |
| 1866 | OPENSSL_free(t->data); |
| 1867 | t->data = NULL; |
| 1868 | } |
| 1869 | |
| 1870 | /* |
| 1871 | * For tests that do not accept any custom keywords. |
| 1872 | */ |
| 1873 | static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value) |
| 1874 | { |
| 1875 | return 0; |
| 1876 | } |
| 1877 | |
| 1878 | static int keypair_test_run(EVP_TEST *t) |
| 1879 | { |
| 1880 | int rv = 0; |
| 1881 | const KEYPAIR_TEST_DATA *pair = t->data; |
| 1882 | |
| 1883 | if (pair->privk == NULL || pair->pubk == NULL) { |
| 1884 | /* |
| 1885 | * this can only happen if only one of the keys is not set |
| 1886 | * which means that one of them was unsupported while the |
| 1887 | * other isn't: hence a key type mismatch. |
| 1888 | */ |
| 1889 | t->err = "KEYPAIR_TYPE_MISMATCH"; |
| 1890 | rv = 1; |
| 1891 | goto end; |
| 1892 | } |
| 1893 | |
| 1894 | if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) { |
| 1895 | if ( 0 == rv ) { |
| 1896 | t->err = "KEYPAIR_MISMATCH"; |
| 1897 | } else if ( -1 == rv ) { |
| 1898 | t->err = "KEYPAIR_TYPE_MISMATCH"; |
| 1899 | } else if ( -2 == rv ) { |
| 1900 | t->err = "UNSUPPORTED_KEY_COMPARISON"; |
| 1901 | } else { |
| 1902 | TEST_error("Unexpected error in key comparison"); |
| 1903 | rv = 0; |
| 1904 | goto end; |
| 1905 | } |
| 1906 | rv = 1; |
| 1907 | goto end; |
| 1908 | } |
| 1909 | |
| 1910 | rv = 1; |
| 1911 | t->err = NULL; |
| 1912 | |
| 1913 | end: |
| 1914 | return rv; |
| 1915 | } |
| 1916 | |
| 1917 | static const EVP_TEST_METHOD keypair_test_method = { |
| 1918 | "PrivPubKeyPair", |
| 1919 | keypair_test_init, |
| 1920 | keypair_test_cleanup, |
| 1921 | void_test_parse, |
| 1922 | keypair_test_run |
| 1923 | }; |
| 1924 | |
| 1925 | /** |
| 1926 | *** KEYGEN TEST |
| 1927 | **/ |
| 1928 | |
| 1929 | typedef struct keygen_test_data_st { |
| 1930 | EVP_PKEY_CTX *genctx; /* Keygen context to use */ |
| 1931 | char *keyname; /* Key name to store key or NULL */ |
| 1932 | } KEYGEN_TEST_DATA; |
| 1933 | |
| 1934 | static int keygen_test_init(EVP_TEST *t, const char *alg) |
| 1935 | { |
| 1936 | KEYGEN_TEST_DATA *data; |
| 1937 | EVP_PKEY_CTX *genctx; |
| 1938 | int nid = OBJ_sn2nid(alg); |
| 1939 | |
| 1940 | if (nid == NID_undef) { |
| 1941 | nid = OBJ_ln2nid(alg); |
| 1942 | if (nid == NID_undef) |
| 1943 | return 0; |
| 1944 | } |
| 1945 | |
| 1946 | if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) { |
| 1947 | /* assume algorithm disabled */ |
| 1948 | t->skip = 1; |
| 1949 | return 1; |
| 1950 | } |
| 1951 | |
| 1952 | if (EVP_PKEY_keygen_init(genctx) <= 0) { |
| 1953 | t->err = "KEYGEN_INIT_ERROR"; |
| 1954 | goto err; |
| 1955 | } |
| 1956 | |
| 1957 | if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data)))) |
| 1958 | goto err; |
| 1959 | data->genctx = genctx; |
| 1960 | data->keyname = NULL; |
| 1961 | t->data = data; |
| 1962 | t->err = NULL; |
| 1963 | return 1; |
| 1964 | |
| 1965 | err: |
| 1966 | EVP_PKEY_CTX_free(genctx); |
| 1967 | return 0; |
| 1968 | } |
| 1969 | |
| 1970 | static void keygen_test_cleanup(EVP_TEST *t) |
| 1971 | { |
| 1972 | KEYGEN_TEST_DATA *keygen = t->data; |
| 1973 | |
| 1974 | EVP_PKEY_CTX_free(keygen->genctx); |
| 1975 | OPENSSL_free(keygen->keyname); |
| 1976 | OPENSSL_free(t->data); |
| 1977 | t->data = NULL; |
| 1978 | } |
| 1979 | |
| 1980 | static int keygen_test_parse(EVP_TEST *t, |
| 1981 | const char *keyword, const char *value) |
| 1982 | { |
| 1983 | KEYGEN_TEST_DATA *keygen = t->data; |
| 1984 | |
| 1985 | if (strcmp(keyword, "KeyName") == 0) |
| 1986 | return TEST_ptr(keygen->keyname = OPENSSL_strdup(value)); |
| 1987 | if (strcmp(keyword, "Ctrl") == 0) |
| 1988 | return pkey_test_ctrl(t, keygen->genctx, value); |
| 1989 | return 0; |
| 1990 | } |
| 1991 | |
| 1992 | static int keygen_test_run(EVP_TEST *t) |
| 1993 | { |
| 1994 | KEYGEN_TEST_DATA *keygen = t->data; |
| 1995 | EVP_PKEY *pkey = NULL; |
| 1996 | |
| 1997 | t->err = NULL; |
| 1998 | if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) { |
| 1999 | t->err = "KEYGEN_GENERATE_ERROR"; |
| 2000 | goto err; |
| 2001 | } |
| 2002 | |
| 2003 | if (keygen->keyname != NULL) { |
| 2004 | KEY_LIST *key; |
| 2005 | |
| 2006 | if (find_key(NULL, keygen->keyname, private_keys)) { |
| 2007 | TEST_info("Duplicate key %s", keygen->keyname); |
| 2008 | goto err; |
| 2009 | } |
| 2010 | |
| 2011 | if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key)))) |
| 2012 | goto err; |
| 2013 | key->name = keygen->keyname; |
| 2014 | keygen->keyname = NULL; |
| 2015 | key->key = pkey; |
| 2016 | key->next = private_keys; |
| 2017 | private_keys = key; |
| 2018 | } else { |
| 2019 | EVP_PKEY_free(pkey); |
| 2020 | } |
| 2021 | |
| 2022 | return 1; |
| 2023 | |
| 2024 | err: |
| 2025 | EVP_PKEY_free(pkey); |
| 2026 | return 0; |
| 2027 | } |
| 2028 | |
| 2029 | static const EVP_TEST_METHOD keygen_test_method = { |
| 2030 | "KeyGen", |
| 2031 | keygen_test_init, |
| 2032 | keygen_test_cleanup, |
| 2033 | keygen_test_parse, |
| 2034 | keygen_test_run, |
| 2035 | }; |
| 2036 | |
| 2037 | /** |
| 2038 | *** DIGEST SIGN+VERIFY TESTS |
| 2039 | **/ |
| 2040 | |
| 2041 | typedef struct { |
| 2042 | int is_verify; /* Set to 1 if verifying */ |
| 2043 | int is_oneshot; /* Set to 1 for one shot operation */ |
| 2044 | const EVP_MD *md; /* Digest to use */ |
| 2045 | EVP_MD_CTX *ctx; /* Digest context */ |
| 2046 | EVP_PKEY_CTX *pctx; |
| 2047 | STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */ |
| 2048 | unsigned char *osin; /* Input data if one shot */ |
| 2049 | size_t osin_len; /* Input length data if one shot */ |
| 2050 | unsigned char *output; /* Expected output */ |
| 2051 | size_t output_len; /* Expected output length */ |
| 2052 | } DIGESTSIGN_DATA; |
| 2053 | |
| 2054 | static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify, |
| 2055 | int is_oneshot) |
| 2056 | { |
| 2057 | const EVP_MD *md = NULL; |
| 2058 | DIGESTSIGN_DATA *mdat; |
| 2059 | |
| 2060 | if (strcmp(alg, "NULL") != 0) { |
| 2061 | if ((md = EVP_get_digestbyname(alg)) == NULL) { |
| 2062 | /* If alg has an OID assume disabled algorithm */ |
| 2063 | if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { |
| 2064 | t->skip = 1; |
| 2065 | return 1; |
| 2066 | } |
| 2067 | return 0; |
| 2068 | } |
| 2069 | } |
| 2070 | if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat)))) |
| 2071 | return 0; |
| 2072 | mdat->md = md; |
| 2073 | if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) { |
| 2074 | OPENSSL_free(mdat); |
| 2075 | return 0; |
| 2076 | } |
| 2077 | mdat->is_verify = is_verify; |
| 2078 | mdat->is_oneshot = is_oneshot; |
| 2079 | t->data = mdat; |
| 2080 | return 1; |
| 2081 | } |
| 2082 | |
| 2083 | static int digestsign_test_init(EVP_TEST *t, const char *alg) |
| 2084 | { |
| 2085 | return digestsigver_test_init(t, alg, 0, 0); |
| 2086 | } |
| 2087 | |
| 2088 | static void digestsigver_test_cleanup(EVP_TEST *t) |
| 2089 | { |
| 2090 | DIGESTSIGN_DATA *mdata = t->data; |
| 2091 | |
| 2092 | EVP_MD_CTX_free(mdata->ctx); |
| 2093 | sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free); |
| 2094 | OPENSSL_free(mdata->osin); |
| 2095 | OPENSSL_free(mdata->output); |
| 2096 | OPENSSL_free(mdata); |
| 2097 | t->data = NULL; |
| 2098 | } |
| 2099 | |
| 2100 | static int digestsigver_test_parse(EVP_TEST *t, |
| 2101 | const char *keyword, const char *value) |
| 2102 | { |
| 2103 | DIGESTSIGN_DATA *mdata = t->data; |
| 2104 | |
| 2105 | if (strcmp(keyword, "Key") == 0) { |
| 2106 | EVP_PKEY *pkey = NULL; |
| 2107 | int rv = 0; |
| 2108 | |
| 2109 | if (mdata->is_verify) |
| 2110 | rv = find_key(&pkey, value, public_keys); |
| 2111 | if (rv == 0) |
| 2112 | rv = find_key(&pkey, value, private_keys); |
| 2113 | if (rv == 0 || pkey == NULL) { |
| 2114 | t->skip = 1; |
| 2115 | return 1; |
| 2116 | } |
| 2117 | if (mdata->is_verify) { |
| 2118 | if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md, |
| 2119 | NULL, pkey)) |
| 2120 | t->err = "DIGESTVERIFYINIT_ERROR"; |
| 2121 | return 1; |
| 2122 | } |
| 2123 | if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL, |
| 2124 | pkey)) |
| 2125 | t->err = "DIGESTSIGNINIT_ERROR"; |
| 2126 | return 1; |
| 2127 | } |
| 2128 | |
| 2129 | if (strcmp(keyword, "Input") == 0) { |
| 2130 | if (mdata->is_oneshot) |
| 2131 | return parse_bin(value, &mdata->osin, &mdata->osin_len); |
| 2132 | return evp_test_buffer_append(value, &mdata->input); |
| 2133 | } |
| 2134 | if (strcmp(keyword, "Output") == 0) |
| 2135 | return parse_bin(value, &mdata->output, &mdata->output_len); |
| 2136 | |
| 2137 | if (!mdata->is_oneshot) { |
| 2138 | if (strcmp(keyword, "Count") == 0) |
| 2139 | return evp_test_buffer_set_count(value, mdata->input); |
| 2140 | if (strcmp(keyword, "Ncopy") == 0) |
| 2141 | return evp_test_buffer_ncopy(value, mdata->input); |
| 2142 | } |
| 2143 | if (strcmp(keyword, "Ctrl") == 0) { |
| 2144 | if (mdata->pctx == NULL) |
| 2145 | return -1; |
| 2146 | return pkey_test_ctrl(t, mdata->pctx, value); |
| 2147 | } |
| 2148 | return 0; |
| 2149 | } |
| 2150 | |
| 2151 | static int digestsign_update_fn(void *ctx, const unsigned char *buf, |
| 2152 | size_t buflen) |
| 2153 | { |
| 2154 | return EVP_DigestSignUpdate(ctx, buf, buflen); |
| 2155 | } |
| 2156 | |
| 2157 | static int digestsign_test_run(EVP_TEST *t) |
| 2158 | { |
| 2159 | DIGESTSIGN_DATA *expected = t->data; |
| 2160 | unsigned char *got = NULL; |
| 2161 | size_t got_len; |
| 2162 | |
| 2163 | if (!evp_test_buffer_do(expected->input, digestsign_update_fn, |
| 2164 | expected->ctx)) { |
| 2165 | t->err = "DIGESTUPDATE_ERROR"; |
| 2166 | goto err; |
| 2167 | } |
| 2168 | |
| 2169 | if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) { |
| 2170 | t->err = "DIGESTSIGNFINAL_LENGTH_ERROR"; |
| 2171 | goto err; |
| 2172 | } |
| 2173 | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| 2174 | t->err = "MALLOC_FAILURE"; |
| 2175 | goto err; |
| 2176 | } |
| 2177 | if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) { |
| 2178 | t->err = "DIGESTSIGNFINAL_ERROR"; |
| 2179 | goto err; |
| 2180 | } |
| 2181 | if (!memory_err_compare(t, "SIGNATURE_MISMATCH", |
| 2182 | expected->output, expected->output_len, |
| 2183 | got, got_len)) |
| 2184 | goto err; |
| 2185 | |
| 2186 | t->err = NULL; |
| 2187 | err: |
| 2188 | OPENSSL_free(got); |
| 2189 | return 1; |
| 2190 | } |
| 2191 | |
| 2192 | static const EVP_TEST_METHOD digestsign_test_method = { |
| 2193 | "DigestSign", |
| 2194 | digestsign_test_init, |
| 2195 | digestsigver_test_cleanup, |
| 2196 | digestsigver_test_parse, |
| 2197 | digestsign_test_run |
| 2198 | }; |
| 2199 | |
| 2200 | static int digestverify_test_init(EVP_TEST *t, const char *alg) |
| 2201 | { |
| 2202 | return digestsigver_test_init(t, alg, 1, 0); |
| 2203 | } |
| 2204 | |
| 2205 | static int digestverify_update_fn(void *ctx, const unsigned char *buf, |
| 2206 | size_t buflen) |
| 2207 | { |
| 2208 | return EVP_DigestVerifyUpdate(ctx, buf, buflen); |
| 2209 | } |
| 2210 | |
| 2211 | static int digestverify_test_run(EVP_TEST *t) |
| 2212 | { |
| 2213 | DIGESTSIGN_DATA *mdata = t->data; |
| 2214 | |
| 2215 | if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) { |
| 2216 | t->err = "DIGESTUPDATE_ERROR"; |
| 2217 | return 1; |
| 2218 | } |
| 2219 | |
| 2220 | if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output, |
| 2221 | mdata->output_len) <= 0) |
| 2222 | t->err = "VERIFY_ERROR"; |
| 2223 | return 1; |
| 2224 | } |
| 2225 | |
| 2226 | static const EVP_TEST_METHOD digestverify_test_method = { |
| 2227 | "DigestVerify", |
| 2228 | digestverify_test_init, |
| 2229 | digestsigver_test_cleanup, |
| 2230 | digestsigver_test_parse, |
| 2231 | digestverify_test_run |
| 2232 | }; |
| 2233 | |
| 2234 | static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg) |
| 2235 | { |
| 2236 | return digestsigver_test_init(t, alg, 0, 1); |
| 2237 | } |
| 2238 | |
| 2239 | static int oneshot_digestsign_test_run(EVP_TEST *t) |
| 2240 | { |
| 2241 | DIGESTSIGN_DATA *expected = t->data; |
| 2242 | unsigned char *got = NULL; |
| 2243 | size_t got_len; |
| 2244 | |
| 2245 | if (!EVP_DigestSign(expected->ctx, NULL, &got_len, |
| 2246 | expected->osin, expected->osin_len)) { |
| 2247 | t->err = "DIGESTSIGN_LENGTH_ERROR"; |
| 2248 | goto err; |
| 2249 | } |
| 2250 | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| 2251 | t->err = "MALLOC_FAILURE"; |
| 2252 | goto err; |
| 2253 | } |
| 2254 | if (!EVP_DigestSign(expected->ctx, got, &got_len, |
| 2255 | expected->osin, expected->osin_len)) { |
| 2256 | t->err = "DIGESTSIGN_ERROR"; |
| 2257 | goto err; |
| 2258 | } |
| 2259 | if (!memory_err_compare(t, "SIGNATURE_MISMATCH", |
| 2260 | expected->output, expected->output_len, |
| 2261 | got, got_len)) |
| 2262 | goto err; |
| 2263 | |
| 2264 | t->err = NULL; |
| 2265 | err: |
| 2266 | OPENSSL_free(got); |
| 2267 | return 1; |
| 2268 | } |
| 2269 | |
| 2270 | static const EVP_TEST_METHOD oneshot_digestsign_test_method = { |
| 2271 | "OneShotDigestSign", |
| 2272 | oneshot_digestsign_test_init, |
| 2273 | digestsigver_test_cleanup, |
| 2274 | digestsigver_test_parse, |
| 2275 | oneshot_digestsign_test_run |
| 2276 | }; |
| 2277 | |
| 2278 | static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg) |
| 2279 | { |
| 2280 | return digestsigver_test_init(t, alg, 1, 1); |
| 2281 | } |
| 2282 | |
| 2283 | static int oneshot_digestverify_test_run(EVP_TEST *t) |
| 2284 | { |
| 2285 | DIGESTSIGN_DATA *mdata = t->data; |
| 2286 | |
| 2287 | if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len, |
| 2288 | mdata->osin, mdata->osin_len) <= 0) |
| 2289 | t->err = "VERIFY_ERROR"; |
| 2290 | return 1; |
| 2291 | } |
| 2292 | |
| 2293 | static const EVP_TEST_METHOD oneshot_digestverify_test_method = { |
| 2294 | "OneShotDigestVerify", |
| 2295 | oneshot_digestverify_test_init, |
| 2296 | digestsigver_test_cleanup, |
| 2297 | digestsigver_test_parse, |
| 2298 | oneshot_digestverify_test_run |
| 2299 | }; |
| 2300 | |
| 2301 | |
| 2302 | /** |
| 2303 | *** PARSING AND DISPATCH |
| 2304 | **/ |
| 2305 | |
| 2306 | static const EVP_TEST_METHOD *evp_test_list[] = { |
| 2307 | &cipher_test_method, |
| 2308 | &digest_test_method, |
| 2309 | &digestsign_test_method, |
| 2310 | &digestverify_test_method, |
| 2311 | &encode_test_method, |
| 2312 | &kdf_test_method, |
| 2313 | &keypair_test_method, |
| 2314 | &keygen_test_method, |
| 2315 | &mac_test_method, |
| 2316 | &oneshot_digestsign_test_method, |
| 2317 | &oneshot_digestverify_test_method, |
| 2318 | &pbe_test_method, |
| 2319 | &pdecrypt_test_method, |
| 2320 | &pderive_test_method, |
| 2321 | &psign_test_method, |
| 2322 | &pverify_recover_test_method, |
| 2323 | &pverify_test_method, |
| 2324 | NULL |
| 2325 | }; |
| 2326 | |
| 2327 | static const EVP_TEST_METHOD *find_test(const char *name) |
| 2328 | { |
| 2329 | const EVP_TEST_METHOD **tt; |
| 2330 | |
| 2331 | for (tt = evp_test_list; *tt; tt++) { |
| 2332 | if (strcmp(name, (*tt)->name) == 0) |
| 2333 | return *tt; |
| 2334 | } |
| 2335 | return NULL; |
| 2336 | } |
| 2337 | |
| 2338 | static void clear_test(EVP_TEST *t) |
| 2339 | { |
| 2340 | test_clearstanza(&t->s); |
| 2341 | ERR_clear_error(); |
| 2342 | if (t->data != NULL) { |
| 2343 | if (t->meth != NULL) |
| 2344 | t->meth->cleanup(t); |
| 2345 | OPENSSL_free(t->data); |
| 2346 | t->data = NULL; |
| 2347 | } |
| 2348 | OPENSSL_free(t->expected_err); |
| 2349 | t->expected_err = NULL; |
| 2350 | OPENSSL_free(t->func); |
| 2351 | t->func = NULL; |
| 2352 | OPENSSL_free(t->reason); |
| 2353 | t->reason = NULL; |
| 2354 | |
| 2355 | /* Text literal. */ |
| 2356 | t->err = NULL; |
| 2357 | t->skip = 0; |
| 2358 | t->meth = NULL; |
| 2359 | } |
| 2360 | |
| 2361 | /* |
| 2362 | * Check for errors in the test structure; return 1 if okay, else 0. |
| 2363 | */ |
| 2364 | static int check_test_error(EVP_TEST *t) |
| 2365 | { |
| 2366 | unsigned long err; |
| 2367 | const char *func; |
| 2368 | const char *reason; |
| 2369 | |
| 2370 | if (t->err == NULL && t->expected_err == NULL) |
| 2371 | return 1; |
| 2372 | if (t->err != NULL && t->expected_err == NULL) { |
| 2373 | if (t->aux_err != NULL) { |
| 2374 | TEST_info("%s:%d: Source of above error (%s); unexpected error %s", |
| 2375 | t->s.test_file, t->s.start, t->aux_err, t->err); |
| 2376 | } else { |
| 2377 | TEST_info("%s:%d: Source of above error; unexpected error %s", |
| 2378 | t->s.test_file, t->s.start, t->err); |
| 2379 | } |
| 2380 | return 0; |
| 2381 | } |
| 2382 | if (t->err == NULL && t->expected_err != NULL) { |
| 2383 | TEST_info("%s:%d: Succeeded but was expecting %s", |
| 2384 | t->s.test_file, t->s.start, t->expected_err); |
| 2385 | return 0; |
| 2386 | } |
| 2387 | |
| 2388 | if (strcmp(t->err, t->expected_err) != 0) { |
| 2389 | TEST_info("%s:%d: Expected %s got %s", |
| 2390 | t->s.test_file, t->s.start, t->expected_err, t->err); |
| 2391 | return 0; |
| 2392 | } |
| 2393 | |
| 2394 | if (t->func == NULL && t->reason == NULL) |
| 2395 | return 1; |
| 2396 | |
| 2397 | if (t->func == NULL || t->reason == NULL) { |
| 2398 | TEST_info("%s:%d: Test is missing function or reason code", |
| 2399 | t->s.test_file, t->s.start); |
| 2400 | return 0; |
| 2401 | } |
| 2402 | |
| 2403 | err = ERR_peek_error(); |
| 2404 | if (err == 0) { |
| 2405 | TEST_info("%s:%d: Expected error \"%s:%s\" not set", |
| 2406 | t->s.test_file, t->s.start, t->func, t->reason); |
| 2407 | return 0; |
| 2408 | } |
| 2409 | |
| 2410 | func = ERR_func_error_string(err); |
| 2411 | reason = ERR_reason_error_string(err); |
| 2412 | if (func == NULL && reason == NULL) { |
| 2413 | TEST_info("%s:%d: Expected error \"%s:%s\", no strings available." |
| 2414 | " Assuming ok.", |
| 2415 | t->s.test_file, t->s.start, t->func, t->reason); |
| 2416 | return 1; |
| 2417 | } |
| 2418 | |
| 2419 | if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0) |
| 2420 | return 1; |
| 2421 | |
| 2422 | TEST_info("%s:%d: Expected error \"%s:%s\", got \"%s:%s\"", |
| 2423 | t->s.test_file, t->s.start, t->func, t->reason, func, reason); |
| 2424 | |
| 2425 | return 0; |
| 2426 | } |
| 2427 | |
| 2428 | /* |
| 2429 | * Run a parsed test. Log a message and return 0 on error. |
| 2430 | */ |
| 2431 | static int run_test(EVP_TEST *t) |
| 2432 | { |
| 2433 | if (t->meth == NULL) |
| 2434 | return 1; |
| 2435 | t->s.numtests++; |
| 2436 | if (t->skip) { |
| 2437 | t->s.numskip++; |
| 2438 | } else { |
| 2439 | /* run the test */ |
| 2440 | if (t->err == NULL && t->meth->run_test(t) != 1) { |
| 2441 | TEST_info("%s:%d %s error", |
| 2442 | t->s.test_file, t->s.start, t->meth->name); |
| 2443 | return 0; |
| 2444 | } |
| 2445 | if (!check_test_error(t)) { |
| 2446 | TEST_openssl_errors(); |
| 2447 | t->s.errors++; |
| 2448 | } |
| 2449 | } |
| 2450 | |
| 2451 | /* clean it up */ |
| 2452 | return 1; |
| 2453 | } |
| 2454 | |
| 2455 | static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst) |
| 2456 | { |
| 2457 | for (; lst != NULL; lst = lst->next) { |
| 2458 | if (strcmp(lst->name, name) == 0) { |
| 2459 | if (ppk != NULL) |
| 2460 | *ppk = lst->key; |
| 2461 | return 1; |
| 2462 | } |
| 2463 | } |
| 2464 | return 0; |
| 2465 | } |
| 2466 | |
| 2467 | static void free_key_list(KEY_LIST *lst) |
| 2468 | { |
| 2469 | while (lst != NULL) { |
| 2470 | KEY_LIST *next = lst->next; |
| 2471 | |
| 2472 | EVP_PKEY_free(lst->key); |
| 2473 | OPENSSL_free(lst->name); |
| 2474 | OPENSSL_free(lst); |
| 2475 | lst = next; |
| 2476 | } |
| 2477 | } |
| 2478 | |
| 2479 | /* |
| 2480 | * Is the key type an unsupported algorithm? |
| 2481 | */ |
| 2482 | static int key_unsupported(void) |
| 2483 | { |
| 2484 | long err = ERR_peek_error(); |
| 2485 | |
| 2486 | if (ERR_GET_LIB(err) == ERR_LIB_EVP |
| 2487 | && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) { |
| 2488 | ERR_clear_error(); |
| 2489 | return 1; |
| 2490 | } |
| 2491 | #ifndef OPENSSL_NO_EC |
| 2492 | /* |
| 2493 | * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an |
| 2494 | * hint to an unsupported algorithm/curve (e.g. if binary EC support is |
| 2495 | * disabled). |
| 2496 | */ |
| 2497 | if (ERR_GET_LIB(err) == ERR_LIB_EC |
| 2498 | && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) { |
| 2499 | ERR_clear_error(); |
| 2500 | return 1; |
| 2501 | } |
| 2502 | #endif /* OPENSSL_NO_EC */ |
| 2503 | return 0; |
| 2504 | } |
| 2505 | |
| 2506 | /* |
| 2507 | * NULL out the value from |pp| but return it. This "steals" a pointer. |
| 2508 | */ |
| 2509 | static char *take_value(PAIR *pp) |
| 2510 | { |
| 2511 | char *p = pp->value; |
| 2512 | |
| 2513 | pp->value = NULL; |
| 2514 | return p; |
| 2515 | } |
| 2516 | |
| 2517 | /* |
| 2518 | * Read and parse one test. Return 0 if failure, 1 if okay. |
| 2519 | */ |
| 2520 | static int parse(EVP_TEST *t) |
| 2521 | { |
| 2522 | KEY_LIST *key, **klist; |
| 2523 | EVP_PKEY *pkey; |
| 2524 | PAIR *pp; |
| 2525 | int i; |
| 2526 | |
| 2527 | top: |
| 2528 | do { |
| 2529 | if (BIO_eof(t->s.fp)) |
| 2530 | return EOF; |
| 2531 | clear_test(t); |
| 2532 | if (!test_readstanza(&t->s)) |
| 2533 | return 0; |
| 2534 | } while (t->s.numpairs == 0); |
| 2535 | pp = &t->s.pairs[0]; |
| 2536 | |
| 2537 | /* Are we adding a key? */ |
| 2538 | klist = NULL; |
| 2539 | pkey = NULL; |
| 2540 | if (strcmp(pp->key, "PrivateKey") == 0) { |
| 2541 | pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL); |
| 2542 | if (pkey == NULL && !key_unsupported()) { |
| 2543 | EVP_PKEY_free(pkey); |
| 2544 | TEST_info("Can't read private key %s", pp->value); |
| 2545 | TEST_openssl_errors(); |
| 2546 | return 0; |
| 2547 | } |
| 2548 | klist = &private_keys; |
| 2549 | } else if (strcmp(pp->key, "PublicKey") == 0) { |
| 2550 | pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL); |
| 2551 | if (pkey == NULL && !key_unsupported()) { |
| 2552 | EVP_PKEY_free(pkey); |
| 2553 | TEST_info("Can't read public key %s", pp->value); |
| 2554 | TEST_openssl_errors(); |
| 2555 | return 0; |
| 2556 | } |
| 2557 | klist = &public_keys; |
| 2558 | } else if (strcmp(pp->key, "PrivateKeyRaw") == 0 |
| 2559 | || strcmp(pp->key, "PublicKeyRaw") == 0 ) { |
| 2560 | char *strnid = NULL, *keydata = NULL; |
| 2561 | unsigned char *keybin; |
| 2562 | size_t keylen; |
| 2563 | int nid; |
| 2564 | |
| 2565 | if (strcmp(pp->key, "PrivateKeyRaw") == 0) |
| 2566 | klist = &private_keys; |
| 2567 | else |
| 2568 | klist = &public_keys; |
| 2569 | |
| 2570 | strnid = strchr(pp->value, ':'); |
| 2571 | if (strnid != NULL) { |
| 2572 | *strnid++ = '\0'; |
| 2573 | keydata = strchr(strnid, ':'); |
| 2574 | if (keydata != NULL) |
| 2575 | *keydata++ = '\0'; |
| 2576 | } |
| 2577 | if (keydata == NULL) { |
| 2578 | TEST_info("Failed to parse %s value", pp->key); |
| 2579 | return 0; |
| 2580 | } |
| 2581 | |
| 2582 | nid = OBJ_txt2nid(strnid); |
| 2583 | if (nid == NID_undef) { |
| 2584 | TEST_info("Uncrecognised algorithm NID"); |
| 2585 | return 0; |
| 2586 | } |
| 2587 | if (!parse_bin(keydata, &keybin, &keylen)) { |
| 2588 | TEST_info("Failed to create binary key"); |
| 2589 | return 0; |
| 2590 | } |
| 2591 | if (klist == &private_keys) |
| 2592 | pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen); |
| 2593 | else |
| 2594 | pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen); |
| 2595 | if (pkey == NULL && !key_unsupported()) { |
| 2596 | TEST_info("Can't read %s data", pp->key); |
| 2597 | OPENSSL_free(keybin); |
| 2598 | TEST_openssl_errors(); |
| 2599 | return 0; |
| 2600 | } |
| 2601 | OPENSSL_free(keybin); |
| 2602 | } |
| 2603 | |
| 2604 | /* If we have a key add to list */ |
| 2605 | if (klist != NULL) { |
| 2606 | if (find_key(NULL, pp->value, *klist)) { |
| 2607 | TEST_info("Duplicate key %s", pp->value); |
| 2608 | return 0; |
| 2609 | } |
| 2610 | if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key)))) |
| 2611 | return 0; |
| 2612 | key->name = take_value(pp); |
| 2613 | |
| 2614 | /* Hack to detect SM2 keys */ |
| 2615 | if(pkey != NULL && strstr(key->name, "SM2") != NULL) { |
| 2616 | #ifdef OPENSSL_NO_SM2 |
| 2617 | EVP_PKEY_free(pkey); |
| 2618 | pkey = NULL; |
| 2619 | #else |
| 2620 | EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2); |
| 2621 | #endif |
| 2622 | } |
| 2623 | |
| 2624 | key->key = pkey; |
| 2625 | key->next = *klist; |
| 2626 | *klist = key; |
| 2627 | |
| 2628 | /* Go back and start a new stanza. */ |
| 2629 | if (t->s.numpairs != 1) |
| 2630 | TEST_info("Line %d: missing blank line\n", t->s.curr); |
| 2631 | goto top; |
| 2632 | } |
| 2633 | |
| 2634 | /* Find the test, based on first keyword. */ |
| 2635 | if (!TEST_ptr(t->meth = find_test(pp->key))) |
| 2636 | return 0; |
| 2637 | if (!t->meth->init(t, pp->value)) { |
| 2638 | TEST_error("unknown %s: %s\n", pp->key, pp->value); |
| 2639 | return 0; |
| 2640 | } |
| 2641 | if (t->skip == 1) { |
| 2642 | /* TEST_info("skipping %s %s", pp->key, pp->value); */ |
| 2643 | return 0; |
| 2644 | } |
| 2645 | |
| 2646 | for (pp++, i = 1; i < t->s.numpairs; pp++, i++) { |
| 2647 | if (strcmp(pp->key, "Result") == 0) { |
| 2648 | if (t->expected_err != NULL) { |
| 2649 | TEST_info("Line %d: multiple result lines", t->s.curr); |
| 2650 | return 0; |
| 2651 | } |
| 2652 | t->expected_err = take_value(pp); |
| 2653 | } else if (strcmp(pp->key, "Function") == 0) { |
| 2654 | if (t->func != NULL) { |
| 2655 | TEST_info("Line %d: multiple function lines\n", t->s.curr); |
| 2656 | return 0; |
| 2657 | } |
| 2658 | t->func = take_value(pp); |
| 2659 | } else if (strcmp(pp->key, "Reason") == 0) { |
| 2660 | if (t->reason != NULL) { |
| 2661 | TEST_info("Line %d: multiple reason lines", t->s.curr); |
| 2662 | return 0; |
| 2663 | } |
| 2664 | t->reason = take_value(pp); |
| 2665 | } else { |
| 2666 | /* Must be test specific line: try to parse it */ |
| 2667 | int rv = t->meth->parse(t, pp->key, pp->value); |
| 2668 | |
| 2669 | if (rv == 0) { |
| 2670 | TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key); |
| 2671 | return 0; |
| 2672 | } |
| 2673 | if (rv < 0) { |
| 2674 | TEST_info("Line %d: error processing keyword %s = %s\n", |
| 2675 | t->s.curr, pp->key, pp->value); |
| 2676 | return 0; |
| 2677 | } |
| 2678 | } |
| 2679 | } |
| 2680 | |
| 2681 | return 1; |
| 2682 | } |
| 2683 | |
| 2684 | static int run_file_tests(int i) |
| 2685 | { |
| 2686 | EVP_TEST *t; |
| 2687 | const char *testfile = test_get_argument(i); |
| 2688 | int c; |
| 2689 | |
| 2690 | if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t)))) |
| 2691 | return 0; |
| 2692 | if (!test_start_file(&t->s, testfile)) { |
| 2693 | OPENSSL_free(t); |
| 2694 | return 0; |
| 2695 | } |
| 2696 | |
| 2697 | while (!BIO_eof(t->s.fp)) { |
| 2698 | c = parse(t); |
| 2699 | if (t->skip) |
| 2700 | continue; |
| 2701 | if (c == 0 || !run_test(t)) { |
| 2702 | t->s.errors++; |
| 2703 | break; |
| 2704 | } |
| 2705 | } |
| 2706 | test_end_file(&t->s); |
| 2707 | clear_test(t); |
| 2708 | |
| 2709 | free_key_list(public_keys); |
| 2710 | free_key_list(private_keys); |
| 2711 | BIO_free(t->s.key); |
| 2712 | c = t->s.errors; |
| 2713 | OPENSSL_free(t); |
| 2714 | return c == 0; |
| 2715 | } |
| 2716 | |
| 2717 | int setup_tests(void) |
| 2718 | { |
| 2719 | size_t n = test_get_argument_count(); |
| 2720 | |
| 2721 | if (n == 0) { |
| 2722 | TEST_error("Usage: %s file...", test_get_program_name()); |
| 2723 | return 0; |
| 2724 | } |
| 2725 | |
| 2726 | ADD_ALL_TESTS(run_file_tests, n); |
| 2727 | return 1; |
| 2728 | } |