blob: facf1cf46eeefa2348b630729065542c78d29ca6 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/jbd2.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30#include <linux/pagevec.h>
31#include <linux/mpage.h>
32#include <linux/namei.h>
33#include <linux/uio.h>
34#include <linux/bio.h>
35#include <linux/workqueue.h>
36#include <linux/kernel.h>
37#include <linux/printk.h>
38#include <linux/slab.h>
39#include <linux/ratelimit.h>
40#include <linux/bitops.h>
41
42#include "ext4_jbd2.h"
43#include "xattr.h"
44#include "acl.h"
45#include "truncate.h"
46
47#include <trace/events/ext4.h>
48
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
51static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53{
54 trace_ext4_begin_ordered_truncate(inode, new_size);
55 /*
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
60 */
61 if (!EXT4_I(inode)->jinode)
62 return 0;
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 EXT4_I(inode)->jinode,
65 new_size);
66}
67
68static void ext4_invalidatepage(struct page *page, unsigned long offset);
69static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 struct buffer_head *bh_result, int create);
71static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
76 struct inode *inode, struct page *page, loff_t from,
77 loff_t length, int flags);
78
79/*
80 * Test whether an inode is a fast symlink.
81 */
82static int ext4_inode_is_fast_symlink(struct inode *inode)
83{
84 int ea_blocks = EXT4_I(inode)->i_file_acl ?
85 (inode->i_sb->s_blocksize >> 9) : 0;
86
87 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
88}
89
90/*
91 * Restart the transaction associated with *handle. This does a commit,
92 * so before we call here everything must be consistently dirtied against
93 * this transaction.
94 */
95int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
96 int nblocks)
97{
98 int ret;
99
100 /*
101 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
102 * moment, get_block can be called only for blocks inside i_size since
103 * page cache has been already dropped and writes are blocked by
104 * i_mutex. So we can safely drop the i_data_sem here.
105 */
106 BUG_ON(EXT4_JOURNAL(inode) == NULL);
107 jbd_debug(2, "restarting handle %p\n", handle);
108 up_write(&EXT4_I(inode)->i_data_sem);
109 ret = ext4_journal_restart(handle, nblocks);
110 down_write(&EXT4_I(inode)->i_data_sem);
111 ext4_discard_preallocations(inode);
112
113 return ret;
114}
115
116/*
117 * Called at the last iput() if i_nlink is zero.
118 */
119void ext4_evict_inode(struct inode *inode)
120{
121 handle_t *handle;
122 int err;
123
124 trace_ext4_evict_inode(inode);
125
126 ext4_ioend_wait(inode);
127
128 if (inode->i_nlink) {
129 /*
130 * When journalling data dirty buffers are tracked only in the
131 * journal. So although mm thinks everything is clean and
132 * ready for reaping the inode might still have some pages to
133 * write in the running transaction or waiting to be
134 * checkpointed. Thus calling jbd2_journal_invalidatepage()
135 * (via truncate_inode_pages()) to discard these buffers can
136 * cause data loss. Also even if we did not discard these
137 * buffers, we would have no way to find them after the inode
138 * is reaped and thus user could see stale data if he tries to
139 * read them before the transaction is checkpointed. So be
140 * careful and force everything to disk here... We use
141 * ei->i_datasync_tid to store the newest transaction
142 * containing inode's data.
143 *
144 * Note that directories do not have this problem because they
145 * don't use page cache.
146 */
147 if (ext4_should_journal_data(inode) &&
148 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
149 inode->i_ino != EXT4_JOURNAL_INO) {
150 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
151 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
152
153 jbd2_complete_transaction(journal, commit_tid);
154 filemap_write_and_wait(&inode->i_data);
155 }
156 truncate_inode_pages(&inode->i_data, 0);
157 goto no_delete;
158 }
159
160 if (is_bad_inode(inode))
161 goto no_delete;
162 dquot_initialize(inode);
163
164 if (ext4_should_order_data(inode))
165 ext4_begin_ordered_truncate(inode, 0);
166 truncate_inode_pages(&inode->i_data, 0);
167
168 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
169 if (IS_ERR(handle)) {
170 ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 /*
172 * If we're going to skip the normal cleanup, we still need to
173 * make sure that the in-core orphan linked list is properly
174 * cleaned up.
175 */
176 ext4_orphan_del(NULL, inode);
177 goto no_delete;
178 }
179
180 if (IS_SYNC(inode))
181 ext4_handle_sync(handle);
182 inode->i_size = 0;
183 err = ext4_mark_inode_dirty(handle, inode);
184 if (err) {
185 ext4_warning(inode->i_sb,
186 "couldn't mark inode dirty (err %d)", err);
187 goto stop_handle;
188 }
189 if (inode->i_blocks)
190 ext4_truncate(inode);
191
192 /*
193 * ext4_ext_truncate() doesn't reserve any slop when it
194 * restarts journal transactions; therefore there may not be
195 * enough credits left in the handle to remove the inode from
196 * the orphan list and set the dtime field.
197 */
198 if (!ext4_handle_has_enough_credits(handle, 3)) {
199 err = ext4_journal_extend(handle, 3);
200 if (err > 0)
201 err = ext4_journal_restart(handle, 3);
202 if (err != 0) {
203 ext4_warning(inode->i_sb,
204 "couldn't extend journal (err %d)", err);
205 stop_handle:
206 ext4_journal_stop(handle);
207 ext4_orphan_del(NULL, inode);
208 goto no_delete;
209 }
210 }
211
212 /*
213 * Kill off the orphan record which ext4_truncate created.
214 * AKPM: I think this can be inside the above `if'.
215 * Note that ext4_orphan_del() has to be able to cope with the
216 * deletion of a non-existent orphan - this is because we don't
217 * know if ext4_truncate() actually created an orphan record.
218 * (Well, we could do this if we need to, but heck - it works)
219 */
220 ext4_orphan_del(handle, inode);
221 EXT4_I(inode)->i_dtime = get_seconds();
222
223 /*
224 * One subtle ordering requirement: if anything has gone wrong
225 * (transaction abort, IO errors, whatever), then we can still
226 * do these next steps (the fs will already have been marked as
227 * having errors), but we can't free the inode if the mark_dirty
228 * fails.
229 */
230 if (ext4_mark_inode_dirty(handle, inode))
231 /* If that failed, just do the required in-core inode clear. */
232 ext4_clear_inode(inode);
233 else
234 ext4_free_inode(handle, inode);
235 ext4_journal_stop(handle);
236 return;
237no_delete:
238 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
239}
240
241#ifdef CONFIG_QUOTA
242qsize_t *ext4_get_reserved_space(struct inode *inode)
243{
244 return &EXT4_I(inode)->i_reserved_quota;
245}
246#endif
247
248/*
249 * Calculate the number of metadata blocks need to reserve
250 * to allocate a block located at @lblock
251 */
252static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253{
254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
255 return ext4_ext_calc_metadata_amount(inode, lblock);
256
257 return ext4_ind_calc_metadata_amount(inode, lblock);
258}
259
260/*
261 * Called with i_data_sem down, which is important since we can call
262 * ext4_discard_preallocations() from here.
263 */
264void ext4_da_update_reserve_space(struct inode *inode,
265 int used, int quota_claim)
266{
267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
268 struct ext4_inode_info *ei = EXT4_I(inode);
269
270 spin_lock(&ei->i_block_reservation_lock);
271 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
272 if (unlikely(used > ei->i_reserved_data_blocks)) {
273 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
274 "with only %d reserved data blocks",
275 __func__, inode->i_ino, used,
276 ei->i_reserved_data_blocks);
277 WARN_ON(1);
278 used = ei->i_reserved_data_blocks;
279 }
280
281 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
282 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
283 "with only %d reserved metadata blocks\n", __func__,
284 inode->i_ino, ei->i_allocated_meta_blocks,
285 ei->i_reserved_meta_blocks);
286 WARN_ON(1);
287 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
288 }
289
290 /* Update per-inode reservations */
291 ei->i_reserved_data_blocks -= used;
292 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
293 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294 used + ei->i_allocated_meta_blocks);
295 ei->i_allocated_meta_blocks = 0;
296
297 if (ei->i_reserved_data_blocks == 0) {
298 /*
299 * We can release all of the reserved metadata blocks
300 * only when we have written all of the delayed
301 * allocation blocks.
302 */
303 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
304 ei->i_reserved_meta_blocks);
305 ei->i_reserved_meta_blocks = 0;
306 ei->i_da_metadata_calc_len = 0;
307 }
308 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
309
310 /* Update quota subsystem for data blocks */
311 if (quota_claim)
312 dquot_claim_block(inode, EXT4_C2B(sbi, used));
313 else {
314 /*
315 * We did fallocate with an offset that is already delayed
316 * allocated. So on delayed allocated writeback we should
317 * not re-claim the quota for fallocated blocks.
318 */
319 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
320 }
321
322 /*
323 * If we have done all the pending block allocations and if
324 * there aren't any writers on the inode, we can discard the
325 * inode's preallocations.
326 */
327 if ((ei->i_reserved_data_blocks == 0) &&
328 (atomic_read(&inode->i_writecount) == 0))
329 ext4_discard_preallocations(inode);
330}
331
332static int __check_block_validity(struct inode *inode, const char *func,
333 unsigned int line,
334 struct ext4_map_blocks *map)
335{
336 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
337 map->m_len)) {
338 ext4_error_inode(inode, func, line, map->m_pblk,
339 "lblock %lu mapped to illegal pblock "
340 "(length %d)", (unsigned long) map->m_lblk,
341 map->m_len);
342 return -EIO;
343 }
344 return 0;
345}
346
347#define check_block_validity(inode, map) \
348 __check_block_validity((inode), __func__, __LINE__, (map))
349
350/*
351 * Return the number of contiguous dirty pages in a given inode
352 * starting at page frame idx.
353 */
354static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
355 unsigned int max_pages)
356{
357 struct address_space *mapping = inode->i_mapping;
358 pgoff_t index;
359 struct pagevec pvec;
360 pgoff_t num = 0;
361 int i, nr_pages, done = 0;
362
363 if (max_pages == 0)
364 return 0;
365 pagevec_init(&pvec, 0);
366 while (!done) {
367 index = idx;
368 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
369 PAGECACHE_TAG_DIRTY,
370 (pgoff_t)PAGEVEC_SIZE);
371 if (nr_pages == 0)
372 break;
373 for (i = 0; i < nr_pages; i++) {
374 struct page *page = pvec.pages[i];
375 struct buffer_head *bh, *head;
376
377 lock_page(page);
378 if (unlikely(page->mapping != mapping) ||
379 !PageDirty(page) ||
380 PageWriteback(page) ||
381 page->index != idx) {
382 done = 1;
383 unlock_page(page);
384 break;
385 }
386 if (page_has_buffers(page)) {
387 bh = head = page_buffers(page);
388 do {
389 if (!buffer_delay(bh) &&
390 !buffer_unwritten(bh))
391 done = 1;
392 bh = bh->b_this_page;
393 } while (!done && (bh != head));
394 }
395 unlock_page(page);
396 if (done)
397 break;
398 idx++;
399 num++;
400 if (num >= max_pages) {
401 done = 1;
402 break;
403 }
404 }
405 pagevec_release(&pvec);
406 }
407 return num;
408}
409
410/*
411 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
412 */
413static void set_buffers_da_mapped(struct inode *inode,
414 struct ext4_map_blocks *map)
415{
416 struct address_space *mapping = inode->i_mapping;
417 struct pagevec pvec;
418 int i, nr_pages;
419 pgoff_t index, end;
420
421 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
422 end = (map->m_lblk + map->m_len - 1) >>
423 (PAGE_CACHE_SHIFT - inode->i_blkbits);
424
425 pagevec_init(&pvec, 0);
426 while (index <= end) {
427 nr_pages = pagevec_lookup(&pvec, mapping, index,
428 min(end - index + 1,
429 (pgoff_t)PAGEVEC_SIZE));
430 if (nr_pages == 0)
431 break;
432 for (i = 0; i < nr_pages; i++) {
433 struct page *page = pvec.pages[i];
434 struct buffer_head *bh, *head;
435
436 if (unlikely(page->mapping != mapping) ||
437 !PageDirty(page))
438 break;
439
440 if (page_has_buffers(page)) {
441 bh = head = page_buffers(page);
442 do {
443 set_buffer_da_mapped(bh);
444 bh = bh->b_this_page;
445 } while (bh != head);
446 }
447 index++;
448 }
449 pagevec_release(&pvec);
450 }
451}
452
453/*
454 * The ext4_map_blocks() function tries to look up the requested blocks,
455 * and returns if the blocks are already mapped.
456 *
457 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
458 * and store the allocated blocks in the result buffer head and mark it
459 * mapped.
460 *
461 * If file type is extents based, it will call ext4_ext_map_blocks(),
462 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
463 * based files
464 *
465 * On success, it returns the number of blocks being mapped or allocate.
466 * if create==0 and the blocks are pre-allocated and uninitialized block,
467 * the result buffer head is unmapped. If the create ==1, it will make sure
468 * the buffer head is mapped.
469 *
470 * It returns 0 if plain look up failed (blocks have not been allocated), in
471 * that case, buffer head is unmapped
472 *
473 * It returns the error in case of allocation failure.
474 */
475int ext4_map_blocks(handle_t *handle, struct inode *inode,
476 struct ext4_map_blocks *map, int flags)
477{
478 int retval;
479
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
484 /*
485 * Try to see if we can get the block without requesting a new
486 * file system block.
487 */
488 down_read((&EXT4_I(inode)->i_data_sem));
489 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
490 retval = ext4_ext_map_blocks(handle, inode, map, flags &
491 EXT4_GET_BLOCKS_KEEP_SIZE);
492 } else {
493 retval = ext4_ind_map_blocks(handle, inode, map, flags &
494 EXT4_GET_BLOCKS_KEEP_SIZE);
495 }
496 up_read((&EXT4_I(inode)->i_data_sem));
497
498 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
499 int ret = check_block_validity(inode, map);
500 if (ret != 0)
501 return ret;
502 }
503
504 /* If it is only a block(s) look up */
505 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
506 return retval;
507
508 /*
509 * Returns if the blocks have already allocated
510 *
511 * Note that if blocks have been preallocated
512 * ext4_ext_get_block() returns the create = 0
513 * with buffer head unmapped.
514 */
515 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
516 return retval;
517
518 /*
519 * When we call get_blocks without the create flag, the
520 * BH_Unwritten flag could have gotten set if the blocks
521 * requested were part of a uninitialized extent. We need to
522 * clear this flag now that we are committed to convert all or
523 * part of the uninitialized extent to be an initialized
524 * extent. This is because we need to avoid the combination
525 * of BH_Unwritten and BH_Mapped flags being simultaneously
526 * set on the buffer_head.
527 */
528 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
529
530 /*
531 * New blocks allocate and/or writing to uninitialized extent
532 * will possibly result in updating i_data, so we take
533 * the write lock of i_data_sem, and call get_blocks()
534 * with create == 1 flag.
535 */
536 down_write((&EXT4_I(inode)->i_data_sem));
537
538 /*
539 * if the caller is from delayed allocation writeout path
540 * we have already reserved fs blocks for allocation
541 * let the underlying get_block() function know to
542 * avoid double accounting
543 */
544 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
545 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
546 /*
547 * We need to check for EXT4 here because migrate
548 * could have changed the inode type in between
549 */
550 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
551 retval = ext4_ext_map_blocks(handle, inode, map, flags);
552 } else {
553 retval = ext4_ind_map_blocks(handle, inode, map, flags);
554
555 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
556 /*
557 * We allocated new blocks which will result in
558 * i_data's format changing. Force the migrate
559 * to fail by clearing migrate flags
560 */
561 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
562 }
563
564 /*
565 * Update reserved blocks/metadata blocks after successful
566 * block allocation which had been deferred till now. We don't
567 * support fallocate for non extent files. So we can update
568 * reserve space here.
569 */
570 if ((retval > 0) &&
571 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
572 ext4_da_update_reserve_space(inode, retval, 1);
573 }
574 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
575 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
576
577 /* If we have successfully mapped the delayed allocated blocks,
578 * set the BH_Da_Mapped bit on them. Its important to do this
579 * under the protection of i_data_sem.
580 */
581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
582 set_buffers_da_mapped(inode, map);
583 }
584
585 up_write((&EXT4_I(inode)->i_data_sem));
586 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
587 int ret = check_block_validity(inode, map);
588 if (ret != 0)
589 return ret;
590 }
591 return retval;
592}
593
594/* Maximum number of blocks we map for direct IO at once. */
595#define DIO_MAX_BLOCKS 4096
596
597static int _ext4_get_block(struct inode *inode, sector_t iblock,
598 struct buffer_head *bh, int flags)
599{
600 handle_t *handle = ext4_journal_current_handle();
601 struct ext4_map_blocks map;
602 int ret = 0, started = 0;
603 int dio_credits;
604
605 map.m_lblk = iblock;
606 map.m_len = bh->b_size >> inode->i_blkbits;
607
608 if (flags && !handle) {
609 /* Direct IO write... */
610 if (map.m_len > DIO_MAX_BLOCKS)
611 map.m_len = DIO_MAX_BLOCKS;
612 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
613 handle = ext4_journal_start(inode, dio_credits);
614 if (IS_ERR(handle)) {
615 ret = PTR_ERR(handle);
616 return ret;
617 }
618 started = 1;
619 }
620
621 ret = ext4_map_blocks(handle, inode, &map, flags);
622 if (ret > 0) {
623 map_bh(bh, inode->i_sb, map.m_pblk);
624 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
625 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
626 ret = 0;
627 }
628 if (started)
629 ext4_journal_stop(handle);
630 return ret;
631}
632
633int ext4_get_block(struct inode *inode, sector_t iblock,
634 struct buffer_head *bh, int create)
635{
636 return _ext4_get_block(inode, iblock, bh,
637 create ? EXT4_GET_BLOCKS_CREATE : 0);
638}
639
640/*
641 * `handle' can be NULL if create is zero
642 */
643struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
644 ext4_lblk_t block, int create, int *errp)
645{
646 struct ext4_map_blocks map;
647 struct buffer_head *bh;
648 int fatal = 0, err;
649
650 J_ASSERT(handle != NULL || create == 0);
651
652 map.m_lblk = block;
653 map.m_len = 1;
654 err = ext4_map_blocks(handle, inode, &map,
655 create ? EXT4_GET_BLOCKS_CREATE : 0);
656
657 if (err < 0)
658 *errp = err;
659 if (err <= 0)
660 return NULL;
661 *errp = 0;
662
663 bh = sb_getblk(inode->i_sb, map.m_pblk);
664 if (!bh) {
665 *errp = -ENOMEM;
666 return NULL;
667 }
668 if (map.m_flags & EXT4_MAP_NEW) {
669 J_ASSERT(create != 0);
670 J_ASSERT(handle != NULL);
671
672 /*
673 * Now that we do not always journal data, we should
674 * keep in mind whether this should always journal the
675 * new buffer as metadata. For now, regular file
676 * writes use ext4_get_block instead, so it's not a
677 * problem.
678 */
679 lock_buffer(bh);
680 BUFFER_TRACE(bh, "call get_create_access");
681 fatal = ext4_journal_get_create_access(handle, bh);
682 if (!fatal && !buffer_uptodate(bh)) {
683 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
684 set_buffer_uptodate(bh);
685 }
686 unlock_buffer(bh);
687 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
688 err = ext4_handle_dirty_metadata(handle, inode, bh);
689 if (!fatal)
690 fatal = err;
691 } else {
692 BUFFER_TRACE(bh, "not a new buffer");
693 }
694 if (fatal) {
695 *errp = fatal;
696 brelse(bh);
697 bh = NULL;
698 }
699 return bh;
700}
701
702struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
703 ext4_lblk_t block, int create, int *err)
704{
705 struct buffer_head *bh;
706
707 bh = ext4_getblk(handle, inode, block, create, err);
708 if (!bh)
709 return bh;
710 if (buffer_uptodate(bh))
711 return bh;
712 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
713 wait_on_buffer(bh);
714 if (buffer_uptodate(bh))
715 return bh;
716 put_bh(bh);
717 *err = -EIO;
718 return NULL;
719}
720
721static int walk_page_buffers(handle_t *handle,
722 struct buffer_head *head,
723 unsigned from,
724 unsigned to,
725 int *partial,
726 int (*fn)(handle_t *handle,
727 struct buffer_head *bh))
728{
729 struct buffer_head *bh;
730 unsigned block_start, block_end;
731 unsigned blocksize = head->b_size;
732 int err, ret = 0;
733 struct buffer_head *next;
734
735 for (bh = head, block_start = 0;
736 ret == 0 && (bh != head || !block_start);
737 block_start = block_end, bh = next) {
738 next = bh->b_this_page;
739 block_end = block_start + blocksize;
740 if (block_end <= from || block_start >= to) {
741 if (partial && !buffer_uptodate(bh))
742 *partial = 1;
743 continue;
744 }
745 err = (*fn)(handle, bh);
746 if (!ret)
747 ret = err;
748 }
749 return ret;
750}
751
752/*
753 * To preserve ordering, it is essential that the hole instantiation and
754 * the data write be encapsulated in a single transaction. We cannot
755 * close off a transaction and start a new one between the ext4_get_block()
756 * and the commit_write(). So doing the jbd2_journal_start at the start of
757 * prepare_write() is the right place.
758 *
759 * Also, this function can nest inside ext4_writepage() ->
760 * block_write_full_page(). In that case, we *know* that ext4_writepage()
761 * has generated enough buffer credits to do the whole page. So we won't
762 * block on the journal in that case, which is good, because the caller may
763 * be PF_MEMALLOC.
764 *
765 * By accident, ext4 can be reentered when a transaction is open via
766 * quota file writes. If we were to commit the transaction while thus
767 * reentered, there can be a deadlock - we would be holding a quota
768 * lock, and the commit would never complete if another thread had a
769 * transaction open and was blocking on the quota lock - a ranking
770 * violation.
771 *
772 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
773 * will _not_ run commit under these circumstances because handle->h_ref
774 * is elevated. We'll still have enough credits for the tiny quotafile
775 * write.
776 */
777static int do_journal_get_write_access(handle_t *handle,
778 struct buffer_head *bh)
779{
780 int dirty = buffer_dirty(bh);
781 int ret;
782
783 if (!buffer_mapped(bh) || buffer_freed(bh))
784 return 0;
785 /*
786 * __block_write_begin() could have dirtied some buffers. Clean
787 * the dirty bit as jbd2_journal_get_write_access() could complain
788 * otherwise about fs integrity issues. Setting of the dirty bit
789 * by __block_write_begin() isn't a real problem here as we clear
790 * the bit before releasing a page lock and thus writeback cannot
791 * ever write the buffer.
792 */
793 if (dirty)
794 clear_buffer_dirty(bh);
795 ret = ext4_journal_get_write_access(handle, bh);
796 if (!ret && dirty)
797 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
798 return ret;
799}
800
801static int ext4_get_block_write(struct inode *inode, sector_t iblock,
802 struct buffer_head *bh_result, int create);
803static int ext4_write_begin(struct file *file, struct address_space *mapping,
804 loff_t pos, unsigned len, unsigned flags,
805 struct page **pagep, void **fsdata)
806{
807 struct inode *inode = mapping->host;
808 int ret, needed_blocks;
809 handle_t *handle;
810 int retries = 0;
811 struct page *page;
812 pgoff_t index;
813 unsigned from, to;
814
815 trace_ext4_write_begin(inode, pos, len, flags);
816 /*
817 * Reserve one block more for addition to orphan list in case
818 * we allocate blocks but write fails for some reason
819 */
820 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
821 index = pos >> PAGE_CACHE_SHIFT;
822 from = pos & (PAGE_CACHE_SIZE - 1);
823 to = from + len;
824
825retry:
826 handle = ext4_journal_start(inode, needed_blocks);
827 if (IS_ERR(handle)) {
828 ret = PTR_ERR(handle);
829 goto out;
830 }
831
832 /* We cannot recurse into the filesystem as the transaction is already
833 * started */
834 flags |= AOP_FLAG_NOFS;
835
836 page = grab_cache_page_write_begin(mapping, index, flags);
837 if (!page) {
838 ext4_journal_stop(handle);
839 ret = -ENOMEM;
840 goto out;
841 }
842 *pagep = page;
843
844 if (ext4_should_dioread_nolock(inode))
845 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
846 else
847 ret = __block_write_begin(page, pos, len, ext4_get_block);
848
849 if (!ret && ext4_should_journal_data(inode)) {
850 ret = walk_page_buffers(handle, page_buffers(page),
851 from, to, NULL, do_journal_get_write_access);
852 }
853
854 if (ret) {
855 unlock_page(page);
856 page_cache_release(page);
857 /*
858 * __block_write_begin may have instantiated a few blocks
859 * outside i_size. Trim these off again. Don't need
860 * i_size_read because we hold i_mutex.
861 *
862 * Add inode to orphan list in case we crash before
863 * truncate finishes
864 */
865 if (pos + len > inode->i_size && ext4_can_truncate(inode))
866 ext4_orphan_add(handle, inode);
867
868 ext4_journal_stop(handle);
869 if (pos + len > inode->i_size) {
870 ext4_truncate_failed_write(inode);
871 /*
872 * If truncate failed early the inode might
873 * still be on the orphan list; we need to
874 * make sure the inode is removed from the
875 * orphan list in that case.
876 */
877 if (inode->i_nlink)
878 ext4_orphan_del(NULL, inode);
879 }
880 }
881
882 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
883 goto retry;
884out:
885 return ret;
886}
887
888/* For write_end() in data=journal mode */
889static int write_end_fn(handle_t *handle, struct buffer_head *bh)
890{
891 if (!buffer_mapped(bh) || buffer_freed(bh))
892 return 0;
893 set_buffer_uptodate(bh);
894 return ext4_handle_dirty_metadata(handle, NULL, bh);
895}
896
897static int ext4_generic_write_end(struct file *file,
898 struct address_space *mapping,
899 loff_t pos, unsigned len, unsigned copied,
900 struct page *page, void *fsdata)
901{
902 int i_size_changed = 0;
903 struct inode *inode = mapping->host;
904 handle_t *handle = ext4_journal_current_handle();
905
906 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
907
908 /*
909 * No need to use i_size_read() here, the i_size
910 * cannot change under us because we hold i_mutex.
911 *
912 * But it's important to update i_size while still holding page lock:
913 * page writeout could otherwise come in and zero beyond i_size.
914 */
915 if (pos + copied > inode->i_size) {
916 i_size_write(inode, pos + copied);
917 i_size_changed = 1;
918 }
919
920 if (pos + copied > EXT4_I(inode)->i_disksize) {
921 /* We need to mark inode dirty even if
922 * new_i_size is less that inode->i_size
923 * bu greater than i_disksize.(hint delalloc)
924 */
925 ext4_update_i_disksize(inode, (pos + copied));
926 i_size_changed = 1;
927 }
928 unlock_page(page);
929 page_cache_release(page);
930
931 /*
932 * Don't mark the inode dirty under page lock. First, it unnecessarily
933 * makes the holding time of page lock longer. Second, it forces lock
934 * ordering of page lock and transaction start for journaling
935 * filesystems.
936 */
937 if (i_size_changed)
938 ext4_mark_inode_dirty(handle, inode);
939
940 return copied;
941}
942
943/*
944 * We need to pick up the new inode size which generic_commit_write gave us
945 * `file' can be NULL - eg, when called from page_symlink().
946 *
947 * ext4 never places buffers on inode->i_mapping->private_list. metadata
948 * buffers are managed internally.
949 */
950static int ext4_ordered_write_end(struct file *file,
951 struct address_space *mapping,
952 loff_t pos, unsigned len, unsigned copied,
953 struct page *page, void *fsdata)
954{
955 handle_t *handle = ext4_journal_current_handle();
956 struct inode *inode = mapping->host;
957 int ret = 0, ret2;
958
959 trace_ext4_ordered_write_end(inode, pos, len, copied);
960 ret = ext4_jbd2_file_inode(handle, inode);
961
962 if (ret == 0) {
963 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
964 page, fsdata);
965 copied = ret2;
966 if (pos + len > inode->i_size && ext4_can_truncate(inode))
967 /* if we have allocated more blocks and copied
968 * less. We will have blocks allocated outside
969 * inode->i_size. So truncate them
970 */
971 ext4_orphan_add(handle, inode);
972 if (ret2 < 0)
973 ret = ret2;
974 } else {
975 unlock_page(page);
976 page_cache_release(page);
977 }
978
979 ret2 = ext4_journal_stop(handle);
980 if (!ret)
981 ret = ret2;
982
983 if (pos + len > inode->i_size) {
984 ext4_truncate_failed_write(inode);
985 /*
986 * If truncate failed early the inode might still be
987 * on the orphan list; we need to make sure the inode
988 * is removed from the orphan list in that case.
989 */
990 if (inode->i_nlink)
991 ext4_orphan_del(NULL, inode);
992 }
993
994
995 return ret ? ret : copied;
996}
997
998static int ext4_writeback_write_end(struct file *file,
999 struct address_space *mapping,
1000 loff_t pos, unsigned len, unsigned copied,
1001 struct page *page, void *fsdata)
1002{
1003 handle_t *handle = ext4_journal_current_handle();
1004 struct inode *inode = mapping->host;
1005 int ret = 0, ret2;
1006
1007 trace_ext4_writeback_write_end(inode, pos, len, copied);
1008 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1009 page, fsdata);
1010 copied = ret2;
1011 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1012 /* if we have allocated more blocks and copied
1013 * less. We will have blocks allocated outside
1014 * inode->i_size. So truncate them
1015 */
1016 ext4_orphan_add(handle, inode);
1017
1018 if (ret2 < 0)
1019 ret = ret2;
1020
1021 ret2 = ext4_journal_stop(handle);
1022 if (!ret)
1023 ret = ret2;
1024
1025 if (pos + len > inode->i_size) {
1026 ext4_truncate_failed_write(inode);
1027 /*
1028 * If truncate failed early the inode might still be
1029 * on the orphan list; we need to make sure the inode
1030 * is removed from the orphan list in that case.
1031 */
1032 if (inode->i_nlink)
1033 ext4_orphan_del(NULL, inode);
1034 }
1035
1036 return ret ? ret : copied;
1037}
1038
1039static int ext4_journalled_write_end(struct file *file,
1040 struct address_space *mapping,
1041 loff_t pos, unsigned len, unsigned copied,
1042 struct page *page, void *fsdata)
1043{
1044 handle_t *handle = ext4_journal_current_handle();
1045 struct inode *inode = mapping->host;
1046 int ret = 0, ret2;
1047 int partial = 0;
1048 unsigned from, to;
1049 loff_t new_i_size;
1050
1051 trace_ext4_journalled_write_end(inode, pos, len, copied);
1052 from = pos & (PAGE_CACHE_SIZE - 1);
1053 to = from + len;
1054
1055 BUG_ON(!ext4_handle_valid(handle));
1056
1057 if (copied < len) {
1058 if (!PageUptodate(page))
1059 copied = 0;
1060 page_zero_new_buffers(page, from+copied, to);
1061 }
1062
1063 ret = walk_page_buffers(handle, page_buffers(page), from,
1064 to, &partial, write_end_fn);
1065 if (!partial)
1066 SetPageUptodate(page);
1067 new_i_size = pos + copied;
1068 if (new_i_size > inode->i_size)
1069 i_size_write(inode, pos+copied);
1070 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1071 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1072 if (new_i_size > EXT4_I(inode)->i_disksize) {
1073 ext4_update_i_disksize(inode, new_i_size);
1074 ret2 = ext4_mark_inode_dirty(handle, inode);
1075 if (!ret)
1076 ret = ret2;
1077 }
1078
1079 unlock_page(page);
1080 page_cache_release(page);
1081 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1082 /* if we have allocated more blocks and copied
1083 * less. We will have blocks allocated outside
1084 * inode->i_size. So truncate them
1085 */
1086 ext4_orphan_add(handle, inode);
1087
1088 ret2 = ext4_journal_stop(handle);
1089 if (!ret)
1090 ret = ret2;
1091 if (pos + len > inode->i_size) {
1092 ext4_truncate_failed_write(inode);
1093 /*
1094 * If truncate failed early the inode might still be
1095 * on the orphan list; we need to make sure the inode
1096 * is removed from the orphan list in that case.
1097 */
1098 if (inode->i_nlink)
1099 ext4_orphan_del(NULL, inode);
1100 }
1101
1102 return ret ? ret : copied;
1103}
1104
1105/*
1106 * Reserve a single cluster located at lblock
1107 */
1108static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1109{
1110 int retries = 0;
1111 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1112 struct ext4_inode_info *ei = EXT4_I(inode);
1113 unsigned int md_needed;
1114 int ret;
1115 ext4_lblk_t save_last_lblock;
1116 int save_len;
1117
1118 /*
1119 * We will charge metadata quota at writeout time; this saves
1120 * us from metadata over-estimation, though we may go over by
1121 * a small amount in the end. Here we just reserve for data.
1122 */
1123 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1124 if (ret)
1125 return ret;
1126
1127 /*
1128 * recalculate the amount of metadata blocks to reserve
1129 * in order to allocate nrblocks
1130 * worse case is one extent per block
1131 */
1132repeat:
1133 spin_lock(&ei->i_block_reservation_lock);
1134 /*
1135 * ext4_calc_metadata_amount() has side effects, which we have
1136 * to be prepared undo if we fail to claim space.
1137 */
1138 save_len = ei->i_da_metadata_calc_len;
1139 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1140 md_needed = EXT4_NUM_B2C(sbi,
1141 ext4_calc_metadata_amount(inode, lblock));
1142 trace_ext4_da_reserve_space(inode, md_needed);
1143
1144 /*
1145 * We do still charge estimated metadata to the sb though;
1146 * we cannot afford to run out of free blocks.
1147 */
1148 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1149 ei->i_da_metadata_calc_len = save_len;
1150 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1151 spin_unlock(&ei->i_block_reservation_lock);
1152 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1153 yield();
1154 goto repeat;
1155 }
1156 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1157 return -ENOSPC;
1158 }
1159 ei->i_reserved_data_blocks++;
1160 ei->i_reserved_meta_blocks += md_needed;
1161 spin_unlock(&ei->i_block_reservation_lock);
1162
1163 return 0; /* success */
1164}
1165
1166static void ext4_da_release_space(struct inode *inode, int to_free)
1167{
1168 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1169 struct ext4_inode_info *ei = EXT4_I(inode);
1170
1171 if (!to_free)
1172 return; /* Nothing to release, exit */
1173
1174 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1175
1176 trace_ext4_da_release_space(inode, to_free);
1177 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1178 /*
1179 * if there aren't enough reserved blocks, then the
1180 * counter is messed up somewhere. Since this
1181 * function is called from invalidate page, it's
1182 * harmless to return without any action.
1183 */
1184 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1185 "ino %lu, to_free %d with only %d reserved "
1186 "data blocks", inode->i_ino, to_free,
1187 ei->i_reserved_data_blocks);
1188 WARN_ON(1);
1189 to_free = ei->i_reserved_data_blocks;
1190 }
1191 ei->i_reserved_data_blocks -= to_free;
1192
1193 if (ei->i_reserved_data_blocks == 0) {
1194 /*
1195 * We can release all of the reserved metadata blocks
1196 * only when we have written all of the delayed
1197 * allocation blocks.
1198 * Note that in case of bigalloc, i_reserved_meta_blocks,
1199 * i_reserved_data_blocks, etc. refer to number of clusters.
1200 */
1201 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1202 ei->i_reserved_meta_blocks);
1203 ei->i_reserved_meta_blocks = 0;
1204 ei->i_da_metadata_calc_len = 0;
1205 }
1206
1207 /* update fs dirty data blocks counter */
1208 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1209
1210 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1211
1212 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1213}
1214
1215static void ext4_da_page_release_reservation(struct page *page,
1216 unsigned long offset)
1217{
1218 int to_release = 0;
1219 struct buffer_head *head, *bh;
1220 unsigned int curr_off = 0;
1221 struct inode *inode = page->mapping->host;
1222 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1223 int num_clusters;
1224
1225 head = page_buffers(page);
1226 bh = head;
1227 do {
1228 unsigned int next_off = curr_off + bh->b_size;
1229
1230 if ((offset <= curr_off) && (buffer_delay(bh))) {
1231 to_release++;
1232 clear_buffer_delay(bh);
1233 clear_buffer_da_mapped(bh);
1234 }
1235 curr_off = next_off;
1236 } while ((bh = bh->b_this_page) != head);
1237
1238 /* If we have released all the blocks belonging to a cluster, then we
1239 * need to release the reserved space for that cluster. */
1240 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1241 while (num_clusters > 0) {
1242 ext4_fsblk_t lblk;
1243 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1244 ((num_clusters - 1) << sbi->s_cluster_bits);
1245 if (sbi->s_cluster_ratio == 1 ||
1246 !ext4_find_delalloc_cluster(inode, lblk, 1))
1247 ext4_da_release_space(inode, 1);
1248
1249 num_clusters--;
1250 }
1251}
1252
1253/*
1254 * Delayed allocation stuff
1255 */
1256
1257/*
1258 * mpage_da_submit_io - walks through extent of pages and try to write
1259 * them with writepage() call back
1260 *
1261 * @mpd->inode: inode
1262 * @mpd->first_page: first page of the extent
1263 * @mpd->next_page: page after the last page of the extent
1264 *
1265 * By the time mpage_da_submit_io() is called we expect all blocks
1266 * to be allocated. this may be wrong if allocation failed.
1267 *
1268 * As pages are already locked by write_cache_pages(), we can't use it
1269 */
1270static int mpage_da_submit_io(struct mpage_da_data *mpd,
1271 struct ext4_map_blocks *map)
1272{
1273 struct pagevec pvec;
1274 unsigned long index, end;
1275 int ret = 0, err, nr_pages, i;
1276 struct inode *inode = mpd->inode;
1277 struct address_space *mapping = inode->i_mapping;
1278 loff_t size = i_size_read(inode);
1279 unsigned int len, block_start;
1280 struct buffer_head *bh, *page_bufs = NULL;
1281 int journal_data = ext4_should_journal_data(inode);
1282 sector_t pblock = 0, cur_logical = 0;
1283 struct ext4_io_submit io_submit;
1284
1285 BUG_ON(mpd->next_page <= mpd->first_page);
1286 memset(&io_submit, 0, sizeof(io_submit));
1287 /*
1288 * We need to start from the first_page to the next_page - 1
1289 * to make sure we also write the mapped dirty buffer_heads.
1290 * If we look at mpd->b_blocknr we would only be looking
1291 * at the currently mapped buffer_heads.
1292 */
1293 index = mpd->first_page;
1294 end = mpd->next_page - 1;
1295
1296 pagevec_init(&pvec, 0);
1297 while (index <= end) {
1298 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1299 if (nr_pages == 0)
1300 break;
1301 for (i = 0; i < nr_pages; i++) {
1302 int commit_write = 0, skip_page = 0;
1303 struct page *page = pvec.pages[i];
1304
1305 index = page->index;
1306 if (index > end)
1307 break;
1308
1309 if (index == size >> PAGE_CACHE_SHIFT)
1310 len = size & ~PAGE_CACHE_MASK;
1311 else
1312 len = PAGE_CACHE_SIZE;
1313 if (map) {
1314 cur_logical = index << (PAGE_CACHE_SHIFT -
1315 inode->i_blkbits);
1316 pblock = map->m_pblk + (cur_logical -
1317 map->m_lblk);
1318 }
1319 index++;
1320
1321 BUG_ON(!PageLocked(page));
1322 BUG_ON(PageWriteback(page));
1323
1324 /*
1325 * If the page does not have buffers (for
1326 * whatever reason), try to create them using
1327 * __block_write_begin. If this fails,
1328 * skip the page and move on.
1329 */
1330 if (!page_has_buffers(page)) {
1331 if (__block_write_begin(page, 0, len,
1332 noalloc_get_block_write)) {
1333 skip_page:
1334 unlock_page(page);
1335 continue;
1336 }
1337 commit_write = 1;
1338 }
1339
1340 bh = page_bufs = page_buffers(page);
1341 block_start = 0;
1342 do {
1343 if (!bh)
1344 goto skip_page;
1345 if (map && (cur_logical >= map->m_lblk) &&
1346 (cur_logical <= (map->m_lblk +
1347 (map->m_len - 1)))) {
1348 if (buffer_delay(bh)) {
1349 clear_buffer_delay(bh);
1350 bh->b_blocknr = pblock;
1351 }
1352 if (buffer_da_mapped(bh))
1353 clear_buffer_da_mapped(bh);
1354 if (buffer_unwritten(bh) ||
1355 buffer_mapped(bh))
1356 BUG_ON(bh->b_blocknr != pblock);
1357 if (map->m_flags & EXT4_MAP_UNINIT)
1358 set_buffer_uninit(bh);
1359 clear_buffer_unwritten(bh);
1360 }
1361
1362 /*
1363 * skip page if block allocation undone and
1364 * block is dirty
1365 */
1366 if (ext4_bh_delay_or_unwritten(NULL, bh))
1367 skip_page = 1;
1368 bh = bh->b_this_page;
1369 block_start += bh->b_size;
1370 cur_logical++;
1371 pblock++;
1372 } while (bh != page_bufs);
1373
1374 if (skip_page)
1375 goto skip_page;
1376
1377 if (commit_write)
1378 /* mark the buffer_heads as dirty & uptodate */
1379 block_commit_write(page, 0, len);
1380
1381 clear_page_dirty_for_io(page);
1382 /*
1383 * Delalloc doesn't support data journalling,
1384 * but eventually maybe we'll lift this
1385 * restriction.
1386 */
1387 if (unlikely(journal_data && PageChecked(page)))
1388 err = __ext4_journalled_writepage(page, len);
1389 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1390 err = ext4_bio_write_page(&io_submit, page,
1391 len, mpd->wbc);
1392 else if (buffer_uninit(page_bufs)) {
1393 ext4_set_bh_endio(page_bufs, inode);
1394 err = block_write_full_page_endio(page,
1395 noalloc_get_block_write,
1396 mpd->wbc, ext4_end_io_buffer_write);
1397 } else
1398 err = block_write_full_page(page,
1399 noalloc_get_block_write, mpd->wbc);
1400
1401 if (!err)
1402 mpd->pages_written++;
1403 /*
1404 * In error case, we have to continue because
1405 * remaining pages are still locked
1406 */
1407 if (ret == 0)
1408 ret = err;
1409 }
1410 pagevec_release(&pvec);
1411 }
1412 ext4_io_submit(&io_submit);
1413 return ret;
1414}
1415
1416static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1417{
1418 int nr_pages, i;
1419 pgoff_t index, end;
1420 struct pagevec pvec;
1421 struct inode *inode = mpd->inode;
1422 struct address_space *mapping = inode->i_mapping;
1423
1424 index = mpd->first_page;
1425 end = mpd->next_page - 1;
1426
1427 pagevec_init(&pvec, 0);
1428 while (index <= end) {
1429 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1430 if (nr_pages == 0)
1431 break;
1432 for (i = 0; i < nr_pages; i++) {
1433 struct page *page = pvec.pages[i];
1434 if (page->index > end)
1435 break;
1436 BUG_ON(!PageLocked(page));
1437 BUG_ON(PageWriteback(page));
1438 block_invalidatepage(page, 0);
1439 ClearPageUptodate(page);
1440 unlock_page(page);
1441 }
1442 index = pvec.pages[nr_pages - 1]->index + 1;
1443 pagevec_release(&pvec);
1444 }
1445 return;
1446}
1447
1448static void ext4_print_free_blocks(struct inode *inode)
1449{
1450 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1451 struct super_block *sb = inode->i_sb;
1452
1453 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1454 EXT4_C2B(EXT4_SB(inode->i_sb),
1455 ext4_count_free_clusters(inode->i_sb)));
1456 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1457 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1458 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1459 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1460 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1461 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1462 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1463 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1464 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1465 EXT4_I(inode)->i_reserved_data_blocks);
1466 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1467 EXT4_I(inode)->i_reserved_meta_blocks);
1468 return;
1469}
1470
1471/*
1472 * mpage_da_map_and_submit - go through given space, map them
1473 * if necessary, and then submit them for I/O
1474 *
1475 * @mpd - bh describing space
1476 *
1477 * The function skips space we know is already mapped to disk blocks.
1478 *
1479 */
1480static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1481{
1482 int err, blks, get_blocks_flags;
1483 struct ext4_map_blocks map, *mapp = NULL;
1484 sector_t next = mpd->b_blocknr;
1485 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1486 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1487 handle_t *handle = NULL;
1488
1489 /*
1490 * If the blocks are mapped already, or we couldn't accumulate
1491 * any blocks, then proceed immediately to the submission stage.
1492 */
1493 if ((mpd->b_size == 0) ||
1494 ((mpd->b_state & (1 << BH_Mapped)) &&
1495 !(mpd->b_state & (1 << BH_Delay)) &&
1496 !(mpd->b_state & (1 << BH_Unwritten))))
1497 goto submit_io;
1498
1499 handle = ext4_journal_current_handle();
1500 BUG_ON(!handle);
1501
1502 /*
1503 * Call ext4_map_blocks() to allocate any delayed allocation
1504 * blocks, or to convert an uninitialized extent to be
1505 * initialized (in the case where we have written into
1506 * one or more preallocated blocks).
1507 *
1508 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1509 * indicate that we are on the delayed allocation path. This
1510 * affects functions in many different parts of the allocation
1511 * call path. This flag exists primarily because we don't
1512 * want to change *many* call functions, so ext4_map_blocks()
1513 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1514 * inode's allocation semaphore is taken.
1515 *
1516 * If the blocks in questions were delalloc blocks, set
1517 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1518 * variables are updated after the blocks have been allocated.
1519 */
1520 map.m_lblk = next;
1521 map.m_len = max_blocks;
1522 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1523 if (ext4_should_dioread_nolock(mpd->inode))
1524 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1525 if (mpd->b_state & (1 << BH_Delay))
1526 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1527
1528 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1529 if (blks < 0) {
1530 struct super_block *sb = mpd->inode->i_sb;
1531
1532 err = blks;
1533 /*
1534 * If get block returns EAGAIN or ENOSPC and there
1535 * appears to be free blocks we will just let
1536 * mpage_da_submit_io() unlock all of the pages.
1537 */
1538 if (err == -EAGAIN)
1539 goto submit_io;
1540
1541 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1542 mpd->retval = err;
1543 goto submit_io;
1544 }
1545
1546 /*
1547 * get block failure will cause us to loop in
1548 * writepages, because a_ops->writepage won't be able
1549 * to make progress. The page will be redirtied by
1550 * writepage and writepages will again try to write
1551 * the same.
1552 */
1553 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1554 ext4_msg(sb, KERN_CRIT,
1555 "delayed block allocation failed for inode %lu "
1556 "at logical offset %llu with max blocks %zd "
1557 "with error %d", mpd->inode->i_ino,
1558 (unsigned long long) next,
1559 mpd->b_size >> mpd->inode->i_blkbits, err);
1560 ext4_msg(sb, KERN_CRIT,
1561 "This should not happen!! Data will be lost\n");
1562 if (err == -ENOSPC)
1563 ext4_print_free_blocks(mpd->inode);
1564 }
1565 /* invalidate all the pages */
1566 ext4_da_block_invalidatepages(mpd);
1567
1568 /* Mark this page range as having been completed */
1569 mpd->io_done = 1;
1570 return;
1571 }
1572 BUG_ON(blks == 0);
1573
1574 mapp = &map;
1575 if (map.m_flags & EXT4_MAP_NEW) {
1576 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1577 int i;
1578
1579 for (i = 0; i < map.m_len; i++)
1580 unmap_underlying_metadata(bdev, map.m_pblk + i);
1581
1582 if (ext4_should_order_data(mpd->inode)) {
1583 err = ext4_jbd2_file_inode(handle, mpd->inode);
1584 if (err) {
1585 /* Only if the journal is aborted */
1586 mpd->retval = err;
1587 goto submit_io;
1588 }
1589 }
1590 }
1591
1592 /*
1593 * Update on-disk size along with block allocation.
1594 */
1595 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1596 if (disksize > i_size_read(mpd->inode))
1597 disksize = i_size_read(mpd->inode);
1598 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1599 ext4_update_i_disksize(mpd->inode, disksize);
1600 err = ext4_mark_inode_dirty(handle, mpd->inode);
1601 if (err)
1602 ext4_error(mpd->inode->i_sb,
1603 "Failed to mark inode %lu dirty",
1604 mpd->inode->i_ino);
1605 }
1606
1607submit_io:
1608 mpage_da_submit_io(mpd, mapp);
1609 mpd->io_done = 1;
1610}
1611
1612#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1613 (1 << BH_Delay) | (1 << BH_Unwritten))
1614
1615/*
1616 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1617 *
1618 * @mpd->lbh - extent of blocks
1619 * @logical - logical number of the block in the file
1620 * @bh - bh of the block (used to access block's state)
1621 *
1622 * the function is used to collect contig. blocks in same state
1623 */
1624static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1625 sector_t logical, size_t b_size,
1626 unsigned long b_state)
1627{
1628 sector_t next;
1629 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1630
1631 /*
1632 * XXX Don't go larger than mballoc is willing to allocate
1633 * This is a stopgap solution. We eventually need to fold
1634 * mpage_da_submit_io() into this function and then call
1635 * ext4_map_blocks() multiple times in a loop
1636 */
1637 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1638 goto flush_it;
1639
1640 /* check if thereserved journal credits might overflow */
1641 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1642 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1643 /*
1644 * With non-extent format we are limited by the journal
1645 * credit available. Total credit needed to insert
1646 * nrblocks contiguous blocks is dependent on the
1647 * nrblocks. So limit nrblocks.
1648 */
1649 goto flush_it;
1650 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1651 EXT4_MAX_TRANS_DATA) {
1652 /*
1653 * Adding the new buffer_head would make it cross the
1654 * allowed limit for which we have journal credit
1655 * reserved. So limit the new bh->b_size
1656 */
1657 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1658 mpd->inode->i_blkbits;
1659 /* we will do mpage_da_submit_io in the next loop */
1660 }
1661 }
1662 /*
1663 * First block in the extent
1664 */
1665 if (mpd->b_size == 0) {
1666 mpd->b_blocknr = logical;
1667 mpd->b_size = b_size;
1668 mpd->b_state = b_state & BH_FLAGS;
1669 return;
1670 }
1671
1672 next = mpd->b_blocknr + nrblocks;
1673 /*
1674 * Can we merge the block to our big extent?
1675 */
1676 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1677 mpd->b_size += b_size;
1678 return;
1679 }
1680
1681flush_it:
1682 /*
1683 * We couldn't merge the block to our extent, so we
1684 * need to flush current extent and start new one
1685 */
1686 mpage_da_map_and_submit(mpd);
1687 return;
1688}
1689
1690static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1691{
1692 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1693}
1694
1695/*
1696 * This function is grabs code from the very beginning of
1697 * ext4_map_blocks, but assumes that the caller is from delayed write
1698 * time. This function looks up the requested blocks and sets the
1699 * buffer delay bit under the protection of i_data_sem.
1700 */
1701static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1702 struct ext4_map_blocks *map,
1703 struct buffer_head *bh)
1704{
1705 int retval;
1706 sector_t invalid_block = ~((sector_t) 0xffff);
1707
1708 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1709 invalid_block = ~0;
1710
1711 map->m_flags = 0;
1712 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1713 "logical block %lu\n", inode->i_ino, map->m_len,
1714 (unsigned long) map->m_lblk);
1715 /*
1716 * Try to see if we can get the block without requesting a new
1717 * file system block.
1718 */
1719 down_read((&EXT4_I(inode)->i_data_sem));
1720 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1721 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1722 else
1723 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1724
1725 if (retval == 0) {
1726 /*
1727 * XXX: __block_prepare_write() unmaps passed block,
1728 * is it OK?
1729 */
1730 /* If the block was allocated from previously allocated cluster,
1731 * then we dont need to reserve it again. */
1732 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1733 retval = ext4_da_reserve_space(inode, iblock);
1734 if (retval)
1735 /* not enough space to reserve */
1736 goto out_unlock;
1737 }
1738
1739 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1740 * and it should not appear on the bh->b_state.
1741 */
1742 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1743
1744 map_bh(bh, inode->i_sb, invalid_block);
1745 set_buffer_new(bh);
1746 set_buffer_delay(bh);
1747 }
1748
1749out_unlock:
1750 up_read((&EXT4_I(inode)->i_data_sem));
1751
1752 return retval;
1753}
1754
1755/*
1756 * This is a special get_blocks_t callback which is used by
1757 * ext4_da_write_begin(). It will either return mapped block or
1758 * reserve space for a single block.
1759 *
1760 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1761 * We also have b_blocknr = -1 and b_bdev initialized properly
1762 *
1763 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1764 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1765 * initialized properly.
1766 */
1767static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1768 struct buffer_head *bh, int create)
1769{
1770 struct ext4_map_blocks map;
1771 int ret = 0;
1772
1773 BUG_ON(create == 0);
1774 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1775
1776 map.m_lblk = iblock;
1777 map.m_len = 1;
1778
1779 /*
1780 * first, we need to know whether the block is allocated already
1781 * preallocated blocks are unmapped but should treated
1782 * the same as allocated blocks.
1783 */
1784 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1785 if (ret <= 0)
1786 return ret;
1787
1788 map_bh(bh, inode->i_sb, map.m_pblk);
1789 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1790
1791 if (buffer_unwritten(bh)) {
1792 /* A delayed write to unwritten bh should be marked
1793 * new and mapped. Mapped ensures that we don't do
1794 * get_block multiple times when we write to the same
1795 * offset and new ensures that we do proper zero out
1796 * for partial write.
1797 */
1798 set_buffer_new(bh);
1799 set_buffer_mapped(bh);
1800 }
1801 return 0;
1802}
1803
1804/*
1805 * This function is used as a standard get_block_t calback function
1806 * when there is no desire to allocate any blocks. It is used as a
1807 * callback function for block_write_begin() and block_write_full_page().
1808 * These functions should only try to map a single block at a time.
1809 *
1810 * Since this function doesn't do block allocations even if the caller
1811 * requests it by passing in create=1, it is critically important that
1812 * any caller checks to make sure that any buffer heads are returned
1813 * by this function are either all already mapped or marked for
1814 * delayed allocation before calling block_write_full_page(). Otherwise,
1815 * b_blocknr could be left unitialized, and the page write functions will
1816 * be taken by surprise.
1817 */
1818static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1819 struct buffer_head *bh_result, int create)
1820{
1821 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1822 return _ext4_get_block(inode, iblock, bh_result, 0);
1823}
1824
1825static int bget_one(handle_t *handle, struct buffer_head *bh)
1826{
1827 get_bh(bh);
1828 return 0;
1829}
1830
1831static int bput_one(handle_t *handle, struct buffer_head *bh)
1832{
1833 put_bh(bh);
1834 return 0;
1835}
1836
1837static int __ext4_journalled_writepage(struct page *page,
1838 unsigned int len)
1839{
1840 struct address_space *mapping = page->mapping;
1841 struct inode *inode = mapping->host;
1842 struct buffer_head *page_bufs;
1843 handle_t *handle = NULL;
1844 int ret = 0;
1845 int err;
1846
1847 ClearPageChecked(page);
1848 page_bufs = page_buffers(page);
1849 BUG_ON(!page_bufs);
1850 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1851 /*
1852 * We need to release the page lock before we start the
1853 * journal, so grab a reference so the page won't disappear
1854 * out from under us.
1855 */
1856 get_page(page);
1857 unlock_page(page);
1858
1859 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1860 if (IS_ERR(handle)) {
1861 ret = PTR_ERR(handle);
1862 put_page(page);
1863 goto out_no_pagelock;
1864 }
1865
1866 BUG_ON(!ext4_handle_valid(handle));
1867
1868 lock_page(page);
1869 put_page(page);
1870 if (page->mapping != mapping) {
1871 /* The page got truncated from under us */
1872 ext4_journal_stop(handle);
1873 ret = 0;
1874 goto out;
1875 }
1876
1877 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1878 do_journal_get_write_access);
1879
1880 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1881 write_end_fn);
1882 if (ret == 0)
1883 ret = err;
1884 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1885 err = ext4_journal_stop(handle);
1886 if (!ret)
1887 ret = err;
1888
1889 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1890 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1891out:
1892 unlock_page(page);
1893out_no_pagelock:
1894 return ret;
1895}
1896
1897static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1898static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1899
1900/*
1901 * Note that we don't need to start a transaction unless we're journaling data
1902 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1903 * need to file the inode to the transaction's list in ordered mode because if
1904 * we are writing back data added by write(), the inode is already there and if
1905 * we are writing back data modified via mmap(), no one guarantees in which
1906 * transaction the data will hit the disk. In case we are journaling data, we
1907 * cannot start transaction directly because transaction start ranks above page
1908 * lock so we have to do some magic.
1909 *
1910 * This function can get called via...
1911 * - ext4_da_writepages after taking page lock (have journal handle)
1912 * - journal_submit_inode_data_buffers (no journal handle)
1913 * - shrink_page_list via pdflush (no journal handle)
1914 * - grab_page_cache when doing write_begin (have journal handle)
1915 *
1916 * We don't do any block allocation in this function. If we have page with
1917 * multiple blocks we need to write those buffer_heads that are mapped. This
1918 * is important for mmaped based write. So if we do with blocksize 1K
1919 * truncate(f, 1024);
1920 * a = mmap(f, 0, 4096);
1921 * a[0] = 'a';
1922 * truncate(f, 4096);
1923 * we have in the page first buffer_head mapped via page_mkwrite call back
1924 * but other buffer_heads would be unmapped but dirty (dirty done via the
1925 * do_wp_page). So writepage should write the first block. If we modify
1926 * the mmap area beyond 1024 we will again get a page_fault and the
1927 * page_mkwrite callback will do the block allocation and mark the
1928 * buffer_heads mapped.
1929 *
1930 * We redirty the page if we have any buffer_heads that is either delay or
1931 * unwritten in the page.
1932 *
1933 * We can get recursively called as show below.
1934 *
1935 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1936 * ext4_writepage()
1937 *
1938 * But since we don't do any block allocation we should not deadlock.
1939 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1940 */
1941static int ext4_writepage(struct page *page,
1942 struct writeback_control *wbc)
1943{
1944 int ret = 0, commit_write = 0;
1945 loff_t size;
1946 unsigned int len;
1947 struct buffer_head *page_bufs = NULL;
1948 struct inode *inode = page->mapping->host;
1949
1950 trace_ext4_writepage(page);
1951 size = i_size_read(inode);
1952 if (page->index == size >> PAGE_CACHE_SHIFT)
1953 len = size & ~PAGE_CACHE_MASK;
1954 else
1955 len = PAGE_CACHE_SIZE;
1956
1957 /*
1958 * If the page does not have buffers (for whatever reason),
1959 * try to create them using __block_write_begin. If this
1960 * fails, redirty the page and move on.
1961 */
1962 if (!page_has_buffers(page)) {
1963 if (__block_write_begin(page, 0, len,
1964 noalloc_get_block_write)) {
1965 redirty_page:
1966 redirty_page_for_writepage(wbc, page);
1967 unlock_page(page);
1968 return 0;
1969 }
1970 commit_write = 1;
1971 }
1972 page_bufs = page_buffers(page);
1973 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1974 ext4_bh_delay_or_unwritten)) {
1975 /*
1976 * We don't want to do block allocation, so redirty
1977 * the page and return. We may reach here when we do
1978 * a journal commit via journal_submit_inode_data_buffers.
1979 * We can also reach here via shrink_page_list but it
1980 * should never be for direct reclaim so warn if that
1981 * happens
1982 */
1983 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1984 PF_MEMALLOC);
1985 goto redirty_page;
1986 }
1987 if (commit_write)
1988 /* now mark the buffer_heads as dirty and uptodate */
1989 block_commit_write(page, 0, len);
1990
1991 if (PageChecked(page) && ext4_should_journal_data(inode))
1992 /*
1993 * It's mmapped pagecache. Add buffers and journal it. There
1994 * doesn't seem much point in redirtying the page here.
1995 */
1996 return __ext4_journalled_writepage(page, len);
1997
1998 if (buffer_uninit(page_bufs)) {
1999 ext4_set_bh_endio(page_bufs, inode);
2000 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2001 wbc, ext4_end_io_buffer_write);
2002 } else
2003 ret = block_write_full_page(page, noalloc_get_block_write,
2004 wbc);
2005
2006 return ret;
2007}
2008
2009/*
2010 * This is called via ext4_da_writepages() to
2011 * calculate the total number of credits to reserve to fit
2012 * a single extent allocation into a single transaction,
2013 * ext4_da_writpeages() will loop calling this before
2014 * the block allocation.
2015 */
2016
2017static int ext4_da_writepages_trans_blocks(struct inode *inode)
2018{
2019 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2020
2021 /*
2022 * With non-extent format the journal credit needed to
2023 * insert nrblocks contiguous block is dependent on
2024 * number of contiguous block. So we will limit
2025 * number of contiguous block to a sane value
2026 */
2027 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2028 (max_blocks > EXT4_MAX_TRANS_DATA))
2029 max_blocks = EXT4_MAX_TRANS_DATA;
2030
2031 return ext4_chunk_trans_blocks(inode, max_blocks);
2032}
2033
2034/*
2035 * write_cache_pages_da - walk the list of dirty pages of the given
2036 * address space and accumulate pages that need writing, and call
2037 * mpage_da_map_and_submit to map a single contiguous memory region
2038 * and then write them.
2039 */
2040static int write_cache_pages_da(struct address_space *mapping,
2041 struct writeback_control *wbc,
2042 struct mpage_da_data *mpd,
2043 pgoff_t *done_index)
2044{
2045 struct buffer_head *bh, *head;
2046 struct inode *inode = mapping->host;
2047 struct pagevec pvec;
2048 unsigned int nr_pages;
2049 sector_t logical;
2050 pgoff_t index, end;
2051 long nr_to_write = wbc->nr_to_write;
2052 int i, tag, ret = 0;
2053
2054 memset(mpd, 0, sizeof(struct mpage_da_data));
2055 mpd->wbc = wbc;
2056 mpd->inode = inode;
2057 pagevec_init(&pvec, 0);
2058 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2059 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2060
2061 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2062 tag = PAGECACHE_TAG_TOWRITE;
2063 else
2064 tag = PAGECACHE_TAG_DIRTY;
2065
2066 *done_index = index;
2067 while (index <= end) {
2068 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2069 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2070 if (nr_pages == 0)
2071 return 0;
2072
2073 for (i = 0; i < nr_pages; i++) {
2074 struct page *page = pvec.pages[i];
2075
2076 /*
2077 * At this point, the page may be truncated or
2078 * invalidated (changing page->mapping to NULL), or
2079 * even swizzled back from swapper_space to tmpfs file
2080 * mapping. However, page->index will not change
2081 * because we have a reference on the page.
2082 */
2083 if (page->index > end)
2084 goto out;
2085
2086 *done_index = page->index + 1;
2087
2088 /*
2089 * If we can't merge this page, and we have
2090 * accumulated an contiguous region, write it
2091 */
2092 if ((mpd->next_page != page->index) &&
2093 (mpd->next_page != mpd->first_page)) {
2094 mpage_da_map_and_submit(mpd);
2095 goto ret_extent_tail;
2096 }
2097
2098 lock_page(page);
2099
2100 /*
2101 * If the page is no longer dirty, or its
2102 * mapping no longer corresponds to inode we
2103 * are writing (which means it has been
2104 * truncated or invalidated), or the page is
2105 * already under writeback and we are not
2106 * doing a data integrity writeback, skip the page
2107 */
2108 if (!PageDirty(page) ||
2109 (PageWriteback(page) &&
2110 (wbc->sync_mode == WB_SYNC_NONE)) ||
2111 unlikely(page->mapping != mapping)) {
2112 unlock_page(page);
2113 continue;
2114 }
2115
2116 wait_on_page_writeback(page);
2117 BUG_ON(PageWriteback(page));
2118
2119 if (mpd->next_page != page->index)
2120 mpd->first_page = page->index;
2121 mpd->next_page = page->index + 1;
2122 logical = (sector_t) page->index <<
2123 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2124
2125 if (!page_has_buffers(page)) {
2126 mpage_add_bh_to_extent(mpd, logical,
2127 PAGE_CACHE_SIZE,
2128 (1 << BH_Dirty) | (1 << BH_Uptodate));
2129 if (mpd->io_done)
2130 goto ret_extent_tail;
2131 } else {
2132 /*
2133 * Page with regular buffer heads,
2134 * just add all dirty ones
2135 */
2136 head = page_buffers(page);
2137 bh = head;
2138 do {
2139 BUG_ON(buffer_locked(bh));
2140 /*
2141 * We need to try to allocate
2142 * unmapped blocks in the same page.
2143 * Otherwise we won't make progress
2144 * with the page in ext4_writepage
2145 */
2146 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2147 mpage_add_bh_to_extent(mpd, logical,
2148 bh->b_size,
2149 bh->b_state);
2150 if (mpd->io_done)
2151 goto ret_extent_tail;
2152 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2153 /*
2154 * mapped dirty buffer. We need
2155 * to update the b_state
2156 * because we look at b_state
2157 * in mpage_da_map_blocks. We
2158 * don't update b_size because
2159 * if we find an unmapped
2160 * buffer_head later we need to
2161 * use the b_state flag of that
2162 * buffer_head.
2163 */
2164 if (mpd->b_size == 0)
2165 mpd->b_state = bh->b_state & BH_FLAGS;
2166 }
2167 logical++;
2168 } while ((bh = bh->b_this_page) != head);
2169 }
2170
2171 if (nr_to_write > 0) {
2172 nr_to_write--;
2173 if (nr_to_write == 0 &&
2174 wbc->sync_mode == WB_SYNC_NONE)
2175 /*
2176 * We stop writing back only if we are
2177 * not doing integrity sync. In case of
2178 * integrity sync we have to keep going
2179 * because someone may be concurrently
2180 * dirtying pages, and we might have
2181 * synced a lot of newly appeared dirty
2182 * pages, but have not synced all of the
2183 * old dirty pages.
2184 */
2185 goto out;
2186 }
2187 }
2188 pagevec_release(&pvec);
2189 cond_resched();
2190 }
2191 return 0;
2192ret_extent_tail:
2193 ret = MPAGE_DA_EXTENT_TAIL;
2194out:
2195 pagevec_release(&pvec);
2196 cond_resched();
2197 return ret;
2198}
2199
2200
2201static int ext4_da_writepages(struct address_space *mapping,
2202 struct writeback_control *wbc)
2203{
2204 pgoff_t index;
2205 int range_whole = 0;
2206 handle_t *handle = NULL;
2207 struct mpage_da_data mpd;
2208 struct inode *inode = mapping->host;
2209 int pages_written = 0;
2210 unsigned int max_pages;
2211 int range_cyclic, cycled = 1, io_done = 0;
2212 int needed_blocks, ret = 0;
2213 long desired_nr_to_write, nr_to_writebump = 0;
2214 loff_t range_start = wbc->range_start;
2215 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2216 pgoff_t done_index = 0;
2217 pgoff_t end;
2218 struct blk_plug plug;
2219
2220 trace_ext4_da_writepages(inode, wbc);
2221
2222 /*
2223 * No pages to write? This is mainly a kludge to avoid starting
2224 * a transaction for special inodes like journal inode on last iput()
2225 * because that could violate lock ordering on umount
2226 */
2227 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2228 return 0;
2229
2230 /*
2231 * If the filesystem has aborted, it is read-only, so return
2232 * right away instead of dumping stack traces later on that
2233 * will obscure the real source of the problem. We test
2234 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2235 * the latter could be true if the filesystem is mounted
2236 * read-only, and in that case, ext4_da_writepages should
2237 * *never* be called, so if that ever happens, we would want
2238 * the stack trace.
2239 */
2240 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2241 return -EROFS;
2242
2243 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2244 range_whole = 1;
2245
2246 range_cyclic = wbc->range_cyclic;
2247 if (wbc->range_cyclic) {
2248 index = mapping->writeback_index;
2249 if (index)
2250 cycled = 0;
2251 wbc->range_start = index << PAGE_CACHE_SHIFT;
2252 wbc->range_end = LLONG_MAX;
2253 wbc->range_cyclic = 0;
2254 end = -1;
2255 } else {
2256 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2257 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2258 }
2259
2260 /*
2261 * This works around two forms of stupidity. The first is in
2262 * the writeback code, which caps the maximum number of pages
2263 * written to be 1024 pages. This is wrong on multiple
2264 * levels; different architectues have a different page size,
2265 * which changes the maximum amount of data which gets
2266 * written. Secondly, 4 megabytes is way too small. XFS
2267 * forces this value to be 16 megabytes by multiplying
2268 * nr_to_write parameter by four, and then relies on its
2269 * allocator to allocate larger extents to make them
2270 * contiguous. Unfortunately this brings us to the second
2271 * stupidity, which is that ext4's mballoc code only allocates
2272 * at most 2048 blocks. So we force contiguous writes up to
2273 * the number of dirty blocks in the inode, or
2274 * sbi->max_writeback_mb_bump whichever is smaller.
2275 */
2276 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2277 if (!range_cyclic && range_whole) {
2278 if (wbc->nr_to_write == LONG_MAX)
2279 desired_nr_to_write = wbc->nr_to_write;
2280 else
2281 desired_nr_to_write = wbc->nr_to_write * 8;
2282 } else
2283 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2284 max_pages);
2285 if (desired_nr_to_write > max_pages)
2286 desired_nr_to_write = max_pages;
2287
2288 if (wbc->nr_to_write < desired_nr_to_write) {
2289 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2290 wbc->nr_to_write = desired_nr_to_write;
2291 }
2292
2293retry:
2294 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2295 tag_pages_for_writeback(mapping, index, end);
2296
2297 blk_start_plug(&plug);
2298 while (!ret && wbc->nr_to_write > 0) {
2299
2300 /*
2301 * we insert one extent at a time. So we need
2302 * credit needed for single extent allocation.
2303 * journalled mode is currently not supported
2304 * by delalloc
2305 */
2306 BUG_ON(ext4_should_journal_data(inode));
2307 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2308
2309 /* start a new transaction*/
2310 handle = ext4_journal_start(inode, needed_blocks);
2311 if (IS_ERR(handle)) {
2312 ret = PTR_ERR(handle);
2313 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2314 "%ld pages, ino %lu; err %d", __func__,
2315 wbc->nr_to_write, inode->i_ino, ret);
2316 blk_finish_plug(&plug);
2317 goto out_writepages;
2318 }
2319
2320 /*
2321 * Now call write_cache_pages_da() to find the next
2322 * contiguous region of logical blocks that need
2323 * blocks to be allocated by ext4 and submit them.
2324 */
2325 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2326 /*
2327 * If we have a contiguous extent of pages and we
2328 * haven't done the I/O yet, map the blocks and submit
2329 * them for I/O.
2330 */
2331 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2332 mpage_da_map_and_submit(&mpd);
2333 ret = MPAGE_DA_EXTENT_TAIL;
2334 }
2335 trace_ext4_da_write_pages(inode, &mpd);
2336 wbc->nr_to_write -= mpd.pages_written;
2337
2338 ext4_journal_stop(handle);
2339
2340 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2341 /* commit the transaction which would
2342 * free blocks released in the transaction
2343 * and try again
2344 */
2345 jbd2_journal_force_commit_nested(sbi->s_journal);
2346 ret = 0;
2347 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2348 /*
2349 * Got one extent now try with rest of the pages.
2350 * If mpd.retval is set -EIO, journal is aborted.
2351 * So we don't need to write any more.
2352 */
2353 pages_written += mpd.pages_written;
2354 ret = mpd.retval;
2355 io_done = 1;
2356 } else if (wbc->nr_to_write)
2357 /*
2358 * There is no more writeout needed
2359 * or we requested for a noblocking writeout
2360 * and we found the device congested
2361 */
2362 break;
2363 }
2364 blk_finish_plug(&plug);
2365 if (!io_done && !cycled) {
2366 cycled = 1;
2367 index = 0;
2368 wbc->range_start = index << PAGE_CACHE_SHIFT;
2369 wbc->range_end = mapping->writeback_index - 1;
2370 goto retry;
2371 }
2372
2373 /* Update index */
2374 wbc->range_cyclic = range_cyclic;
2375 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2376 /*
2377 * set the writeback_index so that range_cyclic
2378 * mode will write it back later
2379 */
2380 mapping->writeback_index = done_index;
2381
2382out_writepages:
2383 wbc->nr_to_write -= nr_to_writebump;
2384 wbc->range_start = range_start;
2385 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2386 return ret;
2387}
2388
2389#define FALL_BACK_TO_NONDELALLOC 1
2390static int ext4_nonda_switch(struct super_block *sb)
2391{
2392 s64 free_blocks, dirty_blocks;
2393 struct ext4_sb_info *sbi = EXT4_SB(sb);
2394
2395 /*
2396 * switch to non delalloc mode if we are running low
2397 * on free block. The free block accounting via percpu
2398 * counters can get slightly wrong with percpu_counter_batch getting
2399 * accumulated on each CPU without updating global counters
2400 * Delalloc need an accurate free block accounting. So switch
2401 * to non delalloc when we are near to error range.
2402 */
2403 free_blocks = EXT4_C2B(sbi,
2404 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2405 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2406 /*
2407 * Start pushing delalloc when 1/2 of free blocks are dirty.
2408 */
2409 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2410 !writeback_in_progress(sb->s_bdi) &&
2411 down_read_trylock(&sb->s_umount)) {
2412 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2413 up_read(&sb->s_umount);
2414 }
2415
2416 if (2 * free_blocks < 3 * dirty_blocks ||
2417 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2418 /*
2419 * free block count is less than 150% of dirty blocks
2420 * or free blocks is less than watermark
2421 */
2422 return 1;
2423 }
2424 return 0;
2425}
2426
2427/* We always reserve for an inode update; the superblock could be there too */
2428static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2429{
2430 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2431 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2432 return 1;
2433
2434 if (pos + len <= 0x7fffffffULL)
2435 return 1;
2436
2437 /* We might need to update the superblock to set LARGE_FILE */
2438 return 2;
2439}
2440
2441static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2442 loff_t pos, unsigned len, unsigned flags,
2443 struct page **pagep, void **fsdata)
2444{
2445 int ret, retries = 0;
2446 struct page *page;
2447 pgoff_t index;
2448 struct inode *inode = mapping->host;
2449 handle_t *handle;
2450
2451 index = pos >> PAGE_CACHE_SHIFT;
2452
2453 if (ext4_nonda_switch(inode->i_sb)) {
2454 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2455 return ext4_write_begin(file, mapping, pos,
2456 len, flags, pagep, fsdata);
2457 }
2458 *fsdata = (void *)0;
2459 trace_ext4_da_write_begin(inode, pos, len, flags);
2460retry:
2461 /*
2462 * With delayed allocation, we don't log the i_disksize update
2463 * if there is delayed block allocation. But we still need
2464 * to journalling the i_disksize update if writes to the end
2465 * of file which has an already mapped buffer.
2466 */
2467 handle = ext4_journal_start(inode,
2468 ext4_da_write_credits(inode, pos, len));
2469 if (IS_ERR(handle)) {
2470 ret = PTR_ERR(handle);
2471 goto out;
2472 }
2473 /* We cannot recurse into the filesystem as the transaction is already
2474 * started */
2475 flags |= AOP_FLAG_NOFS;
2476
2477 page = grab_cache_page_write_begin(mapping, index, flags);
2478 if (!page) {
2479 ext4_journal_stop(handle);
2480 ret = -ENOMEM;
2481 goto out;
2482 }
2483 *pagep = page;
2484
2485 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2486 if (ret < 0) {
2487 unlock_page(page);
2488 ext4_journal_stop(handle);
2489 page_cache_release(page);
2490 /*
2491 * block_write_begin may have instantiated a few blocks
2492 * outside i_size. Trim these off again. Don't need
2493 * i_size_read because we hold i_mutex.
2494 */
2495 if (pos + len > inode->i_size)
2496 ext4_truncate_failed_write(inode);
2497 }
2498
2499 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2500 goto retry;
2501out:
2502 return ret;
2503}
2504
2505/*
2506 * Check if we should update i_disksize
2507 * when write to the end of file but not require block allocation
2508 */
2509static int ext4_da_should_update_i_disksize(struct page *page,
2510 unsigned long offset)
2511{
2512 struct buffer_head *bh;
2513 struct inode *inode = page->mapping->host;
2514 unsigned int idx;
2515 int i;
2516
2517 bh = page_buffers(page);
2518 idx = offset >> inode->i_blkbits;
2519
2520 for (i = 0; i < idx; i++)
2521 bh = bh->b_this_page;
2522
2523 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2524 return 0;
2525 return 1;
2526}
2527
2528static int ext4_da_write_end(struct file *file,
2529 struct address_space *mapping,
2530 loff_t pos, unsigned len, unsigned copied,
2531 struct page *page, void *fsdata)
2532{
2533 struct inode *inode = mapping->host;
2534 int ret = 0, ret2;
2535 handle_t *handle = ext4_journal_current_handle();
2536 loff_t new_i_size;
2537 unsigned long start, end;
2538 int write_mode = (int)(unsigned long)fsdata;
2539
2540 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2541 switch (ext4_inode_journal_mode(inode)) {
2542 case EXT4_INODE_ORDERED_DATA_MODE:
2543 return ext4_ordered_write_end(file, mapping, pos,
2544 len, copied, page, fsdata);
2545 case EXT4_INODE_WRITEBACK_DATA_MODE:
2546 return ext4_writeback_write_end(file, mapping, pos,
2547 len, copied, page, fsdata);
2548 default:
2549 BUG();
2550 }
2551 }
2552
2553 trace_ext4_da_write_end(inode, pos, len, copied);
2554 start = pos & (PAGE_CACHE_SIZE - 1);
2555 end = start + copied - 1;
2556
2557 /*
2558 * generic_write_end() will run mark_inode_dirty() if i_size
2559 * changes. So let's piggyback the i_disksize mark_inode_dirty
2560 * into that.
2561 */
2562
2563 new_i_size = pos + copied;
2564 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2565 if (ext4_da_should_update_i_disksize(page, end)) {
2566 down_write(&EXT4_I(inode)->i_data_sem);
2567 if (new_i_size > EXT4_I(inode)->i_disksize) {
2568 /*
2569 * Updating i_disksize when extending file
2570 * without needing block allocation
2571 */
2572 if (ext4_should_order_data(inode))
2573 ret = ext4_jbd2_file_inode(handle,
2574 inode);
2575
2576 EXT4_I(inode)->i_disksize = new_i_size;
2577 }
2578 up_write(&EXT4_I(inode)->i_data_sem);
2579 /* We need to mark inode dirty even if
2580 * new_i_size is less that inode->i_size
2581 * bu greater than i_disksize.(hint delalloc)
2582 */
2583 ext4_mark_inode_dirty(handle, inode);
2584 }
2585 }
2586 ret2 = generic_write_end(file, mapping, pos, len, copied,
2587 page, fsdata);
2588 copied = ret2;
2589 if (ret2 < 0)
2590 ret = ret2;
2591 ret2 = ext4_journal_stop(handle);
2592 if (!ret)
2593 ret = ret2;
2594
2595 return ret ? ret : copied;
2596}
2597
2598static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2599{
2600 /*
2601 * Drop reserved blocks
2602 */
2603 BUG_ON(!PageLocked(page));
2604 if (!page_has_buffers(page))
2605 goto out;
2606
2607 ext4_da_page_release_reservation(page, offset);
2608
2609out:
2610 ext4_invalidatepage(page, offset);
2611
2612 return;
2613}
2614
2615/*
2616 * Force all delayed allocation blocks to be allocated for a given inode.
2617 */
2618int ext4_alloc_da_blocks(struct inode *inode)
2619{
2620 trace_ext4_alloc_da_blocks(inode);
2621
2622 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2623 !EXT4_I(inode)->i_reserved_meta_blocks)
2624 return 0;
2625
2626 /*
2627 * We do something simple for now. The filemap_flush() will
2628 * also start triggering a write of the data blocks, which is
2629 * not strictly speaking necessary (and for users of
2630 * laptop_mode, not even desirable). However, to do otherwise
2631 * would require replicating code paths in:
2632 *
2633 * ext4_da_writepages() ->
2634 * write_cache_pages() ---> (via passed in callback function)
2635 * __mpage_da_writepage() -->
2636 * mpage_add_bh_to_extent()
2637 * mpage_da_map_blocks()
2638 *
2639 * The problem is that write_cache_pages(), located in
2640 * mm/page-writeback.c, marks pages clean in preparation for
2641 * doing I/O, which is not desirable if we're not planning on
2642 * doing I/O at all.
2643 *
2644 * We could call write_cache_pages(), and then redirty all of
2645 * the pages by calling redirty_page_for_writepage() but that
2646 * would be ugly in the extreme. So instead we would need to
2647 * replicate parts of the code in the above functions,
2648 * simplifying them because we wouldn't actually intend to
2649 * write out the pages, but rather only collect contiguous
2650 * logical block extents, call the multi-block allocator, and
2651 * then update the buffer heads with the block allocations.
2652 *
2653 * For now, though, we'll cheat by calling filemap_flush(),
2654 * which will map the blocks, and start the I/O, but not
2655 * actually wait for the I/O to complete.
2656 */
2657 return filemap_flush(inode->i_mapping);
2658}
2659
2660/*
2661 * bmap() is special. It gets used by applications such as lilo and by
2662 * the swapper to find the on-disk block of a specific piece of data.
2663 *
2664 * Naturally, this is dangerous if the block concerned is still in the
2665 * journal. If somebody makes a swapfile on an ext4 data-journaling
2666 * filesystem and enables swap, then they may get a nasty shock when the
2667 * data getting swapped to that swapfile suddenly gets overwritten by
2668 * the original zero's written out previously to the journal and
2669 * awaiting writeback in the kernel's buffer cache.
2670 *
2671 * So, if we see any bmap calls here on a modified, data-journaled file,
2672 * take extra steps to flush any blocks which might be in the cache.
2673 */
2674static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2675{
2676 struct inode *inode = mapping->host;
2677 journal_t *journal;
2678 int err;
2679
2680 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2681 test_opt(inode->i_sb, DELALLOC)) {
2682 /*
2683 * With delalloc we want to sync the file
2684 * so that we can make sure we allocate
2685 * blocks for file
2686 */
2687 filemap_write_and_wait(mapping);
2688 }
2689
2690 if (EXT4_JOURNAL(inode) &&
2691 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2692 /*
2693 * This is a REALLY heavyweight approach, but the use of
2694 * bmap on dirty files is expected to be extremely rare:
2695 * only if we run lilo or swapon on a freshly made file
2696 * do we expect this to happen.
2697 *
2698 * (bmap requires CAP_SYS_RAWIO so this does not
2699 * represent an unprivileged user DOS attack --- we'd be
2700 * in trouble if mortal users could trigger this path at
2701 * will.)
2702 *
2703 * NB. EXT4_STATE_JDATA is not set on files other than
2704 * regular files. If somebody wants to bmap a directory
2705 * or symlink and gets confused because the buffer
2706 * hasn't yet been flushed to disk, they deserve
2707 * everything they get.
2708 */
2709
2710 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2711 journal = EXT4_JOURNAL(inode);
2712 jbd2_journal_lock_updates(journal);
2713 err = jbd2_journal_flush(journal);
2714 jbd2_journal_unlock_updates(journal);
2715
2716 if (err)
2717 return 0;
2718 }
2719
2720 return generic_block_bmap(mapping, block, ext4_get_block);
2721}
2722
2723static int ext4_readpage(struct file *file, struct page *page)
2724{
2725 trace_ext4_readpage(page);
2726 return mpage_readpage(page, ext4_get_block);
2727}
2728
2729static int
2730ext4_readpages(struct file *file, struct address_space *mapping,
2731 struct list_head *pages, unsigned nr_pages)
2732{
2733 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2734}
2735
2736static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2737{
2738 struct buffer_head *head, *bh;
2739 unsigned int curr_off = 0;
2740
2741 if (!page_has_buffers(page))
2742 return;
2743 head = bh = page_buffers(page);
2744 do {
2745 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2746 && bh->b_private) {
2747 ext4_free_io_end(bh->b_private);
2748 bh->b_private = NULL;
2749 bh->b_end_io = NULL;
2750 }
2751 curr_off = curr_off + bh->b_size;
2752 bh = bh->b_this_page;
2753 } while (bh != head);
2754}
2755
2756static void ext4_invalidatepage(struct page *page, unsigned long offset)
2757{
2758 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2759
2760 trace_ext4_invalidatepage(page, offset);
2761
2762 /*
2763 * free any io_end structure allocated for buffers to be discarded
2764 */
2765 if (ext4_should_dioread_nolock(page->mapping->host))
2766 ext4_invalidatepage_free_endio(page, offset);
2767 /*
2768 * If it's a full truncate we just forget about the pending dirtying
2769 */
2770 if (offset == 0)
2771 ClearPageChecked(page);
2772
2773 if (journal)
2774 jbd2_journal_invalidatepage(journal, page, offset);
2775 else
2776 block_invalidatepage(page, offset);
2777}
2778
2779static int ext4_releasepage(struct page *page, gfp_t wait)
2780{
2781 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2782
2783 trace_ext4_releasepage(page);
2784
2785 WARN_ON(PageChecked(page));
2786 if (!page_has_buffers(page))
2787 return 0;
2788 if (journal)
2789 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2790 else
2791 return try_to_free_buffers(page);
2792}
2793
2794/*
2795 * ext4_get_block used when preparing for a DIO write or buffer write.
2796 * We allocate an uinitialized extent if blocks haven't been allocated.
2797 * The extent will be converted to initialized after the IO is complete.
2798 */
2799static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2800 struct buffer_head *bh_result, int create)
2801{
2802 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2803 inode->i_ino, create);
2804 return _ext4_get_block(inode, iblock, bh_result,
2805 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2806}
2807
2808static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2809 ssize_t size, void *private, int ret,
2810 bool is_async)
2811{
2812 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2813 ext4_io_end_t *io_end = iocb->private;
2814 struct workqueue_struct *wq;
2815 unsigned long flags;
2816 struct ext4_inode_info *ei;
2817
2818 /* if not async direct IO or dio with 0 bytes write, just return */
2819 if (!io_end || !size)
2820 goto out;
2821
2822 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2823 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2824 iocb->private, io_end->inode->i_ino, iocb, offset,
2825 size);
2826
2827 iocb->private = NULL;
2828
2829 /* if not aio dio with unwritten extents, just free io and return */
2830 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2831 ext4_free_io_end(io_end);
2832out:
2833 inode_dio_done(inode);
2834 if (is_async)
2835 aio_complete(iocb, ret, 0);
2836 return;
2837 }
2838
2839 io_end->offset = offset;
2840 io_end->size = size;
2841 if (is_async) {
2842 io_end->iocb = iocb;
2843 io_end->result = ret;
2844 }
2845 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2846
2847 /* Add the io_end to per-inode completed aio dio list*/
2848 ei = EXT4_I(io_end->inode);
2849 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2850 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2851 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2852
2853 /* queue the work to convert unwritten extents to written */
2854 queue_work(wq, &io_end->work);
2855}
2856
2857static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2858{
2859 ext4_io_end_t *io_end = bh->b_private;
2860 struct workqueue_struct *wq;
2861 struct inode *inode;
2862 unsigned long flags;
2863
2864 if (!test_clear_buffer_uninit(bh) || !io_end)
2865 goto out;
2866
2867 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2868 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2869 "sb umounted, discard end_io request for inode %lu",
2870 io_end->inode->i_ino);
2871 ext4_free_io_end(io_end);
2872 goto out;
2873 }
2874
2875 /*
2876 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2877 * but being more careful is always safe for the future change.
2878 */
2879 inode = io_end->inode;
2880 ext4_set_io_unwritten_flag(inode, io_end);
2881
2882 /* Add the io_end to per-inode completed io list*/
2883 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2884 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2885 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2886
2887 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2888 /* queue the work to convert unwritten extents to written */
2889 queue_work(wq, &io_end->work);
2890out:
2891 bh->b_private = NULL;
2892 bh->b_end_io = NULL;
2893 clear_buffer_uninit(bh);
2894 end_buffer_async_write(bh, uptodate);
2895}
2896
2897static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2898{
2899 ext4_io_end_t *io_end;
2900 struct page *page = bh->b_page;
2901 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2902 size_t size = bh->b_size;
2903
2904retry:
2905 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2906 if (!io_end) {
2907 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2908 schedule();
2909 goto retry;
2910 }
2911 io_end->offset = offset;
2912 io_end->size = size;
2913 /*
2914 * We need to hold a reference to the page to make sure it
2915 * doesn't get evicted before ext4_end_io_work() has a chance
2916 * to convert the extent from written to unwritten.
2917 */
2918 io_end->page = page;
2919 get_page(io_end->page);
2920
2921 bh->b_private = io_end;
2922 bh->b_end_io = ext4_end_io_buffer_write;
2923 return 0;
2924}
2925
2926/*
2927 * For ext4 extent files, ext4 will do direct-io write to holes,
2928 * preallocated extents, and those write extend the file, no need to
2929 * fall back to buffered IO.
2930 *
2931 * For holes, we fallocate those blocks, mark them as uninitialized
2932 * If those blocks were preallocated, we mark sure they are splited, but
2933 * still keep the range to write as uninitialized.
2934 *
2935 * The unwrritten extents will be converted to written when DIO is completed.
2936 * For async direct IO, since the IO may still pending when return, we
2937 * set up an end_io call back function, which will do the conversion
2938 * when async direct IO completed.
2939 *
2940 * If the O_DIRECT write will extend the file then add this inode to the
2941 * orphan list. So recovery will truncate it back to the original size
2942 * if the machine crashes during the write.
2943 *
2944 */
2945static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2946 const struct iovec *iov, loff_t offset,
2947 unsigned long nr_segs)
2948{
2949 struct file *file = iocb->ki_filp;
2950 struct inode *inode = file->f_mapping->host;
2951 ssize_t ret;
2952 size_t count = iov_length(iov, nr_segs);
2953
2954 loff_t final_size = offset + count;
2955 if (rw == WRITE && final_size <= inode->i_size) {
2956 /*
2957 * We could direct write to holes and fallocate.
2958 *
2959 * Allocated blocks to fill the hole are marked as uninitialized
2960 * to prevent parallel buffered read to expose the stale data
2961 * before DIO complete the data IO.
2962 *
2963 * As to previously fallocated extents, ext4 get_block
2964 * will just simply mark the buffer mapped but still
2965 * keep the extents uninitialized.
2966 *
2967 * for non AIO case, we will convert those unwritten extents
2968 * to written after return back from blockdev_direct_IO.
2969 *
2970 * for async DIO, the conversion needs to be defered when
2971 * the IO is completed. The ext4 end_io callback function
2972 * will be called to take care of the conversion work.
2973 * Here for async case, we allocate an io_end structure to
2974 * hook to the iocb.
2975 */
2976 iocb->private = NULL;
2977 EXT4_I(inode)->cur_aio_dio = NULL;
2978 if (!is_sync_kiocb(iocb)) {
2979 ext4_io_end_t *io_end =
2980 ext4_init_io_end(inode, GFP_NOFS);
2981 if (!io_end)
2982 return -ENOMEM;
2983 io_end->flag |= EXT4_IO_END_DIRECT;
2984 iocb->private = io_end;
2985 /*
2986 * we save the io structure for current async
2987 * direct IO, so that later ext4_map_blocks()
2988 * could flag the io structure whether there
2989 * is a unwritten extents needs to be converted
2990 * when IO is completed.
2991 */
2992 EXT4_I(inode)->cur_aio_dio = iocb->private;
2993 }
2994
2995 ret = __blockdev_direct_IO(rw, iocb, inode,
2996 inode->i_sb->s_bdev, iov,
2997 offset, nr_segs,
2998 ext4_get_block_write,
2999 ext4_end_io_dio,
3000 NULL,
3001 DIO_LOCKING);
3002 if (iocb->private)
3003 EXT4_I(inode)->cur_aio_dio = NULL;
3004 /*
3005 * The io_end structure takes a reference to the inode,
3006 * that structure needs to be destroyed and the
3007 * reference to the inode need to be dropped, when IO is
3008 * complete, even with 0 byte write, or failed.
3009 *
3010 * In the successful AIO DIO case, the io_end structure will be
3011 * desctroyed and the reference to the inode will be dropped
3012 * after the end_io call back function is called.
3013 *
3014 * In the case there is 0 byte write, or error case, since
3015 * VFS direct IO won't invoke the end_io call back function,
3016 * we need to free the end_io structure here.
3017 */
3018 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3019 ext4_free_io_end(iocb->private);
3020 iocb->private = NULL;
3021 } else if (ret > 0 && ext4_test_inode_state(inode,
3022 EXT4_STATE_DIO_UNWRITTEN)) {
3023 int err;
3024 /*
3025 * for non AIO case, since the IO is already
3026 * completed, we could do the conversion right here
3027 */
3028 err = ext4_convert_unwritten_extents(inode,
3029 offset, ret);
3030 if (err < 0)
3031 ret = err;
3032 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3033 }
3034 return ret;
3035 }
3036
3037 /* for write the the end of file case, we fall back to old way */
3038 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3039}
3040
3041static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3042 const struct iovec *iov, loff_t offset,
3043 unsigned long nr_segs)
3044{
3045 struct file *file = iocb->ki_filp;
3046 struct inode *inode = file->f_mapping->host;
3047 ssize_t ret;
3048
3049 /*
3050 * If we are doing data journalling we don't support O_DIRECT
3051 */
3052 if (ext4_should_journal_data(inode))
3053 return 0;
3054
3055 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3056 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3057 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3058 else
3059 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3060 trace_ext4_direct_IO_exit(inode, offset,
3061 iov_length(iov, nr_segs), rw, ret);
3062 return ret;
3063}
3064
3065/*
3066 * Pages can be marked dirty completely asynchronously from ext4's journalling
3067 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3068 * much here because ->set_page_dirty is called under VFS locks. The page is
3069 * not necessarily locked.
3070 *
3071 * We cannot just dirty the page and leave attached buffers clean, because the
3072 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3073 * or jbddirty because all the journalling code will explode.
3074 *
3075 * So what we do is to mark the page "pending dirty" and next time writepage
3076 * is called, propagate that into the buffers appropriately.
3077 */
3078static int ext4_journalled_set_page_dirty(struct page *page)
3079{
3080 SetPageChecked(page);
3081 return __set_page_dirty_nobuffers(page);
3082}
3083
3084static const struct address_space_operations ext4_ordered_aops = {
3085 .readpage = ext4_readpage,
3086 .readpages = ext4_readpages,
3087 .writepage = ext4_writepage,
3088 .write_begin = ext4_write_begin,
3089 .write_end = ext4_ordered_write_end,
3090 .bmap = ext4_bmap,
3091 .invalidatepage = ext4_invalidatepage,
3092 .releasepage = ext4_releasepage,
3093 .direct_IO = ext4_direct_IO,
3094 .migratepage = buffer_migrate_page,
3095 .is_partially_uptodate = block_is_partially_uptodate,
3096 .error_remove_page = generic_error_remove_page,
3097};
3098
3099static const struct address_space_operations ext4_writeback_aops = {
3100 .readpage = ext4_readpage,
3101 .readpages = ext4_readpages,
3102 .writepage = ext4_writepage,
3103 .write_begin = ext4_write_begin,
3104 .write_end = ext4_writeback_write_end,
3105 .bmap = ext4_bmap,
3106 .invalidatepage = ext4_invalidatepage,
3107 .releasepage = ext4_releasepage,
3108 .direct_IO = ext4_direct_IO,
3109 .migratepage = buffer_migrate_page,
3110 .is_partially_uptodate = block_is_partially_uptodate,
3111 .error_remove_page = generic_error_remove_page,
3112};
3113
3114static const struct address_space_operations ext4_journalled_aops = {
3115 .readpage = ext4_readpage,
3116 .readpages = ext4_readpages,
3117 .writepage = ext4_writepage,
3118 .write_begin = ext4_write_begin,
3119 .write_end = ext4_journalled_write_end,
3120 .set_page_dirty = ext4_journalled_set_page_dirty,
3121 .bmap = ext4_bmap,
3122 .invalidatepage = ext4_invalidatepage,
3123 .releasepage = ext4_releasepage,
3124 .direct_IO = ext4_direct_IO,
3125 .is_partially_uptodate = block_is_partially_uptodate,
3126 .error_remove_page = generic_error_remove_page,
3127};
3128
3129static const struct address_space_operations ext4_da_aops = {
3130 .readpage = ext4_readpage,
3131 .readpages = ext4_readpages,
3132 .writepage = ext4_writepage,
3133 .writepages = ext4_da_writepages,
3134 .write_begin = ext4_da_write_begin,
3135 .write_end = ext4_da_write_end,
3136 .bmap = ext4_bmap,
3137 .invalidatepage = ext4_da_invalidatepage,
3138 .releasepage = ext4_releasepage,
3139 .direct_IO = ext4_direct_IO,
3140 .migratepage = buffer_migrate_page,
3141 .is_partially_uptodate = block_is_partially_uptodate,
3142 .error_remove_page = generic_error_remove_page,
3143};
3144
3145void ext4_set_aops(struct inode *inode)
3146{
3147 switch (ext4_inode_journal_mode(inode)) {
3148 case EXT4_INODE_ORDERED_DATA_MODE:
3149 if (test_opt(inode->i_sb, DELALLOC))
3150 inode->i_mapping->a_ops = &ext4_da_aops;
3151 else
3152 inode->i_mapping->a_ops = &ext4_ordered_aops;
3153 break;
3154 case EXT4_INODE_WRITEBACK_DATA_MODE:
3155 if (test_opt(inode->i_sb, DELALLOC))
3156 inode->i_mapping->a_ops = &ext4_da_aops;
3157 else
3158 inode->i_mapping->a_ops = &ext4_writeback_aops;
3159 break;
3160 case EXT4_INODE_JOURNAL_DATA_MODE:
3161 inode->i_mapping->a_ops = &ext4_journalled_aops;
3162 break;
3163 default:
3164 BUG();
3165 }
3166}
3167
3168
3169/*
3170 * ext4_discard_partial_page_buffers()
3171 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3172 * This function finds and locks the page containing the offset
3173 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3174 * Calling functions that already have the page locked should call
3175 * ext4_discard_partial_page_buffers_no_lock directly.
3176 */
3177int ext4_discard_partial_page_buffers(handle_t *handle,
3178 struct address_space *mapping, loff_t from,
3179 loff_t length, int flags)
3180{
3181 struct inode *inode = mapping->host;
3182 struct page *page;
3183 int err = 0;
3184
3185 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3186 mapping_gfp_mask(mapping) & ~__GFP_FS);
3187 if (!page)
3188 return -ENOMEM;
3189
3190 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3191 from, length, flags);
3192
3193 unlock_page(page);
3194 page_cache_release(page);
3195 return err;
3196}
3197
3198/*
3199 * ext4_discard_partial_page_buffers_no_lock()
3200 * Zeros a page range of length 'length' starting from offset 'from'.
3201 * Buffer heads that correspond to the block aligned regions of the
3202 * zeroed range will be unmapped. Unblock aligned regions
3203 * will have the corresponding buffer head mapped if needed so that
3204 * that region of the page can be updated with the partial zero out.
3205 *
3206 * This function assumes that the page has already been locked. The
3207 * The range to be discarded must be contained with in the given page.
3208 * If the specified range exceeds the end of the page it will be shortened
3209 * to the end of the page that corresponds to 'from'. This function is
3210 * appropriate for updating a page and it buffer heads to be unmapped and
3211 * zeroed for blocks that have been either released, or are going to be
3212 * released.
3213 *
3214 * handle: The journal handle
3215 * inode: The files inode
3216 * page: A locked page that contains the offset "from"
3217 * from: The starting byte offset (from the begining of the file)
3218 * to begin discarding
3219 * len: The length of bytes to discard
3220 * flags: Optional flags that may be used:
3221 *
3222 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3223 * Only zero the regions of the page whose buffer heads
3224 * have already been unmapped. This flag is appropriate
3225 * for updateing the contents of a page whose blocks may
3226 * have already been released, and we only want to zero
3227 * out the regions that correspond to those released blocks.
3228 *
3229 * Returns zero on sucess or negative on failure.
3230 */
3231static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3232 struct inode *inode, struct page *page, loff_t from,
3233 loff_t length, int flags)
3234{
3235 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3236 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3237 unsigned int blocksize, max, pos;
3238 ext4_lblk_t iblock;
3239 struct buffer_head *bh;
3240 int err = 0;
3241
3242 blocksize = inode->i_sb->s_blocksize;
3243 max = PAGE_CACHE_SIZE - offset;
3244
3245 if (index != page->index)
3246 return -EINVAL;
3247
3248 /*
3249 * correct length if it does not fall between
3250 * 'from' and the end of the page
3251 */
3252 if (length > max || length < 0)
3253 length = max;
3254
3255 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3256
3257 if (!page_has_buffers(page))
3258 create_empty_buffers(page, blocksize, 0);
3259
3260 /* Find the buffer that contains "offset" */
3261 bh = page_buffers(page);
3262 pos = blocksize;
3263 while (offset >= pos) {
3264 bh = bh->b_this_page;
3265 iblock++;
3266 pos += blocksize;
3267 }
3268
3269 pos = offset;
3270 while (pos < offset + length) {
3271 unsigned int end_of_block, range_to_discard;
3272
3273 err = 0;
3274
3275 /* The length of space left to zero and unmap */
3276 range_to_discard = offset + length - pos;
3277
3278 /* The length of space until the end of the block */
3279 end_of_block = blocksize - (pos & (blocksize-1));
3280
3281 /*
3282 * Do not unmap or zero past end of block
3283 * for this buffer head
3284 */
3285 if (range_to_discard > end_of_block)
3286 range_to_discard = end_of_block;
3287
3288
3289 /*
3290 * Skip this buffer head if we are only zeroing unampped
3291 * regions of the page
3292 */
3293 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3294 buffer_mapped(bh))
3295 goto next;
3296
3297 /* If the range is block aligned, unmap */
3298 if (range_to_discard == blocksize) {
3299 clear_buffer_dirty(bh);
3300 bh->b_bdev = NULL;
3301 clear_buffer_mapped(bh);
3302 clear_buffer_req(bh);
3303 clear_buffer_new(bh);
3304 clear_buffer_delay(bh);
3305 clear_buffer_unwritten(bh);
3306 clear_buffer_uptodate(bh);
3307 zero_user(page, pos, range_to_discard);
3308 BUFFER_TRACE(bh, "Buffer discarded");
3309 goto next;
3310 }
3311
3312 /*
3313 * If this block is not completely contained in the range
3314 * to be discarded, then it is not going to be released. Because
3315 * we need to keep this block, we need to make sure this part
3316 * of the page is uptodate before we modify it by writeing
3317 * partial zeros on it.
3318 */
3319 if (!buffer_mapped(bh)) {
3320 /*
3321 * Buffer head must be mapped before we can read
3322 * from the block
3323 */
3324 BUFFER_TRACE(bh, "unmapped");
3325 ext4_get_block(inode, iblock, bh, 0);
3326 /* unmapped? It's a hole - nothing to do */
3327 if (!buffer_mapped(bh)) {
3328 BUFFER_TRACE(bh, "still unmapped");
3329 goto next;
3330 }
3331 }
3332
3333 /* Ok, it's mapped. Make sure it's up-to-date */
3334 if (PageUptodate(page))
3335 set_buffer_uptodate(bh);
3336
3337 if (!buffer_uptodate(bh)) {
3338 err = -EIO;
3339 ll_rw_block(READ, 1, &bh);
3340 wait_on_buffer(bh);
3341 /* Uhhuh. Read error. Complain and punt.*/
3342 if (!buffer_uptodate(bh))
3343 goto next;
3344 }
3345
3346 if (ext4_should_journal_data(inode)) {
3347 BUFFER_TRACE(bh, "get write access");
3348 err = ext4_journal_get_write_access(handle, bh);
3349 if (err)
3350 goto next;
3351 }
3352
3353 zero_user(page, pos, range_to_discard);
3354
3355 err = 0;
3356 if (ext4_should_journal_data(inode)) {
3357 err = ext4_handle_dirty_metadata(handle, inode, bh);
3358 } else
3359 mark_buffer_dirty(bh);
3360
3361 BUFFER_TRACE(bh, "Partial buffer zeroed");
3362next:
3363 bh = bh->b_this_page;
3364 iblock++;
3365 pos += range_to_discard;
3366 }
3367
3368 return err;
3369}
3370
3371int ext4_can_truncate(struct inode *inode)
3372{
3373 if (S_ISREG(inode->i_mode))
3374 return 1;
3375 if (S_ISDIR(inode->i_mode))
3376 return 1;
3377 if (S_ISLNK(inode->i_mode))
3378 return !ext4_inode_is_fast_symlink(inode);
3379 return 0;
3380}
3381
3382/*
3383 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3384 * associated with the given offset and length
3385 *
3386 * @inode: File inode
3387 * @offset: The offset where the hole will begin
3388 * @len: The length of the hole
3389 *
3390 * Returns: 0 on sucess or negative on failure
3391 */
3392
3393int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3394{
3395 struct inode *inode = file->f_path.dentry->d_inode;
3396 if (!S_ISREG(inode->i_mode))
3397 return -EOPNOTSUPP;
3398
3399 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3400 /* TODO: Add support for non extent hole punching */
3401 return -EOPNOTSUPP;
3402 }
3403
3404 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3405 /* TODO: Add support for bigalloc file systems */
3406 return -EOPNOTSUPP;
3407 }
3408
3409 return ext4_ext_punch_hole(file, offset, length);
3410}
3411
3412/*
3413 * ext4_truncate()
3414 *
3415 * We block out ext4_get_block() block instantiations across the entire
3416 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3417 * simultaneously on behalf of the same inode.
3418 *
3419 * As we work through the truncate and commit bits of it to the journal there
3420 * is one core, guiding principle: the file's tree must always be consistent on
3421 * disk. We must be able to restart the truncate after a crash.
3422 *
3423 * The file's tree may be transiently inconsistent in memory (although it
3424 * probably isn't), but whenever we close off and commit a journal transaction,
3425 * the contents of (the filesystem + the journal) must be consistent and
3426 * restartable. It's pretty simple, really: bottom up, right to left (although
3427 * left-to-right works OK too).
3428 *
3429 * Note that at recovery time, journal replay occurs *before* the restart of
3430 * truncate against the orphan inode list.
3431 *
3432 * The committed inode has the new, desired i_size (which is the same as
3433 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3434 * that this inode's truncate did not complete and it will again call
3435 * ext4_truncate() to have another go. So there will be instantiated blocks
3436 * to the right of the truncation point in a crashed ext4 filesystem. But
3437 * that's fine - as long as they are linked from the inode, the post-crash
3438 * ext4_truncate() run will find them and release them.
3439 */
3440void ext4_truncate(struct inode *inode)
3441{
3442 trace_ext4_truncate_enter(inode);
3443
3444 if (!ext4_can_truncate(inode))
3445 return;
3446
3447 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3448
3449 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3450 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3451
3452 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3453 ext4_ext_truncate(inode);
3454 else
3455 ext4_ind_truncate(inode);
3456
3457 trace_ext4_truncate_exit(inode);
3458}
3459
3460/*
3461 * ext4_get_inode_loc returns with an extra refcount against the inode's
3462 * underlying buffer_head on success. If 'in_mem' is true, we have all
3463 * data in memory that is needed to recreate the on-disk version of this
3464 * inode.
3465 */
3466static int __ext4_get_inode_loc(struct inode *inode,
3467 struct ext4_iloc *iloc, int in_mem)
3468{
3469 struct ext4_group_desc *gdp;
3470 struct buffer_head *bh;
3471 struct super_block *sb = inode->i_sb;
3472 ext4_fsblk_t block;
3473 int inodes_per_block, inode_offset;
3474
3475 iloc->bh = NULL;
3476 if (!ext4_valid_inum(sb, inode->i_ino))
3477 return -EIO;
3478
3479 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3480 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3481 if (!gdp)
3482 return -EIO;
3483
3484 /*
3485 * Figure out the offset within the block group inode table
3486 */
3487 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3488 inode_offset = ((inode->i_ino - 1) %
3489 EXT4_INODES_PER_GROUP(sb));
3490 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3491 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3492
3493 bh = sb_getblk(sb, block);
3494 if (!bh)
3495 return -ENOMEM;
3496 if (!buffer_uptodate(bh)) {
3497 lock_buffer(bh);
3498
3499 /*
3500 * If the buffer has the write error flag, we have failed
3501 * to write out another inode in the same block. In this
3502 * case, we don't have to read the block because we may
3503 * read the old inode data successfully.
3504 */
3505 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3506 set_buffer_uptodate(bh);
3507
3508 if (buffer_uptodate(bh)) {
3509 /* someone brought it uptodate while we waited */
3510 unlock_buffer(bh);
3511 goto has_buffer;
3512 }
3513
3514 /*
3515 * If we have all information of the inode in memory and this
3516 * is the only valid inode in the block, we need not read the
3517 * block.
3518 */
3519 if (in_mem) {
3520 struct buffer_head *bitmap_bh;
3521 int i, start;
3522
3523 start = inode_offset & ~(inodes_per_block - 1);
3524
3525 /* Is the inode bitmap in cache? */
3526 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3527 if (!bitmap_bh)
3528 goto make_io;
3529
3530 /*
3531 * If the inode bitmap isn't in cache then the
3532 * optimisation may end up performing two reads instead
3533 * of one, so skip it.
3534 */
3535 if (!buffer_uptodate(bitmap_bh)) {
3536 brelse(bitmap_bh);
3537 goto make_io;
3538 }
3539 for (i = start; i < start + inodes_per_block; i++) {
3540 if (i == inode_offset)
3541 continue;
3542 if (ext4_test_bit(i, bitmap_bh->b_data))
3543 break;
3544 }
3545 brelse(bitmap_bh);
3546 if (i == start + inodes_per_block) {
3547 /* all other inodes are free, so skip I/O */
3548 memset(bh->b_data, 0, bh->b_size);
3549 set_buffer_uptodate(bh);
3550 unlock_buffer(bh);
3551 goto has_buffer;
3552 }
3553 }
3554
3555make_io:
3556 /*
3557 * If we need to do any I/O, try to pre-readahead extra
3558 * blocks from the inode table.
3559 */
3560 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3561 ext4_fsblk_t b, end, table;
3562 unsigned num;
3563
3564 table = ext4_inode_table(sb, gdp);
3565 /* s_inode_readahead_blks is always a power of 2 */
3566 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3567 if (table > b)
3568 b = table;
3569 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3570 num = EXT4_INODES_PER_GROUP(sb);
3571 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3572 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3573 num -= ext4_itable_unused_count(sb, gdp);
3574 table += num / inodes_per_block;
3575 if (end > table)
3576 end = table;
3577 while (b <= end)
3578 sb_breadahead(sb, b++);
3579 }
3580
3581 /*
3582 * There are other valid inodes in the buffer, this inode
3583 * has in-inode xattrs, or we don't have this inode in memory.
3584 * Read the block from disk.
3585 */
3586 trace_ext4_load_inode(inode);
3587 get_bh(bh);
3588 bh->b_end_io = end_buffer_read_sync;
3589 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3590 wait_on_buffer(bh);
3591 if (!buffer_uptodate(bh)) {
3592 EXT4_ERROR_INODE_BLOCK(inode, block,
3593 "unable to read itable block");
3594 brelse(bh);
3595 return -EIO;
3596 }
3597 }
3598has_buffer:
3599 iloc->bh = bh;
3600 return 0;
3601}
3602
3603int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3604{
3605 /* We have all inode data except xattrs in memory here. */
3606 return __ext4_get_inode_loc(inode, iloc,
3607 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3608}
3609
3610void ext4_set_inode_flags(struct inode *inode)
3611{
3612 unsigned int flags = EXT4_I(inode)->i_flags;
3613 unsigned int new_fl = 0;
3614
3615 if (flags & EXT4_SYNC_FL)
3616 new_fl |= S_SYNC;
3617 if (flags & EXT4_APPEND_FL)
3618 new_fl |= S_APPEND;
3619 if (flags & EXT4_IMMUTABLE_FL)
3620 new_fl |= S_IMMUTABLE;
3621 if (flags & EXT4_NOATIME_FL)
3622 new_fl |= S_NOATIME;
3623 if (flags & EXT4_DIRSYNC_FL)
3624 new_fl |= S_DIRSYNC;
3625 set_mask_bits(&inode->i_flags,
3626 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
3627}
3628
3629/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3630void ext4_get_inode_flags(struct ext4_inode_info *ei)
3631{
3632 unsigned int vfs_fl;
3633 unsigned long old_fl, new_fl;
3634
3635 do {
3636 vfs_fl = ei->vfs_inode.i_flags;
3637 old_fl = ei->i_flags;
3638 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3639 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3640 EXT4_DIRSYNC_FL);
3641 if (vfs_fl & S_SYNC)
3642 new_fl |= EXT4_SYNC_FL;
3643 if (vfs_fl & S_APPEND)
3644 new_fl |= EXT4_APPEND_FL;
3645 if (vfs_fl & S_IMMUTABLE)
3646 new_fl |= EXT4_IMMUTABLE_FL;
3647 if (vfs_fl & S_NOATIME)
3648 new_fl |= EXT4_NOATIME_FL;
3649 if (vfs_fl & S_DIRSYNC)
3650 new_fl |= EXT4_DIRSYNC_FL;
3651 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3652}
3653
3654static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3655 struct ext4_inode_info *ei)
3656{
3657 blkcnt_t i_blocks ;
3658 struct inode *inode = &(ei->vfs_inode);
3659 struct super_block *sb = inode->i_sb;
3660
3661 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3662 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3663 /* we are using combined 48 bit field */
3664 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3665 le32_to_cpu(raw_inode->i_blocks_lo);
3666 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3667 /* i_blocks represent file system block size */
3668 return i_blocks << (inode->i_blkbits - 9);
3669 } else {
3670 return i_blocks;
3671 }
3672 } else {
3673 return le32_to_cpu(raw_inode->i_blocks_lo);
3674 }
3675}
3676
3677struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3678{
3679 struct ext4_iloc iloc;
3680 struct ext4_inode *raw_inode;
3681 struct ext4_inode_info *ei;
3682 struct inode *inode;
3683 journal_t *journal = EXT4_SB(sb)->s_journal;
3684 long ret;
3685 int block;
3686
3687 inode = iget_locked(sb, ino);
3688 if (!inode)
3689 return ERR_PTR(-ENOMEM);
3690 if (!(inode->i_state & I_NEW))
3691 return inode;
3692
3693 ei = EXT4_I(inode);
3694 iloc.bh = NULL;
3695
3696 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3697 if (ret < 0)
3698 goto bad_inode;
3699 raw_inode = ext4_raw_inode(&iloc);
3700 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3701 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3702 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3703 if (!(test_opt(inode->i_sb, NO_UID32))) {
3704 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3705 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3706 }
3707 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3708
3709 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3710 ei->i_dir_start_lookup = 0;
3711 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3712 /* We now have enough fields to check if the inode was active or not.
3713 * This is needed because nfsd might try to access dead inodes
3714 * the test is that same one that e2fsck uses
3715 * NeilBrown 1999oct15
3716 */
3717 if (inode->i_nlink == 0) {
3718 if (inode->i_mode == 0 ||
3719 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3720 /* this inode is deleted */
3721 ret = -ESTALE;
3722 goto bad_inode;
3723 }
3724 /* The only unlinked inodes we let through here have
3725 * valid i_mode and are being read by the orphan
3726 * recovery code: that's fine, we're about to complete
3727 * the process of deleting those. */
3728 }
3729 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3730 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3731 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3732 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3733 ei->i_file_acl |=
3734 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3735 inode->i_size = ext4_isize(raw_inode);
3736 ei->i_disksize = inode->i_size;
3737#ifdef CONFIG_QUOTA
3738 ei->i_reserved_quota = 0;
3739#endif
3740 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3741 ei->i_block_group = iloc.block_group;
3742 ei->i_last_alloc_group = ~0;
3743 /*
3744 * NOTE! The in-memory inode i_data array is in little-endian order
3745 * even on big-endian machines: we do NOT byteswap the block numbers!
3746 */
3747 for (block = 0; block < EXT4_N_BLOCKS; block++)
3748 ei->i_data[block] = raw_inode->i_block[block];
3749 INIT_LIST_HEAD(&ei->i_orphan);
3750
3751 /*
3752 * Set transaction id's of transactions that have to be committed
3753 * to finish f[data]sync. We set them to currently running transaction
3754 * as we cannot be sure that the inode or some of its metadata isn't
3755 * part of the transaction - the inode could have been reclaimed and
3756 * now it is reread from disk.
3757 */
3758 if (journal) {
3759 transaction_t *transaction;
3760 tid_t tid;
3761
3762 read_lock(&journal->j_state_lock);
3763 if (journal->j_running_transaction)
3764 transaction = journal->j_running_transaction;
3765 else
3766 transaction = journal->j_committing_transaction;
3767 if (transaction)
3768 tid = transaction->t_tid;
3769 else
3770 tid = journal->j_commit_sequence;
3771 read_unlock(&journal->j_state_lock);
3772 ei->i_sync_tid = tid;
3773 ei->i_datasync_tid = tid;
3774 }
3775
3776 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3777 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3778 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3779 EXT4_INODE_SIZE(inode->i_sb)) {
3780 ret = -EIO;
3781 goto bad_inode;
3782 }
3783 if (ei->i_extra_isize == 0) {
3784 /* The extra space is currently unused. Use it. */
3785 ei->i_extra_isize = sizeof(struct ext4_inode) -
3786 EXT4_GOOD_OLD_INODE_SIZE;
3787 } else {
3788 __le32 *magic = (void *)raw_inode +
3789 EXT4_GOOD_OLD_INODE_SIZE +
3790 ei->i_extra_isize;
3791 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3792 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3793 }
3794 } else
3795 ei->i_extra_isize = 0;
3796
3797 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3798 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3799 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3800 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3801
3802 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3803 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3804 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3805 inode->i_version |=
3806 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3807 }
3808
3809 ret = 0;
3810 if (ei->i_file_acl &&
3811 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3812 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3813 ei->i_file_acl);
3814 ret = -EIO;
3815 goto bad_inode;
3816 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3817 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3818 (S_ISLNK(inode->i_mode) &&
3819 !ext4_inode_is_fast_symlink(inode)))
3820 /* Validate extent which is part of inode */
3821 ret = ext4_ext_check_inode(inode);
3822 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3823 (S_ISLNK(inode->i_mode) &&
3824 !ext4_inode_is_fast_symlink(inode))) {
3825 /* Validate block references which are part of inode */
3826 ret = ext4_ind_check_inode(inode);
3827 }
3828 if (ret)
3829 goto bad_inode;
3830
3831 if (S_ISREG(inode->i_mode)) {
3832 inode->i_op = &ext4_file_inode_operations;
3833 inode->i_fop = &ext4_file_operations;
3834 ext4_set_aops(inode);
3835 } else if (S_ISDIR(inode->i_mode)) {
3836 inode->i_op = &ext4_dir_inode_operations;
3837 inode->i_fop = &ext4_dir_operations;
3838 } else if (S_ISLNK(inode->i_mode)) {
3839 if (ext4_inode_is_fast_symlink(inode)) {
3840 inode->i_op = &ext4_fast_symlink_inode_operations;
3841 nd_terminate_link(ei->i_data, inode->i_size,
3842 sizeof(ei->i_data) - 1);
3843 } else {
3844 inode->i_op = &ext4_symlink_inode_operations;
3845 ext4_set_aops(inode);
3846 }
3847 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3848 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3849 inode->i_op = &ext4_special_inode_operations;
3850 if (raw_inode->i_block[0])
3851 init_special_inode(inode, inode->i_mode,
3852 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3853 else
3854 init_special_inode(inode, inode->i_mode,
3855 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3856 } else {
3857 ret = -EIO;
3858 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3859 goto bad_inode;
3860 }
3861 brelse(iloc.bh);
3862 ext4_set_inode_flags(inode);
3863 unlock_new_inode(inode);
3864 return inode;
3865
3866bad_inode:
3867 brelse(iloc.bh);
3868 iget_failed(inode);
3869 return ERR_PTR(ret);
3870}
3871
3872struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
3873{
3874 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
3875 return ERR_PTR(-EIO);
3876 return ext4_iget(sb, ino);
3877}
3878
3879static int ext4_inode_blocks_set(handle_t *handle,
3880 struct ext4_inode *raw_inode,
3881 struct ext4_inode_info *ei)
3882{
3883 struct inode *inode = &(ei->vfs_inode);
3884 u64 i_blocks = inode->i_blocks;
3885 struct super_block *sb = inode->i_sb;
3886
3887 if (i_blocks <= ~0U) {
3888 /*
3889 * i_blocks can be represnted in a 32 bit variable
3890 * as multiple of 512 bytes
3891 */
3892 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3893 raw_inode->i_blocks_high = 0;
3894 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3895 return 0;
3896 }
3897 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3898 return -EFBIG;
3899
3900 if (i_blocks <= 0xffffffffffffULL) {
3901 /*
3902 * i_blocks can be represented in a 48 bit variable
3903 * as multiple of 512 bytes
3904 */
3905 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3906 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3907 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3908 } else {
3909 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3910 /* i_block is stored in file system block size */
3911 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3912 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3913 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3914 }
3915 return 0;
3916}
3917
3918/*
3919 * Post the struct inode info into an on-disk inode location in the
3920 * buffer-cache. This gobbles the caller's reference to the
3921 * buffer_head in the inode location struct.
3922 *
3923 * The caller must have write access to iloc->bh.
3924 */
3925static int ext4_do_update_inode(handle_t *handle,
3926 struct inode *inode,
3927 struct ext4_iloc *iloc)
3928{
3929 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3930 struct ext4_inode_info *ei = EXT4_I(inode);
3931 struct buffer_head *bh = iloc->bh;
3932 int err = 0, rc, block;
3933 int need_datasync = 0;
3934
3935 /* For fields not not tracking in the in-memory inode,
3936 * initialise them to zero for new inodes. */
3937 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3938 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3939
3940 ext4_get_inode_flags(ei);
3941 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3942 if (!(test_opt(inode->i_sb, NO_UID32))) {
3943 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3944 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3945/*
3946 * Fix up interoperability with old kernels. Otherwise, old inodes get
3947 * re-used with the upper 16 bits of the uid/gid intact
3948 */
3949 if (!ei->i_dtime) {
3950 raw_inode->i_uid_high =
3951 cpu_to_le16(high_16_bits(inode->i_uid));
3952 raw_inode->i_gid_high =
3953 cpu_to_le16(high_16_bits(inode->i_gid));
3954 } else {
3955 raw_inode->i_uid_high = 0;
3956 raw_inode->i_gid_high = 0;
3957 }
3958 } else {
3959 raw_inode->i_uid_low =
3960 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3961 raw_inode->i_gid_low =
3962 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3963 raw_inode->i_uid_high = 0;
3964 raw_inode->i_gid_high = 0;
3965 }
3966 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3967
3968 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3969 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3970 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3971 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3972
3973 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3974 goto out_brelse;
3975 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3976 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3977 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3978 cpu_to_le32(EXT4_OS_HURD))
3979 raw_inode->i_file_acl_high =
3980 cpu_to_le16(ei->i_file_acl >> 32);
3981 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3982 if (ei->i_disksize != ext4_isize(raw_inode)) {
3983 ext4_isize_set(raw_inode, ei->i_disksize);
3984 need_datasync = 1;
3985 }
3986 if (ei->i_disksize > 0x7fffffffULL) {
3987 struct super_block *sb = inode->i_sb;
3988 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3989 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3990 EXT4_SB(sb)->s_es->s_rev_level ==
3991 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3992 /* If this is the first large file
3993 * created, add a flag to the superblock.
3994 */
3995 err = ext4_journal_get_write_access(handle,
3996 EXT4_SB(sb)->s_sbh);
3997 if (err)
3998 goto out_brelse;
3999 ext4_update_dynamic_rev(sb);
4000 EXT4_SET_RO_COMPAT_FEATURE(sb,
4001 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4002 ext4_handle_sync(handle);
4003 err = ext4_handle_dirty_super(handle, sb);
4004 }
4005 }
4006 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4007 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4008 if (old_valid_dev(inode->i_rdev)) {
4009 raw_inode->i_block[0] =
4010 cpu_to_le32(old_encode_dev(inode->i_rdev));
4011 raw_inode->i_block[1] = 0;
4012 } else {
4013 raw_inode->i_block[0] = 0;
4014 raw_inode->i_block[1] =
4015 cpu_to_le32(new_encode_dev(inode->i_rdev));
4016 raw_inode->i_block[2] = 0;
4017 }
4018 } else
4019 for (block = 0; block < EXT4_N_BLOCKS; block++)
4020 raw_inode->i_block[block] = ei->i_data[block];
4021
4022 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4023 if (ei->i_extra_isize) {
4024 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4025 raw_inode->i_version_hi =
4026 cpu_to_le32(inode->i_version >> 32);
4027 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4028 }
4029
4030 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4031 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4032 if (!err)
4033 err = rc;
4034 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4035
4036 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4037out_brelse:
4038 brelse(bh);
4039 ext4_std_error(inode->i_sb, err);
4040 return err;
4041}
4042
4043/*
4044 * ext4_write_inode()
4045 *
4046 * We are called from a few places:
4047 *
4048 * - Within generic_file_write() for O_SYNC files.
4049 * Here, there will be no transaction running. We wait for any running
4050 * trasnaction to commit.
4051 *
4052 * - Within sys_sync(), kupdate and such.
4053 * We wait on commit, if tol to.
4054 *
4055 * - Within prune_icache() (PF_MEMALLOC == true)
4056 * Here we simply return. We can't afford to block kswapd on the
4057 * journal commit.
4058 *
4059 * In all cases it is actually safe for us to return without doing anything,
4060 * because the inode has been copied into a raw inode buffer in
4061 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4062 * knfsd.
4063 *
4064 * Note that we are absolutely dependent upon all inode dirtiers doing the
4065 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4066 * which we are interested.
4067 *
4068 * It would be a bug for them to not do this. The code:
4069 *
4070 * mark_inode_dirty(inode)
4071 * stuff();
4072 * inode->i_size = expr;
4073 *
4074 * is in error because a kswapd-driven write_inode() could occur while
4075 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4076 * will no longer be on the superblock's dirty inode list.
4077 */
4078int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4079{
4080 int err;
4081
4082 if (current->flags & PF_MEMALLOC)
4083 return 0;
4084
4085 if (EXT4_SB(inode->i_sb)->s_journal) {
4086 if (ext4_journal_current_handle()) {
4087 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4088 dump_stack();
4089 return -EIO;
4090 }
4091
4092 if (wbc->sync_mode != WB_SYNC_ALL)
4093 return 0;
4094
4095 err = ext4_force_commit(inode->i_sb);
4096 } else {
4097 struct ext4_iloc iloc;
4098
4099 err = __ext4_get_inode_loc(inode, &iloc, 0);
4100 if (err)
4101 return err;
4102 if (wbc->sync_mode == WB_SYNC_ALL)
4103 sync_dirty_buffer(iloc.bh);
4104 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4105 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4106 "IO error syncing inode");
4107 err = -EIO;
4108 }
4109 brelse(iloc.bh);
4110 }
4111 return err;
4112}
4113
4114/*
4115 * ext4_setattr()
4116 *
4117 * Called from notify_change.
4118 *
4119 * We want to trap VFS attempts to truncate the file as soon as
4120 * possible. In particular, we want to make sure that when the VFS
4121 * shrinks i_size, we put the inode on the orphan list and modify
4122 * i_disksize immediately, so that during the subsequent flushing of
4123 * dirty pages and freeing of disk blocks, we can guarantee that any
4124 * commit will leave the blocks being flushed in an unused state on
4125 * disk. (On recovery, the inode will get truncated and the blocks will
4126 * be freed, so we have a strong guarantee that no future commit will
4127 * leave these blocks visible to the user.)
4128 *
4129 * Another thing we have to assure is that if we are in ordered mode
4130 * and inode is still attached to the committing transaction, we must
4131 * we start writeout of all the dirty pages which are being truncated.
4132 * This way we are sure that all the data written in the previous
4133 * transaction are already on disk (truncate waits for pages under
4134 * writeback).
4135 *
4136 * Called with inode->i_mutex down.
4137 */
4138int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4139{
4140 struct inode *inode = dentry->d_inode;
4141 int error, rc = 0;
4142 int orphan = 0;
4143 const unsigned int ia_valid = attr->ia_valid;
4144
4145 error = inode_change_ok(inode, attr);
4146 if (error)
4147 return error;
4148
4149 if (is_quota_modification(inode, attr))
4150 dquot_initialize(inode);
4151 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4152 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4153 handle_t *handle;
4154
4155 /* (user+group)*(old+new) structure, inode write (sb,
4156 * inode block, ? - but truncate inode update has it) */
4157 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4158 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4159 if (IS_ERR(handle)) {
4160 error = PTR_ERR(handle);
4161 goto err_out;
4162 }
4163 error = dquot_transfer(inode, attr);
4164 if (error) {
4165 ext4_journal_stop(handle);
4166 return error;
4167 }
4168 /* Update corresponding info in inode so that everything is in
4169 * one transaction */
4170 if (attr->ia_valid & ATTR_UID)
4171 inode->i_uid = attr->ia_uid;
4172 if (attr->ia_valid & ATTR_GID)
4173 inode->i_gid = attr->ia_gid;
4174 error = ext4_mark_inode_dirty(handle, inode);
4175 ext4_journal_stop(handle);
4176 }
4177
4178 if (attr->ia_valid & ATTR_SIZE) {
4179 inode_dio_wait(inode);
4180
4181 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4182 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4183
4184 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4185 return -EFBIG;
4186 }
4187 }
4188
4189 if (S_ISREG(inode->i_mode) &&
4190 attr->ia_valid & ATTR_SIZE &&
4191 (attr->ia_size < inode->i_size)) {
4192 handle_t *handle;
4193
4194 handle = ext4_journal_start(inode, 3);
4195 if (IS_ERR(handle)) {
4196 error = PTR_ERR(handle);
4197 goto err_out;
4198 }
4199 if (ext4_handle_valid(handle)) {
4200 error = ext4_orphan_add(handle, inode);
4201 orphan = 1;
4202 }
4203 EXT4_I(inode)->i_disksize = attr->ia_size;
4204 rc = ext4_mark_inode_dirty(handle, inode);
4205 if (!error)
4206 error = rc;
4207 ext4_journal_stop(handle);
4208
4209 if (ext4_should_order_data(inode)) {
4210 error = ext4_begin_ordered_truncate(inode,
4211 attr->ia_size);
4212 if (error) {
4213 /* Do as much error cleanup as possible */
4214 handle = ext4_journal_start(inode, 3);
4215 if (IS_ERR(handle)) {
4216 ext4_orphan_del(NULL, inode);
4217 goto err_out;
4218 }
4219 ext4_orphan_del(handle, inode);
4220 orphan = 0;
4221 ext4_journal_stop(handle);
4222 goto err_out;
4223 }
4224 }
4225 }
4226
4227 if (attr->ia_valid & ATTR_SIZE) {
4228 if (attr->ia_size != i_size_read(inode))
4229 truncate_setsize(inode, attr->ia_size);
4230 ext4_truncate(inode);
4231 }
4232
4233 if (!rc) {
4234 setattr_copy(inode, attr);
4235 mark_inode_dirty(inode);
4236 }
4237
4238 /*
4239 * If the call to ext4_truncate failed to get a transaction handle at
4240 * all, we need to clean up the in-core orphan list manually.
4241 */
4242 if (orphan && inode->i_nlink)
4243 ext4_orphan_del(NULL, inode);
4244
4245 if (!rc && (ia_valid & ATTR_MODE))
4246 rc = ext4_acl_chmod(inode);
4247
4248err_out:
4249 ext4_std_error(inode->i_sb, error);
4250 if (!error)
4251 error = rc;
4252 return error;
4253}
4254
4255int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4256 struct kstat *stat)
4257{
4258 struct inode *inode;
4259 unsigned long long delalloc_blocks;
4260
4261 inode = dentry->d_inode;
4262 generic_fillattr(inode, stat);
4263
4264 /*
4265 * We can't update i_blocks if the block allocation is delayed
4266 * otherwise in the case of system crash before the real block
4267 * allocation is done, we will have i_blocks inconsistent with
4268 * on-disk file blocks.
4269 * We always keep i_blocks updated together with real
4270 * allocation. But to not confuse with user, stat
4271 * will return the blocks that include the delayed allocation
4272 * blocks for this file.
4273 */
4274 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4275
4276 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4277 return 0;
4278}
4279
4280static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4281{
4282 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4283 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4284 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4285}
4286
4287/*
4288 * Account for index blocks, block groups bitmaps and block group
4289 * descriptor blocks if modify datablocks and index blocks
4290 * worse case, the indexs blocks spread over different block groups
4291 *
4292 * If datablocks are discontiguous, they are possible to spread over
4293 * different block groups too. If they are contiuguous, with flexbg,
4294 * they could still across block group boundary.
4295 *
4296 * Also account for superblock, inode, quota and xattr blocks
4297 */
4298static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4299{
4300 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4301 int gdpblocks;
4302 int idxblocks;
4303 int ret = 0;
4304
4305 /*
4306 * How many index blocks need to touch to modify nrblocks?
4307 * The "Chunk" flag indicating whether the nrblocks is
4308 * physically contiguous on disk
4309 *
4310 * For Direct IO and fallocate, they calls get_block to allocate
4311 * one single extent at a time, so they could set the "Chunk" flag
4312 */
4313 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4314
4315 ret = idxblocks;
4316
4317 /*
4318 * Now let's see how many group bitmaps and group descriptors need
4319 * to account
4320 */
4321 groups = idxblocks;
4322 if (chunk)
4323 groups += 1;
4324 else
4325 groups += nrblocks;
4326
4327 gdpblocks = groups;
4328 if (groups > ngroups)
4329 groups = ngroups;
4330 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4331 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4332
4333 /* bitmaps and block group descriptor blocks */
4334 ret += groups + gdpblocks;
4335
4336 /* Blocks for super block, inode, quota and xattr blocks */
4337 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4338
4339 return ret;
4340}
4341
4342/*
4343 * Calculate the total number of credits to reserve to fit
4344 * the modification of a single pages into a single transaction,
4345 * which may include multiple chunks of block allocations.
4346 *
4347 * This could be called via ext4_write_begin()
4348 *
4349 * We need to consider the worse case, when
4350 * one new block per extent.
4351 */
4352int ext4_writepage_trans_blocks(struct inode *inode)
4353{
4354 int bpp = ext4_journal_blocks_per_page(inode);
4355 int ret;
4356
4357 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4358
4359 /* Account for data blocks for journalled mode */
4360 if (ext4_should_journal_data(inode))
4361 ret += bpp;
4362 return ret;
4363}
4364
4365/*
4366 * Calculate the journal credits for a chunk of data modification.
4367 *
4368 * This is called from DIO, fallocate or whoever calling
4369 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4370 *
4371 * journal buffers for data blocks are not included here, as DIO
4372 * and fallocate do no need to journal data buffers.
4373 */
4374int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4375{
4376 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4377}
4378
4379/*
4380 * The caller must have previously called ext4_reserve_inode_write().
4381 * Give this, we know that the caller already has write access to iloc->bh.
4382 */
4383int ext4_mark_iloc_dirty(handle_t *handle,
4384 struct inode *inode, struct ext4_iloc *iloc)
4385{
4386 int err = 0;
4387
4388 if (IS_I_VERSION(inode))
4389 inode_inc_iversion(inode);
4390
4391 /* the do_update_inode consumes one bh->b_count */
4392 get_bh(iloc->bh);
4393
4394 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4395 err = ext4_do_update_inode(handle, inode, iloc);
4396 put_bh(iloc->bh);
4397 return err;
4398}
4399
4400/*
4401 * On success, We end up with an outstanding reference count against
4402 * iloc->bh. This _must_ be cleaned up later.
4403 */
4404
4405int
4406ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4407 struct ext4_iloc *iloc)
4408{
4409 int err;
4410
4411 err = ext4_get_inode_loc(inode, iloc);
4412 if (!err) {
4413 BUFFER_TRACE(iloc->bh, "get_write_access");
4414 err = ext4_journal_get_write_access(handle, iloc->bh);
4415 if (err) {
4416 brelse(iloc->bh);
4417 iloc->bh = NULL;
4418 }
4419 }
4420 ext4_std_error(inode->i_sb, err);
4421 return err;
4422}
4423
4424/*
4425 * Expand an inode by new_extra_isize bytes.
4426 * Returns 0 on success or negative error number on failure.
4427 */
4428static int ext4_expand_extra_isize(struct inode *inode,
4429 unsigned int new_extra_isize,
4430 struct ext4_iloc iloc,
4431 handle_t *handle)
4432{
4433 struct ext4_inode *raw_inode;
4434 struct ext4_xattr_ibody_header *header;
4435
4436 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4437 return 0;
4438
4439 raw_inode = ext4_raw_inode(&iloc);
4440
4441 header = IHDR(inode, raw_inode);
4442
4443 /* No extended attributes present */
4444 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4445 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4446 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4447 new_extra_isize);
4448 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4449 return 0;
4450 }
4451
4452 /* try to expand with EAs present */
4453 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4454 raw_inode, handle);
4455}
4456
4457/*
4458 * What we do here is to mark the in-core inode as clean with respect to inode
4459 * dirtiness (it may still be data-dirty).
4460 * This means that the in-core inode may be reaped by prune_icache
4461 * without having to perform any I/O. This is a very good thing,
4462 * because *any* task may call prune_icache - even ones which
4463 * have a transaction open against a different journal.
4464 *
4465 * Is this cheating? Not really. Sure, we haven't written the
4466 * inode out, but prune_icache isn't a user-visible syncing function.
4467 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4468 * we start and wait on commits.
4469 *
4470 * Is this efficient/effective? Well, we're being nice to the system
4471 * by cleaning up our inodes proactively so they can be reaped
4472 * without I/O. But we are potentially leaving up to five seconds'
4473 * worth of inodes floating about which prune_icache wants us to
4474 * write out. One way to fix that would be to get prune_icache()
4475 * to do a write_super() to free up some memory. It has the desired
4476 * effect.
4477 */
4478int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4479{
4480 struct ext4_iloc iloc;
4481 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4482 static unsigned int mnt_count;
4483 int err, ret;
4484
4485 might_sleep();
4486 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4487 err = ext4_reserve_inode_write(handle, inode, &iloc);
4488 if (ext4_handle_valid(handle) &&
4489 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4490 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4491 /*
4492 * We need extra buffer credits since we may write into EA block
4493 * with this same handle. If journal_extend fails, then it will
4494 * only result in a minor loss of functionality for that inode.
4495 * If this is felt to be critical, then e2fsck should be run to
4496 * force a large enough s_min_extra_isize.
4497 */
4498 if ((jbd2_journal_extend(handle,
4499 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4500 ret = ext4_expand_extra_isize(inode,
4501 sbi->s_want_extra_isize,
4502 iloc, handle);
4503 if (ret) {
4504 ext4_set_inode_state(inode,
4505 EXT4_STATE_NO_EXPAND);
4506 if (mnt_count !=
4507 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4508 ext4_warning(inode->i_sb,
4509 "Unable to expand inode %lu. Delete"
4510 " some EAs or run e2fsck.",
4511 inode->i_ino);
4512 mnt_count =
4513 le16_to_cpu(sbi->s_es->s_mnt_count);
4514 }
4515 }
4516 }
4517 }
4518 if (!err)
4519 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4520 return err;
4521}
4522
4523/*
4524 * ext4_dirty_inode() is called from __mark_inode_dirty()
4525 *
4526 * We're really interested in the case where a file is being extended.
4527 * i_size has been changed by generic_commit_write() and we thus need
4528 * to include the updated inode in the current transaction.
4529 *
4530 * Also, dquot_alloc_block() will always dirty the inode when blocks
4531 * are allocated to the file.
4532 *
4533 * If the inode is marked synchronous, we don't honour that here - doing
4534 * so would cause a commit on atime updates, which we don't bother doing.
4535 * We handle synchronous inodes at the highest possible level.
4536 */
4537void ext4_dirty_inode(struct inode *inode, int flags)
4538{
4539 handle_t *handle;
4540
4541 handle = ext4_journal_start(inode, 2);
4542 if (IS_ERR(handle))
4543 goto out;
4544
4545 ext4_mark_inode_dirty(handle, inode);
4546
4547 ext4_journal_stop(handle);
4548out:
4549 return;
4550}
4551
4552#if 0
4553/*
4554 * Bind an inode's backing buffer_head into this transaction, to prevent
4555 * it from being flushed to disk early. Unlike
4556 * ext4_reserve_inode_write, this leaves behind no bh reference and
4557 * returns no iloc structure, so the caller needs to repeat the iloc
4558 * lookup to mark the inode dirty later.
4559 */
4560static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4561{
4562 struct ext4_iloc iloc;
4563
4564 int err = 0;
4565 if (handle) {
4566 err = ext4_get_inode_loc(inode, &iloc);
4567 if (!err) {
4568 BUFFER_TRACE(iloc.bh, "get_write_access");
4569 err = jbd2_journal_get_write_access(handle, iloc.bh);
4570 if (!err)
4571 err = ext4_handle_dirty_metadata(handle,
4572 NULL,
4573 iloc.bh);
4574 brelse(iloc.bh);
4575 }
4576 }
4577 ext4_std_error(inode->i_sb, err);
4578 return err;
4579}
4580#endif
4581
4582int ext4_change_inode_journal_flag(struct inode *inode, int val)
4583{
4584 journal_t *journal;
4585 handle_t *handle;
4586 int err;
4587
4588 /*
4589 * We have to be very careful here: changing a data block's
4590 * journaling status dynamically is dangerous. If we write a
4591 * data block to the journal, change the status and then delete
4592 * that block, we risk forgetting to revoke the old log record
4593 * from the journal and so a subsequent replay can corrupt data.
4594 * So, first we make sure that the journal is empty and that
4595 * nobody is changing anything.
4596 */
4597
4598 journal = EXT4_JOURNAL(inode);
4599 if (!journal)
4600 return 0;
4601 if (is_journal_aborted(journal))
4602 return -EROFS;
4603 /* We have to allocate physical blocks for delalloc blocks
4604 * before flushing journal. otherwise delalloc blocks can not
4605 * be allocated any more. even more truncate on delalloc blocks
4606 * could trigger BUG by flushing delalloc blocks in journal.
4607 * There is no delalloc block in non-journal data mode.
4608 */
4609 if (val && test_opt(inode->i_sb, DELALLOC)) {
4610 err = ext4_alloc_da_blocks(inode);
4611 if (err < 0)
4612 return err;
4613 }
4614
4615 jbd2_journal_lock_updates(journal);
4616
4617 /*
4618 * OK, there are no updates running now, and all cached data is
4619 * synced to disk. We are now in a completely consistent state
4620 * which doesn't have anything in the journal, and we know that
4621 * no filesystem updates are running, so it is safe to modify
4622 * the inode's in-core data-journaling state flag now.
4623 */
4624
4625 if (val)
4626 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4627 else {
4628 jbd2_journal_flush(journal);
4629 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4630 }
4631 ext4_set_aops(inode);
4632
4633 jbd2_journal_unlock_updates(journal);
4634
4635 /* Finally we can mark the inode as dirty. */
4636
4637 handle = ext4_journal_start(inode, 1);
4638 if (IS_ERR(handle))
4639 return PTR_ERR(handle);
4640
4641 err = ext4_mark_inode_dirty(handle, inode);
4642 ext4_handle_sync(handle);
4643 ext4_journal_stop(handle);
4644 ext4_std_error(inode->i_sb, err);
4645
4646 return err;
4647}
4648
4649static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4650{
4651 return !buffer_mapped(bh);
4652}
4653
4654int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4655{
4656 struct page *page = vmf->page;
4657 loff_t size;
4658 unsigned long len;
4659 int ret;
4660 struct file *file = vma->vm_file;
4661 struct inode *inode = file->f_path.dentry->d_inode;
4662 struct address_space *mapping = inode->i_mapping;
4663 handle_t *handle;
4664 get_block_t *get_block;
4665 int retries = 0;
4666
4667 /*
4668 * This check is racy but catches the common case. We rely on
4669 * __block_page_mkwrite() to do a reliable check.
4670 */
4671 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4672 /* Delalloc case is easy... */
4673 if (test_opt(inode->i_sb, DELALLOC) &&
4674 !ext4_should_journal_data(inode) &&
4675 !ext4_nonda_switch(inode->i_sb)) {
4676 do {
4677 ret = __block_page_mkwrite(vma, vmf,
4678 ext4_da_get_block_prep);
4679 } while (ret == -ENOSPC &&
4680 ext4_should_retry_alloc(inode->i_sb, &retries));
4681 goto out_ret;
4682 }
4683
4684 lock_page(page);
4685 size = i_size_read(inode);
4686 /* Page got truncated from under us? */
4687 if (page->mapping != mapping || page_offset(page) > size) {
4688 unlock_page(page);
4689 ret = VM_FAULT_NOPAGE;
4690 goto out;
4691 }
4692
4693 if (page->index == size >> PAGE_CACHE_SHIFT)
4694 len = size & ~PAGE_CACHE_MASK;
4695 else
4696 len = PAGE_CACHE_SIZE;
4697 /*
4698 * Return if we have all the buffers mapped. This avoids the need to do
4699 * journal_start/journal_stop which can block and take a long time
4700 */
4701 if (page_has_buffers(page)) {
4702 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4703 ext4_bh_unmapped)) {
4704 /* Wait so that we don't change page under IO */
4705 wait_on_page_writeback(page);
4706 ret = VM_FAULT_LOCKED;
4707 goto out;
4708 }
4709 }
4710 unlock_page(page);
4711 /* OK, we need to fill the hole... */
4712 if (ext4_should_dioread_nolock(inode))
4713 get_block = ext4_get_block_write;
4714 else
4715 get_block = ext4_get_block;
4716retry_alloc:
4717 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4718 if (IS_ERR(handle)) {
4719 ret = VM_FAULT_SIGBUS;
4720 goto out;
4721 }
4722 ret = __block_page_mkwrite(vma, vmf, get_block);
4723 if (!ret && ext4_should_journal_data(inode)) {
4724 if (walk_page_buffers(handle, page_buffers(page), 0,
4725 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4726 unlock_page(page);
4727 ret = VM_FAULT_SIGBUS;
4728 ext4_journal_stop(handle);
4729 goto out;
4730 }
4731 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4732 }
4733 ext4_journal_stop(handle);
4734 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4735 goto retry_alloc;
4736out_ret:
4737 ret = block_page_mkwrite_return(ret);
4738out:
4739 return ret;
4740}