| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | 5 | * this file except in compliance with the License.  You can obtain a copy | 
|  | 6 | * in the file LICENSE in the source distribution or at | 
|  | 7 | * https://www.openssl.org/source/license.html | 
|  | 8 | */ | 
|  | 9 |  | 
|  | 10 | /* | 
|  | 11 | * Support for PVK format keys and related structures (such a PUBLICKEYBLOB | 
|  | 12 | * and PRIVATEKEYBLOB). | 
|  | 13 | */ | 
|  | 14 |  | 
|  | 15 | #include "internal/cryptlib.h" | 
|  | 16 | #include <openssl/pem.h> | 
|  | 17 | #include <openssl/rand.h> | 
|  | 18 | #include <openssl/bn.h> | 
|  | 19 | #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA) | 
|  | 20 | # include <openssl/dsa.h> | 
|  | 21 | # include <openssl/rsa.h> | 
|  | 22 |  | 
|  | 23 | /* | 
|  | 24 | * Utility function: read a DWORD (4 byte unsigned integer) in little endian | 
|  | 25 | * format | 
|  | 26 | */ | 
|  | 27 |  | 
|  | 28 | static unsigned int read_ledword(const unsigned char **in) | 
|  | 29 | { | 
|  | 30 | const unsigned char *p = *in; | 
|  | 31 | unsigned int ret; | 
|  | 32 | ret = (unsigned int)*p++; | 
|  | 33 | ret |= (unsigned int)*p++ << 8; | 
|  | 34 | ret |= (unsigned int)*p++ << 16; | 
|  | 35 | ret |= (unsigned int)*p++ << 24; | 
|  | 36 | *in = p; | 
|  | 37 | return ret; | 
|  | 38 | } | 
|  | 39 |  | 
|  | 40 | /* | 
|  | 41 | * Read a BIGNUM in little endian format. The docs say that this should take | 
|  | 42 | * up bitlen/8 bytes. | 
|  | 43 | */ | 
|  | 44 |  | 
|  | 45 | static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | 
|  | 46 | { | 
|  | 47 | *r = BN_lebin2bn(*in, nbyte, NULL); | 
|  | 48 | if (*r == NULL) | 
|  | 49 | return 0; | 
|  | 50 | *in += nbyte; | 
|  | 51 | return 1; | 
|  | 52 | } | 
|  | 53 |  | 
|  | 54 | /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ | 
|  | 55 |  | 
|  | 56 | # define MS_PUBLICKEYBLOB        0x6 | 
|  | 57 | # define MS_PRIVATEKEYBLOB       0x7 | 
|  | 58 | # define MS_RSA1MAGIC            0x31415352L | 
|  | 59 | # define MS_RSA2MAGIC            0x32415352L | 
|  | 60 | # define MS_DSS1MAGIC            0x31535344L | 
|  | 61 | # define MS_DSS2MAGIC            0x32535344L | 
|  | 62 |  | 
|  | 63 | # define MS_KEYALG_RSA_KEYX      0xa400 | 
|  | 64 | # define MS_KEYALG_DSS_SIGN      0x2200 | 
|  | 65 |  | 
|  | 66 | # define MS_KEYTYPE_KEYX         0x1 | 
|  | 67 | # define MS_KEYTYPE_SIGN         0x2 | 
|  | 68 |  | 
|  | 69 | /* Maximum length of a blob after header */ | 
|  | 70 | # define BLOB_MAX_LENGTH          102400 | 
|  | 71 |  | 
|  | 72 | /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */ | 
|  | 73 | # define MS_PVKMAGIC             0xb0b5f11eL | 
|  | 74 | /* Salt length for PVK files */ | 
|  | 75 | # define PVK_SALTLEN             0x10 | 
|  | 76 | /* Maximum length in PVK header */ | 
|  | 77 | # define PVK_MAX_KEYLEN          102400 | 
|  | 78 | /* Maximum salt length */ | 
|  | 79 | # define PVK_MAX_SALTLEN         10240 | 
|  | 80 |  | 
|  | 81 | static EVP_PKEY *b2i_rsa(const unsigned char **in, | 
|  | 82 | unsigned int bitlen, int ispub); | 
|  | 83 | static EVP_PKEY *b2i_dss(const unsigned char **in, | 
|  | 84 | unsigned int bitlen, int ispub); | 
|  | 85 |  | 
|  | 86 | static int do_blob_header(const unsigned char **in, unsigned int length, | 
|  | 87 | unsigned int *pmagic, unsigned int *pbitlen, | 
|  | 88 | int *pisdss, int *pispub) | 
|  | 89 | { | 
|  | 90 | const unsigned char *p = *in; | 
|  | 91 | if (length < 16) | 
|  | 92 | return 0; | 
|  | 93 | /* bType */ | 
|  | 94 | if (*p == MS_PUBLICKEYBLOB) { | 
|  | 95 | if (*pispub == 0) { | 
|  | 96 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | 
|  | 97 | return 0; | 
|  | 98 | } | 
|  | 99 | *pispub = 1; | 
|  | 100 | } else if (*p == MS_PRIVATEKEYBLOB) { | 
|  | 101 | if (*pispub == 1) { | 
|  | 102 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | 
|  | 103 | return 0; | 
|  | 104 | } | 
|  | 105 | *pispub = 0; | 
|  | 106 | } else | 
|  | 107 | return 0; | 
|  | 108 | p++; | 
|  | 109 | /* Version */ | 
|  | 110 | if (*p++ != 0x2) { | 
|  | 111 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); | 
|  | 112 | return 0; | 
|  | 113 | } | 
|  | 114 | /* Ignore reserved, aiKeyAlg */ | 
|  | 115 | p += 6; | 
|  | 116 | *pmagic = read_ledword(&p); | 
|  | 117 | *pbitlen = read_ledword(&p); | 
|  | 118 | *pisdss = 0; | 
|  | 119 | switch (*pmagic) { | 
|  | 120 |  | 
|  | 121 | case MS_DSS1MAGIC: | 
|  | 122 | *pisdss = 1; | 
|  | 123 | /* fall thru */ | 
|  | 124 | case MS_RSA1MAGIC: | 
|  | 125 | if (*pispub == 0) { | 
|  | 126 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | 
|  | 127 | return 0; | 
|  | 128 | } | 
|  | 129 | break; | 
|  | 130 |  | 
|  | 131 | case MS_DSS2MAGIC: | 
|  | 132 | *pisdss = 1; | 
|  | 133 | /* fall thru */ | 
|  | 134 | case MS_RSA2MAGIC: | 
|  | 135 | if (*pispub == 1) { | 
|  | 136 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | 
|  | 137 | return 0; | 
|  | 138 | } | 
|  | 139 | break; | 
|  | 140 |  | 
|  | 141 | default: | 
|  | 142 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); | 
|  | 143 | return -1; | 
|  | 144 | } | 
|  | 145 | *in = p; | 
|  | 146 | return 1; | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) | 
|  | 150 | { | 
|  | 151 | unsigned int nbyte, hnbyte; | 
|  | 152 | nbyte = (bitlen + 7) >> 3; | 
|  | 153 | hnbyte = (bitlen + 15) >> 4; | 
|  | 154 | if (isdss) { | 
|  | 155 |  | 
|  | 156 | /* | 
|  | 157 | * Expected length: 20 for q + 3 components bitlen each + 24 for seed | 
|  | 158 | * structure. | 
|  | 159 | */ | 
|  | 160 | if (ispub) | 
|  | 161 | return 44 + 3 * nbyte; | 
|  | 162 | /* | 
|  | 163 | * Expected length: 20 for q, priv, 2 bitlen components + 24 for seed | 
|  | 164 | * structure. | 
|  | 165 | */ | 
|  | 166 | else | 
|  | 167 | return 64 + 2 * nbyte; | 
|  | 168 | } else { | 
|  | 169 | /* Expected length: 4 for 'e' + 'n' */ | 
|  | 170 | if (ispub) | 
|  | 171 | return 4 + nbyte; | 
|  | 172 | else | 
|  | 173 | /* | 
|  | 174 | * Expected length: 4 for 'e' and 7 other components. 2 | 
|  | 175 | * components are bitlen size, 5 are bitlen/2 | 
|  | 176 | */ | 
|  | 177 | return 4 + 2 * nbyte + 5 * hnbyte; | 
|  | 178 | } | 
|  | 179 |  | 
|  | 180 | } | 
|  | 181 |  | 
|  | 182 | static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length, | 
|  | 183 | int ispub) | 
|  | 184 | { | 
|  | 185 | const unsigned char *p = *in; | 
|  | 186 | unsigned int bitlen, magic; | 
|  | 187 | int isdss; | 
|  | 188 | if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) { | 
|  | 189 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); | 
|  | 190 | return NULL; | 
|  | 191 | } | 
|  | 192 | length -= 16; | 
|  | 193 | if (length < blob_length(bitlen, isdss, ispub)) { | 
|  | 194 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); | 
|  | 195 | return NULL; | 
|  | 196 | } | 
|  | 197 | if (isdss) | 
|  | 198 | return b2i_dss(&p, bitlen, ispub); | 
|  | 199 | else | 
|  | 200 | return b2i_rsa(&p, bitlen, ispub); | 
|  | 201 | } | 
|  | 202 |  | 
|  | 203 | static EVP_PKEY *do_b2i_bio(BIO *in, int ispub) | 
|  | 204 | { | 
|  | 205 | const unsigned char *p; | 
|  | 206 | unsigned char hdr_buf[16], *buf = NULL; | 
|  | 207 | unsigned int bitlen, magic, length; | 
|  | 208 | int isdss; | 
|  | 209 | EVP_PKEY *ret = NULL; | 
|  | 210 | if (BIO_read(in, hdr_buf, 16) != 16) { | 
|  | 211 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | 
|  | 212 | return NULL; | 
|  | 213 | } | 
|  | 214 | p = hdr_buf; | 
|  | 215 | if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) | 
|  | 216 | return NULL; | 
|  | 217 |  | 
|  | 218 | length = blob_length(bitlen, isdss, ispub); | 
|  | 219 | if (length > BLOB_MAX_LENGTH) { | 
|  | 220 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_HEADER_TOO_LONG); | 
|  | 221 | return NULL; | 
|  | 222 | } | 
|  | 223 | buf = OPENSSL_malloc(length); | 
|  | 224 | if (buf == NULL) { | 
|  | 225 | PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); | 
|  | 226 | goto err; | 
|  | 227 | } | 
|  | 228 | p = buf; | 
|  | 229 | if (BIO_read(in, buf, length) != (int)length) { | 
|  | 230 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | 
|  | 231 | goto err; | 
|  | 232 | } | 
|  | 233 |  | 
|  | 234 | if (isdss) | 
|  | 235 | ret = b2i_dss(&p, bitlen, ispub); | 
|  | 236 | else | 
|  | 237 | ret = b2i_rsa(&p, bitlen, ispub); | 
|  | 238 |  | 
|  | 239 | err: | 
|  | 240 | OPENSSL_free(buf); | 
|  | 241 | return ret; | 
|  | 242 | } | 
|  | 243 |  | 
|  | 244 | static EVP_PKEY *b2i_dss(const unsigned char **in, | 
|  | 245 | unsigned int bitlen, int ispub) | 
|  | 246 | { | 
|  | 247 | const unsigned char *p = *in; | 
|  | 248 | EVP_PKEY *ret = NULL; | 
|  | 249 | DSA *dsa = NULL; | 
|  | 250 | BN_CTX *ctx = NULL; | 
|  | 251 | unsigned int nbyte; | 
|  | 252 | BIGNUM *pbn = NULL, *qbn = NULL, *gbn = NULL, *priv_key = NULL; | 
|  | 253 | BIGNUM *pub_key = NULL; | 
|  | 254 |  | 
|  | 255 | nbyte = (bitlen + 7) >> 3; | 
|  | 256 |  | 
|  | 257 | dsa = DSA_new(); | 
|  | 258 | ret = EVP_PKEY_new(); | 
|  | 259 | if (dsa == NULL || ret == NULL) | 
|  | 260 | goto memerr; | 
|  | 261 | if (!read_lebn(&p, nbyte, &pbn)) | 
|  | 262 | goto memerr; | 
|  | 263 |  | 
|  | 264 | if (!read_lebn(&p, 20, &qbn)) | 
|  | 265 | goto memerr; | 
|  | 266 |  | 
|  | 267 | if (!read_lebn(&p, nbyte, &gbn)) | 
|  | 268 | goto memerr; | 
|  | 269 |  | 
|  | 270 | if (ispub) { | 
|  | 271 | if (!read_lebn(&p, nbyte, &pub_key)) | 
|  | 272 | goto memerr; | 
|  | 273 | } else { | 
|  | 274 | if (!read_lebn(&p, 20, &priv_key)) | 
|  | 275 | goto memerr; | 
|  | 276 |  | 
|  | 277 | /* Set constant time flag before public key calculation */ | 
|  | 278 | BN_set_flags(priv_key, BN_FLG_CONSTTIME); | 
|  | 279 |  | 
|  | 280 | /* Calculate public key */ | 
|  | 281 | pub_key = BN_new(); | 
|  | 282 | if (pub_key == NULL) | 
|  | 283 | goto memerr; | 
|  | 284 | if ((ctx = BN_CTX_new()) == NULL) | 
|  | 285 | goto memerr; | 
|  | 286 |  | 
|  | 287 | if (!BN_mod_exp(pub_key, gbn, priv_key, pbn, ctx)) | 
|  | 288 | goto memerr; | 
|  | 289 |  | 
|  | 290 | BN_CTX_free(ctx); | 
|  | 291 | ctx = NULL; | 
|  | 292 | } | 
|  | 293 | if (!DSA_set0_pqg(dsa, pbn, qbn, gbn)) | 
|  | 294 | goto memerr; | 
|  | 295 | pbn = qbn = gbn = NULL; | 
|  | 296 | if (!DSA_set0_key(dsa, pub_key, priv_key)) | 
|  | 297 | goto memerr; | 
|  | 298 | pub_key = priv_key = NULL; | 
|  | 299 |  | 
|  | 300 | if (!EVP_PKEY_set1_DSA(ret, dsa)) | 
|  | 301 | goto memerr; | 
|  | 302 | DSA_free(dsa); | 
|  | 303 | *in = p; | 
|  | 304 | return ret; | 
|  | 305 |  | 
|  | 306 | memerr: | 
|  | 307 | PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); | 
|  | 308 | DSA_free(dsa); | 
|  | 309 | BN_free(pbn); | 
|  | 310 | BN_free(qbn); | 
|  | 311 | BN_free(gbn); | 
|  | 312 | BN_free(pub_key); | 
|  | 313 | BN_free(priv_key); | 
|  | 314 | EVP_PKEY_free(ret); | 
|  | 315 | BN_CTX_free(ctx); | 
|  | 316 | return NULL; | 
|  | 317 | } | 
|  | 318 |  | 
|  | 319 | static EVP_PKEY *b2i_rsa(const unsigned char **in, | 
|  | 320 | unsigned int bitlen, int ispub) | 
|  | 321 | { | 
|  | 322 | const unsigned char *pin = *in; | 
|  | 323 | EVP_PKEY *ret = NULL; | 
|  | 324 | BIGNUM *e = NULL, *n = NULL, *d = NULL; | 
|  | 325 | BIGNUM *p = NULL, *q = NULL, *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL; | 
|  | 326 | RSA *rsa = NULL; | 
|  | 327 | unsigned int nbyte, hnbyte; | 
|  | 328 | nbyte = (bitlen + 7) >> 3; | 
|  | 329 | hnbyte = (bitlen + 15) >> 4; | 
|  | 330 | rsa = RSA_new(); | 
|  | 331 | ret = EVP_PKEY_new(); | 
|  | 332 | if (rsa == NULL || ret == NULL) | 
|  | 333 | goto memerr; | 
|  | 334 | e = BN_new(); | 
|  | 335 | if (e == NULL) | 
|  | 336 | goto memerr; | 
|  | 337 | if (!BN_set_word(e, read_ledword(&pin))) | 
|  | 338 | goto memerr; | 
|  | 339 | if (!read_lebn(&pin, nbyte, &n)) | 
|  | 340 | goto memerr; | 
|  | 341 | if (!ispub) { | 
|  | 342 | if (!read_lebn(&pin, hnbyte, &p)) | 
|  | 343 | goto memerr; | 
|  | 344 | if (!read_lebn(&pin, hnbyte, &q)) | 
|  | 345 | goto memerr; | 
|  | 346 | if (!read_lebn(&pin, hnbyte, &dmp1)) | 
|  | 347 | goto memerr; | 
|  | 348 | if (!read_lebn(&pin, hnbyte, &dmq1)) | 
|  | 349 | goto memerr; | 
|  | 350 | if (!read_lebn(&pin, hnbyte, &iqmp)) | 
|  | 351 | goto memerr; | 
|  | 352 | if (!read_lebn(&pin, nbyte, &d)) | 
|  | 353 | goto memerr; | 
|  | 354 | if (!RSA_set0_factors(rsa, p, q)) | 
|  | 355 | goto memerr; | 
|  | 356 | p = q = NULL; | 
|  | 357 | if (!RSA_set0_crt_params(rsa, dmp1, dmq1, iqmp)) | 
|  | 358 | goto memerr; | 
|  | 359 | dmp1 = dmq1 = iqmp = NULL; | 
|  | 360 | } | 
|  | 361 | if (!RSA_set0_key(rsa, n, e, d)) | 
|  | 362 | goto memerr; | 
|  | 363 | n = e = d = NULL; | 
|  | 364 |  | 
|  | 365 | if (!EVP_PKEY_set1_RSA(ret, rsa)) | 
|  | 366 | goto memerr; | 
|  | 367 | RSA_free(rsa); | 
|  | 368 | *in = pin; | 
|  | 369 | return ret; | 
|  | 370 | memerr: | 
|  | 371 | PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); | 
|  | 372 | BN_free(e); | 
|  | 373 | BN_free(n); | 
|  | 374 | BN_free(p); | 
|  | 375 | BN_free(q); | 
|  | 376 | BN_free(dmp1); | 
|  | 377 | BN_free(dmq1); | 
|  | 378 | BN_free(iqmp); | 
|  | 379 | BN_free(d); | 
|  | 380 | RSA_free(rsa); | 
|  | 381 | EVP_PKEY_free(ret); | 
|  | 382 | return NULL; | 
|  | 383 | } | 
|  | 384 |  | 
|  | 385 | EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length) | 
|  | 386 | { | 
|  | 387 | return do_b2i(in, length, 0); | 
|  | 388 | } | 
|  | 389 |  | 
|  | 390 | EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length) | 
|  | 391 | { | 
|  | 392 | return do_b2i(in, length, 1); | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | EVP_PKEY *b2i_PrivateKey_bio(BIO *in) | 
|  | 396 | { | 
|  | 397 | return do_b2i_bio(in, 0); | 
|  | 398 | } | 
|  | 399 |  | 
|  | 400 | EVP_PKEY *b2i_PublicKey_bio(BIO *in) | 
|  | 401 | { | 
|  | 402 | return do_b2i_bio(in, 1); | 
|  | 403 | } | 
|  | 404 |  | 
|  | 405 | static void write_ledword(unsigned char **out, unsigned int dw) | 
|  | 406 | { | 
|  | 407 | unsigned char *p = *out; | 
|  | 408 | *p++ = dw & 0xff; | 
|  | 409 | *p++ = (dw >> 8) & 0xff; | 
|  | 410 | *p++ = (dw >> 16) & 0xff; | 
|  | 411 | *p++ = (dw >> 24) & 0xff; | 
|  | 412 | *out = p; | 
|  | 413 | } | 
|  | 414 |  | 
|  | 415 | static void write_lebn(unsigned char **out, const BIGNUM *bn, int len) | 
|  | 416 | { | 
|  | 417 | BN_bn2lebinpad(bn, *out, len); | 
|  | 418 | *out += len; | 
|  | 419 | } | 
|  | 420 |  | 
|  | 421 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); | 
|  | 422 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); | 
|  | 423 |  | 
|  | 424 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub); | 
|  | 425 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub); | 
|  | 426 |  | 
|  | 427 | static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) | 
|  | 428 | { | 
|  | 429 | unsigned char *p; | 
|  | 430 | unsigned int bitlen, magic = 0, keyalg; | 
|  | 431 | int outlen, noinc = 0; | 
|  | 432 | int pktype = EVP_PKEY_id(pk); | 
|  | 433 | if (pktype == EVP_PKEY_DSA) { | 
|  | 434 | bitlen = check_bitlen_dsa(EVP_PKEY_get0_DSA(pk), ispub, &magic); | 
|  | 435 | keyalg = MS_KEYALG_DSS_SIGN; | 
|  | 436 | } else if (pktype == EVP_PKEY_RSA) { | 
|  | 437 | bitlen = check_bitlen_rsa(EVP_PKEY_get0_RSA(pk), ispub, &magic); | 
|  | 438 | keyalg = MS_KEYALG_RSA_KEYX; | 
|  | 439 | } else | 
|  | 440 | return -1; | 
|  | 441 | if (bitlen == 0) | 
|  | 442 | return -1; | 
|  | 443 | outlen = 16 + blob_length(bitlen, | 
|  | 444 | keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); | 
|  | 445 | if (out == NULL) | 
|  | 446 | return outlen; | 
|  | 447 | if (*out) | 
|  | 448 | p = *out; | 
|  | 449 | else { | 
|  | 450 | if ((p = OPENSSL_malloc(outlen)) == NULL) { | 
|  | 451 | PEMerr(PEM_F_DO_I2B, ERR_R_MALLOC_FAILURE); | 
|  | 452 | return -1; | 
|  | 453 | } | 
|  | 454 | *out = p; | 
|  | 455 | noinc = 1; | 
|  | 456 | } | 
|  | 457 | if (ispub) | 
|  | 458 | *p++ = MS_PUBLICKEYBLOB; | 
|  | 459 | else | 
|  | 460 | *p++ = MS_PRIVATEKEYBLOB; | 
|  | 461 | *p++ = 0x2; | 
|  | 462 | *p++ = 0; | 
|  | 463 | *p++ = 0; | 
|  | 464 | write_ledword(&p, keyalg); | 
|  | 465 | write_ledword(&p, magic); | 
|  | 466 | write_ledword(&p, bitlen); | 
|  | 467 | if (keyalg == MS_KEYALG_DSS_SIGN) | 
|  | 468 | write_dsa(&p, EVP_PKEY_get0_DSA(pk), ispub); | 
|  | 469 | else | 
|  | 470 | write_rsa(&p, EVP_PKEY_get0_RSA(pk), ispub); | 
|  | 471 | if (!noinc) | 
|  | 472 | *out += outlen; | 
|  | 473 | return outlen; | 
|  | 474 | } | 
|  | 475 |  | 
|  | 476 | static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) | 
|  | 477 | { | 
|  | 478 | unsigned char *tmp = NULL; | 
|  | 479 | int outlen, wrlen; | 
|  | 480 | outlen = do_i2b(&tmp, pk, ispub); | 
|  | 481 | if (outlen < 0) | 
|  | 482 | return -1; | 
|  | 483 | wrlen = BIO_write(out, tmp, outlen); | 
|  | 484 | OPENSSL_free(tmp); | 
|  | 485 | if (wrlen == outlen) | 
|  | 486 | return outlen; | 
|  | 487 | return -1; | 
|  | 488 | } | 
|  | 489 |  | 
|  | 490 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) | 
|  | 491 | { | 
|  | 492 | int bitlen; | 
|  | 493 | const BIGNUM *p = NULL, *q = NULL, *g = NULL; | 
|  | 494 | const BIGNUM *pub_key = NULL, *priv_key = NULL; | 
|  | 495 |  | 
|  | 496 | DSA_get0_pqg(dsa, &p, &q, &g); | 
|  | 497 | DSA_get0_key(dsa, &pub_key, &priv_key); | 
|  | 498 | bitlen = BN_num_bits(p); | 
|  | 499 | if ((bitlen & 7) || (BN_num_bits(q) != 160) | 
|  | 500 | || (BN_num_bits(g) > bitlen)) | 
|  | 501 | goto badkey; | 
|  | 502 | if (ispub) { | 
|  | 503 | if (BN_num_bits(pub_key) > bitlen) | 
|  | 504 | goto badkey; | 
|  | 505 | *pmagic = MS_DSS1MAGIC; | 
|  | 506 | } else { | 
|  | 507 | if (BN_num_bits(priv_key) > 160) | 
|  | 508 | goto badkey; | 
|  | 509 | *pmagic = MS_DSS2MAGIC; | 
|  | 510 | } | 
|  | 511 |  | 
|  | 512 | return bitlen; | 
|  | 513 | badkey: | 
|  | 514 | PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | 
|  | 515 | return 0; | 
|  | 516 | } | 
|  | 517 |  | 
|  | 518 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) | 
|  | 519 | { | 
|  | 520 | int nbyte, hnbyte, bitlen; | 
|  | 521 | const BIGNUM *e; | 
|  | 522 |  | 
|  | 523 | RSA_get0_key(rsa, NULL, &e, NULL); | 
|  | 524 | if (BN_num_bits(e) > 32) | 
|  | 525 | goto badkey; | 
|  | 526 | bitlen = RSA_bits(rsa); | 
|  | 527 | nbyte = RSA_size(rsa); | 
|  | 528 | hnbyte = (bitlen + 15) >> 4; | 
|  | 529 | if (ispub) { | 
|  | 530 | *pmagic = MS_RSA1MAGIC; | 
|  | 531 | return bitlen; | 
|  | 532 | } else { | 
|  | 533 | const BIGNUM *d, *p, *q, *iqmp, *dmp1, *dmq1; | 
|  | 534 |  | 
|  | 535 | *pmagic = MS_RSA2MAGIC; | 
|  | 536 |  | 
|  | 537 | /* | 
|  | 538 | * For private key each component must fit within nbyte or hnbyte. | 
|  | 539 | */ | 
|  | 540 | RSA_get0_key(rsa, NULL, NULL, &d); | 
|  | 541 | if (BN_num_bytes(d) > nbyte) | 
|  | 542 | goto badkey; | 
|  | 543 | RSA_get0_factors(rsa, &p, &q); | 
|  | 544 | RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp); | 
|  | 545 | if ((BN_num_bytes(iqmp) > hnbyte) | 
|  | 546 | || (BN_num_bytes(p) > hnbyte) | 
|  | 547 | || (BN_num_bytes(q) > hnbyte) | 
|  | 548 | || (BN_num_bytes(dmp1) > hnbyte) | 
|  | 549 | || (BN_num_bytes(dmq1) > hnbyte)) | 
|  | 550 | goto badkey; | 
|  | 551 | } | 
|  | 552 | return bitlen; | 
|  | 553 | badkey: | 
|  | 554 | PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | 
|  | 555 | return 0; | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub) | 
|  | 559 | { | 
|  | 560 | int nbyte, hnbyte; | 
|  | 561 | const BIGNUM *n, *d, *e, *p, *q, *iqmp, *dmp1, *dmq1; | 
|  | 562 |  | 
|  | 563 | nbyte = RSA_size(rsa); | 
|  | 564 | hnbyte = (RSA_bits(rsa) + 15) >> 4; | 
|  | 565 | RSA_get0_key(rsa, &n, &e, &d); | 
|  | 566 | write_lebn(out, e, 4); | 
|  | 567 | write_lebn(out, n, nbyte); | 
|  | 568 | if (ispub) | 
|  | 569 | return; | 
|  | 570 | RSA_get0_factors(rsa, &p, &q); | 
|  | 571 | RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp); | 
|  | 572 | write_lebn(out, p, hnbyte); | 
|  | 573 | write_lebn(out, q, hnbyte); | 
|  | 574 | write_lebn(out, dmp1, hnbyte); | 
|  | 575 | write_lebn(out, dmq1, hnbyte); | 
|  | 576 | write_lebn(out, iqmp, hnbyte); | 
|  | 577 | write_lebn(out, d, nbyte); | 
|  | 578 | } | 
|  | 579 |  | 
|  | 580 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub) | 
|  | 581 | { | 
|  | 582 | int nbyte; | 
|  | 583 | const BIGNUM *p = NULL, *q = NULL, *g = NULL; | 
|  | 584 | const BIGNUM *pub_key = NULL, *priv_key = NULL; | 
|  | 585 |  | 
|  | 586 | DSA_get0_pqg(dsa, &p, &q, &g); | 
|  | 587 | DSA_get0_key(dsa, &pub_key, &priv_key); | 
|  | 588 | nbyte = BN_num_bytes(p); | 
|  | 589 | write_lebn(out, p, nbyte); | 
|  | 590 | write_lebn(out, q, 20); | 
|  | 591 | write_lebn(out, g, nbyte); | 
|  | 592 | if (ispub) | 
|  | 593 | write_lebn(out, pub_key, nbyte); | 
|  | 594 | else | 
|  | 595 | write_lebn(out, priv_key, 20); | 
|  | 596 | /* Set "invalid" for seed structure values */ | 
|  | 597 | memset(*out, 0xff, 24); | 
|  | 598 | *out += 24; | 
|  | 599 | return; | 
|  | 600 | } | 
|  | 601 |  | 
|  | 602 | int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) | 
|  | 603 | { | 
|  | 604 | return do_i2b_bio(out, pk, 0); | 
|  | 605 | } | 
|  | 606 |  | 
|  | 607 | int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) | 
|  | 608 | { | 
|  | 609 | return do_i2b_bio(out, pk, 1); | 
|  | 610 | } | 
|  | 611 |  | 
|  | 612 | # ifndef OPENSSL_NO_RC4 | 
|  | 613 |  | 
|  | 614 | static int do_PVK_header(const unsigned char **in, unsigned int length, | 
|  | 615 | int skip_magic, | 
|  | 616 | unsigned int *psaltlen, unsigned int *pkeylen) | 
|  | 617 | { | 
|  | 618 | const unsigned char *p = *in; | 
|  | 619 | unsigned int pvk_magic, is_encrypted; | 
|  | 620 | if (skip_magic) { | 
|  | 621 | if (length < 20) { | 
|  | 622 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | 
|  | 623 | return 0; | 
|  | 624 | } | 
|  | 625 | } else { | 
|  | 626 | if (length < 24) { | 
|  | 627 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | 
|  | 628 | return 0; | 
|  | 629 | } | 
|  | 630 | pvk_magic = read_ledword(&p); | 
|  | 631 | if (pvk_magic != MS_PVKMAGIC) { | 
|  | 632 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); | 
|  | 633 | return 0; | 
|  | 634 | } | 
|  | 635 | } | 
|  | 636 | /* Skip reserved */ | 
|  | 637 | p += 4; | 
|  | 638 | /* | 
|  | 639 | * keytype = | 
|  | 640 | */ read_ledword(&p); | 
|  | 641 | is_encrypted = read_ledword(&p); | 
|  | 642 | *psaltlen = read_ledword(&p); | 
|  | 643 | *pkeylen = read_ledword(&p); | 
|  | 644 |  | 
|  | 645 | if (*pkeylen > PVK_MAX_KEYLEN || *psaltlen > PVK_MAX_SALTLEN) | 
|  | 646 | return 0; | 
|  | 647 |  | 
|  | 648 | if (is_encrypted && !*psaltlen) { | 
|  | 649 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); | 
|  | 650 | return 0; | 
|  | 651 | } | 
|  | 652 |  | 
|  | 653 | *in = p; | 
|  | 654 | return 1; | 
|  | 655 | } | 
|  | 656 |  | 
|  | 657 | static int derive_pvk_key(unsigned char *key, | 
|  | 658 | const unsigned char *salt, unsigned int saltlen, | 
|  | 659 | const unsigned char *pass, int passlen) | 
|  | 660 | { | 
|  | 661 | EVP_MD_CTX *mctx = EVP_MD_CTX_new(); | 
|  | 662 | int rv = 1; | 
|  | 663 | if (mctx == NULL | 
|  | 664 | || !EVP_DigestInit_ex(mctx, EVP_sha1(), NULL) | 
|  | 665 | || !EVP_DigestUpdate(mctx, salt, saltlen) | 
|  | 666 | || !EVP_DigestUpdate(mctx, pass, passlen) | 
|  | 667 | || !EVP_DigestFinal_ex(mctx, key, NULL)) | 
|  | 668 | rv = 0; | 
|  | 669 |  | 
|  | 670 | EVP_MD_CTX_free(mctx); | 
|  | 671 | return rv; | 
|  | 672 | } | 
|  | 673 |  | 
|  | 674 | static EVP_PKEY *do_PVK_body(const unsigned char **in, | 
|  | 675 | unsigned int saltlen, unsigned int keylen, | 
|  | 676 | pem_password_cb *cb, void *u) | 
|  | 677 | { | 
|  | 678 | EVP_PKEY *ret = NULL; | 
|  | 679 | const unsigned char *p = *in; | 
|  | 680 | unsigned int magic; | 
|  | 681 | unsigned char *enctmp = NULL, *q; | 
|  | 682 | unsigned char keybuf[20]; | 
|  | 683 |  | 
|  | 684 | EVP_CIPHER_CTX *cctx = EVP_CIPHER_CTX_new(); | 
|  | 685 | if (saltlen) { | 
|  | 686 | char psbuf[PEM_BUFSIZE]; | 
|  | 687 | int enctmplen, inlen; | 
|  | 688 | if (cb) | 
|  | 689 | inlen = cb(psbuf, PEM_BUFSIZE, 0, u); | 
|  | 690 | else | 
|  | 691 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); | 
|  | 692 | if (inlen < 0) { | 
|  | 693 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ); | 
|  | 694 | goto err; | 
|  | 695 | } | 
|  | 696 | enctmp = OPENSSL_malloc(keylen + 8); | 
|  | 697 | if (enctmp == NULL) { | 
|  | 698 | PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); | 
|  | 699 | goto err; | 
|  | 700 | } | 
|  | 701 | if (!derive_pvk_key(keybuf, p, saltlen, | 
|  | 702 | (unsigned char *)psbuf, inlen)) | 
|  | 703 | goto err; | 
|  | 704 | p += saltlen; | 
|  | 705 | /* Copy BLOBHEADER across, decrypt rest */ | 
|  | 706 | memcpy(enctmp, p, 8); | 
|  | 707 | p += 8; | 
|  | 708 | if (keylen < 8) { | 
|  | 709 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT); | 
|  | 710 | goto err; | 
|  | 711 | } | 
|  | 712 | inlen = keylen - 8; | 
|  | 713 | q = enctmp + 8; | 
|  | 714 | if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) | 
|  | 715 | goto err; | 
|  | 716 | if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) | 
|  | 717 | goto err; | 
|  | 718 | if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen)) | 
|  | 719 | goto err; | 
|  | 720 | magic = read_ledword((const unsigned char **)&q); | 
|  | 721 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { | 
|  | 722 | q = enctmp + 8; | 
|  | 723 | memset(keybuf + 5, 0, 11); | 
|  | 724 | if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) | 
|  | 725 | goto err; | 
|  | 726 | if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) | 
|  | 727 | goto err; | 
|  | 728 | if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen)) | 
|  | 729 | goto err; | 
|  | 730 | magic = read_ledword((const unsigned char **)&q); | 
|  | 731 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { | 
|  | 732 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); | 
|  | 733 | goto err; | 
|  | 734 | } | 
|  | 735 | } | 
|  | 736 | p = enctmp; | 
|  | 737 | } | 
|  | 738 |  | 
|  | 739 | ret = b2i_PrivateKey(&p, keylen); | 
|  | 740 | err: | 
|  | 741 | EVP_CIPHER_CTX_free(cctx); | 
|  | 742 | if (enctmp != NULL) { | 
|  | 743 | OPENSSL_cleanse(keybuf, sizeof(keybuf)); | 
|  | 744 | OPENSSL_free(enctmp); | 
|  | 745 | } | 
|  | 746 | return ret; | 
|  | 747 | } | 
|  | 748 |  | 
|  | 749 | EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) | 
|  | 750 | { | 
|  | 751 | unsigned char pvk_hdr[24], *buf = NULL; | 
|  | 752 | const unsigned char *p; | 
|  | 753 | int buflen; | 
|  | 754 | EVP_PKEY *ret = NULL; | 
|  | 755 | unsigned int saltlen, keylen; | 
|  | 756 | if (BIO_read(in, pvk_hdr, 24) != 24) { | 
|  | 757 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | 
|  | 758 | return NULL; | 
|  | 759 | } | 
|  | 760 | p = pvk_hdr; | 
|  | 761 |  | 
|  | 762 | if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) | 
|  | 763 | return 0; | 
|  | 764 | buflen = (int)keylen + saltlen; | 
|  | 765 | buf = OPENSSL_malloc(buflen); | 
|  | 766 | if (buf == NULL) { | 
|  | 767 | PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); | 
|  | 768 | return 0; | 
|  | 769 | } | 
|  | 770 | p = buf; | 
|  | 771 | if (BIO_read(in, buf, buflen) != buflen) { | 
|  | 772 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | 
|  | 773 | goto err; | 
|  | 774 | } | 
|  | 775 | ret = do_PVK_body(&p, saltlen, keylen, cb, u); | 
|  | 776 |  | 
|  | 777 | err: | 
|  | 778 | OPENSSL_clear_free(buf, buflen); | 
|  | 779 | return ret; | 
|  | 780 | } | 
|  | 781 |  | 
|  | 782 | static int i2b_PVK(unsigned char **out, EVP_PKEY *pk, int enclevel, | 
|  | 783 | pem_password_cb *cb, void *u) | 
|  | 784 | { | 
|  | 785 | int outlen = 24, pklen; | 
|  | 786 | unsigned char *p = NULL, *start = NULL, *salt = NULL; | 
|  | 787 | EVP_CIPHER_CTX *cctx = NULL; | 
|  | 788 | if (enclevel) | 
|  | 789 | outlen += PVK_SALTLEN; | 
|  | 790 | pklen = do_i2b(NULL, pk, 0); | 
|  | 791 | if (pklen < 0) | 
|  | 792 | return -1; | 
|  | 793 | outlen += pklen; | 
|  | 794 | if (out == NULL) | 
|  | 795 | return outlen; | 
|  | 796 | if (*out != NULL) { | 
|  | 797 | p = *out; | 
|  | 798 | } else { | 
|  | 799 | start = p = OPENSSL_malloc(outlen); | 
|  | 800 | if (p == NULL) { | 
|  | 801 | PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE); | 
|  | 802 | return -1; | 
|  | 803 | } | 
|  | 804 | } | 
|  | 805 |  | 
|  | 806 | cctx = EVP_CIPHER_CTX_new(); | 
|  | 807 | if (cctx == NULL) | 
|  | 808 | goto error; | 
|  | 809 |  | 
|  | 810 | write_ledword(&p, MS_PVKMAGIC); | 
|  | 811 | write_ledword(&p, 0); | 
|  | 812 | if (EVP_PKEY_id(pk) == EVP_PKEY_DSA) | 
|  | 813 | write_ledword(&p, MS_KEYTYPE_SIGN); | 
|  | 814 | else | 
|  | 815 | write_ledword(&p, MS_KEYTYPE_KEYX); | 
|  | 816 | write_ledword(&p, enclevel ? 1 : 0); | 
|  | 817 | write_ledword(&p, enclevel ? PVK_SALTLEN : 0); | 
|  | 818 | write_ledword(&p, pklen); | 
|  | 819 | if (enclevel) { | 
|  | 820 | if (RAND_bytes(p, PVK_SALTLEN) <= 0) | 
|  | 821 | goto error; | 
|  | 822 | salt = p; | 
|  | 823 | p += PVK_SALTLEN; | 
|  | 824 | } | 
|  | 825 | do_i2b(&p, pk, 0); | 
|  | 826 | if (enclevel != 0) { | 
|  | 827 | char psbuf[PEM_BUFSIZE]; | 
|  | 828 | unsigned char keybuf[20]; | 
|  | 829 | int enctmplen, inlen; | 
|  | 830 | if (cb) | 
|  | 831 | inlen = cb(psbuf, PEM_BUFSIZE, 1, u); | 
|  | 832 | else | 
|  | 833 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u); | 
|  | 834 | if (inlen <= 0) { | 
|  | 835 | PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ); | 
|  | 836 | goto error; | 
|  | 837 | } | 
|  | 838 | if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, | 
|  | 839 | (unsigned char *)psbuf, inlen)) | 
|  | 840 | goto error; | 
|  | 841 | if (enclevel == 1) | 
|  | 842 | memset(keybuf + 5, 0, 11); | 
|  | 843 | p = salt + PVK_SALTLEN + 8; | 
|  | 844 | if (!EVP_EncryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) | 
|  | 845 | goto error; | 
|  | 846 | OPENSSL_cleanse(keybuf, 20); | 
|  | 847 | if (!EVP_EncryptUpdate(cctx, p, &enctmplen, p, pklen - 8)) | 
|  | 848 | goto error; | 
|  | 849 | if (!EVP_EncryptFinal_ex(cctx, p + enctmplen, &enctmplen)) | 
|  | 850 | goto error; | 
|  | 851 | } | 
|  | 852 |  | 
|  | 853 | EVP_CIPHER_CTX_free(cctx); | 
|  | 854 |  | 
|  | 855 | if (*out == NULL) | 
|  | 856 | *out = start; | 
|  | 857 |  | 
|  | 858 | return outlen; | 
|  | 859 |  | 
|  | 860 | error: | 
|  | 861 | EVP_CIPHER_CTX_free(cctx); | 
|  | 862 | if (*out == NULL) | 
|  | 863 | OPENSSL_free(start); | 
|  | 864 | return -1; | 
|  | 865 | } | 
|  | 866 |  | 
|  | 867 | int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, | 
|  | 868 | pem_password_cb *cb, void *u) | 
|  | 869 | { | 
|  | 870 | unsigned char *tmp = NULL; | 
|  | 871 | int outlen, wrlen; | 
|  | 872 | outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); | 
|  | 873 | if (outlen < 0) | 
|  | 874 | return -1; | 
|  | 875 | wrlen = BIO_write(out, tmp, outlen); | 
|  | 876 | OPENSSL_free(tmp); | 
|  | 877 | if (wrlen == outlen) { | 
|  | 878 | return outlen; | 
|  | 879 | } | 
|  | 880 | PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); | 
|  | 881 | return -1; | 
|  | 882 | } | 
|  | 883 |  | 
|  | 884 | # endif | 
|  | 885 |  | 
|  | 886 | #endif |