| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Return arc hyperbole tangent for double value. | 
|  | 2 | Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | 3 | This file is part of the GNU C Library. | 
|  | 4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | 
|  | 5 |  | 
|  | 6 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 7 | modify it under the terms of the GNU Lesser General Public | 
|  | 8 | License as published by the Free Software Foundation; either | 
|  | 9 | version 2.1 of the License, or (at your option) any later version. | 
|  | 10 |  | 
|  | 11 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 14 | Lesser General Public License for more details. | 
|  | 15 |  | 
|  | 16 | You should have received a copy of the GNU Lesser General Public | 
|  | 17 | License along with the GNU C Library; if not, see | 
|  | 18 | <http://www.gnu.org/licenses/>.  */ | 
|  | 19 |  | 
|  | 20 | #include <complex.h> | 
|  | 21 | #include <math.h> | 
|  | 22 | #include <math_private.h> | 
|  | 23 | #include <float.h> | 
|  | 24 |  | 
|  | 25 | __complex__ double | 
|  | 26 | __catanh (__complex__ double x) | 
|  | 27 | { | 
|  | 28 | __complex__ double res; | 
|  | 29 | int rcls = fpclassify (__real__ x); | 
|  | 30 | int icls = fpclassify (__imag__ x); | 
|  | 31 |  | 
|  | 32 | if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) | 
|  | 33 | { | 
|  | 34 | if (icls == FP_INFINITE) | 
|  | 35 | { | 
|  | 36 | __real__ res = __copysign (0.0, __real__ x); | 
|  | 37 | __imag__ res = __copysign (M_PI_2, __imag__ x); | 
|  | 38 | } | 
|  | 39 | else if (rcls == FP_INFINITE || rcls == FP_ZERO) | 
|  | 40 | { | 
|  | 41 | __real__ res = __copysign (0.0, __real__ x); | 
|  | 42 | if (icls >= FP_ZERO) | 
|  | 43 | __imag__ res = __copysign (M_PI_2, __imag__ x); | 
|  | 44 | else | 
|  | 45 | __imag__ res = __nan (""); | 
|  | 46 | } | 
|  | 47 | else | 
|  | 48 | { | 
|  | 49 | __real__ res = __nan (""); | 
|  | 50 | __imag__ res = __nan (""); | 
|  | 51 | } | 
|  | 52 | } | 
|  | 53 | else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) | 
|  | 54 | { | 
|  | 55 | res = x; | 
|  | 56 | } | 
|  | 57 | else | 
|  | 58 | { | 
|  | 59 | if (fabs (__real__ x) >= 16.0 / DBL_EPSILON | 
|  | 60 | || fabs (__imag__ x) >= 16.0 / DBL_EPSILON) | 
|  | 61 | { | 
|  | 62 | __imag__ res = __copysign (M_PI_2, __imag__ x); | 
|  | 63 | if (fabs (__imag__ x) <= 1.0) | 
|  | 64 | __real__ res = 1.0 / __real__ x; | 
|  | 65 | else if (fabs (__real__ x) <= 1.0) | 
|  | 66 | __real__ res = __real__ x / __imag__ x / __imag__ x; | 
|  | 67 | else | 
|  | 68 | { | 
|  | 69 | double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0); | 
|  | 70 | __real__ res = __real__ x / h / h / 4.0; | 
|  | 71 | } | 
|  | 72 | } | 
|  | 73 | else | 
|  | 74 | { | 
|  | 75 | if (fabs (__real__ x) == 1.0 | 
|  | 76 | && fabs (__imag__ x) < DBL_EPSILON * DBL_EPSILON) | 
|  | 77 | __real__ res = (__copysign (0.5, __real__ x) | 
|  | 78 | * (M_LN2 - __ieee754_log (fabs (__imag__ x)))); | 
|  | 79 | else | 
|  | 80 | { | 
|  | 81 | double i2 = 0.0; | 
|  | 82 | if (fabs (__imag__ x) >= DBL_EPSILON * DBL_EPSILON) | 
|  | 83 | i2 = __imag__ x * __imag__ x; | 
|  | 84 |  | 
|  | 85 | double num = 1.0 + __real__ x; | 
|  | 86 | num = i2 + num * num; | 
|  | 87 |  | 
|  | 88 | double den = 1.0 - __real__ x; | 
|  | 89 | den = i2 + den * den; | 
|  | 90 |  | 
|  | 91 | double f = num / den; | 
|  | 92 | if (f < 0.5) | 
|  | 93 | __real__ res = 0.25 * __ieee754_log (f); | 
|  | 94 | else | 
|  | 95 | { | 
|  | 96 | num = 4.0 * __real__ x; | 
|  | 97 | __real__ res = 0.25 * __log1p (num / den); | 
|  | 98 | } | 
|  | 99 | } | 
|  | 100 |  | 
|  | 101 | double absx, absy, den; | 
|  | 102 |  | 
|  | 103 | absx = fabs (__real__ x); | 
|  | 104 | absy = fabs (__imag__ x); | 
|  | 105 | if (absx < absy) | 
|  | 106 | { | 
|  | 107 | double t = absx; | 
|  | 108 | absx = absy; | 
|  | 109 | absy = t; | 
|  | 110 | } | 
|  | 111 |  | 
|  | 112 | if (absy < DBL_EPSILON / 2.0) | 
|  | 113 | { | 
|  | 114 | den = (1.0 - absx) * (1.0 + absx); | 
|  | 115 | if (den == -0.0) | 
|  | 116 | den = 0.0; | 
|  | 117 | } | 
|  | 118 | else if (absx >= 1.0) | 
|  | 119 | den = (1.0 - absx) * (1.0 + absx) - absy * absy; | 
|  | 120 | else if (absx >= 0.75 || absy >= 0.5) | 
|  | 121 | den = -__x2y2m1 (absx, absy); | 
|  | 122 | else | 
|  | 123 | den = (1.0 - absx) * (1.0 + absx) - absy * absy; | 
|  | 124 |  | 
|  | 125 | __imag__ res = 0.5 * __ieee754_atan2 (2.0 * __imag__ x, den); | 
|  | 126 | } | 
|  | 127 |  | 
|  | 128 | math_check_force_underflow_complex (res); | 
|  | 129 | } | 
|  | 130 |  | 
|  | 131 | return res; | 
|  | 132 | } | 
|  | 133 | weak_alias (__catanh, catanh) | 
|  | 134 | #ifdef NO_LONG_DOUBLE | 
|  | 135 | strong_alias (__catanh, __catanhl) | 
|  | 136 | weak_alias (__catanh, catanhl) | 
|  | 137 | #endif |