| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  kernel/cpuset.c | 
|  | 3 | * | 
|  | 4 | *  Processor and Memory placement constraints for sets of tasks. | 
|  | 5 | * | 
|  | 6 | *  Copyright (C) 2003 BULL SA. | 
|  | 7 | *  Copyright (C) 2004-2007 Silicon Graphics, Inc. | 
|  | 8 | *  Copyright (C) 2006 Google, Inc | 
|  | 9 | * | 
|  | 10 | *  Portions derived from Patrick Mochel's sysfs code. | 
|  | 11 | *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
|  | 12 | * | 
|  | 13 | *  2003-10-10 Written by Simon Derr. | 
|  | 14 | *  2003-10-22 Updates by Stephen Hemminger. | 
|  | 15 | *  2004 May-July Rework by Paul Jackson. | 
|  | 16 | *  2006 Rework by Paul Menage to use generic cgroups | 
|  | 17 | *  2008 Rework of the scheduler domains and CPU hotplug handling | 
|  | 18 | *       by Max Krasnyansky | 
|  | 19 | * | 
|  | 20 | *  This file is subject to the terms and conditions of the GNU General Public | 
|  | 21 | *  License.  See the file COPYING in the main directory of the Linux | 
|  | 22 | *  distribution for more details. | 
|  | 23 | */ | 
|  | 24 |  | 
|  | 25 | #include <linux/cpu.h> | 
|  | 26 | #include <linux/cpumask.h> | 
|  | 27 | #include <linux/cpuset.h> | 
|  | 28 | #include <linux/err.h> | 
|  | 29 | #include <linux/errno.h> | 
|  | 30 | #include <linux/file.h> | 
|  | 31 | #include <linux/fs.h> | 
|  | 32 | #include <linux/init.h> | 
|  | 33 | #include <linux/interrupt.h> | 
|  | 34 | #include <linux/kernel.h> | 
|  | 35 | #include <linux/kmod.h> | 
|  | 36 | #include <linux/list.h> | 
|  | 37 | #include <linux/mempolicy.h> | 
|  | 38 | #include <linux/mm.h> | 
|  | 39 | #include <linux/memory.h> | 
|  | 40 | #include <linux/export.h> | 
|  | 41 | #include <linux/mount.h> | 
|  | 42 | #include <linux/namei.h> | 
|  | 43 | #include <linux/pagemap.h> | 
|  | 44 | #include <linux/proc_fs.h> | 
|  | 45 | #include <linux/rcupdate.h> | 
|  | 46 | #include <linux/sched.h> | 
|  | 47 | #include <linux/seq_file.h> | 
|  | 48 | #include <linux/security.h> | 
|  | 49 | #include <linux/slab.h> | 
|  | 50 | #include <linux/spinlock.h> | 
|  | 51 | #include <linux/stat.h> | 
|  | 52 | #include <linux/string.h> | 
|  | 53 | #include <linux/time.h> | 
|  | 54 | #include <linux/backing-dev.h> | 
|  | 55 | #include <linux/sort.h> | 
|  | 56 |  | 
|  | 57 | #include <asm/uaccess.h> | 
|  | 58 | #include <linux/atomic.h> | 
|  | 59 | #include <linux/mutex.h> | 
|  | 60 | #include <linux/workqueue.h> | 
|  | 61 | #include <linux/cgroup.h> | 
|  | 62 |  | 
|  | 63 | /* | 
|  | 64 | * Workqueue for cpuset related tasks. | 
|  | 65 | * | 
|  | 66 | * Using kevent workqueue may cause deadlock when memory_migrate | 
|  | 67 | * is set. So we create a separate workqueue thread for cpuset. | 
|  | 68 | */ | 
|  | 69 | static struct workqueue_struct *cpuset_wq; | 
|  | 70 |  | 
|  | 71 | /* | 
|  | 72 | * Tracks how many cpusets are currently defined in system. | 
|  | 73 | * When there is only one cpuset (the root cpuset) we can | 
|  | 74 | * short circuit some hooks. | 
|  | 75 | */ | 
|  | 76 | int number_of_cpusets __read_mostly; | 
|  | 77 |  | 
|  | 78 | /* Forward declare cgroup structures */ | 
|  | 79 | struct cgroup_subsys cpuset_subsys; | 
|  | 80 | struct cpuset; | 
|  | 81 |  | 
|  | 82 | /* See "Frequency meter" comments, below. */ | 
|  | 83 |  | 
|  | 84 | struct fmeter { | 
|  | 85 | int cnt;		/* unprocessed events count */ | 
|  | 86 | int val;		/* most recent output value */ | 
|  | 87 | time_t time;		/* clock (secs) when val computed */ | 
|  | 88 | spinlock_t lock;	/* guards read or write of above */ | 
|  | 89 | }; | 
|  | 90 |  | 
|  | 91 | struct cpuset { | 
|  | 92 | struct cgroup_subsys_state css; | 
|  | 93 |  | 
|  | 94 | unsigned long flags;		/* "unsigned long" so bitops work */ | 
|  | 95 | cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */ | 
|  | 96 | nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */ | 
|  | 97 |  | 
|  | 98 | struct cpuset *parent;		/* my parent */ | 
|  | 99 |  | 
|  | 100 | struct fmeter fmeter;		/* memory_pressure filter */ | 
|  | 101 |  | 
|  | 102 | /* partition number for rebuild_sched_domains() */ | 
|  | 103 | int pn; | 
|  | 104 |  | 
|  | 105 | /* for custom sched domain */ | 
|  | 106 | int relax_domain_level; | 
|  | 107 |  | 
|  | 108 | /* used for walking a cpuset hierarchy */ | 
|  | 109 | struct list_head stack_list; | 
|  | 110 | }; | 
|  | 111 |  | 
|  | 112 | /* Retrieve the cpuset for a cgroup */ | 
|  | 113 | static inline struct cpuset *cgroup_cs(struct cgroup *cont) | 
|  | 114 | { | 
|  | 115 | return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), | 
|  | 116 | struct cpuset, css); | 
|  | 117 | } | 
|  | 118 |  | 
|  | 119 | /* Retrieve the cpuset for a task */ | 
|  | 120 | static inline struct cpuset *task_cs(struct task_struct *task) | 
|  | 121 | { | 
|  | 122 | return container_of(task_subsys_state(task, cpuset_subsys_id), | 
|  | 123 | struct cpuset, css); | 
|  | 124 | } | 
|  | 125 |  | 
|  | 126 | #ifdef CONFIG_NUMA | 
|  | 127 | static inline bool task_has_mempolicy(struct task_struct *task) | 
|  | 128 | { | 
|  | 129 | return task->mempolicy; | 
|  | 130 | } | 
|  | 131 | #else | 
|  | 132 | static inline bool task_has_mempolicy(struct task_struct *task) | 
|  | 133 | { | 
|  | 134 | return false; | 
|  | 135 | } | 
|  | 136 | #endif | 
|  | 137 |  | 
|  | 138 |  | 
|  | 139 | /* bits in struct cpuset flags field */ | 
|  | 140 | typedef enum { | 
|  | 141 | CS_CPU_EXCLUSIVE, | 
|  | 142 | CS_MEM_EXCLUSIVE, | 
|  | 143 | CS_MEM_HARDWALL, | 
|  | 144 | CS_MEMORY_MIGRATE, | 
|  | 145 | CS_SCHED_LOAD_BALANCE, | 
|  | 146 | CS_SPREAD_PAGE, | 
|  | 147 | CS_SPREAD_SLAB, | 
|  | 148 | } cpuset_flagbits_t; | 
|  | 149 |  | 
|  | 150 | /* convenient tests for these bits */ | 
|  | 151 | static inline int is_cpu_exclusive(const struct cpuset *cs) | 
|  | 152 | { | 
|  | 153 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | 
|  | 154 | } | 
|  | 155 |  | 
|  | 156 | static inline int is_mem_exclusive(const struct cpuset *cs) | 
|  | 157 | { | 
|  | 158 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | 
|  | 159 | } | 
|  | 160 |  | 
|  | 161 | static inline int is_mem_hardwall(const struct cpuset *cs) | 
|  | 162 | { | 
|  | 163 | return test_bit(CS_MEM_HARDWALL, &cs->flags); | 
|  | 164 | } | 
|  | 165 |  | 
|  | 166 | static inline int is_sched_load_balance(const struct cpuset *cs) | 
|  | 167 | { | 
|  | 168 | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
|  | 169 | } | 
|  | 170 |  | 
|  | 171 | static inline int is_memory_migrate(const struct cpuset *cs) | 
|  | 172 | { | 
|  | 173 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); | 
|  | 174 | } | 
|  | 175 |  | 
|  | 176 | static inline int is_spread_page(const struct cpuset *cs) | 
|  | 177 | { | 
|  | 178 | return test_bit(CS_SPREAD_PAGE, &cs->flags); | 
|  | 179 | } | 
|  | 180 |  | 
|  | 181 | static inline int is_spread_slab(const struct cpuset *cs) | 
|  | 182 | { | 
|  | 183 | return test_bit(CS_SPREAD_SLAB, &cs->flags); | 
|  | 184 | } | 
|  | 185 |  | 
|  | 186 | static struct cpuset top_cpuset = { | 
|  | 187 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | 
|  | 188 | }; | 
|  | 189 |  | 
|  | 190 | /* | 
|  | 191 | * There are two global mutexes guarding cpuset structures.  The first | 
|  | 192 | * is the main control groups cgroup_mutex, accessed via | 
|  | 193 | * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific | 
|  | 194 | * callback_mutex, below. They can nest.  It is ok to first take | 
|  | 195 | * cgroup_mutex, then nest callback_mutex.  We also require taking | 
|  | 196 | * task_lock() when dereferencing a task's cpuset pointer.  See "The | 
|  | 197 | * task_lock() exception", at the end of this comment. | 
|  | 198 | * | 
|  | 199 | * A task must hold both mutexes to modify cpusets.  If a task | 
|  | 200 | * holds cgroup_mutex, then it blocks others wanting that mutex, | 
|  | 201 | * ensuring that it is the only task able to also acquire callback_mutex | 
|  | 202 | * and be able to modify cpusets.  It can perform various checks on | 
|  | 203 | * the cpuset structure first, knowing nothing will change.  It can | 
|  | 204 | * also allocate memory while just holding cgroup_mutex.  While it is | 
|  | 205 | * performing these checks, various callback routines can briefly | 
|  | 206 | * acquire callback_mutex to query cpusets.  Once it is ready to make | 
|  | 207 | * the changes, it takes callback_mutex, blocking everyone else. | 
|  | 208 | * | 
|  | 209 | * Calls to the kernel memory allocator can not be made while holding | 
|  | 210 | * callback_mutex, as that would risk double tripping on callback_mutex | 
|  | 211 | * from one of the callbacks into the cpuset code from within | 
|  | 212 | * __alloc_pages(). | 
|  | 213 | * | 
|  | 214 | * If a task is only holding callback_mutex, then it has read-only | 
|  | 215 | * access to cpusets. | 
|  | 216 | * | 
|  | 217 | * Now, the task_struct fields mems_allowed and mempolicy may be changed | 
|  | 218 | * by other task, we use alloc_lock in the task_struct fields to protect | 
|  | 219 | * them. | 
|  | 220 | * | 
|  | 221 | * The cpuset_common_file_read() handlers only hold callback_mutex across | 
|  | 222 | * small pieces of code, such as when reading out possibly multi-word | 
|  | 223 | * cpumasks and nodemasks. | 
|  | 224 | * | 
|  | 225 | * Accessing a task's cpuset should be done in accordance with the | 
|  | 226 | * guidelines for accessing subsystem state in kernel/cgroup.c | 
|  | 227 | */ | 
|  | 228 |  | 
|  | 229 | static DEFINE_MUTEX(callback_mutex); | 
|  | 230 |  | 
|  | 231 | /* | 
|  | 232 | * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist | 
|  | 233 | * buffers.  They are statically allocated to prevent using excess stack | 
|  | 234 | * when calling cpuset_print_task_mems_allowed(). | 
|  | 235 | */ | 
|  | 236 | #define CPUSET_NAME_LEN		(128) | 
|  | 237 | #define	CPUSET_NODELIST_LEN	(256) | 
|  | 238 | static char cpuset_name[CPUSET_NAME_LEN]; | 
|  | 239 | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; | 
|  | 240 | static DEFINE_SPINLOCK(cpuset_buffer_lock); | 
|  | 241 |  | 
|  | 242 | /* | 
|  | 243 | * This is ugly, but preserves the userspace API for existing cpuset | 
|  | 244 | * users. If someone tries to mount the "cpuset" filesystem, we | 
|  | 245 | * silently switch it to mount "cgroup" instead | 
|  | 246 | */ | 
|  | 247 | static struct dentry *cpuset_mount(struct file_system_type *fs_type, | 
|  | 248 | int flags, const char *unused_dev_name, void *data) | 
|  | 249 | { | 
|  | 250 | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); | 
|  | 251 | struct dentry *ret = ERR_PTR(-ENODEV); | 
|  | 252 | if (cgroup_fs) { | 
|  | 253 | char mountopts[] = | 
|  | 254 | "cpuset,noprefix," | 
|  | 255 | "release_agent=/sbin/cpuset_release_agent"; | 
|  | 256 | ret = cgroup_fs->mount(cgroup_fs, flags, | 
|  | 257 | unused_dev_name, mountopts); | 
|  | 258 | put_filesystem(cgroup_fs); | 
|  | 259 | } | 
|  | 260 | return ret; | 
|  | 261 | } | 
|  | 262 |  | 
|  | 263 | static struct file_system_type cpuset_fs_type = { | 
|  | 264 | .name = "cpuset", | 
|  | 265 | .mount = cpuset_mount, | 
|  | 266 | }; | 
|  | 267 |  | 
|  | 268 | /* | 
|  | 269 | * Return in pmask the portion of a cpusets's cpus_allowed that | 
|  | 270 | * are online.  If none are online, walk up the cpuset hierarchy | 
|  | 271 | * until we find one that does have some online cpus.  If we get | 
|  | 272 | * all the way to the top and still haven't found any online cpus, | 
|  | 273 | * return cpu_online_mask.  Or if passed a NULL cs from an exit'ing | 
|  | 274 | * task, return cpu_online_mask. | 
|  | 275 | * | 
|  | 276 | * One way or another, we guarantee to return some non-empty subset | 
|  | 277 | * of cpu_online_mask. | 
|  | 278 | * | 
|  | 279 | * Call with callback_mutex held. | 
|  | 280 | */ | 
|  | 281 |  | 
|  | 282 | static void guarantee_online_cpus(const struct cpuset *cs, | 
|  | 283 | struct cpumask *pmask) | 
|  | 284 | { | 
|  | 285 | while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) | 
|  | 286 | cs = cs->parent; | 
|  | 287 | if (cs) | 
|  | 288 | cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); | 
|  | 289 | else | 
|  | 290 | cpumask_copy(pmask, cpu_online_mask); | 
|  | 291 | BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); | 
|  | 292 | } | 
|  | 293 |  | 
|  | 294 | /* | 
|  | 295 | * Return in *pmask the portion of a cpusets's mems_allowed that | 
|  | 296 | * are online, with memory.  If none are online with memory, walk | 
|  | 297 | * up the cpuset hierarchy until we find one that does have some | 
|  | 298 | * online mems.  If we get all the way to the top and still haven't | 
|  | 299 | * found any online mems, return node_states[N_HIGH_MEMORY]. | 
|  | 300 | * | 
|  | 301 | * One way or another, we guarantee to return some non-empty subset | 
|  | 302 | * of node_states[N_HIGH_MEMORY]. | 
|  | 303 | * | 
|  | 304 | * Call with callback_mutex held. | 
|  | 305 | */ | 
|  | 306 |  | 
|  | 307 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | 
|  | 308 | { | 
|  | 309 | while (cs && !nodes_intersects(cs->mems_allowed, | 
|  | 310 | node_states[N_HIGH_MEMORY])) | 
|  | 311 | cs = cs->parent; | 
|  | 312 | if (cs) | 
|  | 313 | nodes_and(*pmask, cs->mems_allowed, | 
|  | 314 | node_states[N_HIGH_MEMORY]); | 
|  | 315 | else | 
|  | 316 | *pmask = node_states[N_HIGH_MEMORY]; | 
|  | 317 | BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | /* | 
|  | 321 | * update task's spread flag if cpuset's page/slab spread flag is set | 
|  | 322 | * | 
|  | 323 | * Called with callback_mutex/cgroup_mutex held | 
|  | 324 | */ | 
|  | 325 | static void cpuset_update_task_spread_flag(struct cpuset *cs, | 
|  | 326 | struct task_struct *tsk) | 
|  | 327 | { | 
|  | 328 | if (is_spread_page(cs)) | 
|  | 329 | task_set_spread_page(tsk); | 
|  | 330 | else | 
|  | 331 | task_clear_spread_page(tsk); | 
|  | 332 |  | 
|  | 333 | if (is_spread_slab(cs)) | 
|  | 334 | task_set_spread_slab(tsk); | 
|  | 335 | else | 
|  | 336 | task_clear_spread_slab(tsk); | 
|  | 337 | } | 
|  | 338 |  | 
|  | 339 | /* | 
|  | 340 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | 
|  | 341 | * | 
|  | 342 | * One cpuset is a subset of another if all its allowed CPUs and | 
|  | 343 | * Memory Nodes are a subset of the other, and its exclusive flags | 
|  | 344 | * are only set if the other's are set.  Call holding cgroup_mutex. | 
|  | 345 | */ | 
|  | 346 |  | 
|  | 347 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | 
|  | 348 | { | 
|  | 349 | return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) && | 
|  | 350 | nodes_subset(p->mems_allowed, q->mems_allowed) && | 
|  | 351 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | 
|  | 352 | is_mem_exclusive(p) <= is_mem_exclusive(q); | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | /** | 
|  | 356 | * alloc_trial_cpuset - allocate a trial cpuset | 
|  | 357 | * @cs: the cpuset that the trial cpuset duplicates | 
|  | 358 | */ | 
|  | 359 | static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) | 
|  | 360 | { | 
|  | 361 | struct cpuset *trial; | 
|  | 362 |  | 
|  | 363 | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | 
|  | 364 | if (!trial) | 
|  | 365 | return NULL; | 
|  | 366 |  | 
|  | 367 | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { | 
|  | 368 | kfree(trial); | 
|  | 369 | return NULL; | 
|  | 370 | } | 
|  | 371 | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | 
|  | 372 |  | 
|  | 373 | return trial; | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | /** | 
|  | 377 | * free_trial_cpuset - free the trial cpuset | 
|  | 378 | * @trial: the trial cpuset to be freed | 
|  | 379 | */ | 
|  | 380 | static void free_trial_cpuset(struct cpuset *trial) | 
|  | 381 | { | 
|  | 382 | free_cpumask_var(trial->cpus_allowed); | 
|  | 383 | kfree(trial); | 
|  | 384 | } | 
|  | 385 |  | 
|  | 386 | /* | 
|  | 387 | * validate_change() - Used to validate that any proposed cpuset change | 
|  | 388 | *		       follows the structural rules for cpusets. | 
|  | 389 | * | 
|  | 390 | * If we replaced the flag and mask values of the current cpuset | 
|  | 391 | * (cur) with those values in the trial cpuset (trial), would | 
|  | 392 | * our various subset and exclusive rules still be valid?  Presumes | 
|  | 393 | * cgroup_mutex held. | 
|  | 394 | * | 
|  | 395 | * 'cur' is the address of an actual, in-use cpuset.  Operations | 
|  | 396 | * such as list traversal that depend on the actual address of the | 
|  | 397 | * cpuset in the list must use cur below, not trial. | 
|  | 398 | * | 
|  | 399 | * 'trial' is the address of bulk structure copy of cur, with | 
|  | 400 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | 
|  | 401 | * or flags changed to new, trial values. | 
|  | 402 | * | 
|  | 403 | * Return 0 if valid, -errno if not. | 
|  | 404 | */ | 
|  | 405 |  | 
|  | 406 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | 
|  | 407 | { | 
|  | 408 | struct cgroup *cont; | 
|  | 409 | struct cpuset *c, *par; | 
|  | 410 |  | 
|  | 411 | /* Each of our child cpusets must be a subset of us */ | 
|  | 412 | list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { | 
|  | 413 | if (!is_cpuset_subset(cgroup_cs(cont), trial)) | 
|  | 414 | return -EBUSY; | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | /* Remaining checks don't apply to root cpuset */ | 
|  | 418 | if (cur == &top_cpuset) | 
|  | 419 | return 0; | 
|  | 420 |  | 
|  | 421 | par = cur->parent; | 
|  | 422 |  | 
|  | 423 | /* We must be a subset of our parent cpuset */ | 
|  | 424 | if (!is_cpuset_subset(trial, par)) | 
|  | 425 | return -EACCES; | 
|  | 426 |  | 
|  | 427 | /* | 
|  | 428 | * If either I or some sibling (!= me) is exclusive, we can't | 
|  | 429 | * overlap | 
|  | 430 | */ | 
|  | 431 | list_for_each_entry(cont, &par->css.cgroup->children, sibling) { | 
|  | 432 | c = cgroup_cs(cont); | 
|  | 433 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | 
|  | 434 | c != cur && | 
|  | 435 | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) | 
|  | 436 | return -EINVAL; | 
|  | 437 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | 
|  | 438 | c != cur && | 
|  | 439 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | 
|  | 440 | return -EINVAL; | 
|  | 441 | } | 
|  | 442 |  | 
|  | 443 | /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ | 
|  | 444 | if (cgroup_task_count(cur->css.cgroup)) { | 
|  | 445 | if (cpumask_empty(trial->cpus_allowed) || | 
|  | 446 | nodes_empty(trial->mems_allowed)) { | 
|  | 447 | return -ENOSPC; | 
|  | 448 | } | 
|  | 449 | } | 
|  | 450 |  | 
|  | 451 | return 0; | 
|  | 452 | } | 
|  | 453 |  | 
|  | 454 | #ifdef CONFIG_SMP | 
|  | 455 | /* | 
|  | 456 | * Helper routine for generate_sched_domains(). | 
|  | 457 | * Do cpusets a, b have overlapping cpus_allowed masks? | 
|  | 458 | */ | 
|  | 459 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) | 
|  | 460 | { | 
|  | 461 | return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); | 
|  | 462 | } | 
|  | 463 |  | 
|  | 464 | static void | 
|  | 465 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | 
|  | 466 | { | 
|  | 467 | if (dattr->relax_domain_level < c->relax_domain_level) | 
|  | 468 | dattr->relax_domain_level = c->relax_domain_level; | 
|  | 469 | return; | 
|  | 470 | } | 
|  | 471 |  | 
|  | 472 | static void | 
|  | 473 | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | 
|  | 474 | { | 
|  | 475 | LIST_HEAD(q); | 
|  | 476 |  | 
|  | 477 | list_add(&c->stack_list, &q); | 
|  | 478 | while (!list_empty(&q)) { | 
|  | 479 | struct cpuset *cp; | 
|  | 480 | struct cgroup *cont; | 
|  | 481 | struct cpuset *child; | 
|  | 482 |  | 
|  | 483 | cp = list_first_entry(&q, struct cpuset, stack_list); | 
|  | 484 | list_del(q.next); | 
|  | 485 |  | 
|  | 486 | if (cpumask_empty(cp->cpus_allowed)) | 
|  | 487 | continue; | 
|  | 488 |  | 
|  | 489 | if (is_sched_load_balance(cp)) | 
|  | 490 | update_domain_attr(dattr, cp); | 
|  | 491 |  | 
|  | 492 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 
|  | 493 | child = cgroup_cs(cont); | 
|  | 494 | list_add_tail(&child->stack_list, &q); | 
|  | 495 | } | 
|  | 496 | } | 
|  | 497 | } | 
|  | 498 |  | 
|  | 499 | /* | 
|  | 500 | * generate_sched_domains() | 
|  | 501 | * | 
|  | 502 | * This function builds a partial partition of the systems CPUs | 
|  | 503 | * A 'partial partition' is a set of non-overlapping subsets whose | 
|  | 504 | * union is a subset of that set. | 
|  | 505 | * The output of this function needs to be passed to kernel/sched.c | 
|  | 506 | * partition_sched_domains() routine, which will rebuild the scheduler's | 
|  | 507 | * load balancing domains (sched domains) as specified by that partial | 
|  | 508 | * partition. | 
|  | 509 | * | 
|  | 510 | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt | 
|  | 511 | * for a background explanation of this. | 
|  | 512 | * | 
|  | 513 | * Does not return errors, on the theory that the callers of this | 
|  | 514 | * routine would rather not worry about failures to rebuild sched | 
|  | 515 | * domains when operating in the severe memory shortage situations | 
|  | 516 | * that could cause allocation failures below. | 
|  | 517 | * | 
|  | 518 | * Must be called with cgroup_lock held. | 
|  | 519 | * | 
|  | 520 | * The three key local variables below are: | 
|  | 521 | *    q  - a linked-list queue of cpuset pointers, used to implement a | 
|  | 522 | *	   top-down scan of all cpusets.  This scan loads a pointer | 
|  | 523 | *	   to each cpuset marked is_sched_load_balance into the | 
|  | 524 | *	   array 'csa'.  For our purposes, rebuilding the schedulers | 
|  | 525 | *	   sched domains, we can ignore !is_sched_load_balance cpusets. | 
|  | 526 | *  csa  - (for CpuSet Array) Array of pointers to all the cpusets | 
|  | 527 | *	   that need to be load balanced, for convenient iterative | 
|  | 528 | *	   access by the subsequent code that finds the best partition, | 
|  | 529 | *	   i.e the set of domains (subsets) of CPUs such that the | 
|  | 530 | *	   cpus_allowed of every cpuset marked is_sched_load_balance | 
|  | 531 | *	   is a subset of one of these domains, while there are as | 
|  | 532 | *	   many such domains as possible, each as small as possible. | 
|  | 533 | * doms  - Conversion of 'csa' to an array of cpumasks, for passing to | 
|  | 534 | *	   the kernel/sched.c routine partition_sched_domains() in a | 
|  | 535 | *	   convenient format, that can be easily compared to the prior | 
|  | 536 | *	   value to determine what partition elements (sched domains) | 
|  | 537 | *	   were changed (added or removed.) | 
|  | 538 | * | 
|  | 539 | * Finding the best partition (set of domains): | 
|  | 540 | *	The triple nested loops below over i, j, k scan over the | 
|  | 541 | *	load balanced cpusets (using the array of cpuset pointers in | 
|  | 542 | *	csa[]) looking for pairs of cpusets that have overlapping | 
|  | 543 | *	cpus_allowed, but which don't have the same 'pn' partition | 
|  | 544 | *	number and gives them in the same partition number.  It keeps | 
|  | 545 | *	looping on the 'restart' label until it can no longer find | 
|  | 546 | *	any such pairs. | 
|  | 547 | * | 
|  | 548 | *	The union of the cpus_allowed masks from the set of | 
|  | 549 | *	all cpusets having the same 'pn' value then form the one | 
|  | 550 | *	element of the partition (one sched domain) to be passed to | 
|  | 551 | *	partition_sched_domains(). | 
|  | 552 | */ | 
|  | 553 | static int generate_sched_domains(cpumask_var_t **domains, | 
|  | 554 | struct sched_domain_attr **attributes) | 
|  | 555 | { | 
|  | 556 | LIST_HEAD(q);		/* queue of cpusets to be scanned */ | 
|  | 557 | struct cpuset *cp;	/* scans q */ | 
|  | 558 | struct cpuset **csa;	/* array of all cpuset ptrs */ | 
|  | 559 | int csn;		/* how many cpuset ptrs in csa so far */ | 
|  | 560 | int i, j, k;		/* indices for partition finding loops */ | 
|  | 561 | cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */ | 
|  | 562 | struct sched_domain_attr *dattr;  /* attributes for custom domains */ | 
|  | 563 | int ndoms = 0;		/* number of sched domains in result */ | 
|  | 564 | int nslot;		/* next empty doms[] struct cpumask slot */ | 
|  | 565 |  | 
|  | 566 | doms = NULL; | 
|  | 567 | dattr = NULL; | 
|  | 568 | csa = NULL; | 
|  | 569 |  | 
|  | 570 | /* Special case for the 99% of systems with one, full, sched domain */ | 
|  | 571 | if (is_sched_load_balance(&top_cpuset)) { | 
|  | 572 | ndoms = 1; | 
|  | 573 | doms = alloc_sched_domains(ndoms); | 
|  | 574 | if (!doms) | 
|  | 575 | goto done; | 
|  | 576 |  | 
|  | 577 | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); | 
|  | 578 | if (dattr) { | 
|  | 579 | *dattr = SD_ATTR_INIT; | 
|  | 580 | update_domain_attr_tree(dattr, &top_cpuset); | 
|  | 581 | } | 
|  | 582 | cpumask_copy(doms[0], top_cpuset.cpus_allowed); | 
|  | 583 |  | 
|  | 584 | goto done; | 
|  | 585 | } | 
|  | 586 |  | 
|  | 587 | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); | 
|  | 588 | if (!csa) | 
|  | 589 | goto done; | 
|  | 590 | csn = 0; | 
|  | 591 |  | 
|  | 592 | list_add(&top_cpuset.stack_list, &q); | 
|  | 593 | while (!list_empty(&q)) { | 
|  | 594 | struct cgroup *cont; | 
|  | 595 | struct cpuset *child;   /* scans child cpusets of cp */ | 
|  | 596 |  | 
|  | 597 | cp = list_first_entry(&q, struct cpuset, stack_list); | 
|  | 598 | list_del(q.next); | 
|  | 599 |  | 
|  | 600 | if (cpumask_empty(cp->cpus_allowed)) | 
|  | 601 | continue; | 
|  | 602 |  | 
|  | 603 | /* | 
|  | 604 | * All child cpusets contain a subset of the parent's cpus, so | 
|  | 605 | * just skip them, and then we call update_domain_attr_tree() | 
|  | 606 | * to calc relax_domain_level of the corresponding sched | 
|  | 607 | * domain. | 
|  | 608 | */ | 
|  | 609 | if (is_sched_load_balance(cp)) { | 
|  | 610 | csa[csn++] = cp; | 
|  | 611 | continue; | 
|  | 612 | } | 
|  | 613 |  | 
|  | 614 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 
|  | 615 | child = cgroup_cs(cont); | 
|  | 616 | list_add_tail(&child->stack_list, &q); | 
|  | 617 | } | 
|  | 618 | } | 
|  | 619 |  | 
|  | 620 | for (i = 0; i < csn; i++) | 
|  | 621 | csa[i]->pn = i; | 
|  | 622 | ndoms = csn; | 
|  | 623 |  | 
|  | 624 | restart: | 
|  | 625 | /* Find the best partition (set of sched domains) */ | 
|  | 626 | for (i = 0; i < csn; i++) { | 
|  | 627 | struct cpuset *a = csa[i]; | 
|  | 628 | int apn = a->pn; | 
|  | 629 |  | 
|  | 630 | for (j = 0; j < csn; j++) { | 
|  | 631 | struct cpuset *b = csa[j]; | 
|  | 632 | int bpn = b->pn; | 
|  | 633 |  | 
|  | 634 | if (apn != bpn && cpusets_overlap(a, b)) { | 
|  | 635 | for (k = 0; k < csn; k++) { | 
|  | 636 | struct cpuset *c = csa[k]; | 
|  | 637 |  | 
|  | 638 | if (c->pn == bpn) | 
|  | 639 | c->pn = apn; | 
|  | 640 | } | 
|  | 641 | ndoms--;	/* one less element */ | 
|  | 642 | goto restart; | 
|  | 643 | } | 
|  | 644 | } | 
|  | 645 | } | 
|  | 646 |  | 
|  | 647 | /* | 
|  | 648 | * Now we know how many domains to create. | 
|  | 649 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | 
|  | 650 | */ | 
|  | 651 | doms = alloc_sched_domains(ndoms); | 
|  | 652 | if (!doms) | 
|  | 653 | goto done; | 
|  | 654 |  | 
|  | 655 | /* | 
|  | 656 | * The rest of the code, including the scheduler, can deal with | 
|  | 657 | * dattr==NULL case. No need to abort if alloc fails. | 
|  | 658 | */ | 
|  | 659 | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); | 
|  | 660 |  | 
|  | 661 | for (nslot = 0, i = 0; i < csn; i++) { | 
|  | 662 | struct cpuset *a = csa[i]; | 
|  | 663 | struct cpumask *dp; | 
|  | 664 | int apn = a->pn; | 
|  | 665 |  | 
|  | 666 | if (apn < 0) { | 
|  | 667 | /* Skip completed partitions */ | 
|  | 668 | continue; | 
|  | 669 | } | 
|  | 670 |  | 
|  | 671 | dp = doms[nslot]; | 
|  | 672 |  | 
|  | 673 | if (nslot == ndoms) { | 
|  | 674 | static int warnings = 10; | 
|  | 675 | if (warnings) { | 
|  | 676 | printk(KERN_WARNING | 
|  | 677 | "rebuild_sched_domains confused:" | 
|  | 678 | " nslot %d, ndoms %d, csn %d, i %d," | 
|  | 679 | " apn %d\n", | 
|  | 680 | nslot, ndoms, csn, i, apn); | 
|  | 681 | warnings--; | 
|  | 682 | } | 
|  | 683 | continue; | 
|  | 684 | } | 
|  | 685 |  | 
|  | 686 | cpumask_clear(dp); | 
|  | 687 | if (dattr) | 
|  | 688 | *(dattr + nslot) = SD_ATTR_INIT; | 
|  | 689 | for (j = i; j < csn; j++) { | 
|  | 690 | struct cpuset *b = csa[j]; | 
|  | 691 |  | 
|  | 692 | if (apn == b->pn) { | 
|  | 693 | cpumask_or(dp, dp, b->cpus_allowed); | 
|  | 694 | if (dattr) | 
|  | 695 | update_domain_attr_tree(dattr + nslot, b); | 
|  | 696 |  | 
|  | 697 | /* Done with this partition */ | 
|  | 698 | b->pn = -1; | 
|  | 699 | } | 
|  | 700 | } | 
|  | 701 | nslot++; | 
|  | 702 | } | 
|  | 703 | BUG_ON(nslot != ndoms); | 
|  | 704 |  | 
|  | 705 | done: | 
|  | 706 | kfree(csa); | 
|  | 707 |  | 
|  | 708 | /* | 
|  | 709 | * Fallback to the default domain if kmalloc() failed. | 
|  | 710 | * See comments in partition_sched_domains(). | 
|  | 711 | */ | 
|  | 712 | if (doms == NULL) | 
|  | 713 | ndoms = 1; | 
|  | 714 |  | 
|  | 715 | *domains    = doms; | 
|  | 716 | *attributes = dattr; | 
|  | 717 | return ndoms; | 
|  | 718 | } | 
|  | 719 |  | 
|  | 720 | /* | 
|  | 721 | * Rebuild scheduler domains. | 
|  | 722 | * | 
|  | 723 | * Call with neither cgroup_mutex held nor within get_online_cpus(). | 
|  | 724 | * Takes both cgroup_mutex and get_online_cpus(). | 
|  | 725 | * | 
|  | 726 | * Cannot be directly called from cpuset code handling changes | 
|  | 727 | * to the cpuset pseudo-filesystem, because it cannot be called | 
|  | 728 | * from code that already holds cgroup_mutex. | 
|  | 729 | */ | 
|  | 730 | static void do_rebuild_sched_domains(struct work_struct *unused) | 
|  | 731 | { | 
|  | 732 | struct sched_domain_attr *attr; | 
|  | 733 | cpumask_var_t *doms; | 
|  | 734 | int ndoms; | 
|  | 735 |  | 
|  | 736 | get_online_cpus(); | 
|  | 737 |  | 
|  | 738 | /* Generate domain masks and attrs */ | 
|  | 739 | cgroup_lock(); | 
|  | 740 | ndoms = generate_sched_domains(&doms, &attr); | 
|  | 741 | cgroup_unlock(); | 
|  | 742 |  | 
|  | 743 | /* Have scheduler rebuild the domains */ | 
|  | 744 | partition_sched_domains(ndoms, doms, attr); | 
|  | 745 |  | 
|  | 746 | put_online_cpus(); | 
|  | 747 | } | 
|  | 748 | #else /* !CONFIG_SMP */ | 
|  | 749 | static void do_rebuild_sched_domains(struct work_struct *unused) | 
|  | 750 | { | 
|  | 751 | } | 
|  | 752 |  | 
|  | 753 | static int generate_sched_domains(cpumask_var_t **domains, | 
|  | 754 | struct sched_domain_attr **attributes) | 
|  | 755 | { | 
|  | 756 | *domains = NULL; | 
|  | 757 | return 1; | 
|  | 758 | } | 
|  | 759 | #endif /* CONFIG_SMP */ | 
|  | 760 |  | 
|  | 761 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); | 
|  | 762 |  | 
|  | 763 | /* | 
|  | 764 | * Rebuild scheduler domains, asynchronously via workqueue. | 
|  | 765 | * | 
|  | 766 | * If the flag 'sched_load_balance' of any cpuset with non-empty | 
|  | 767 | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | 
|  | 768 | * which has that flag enabled, or if any cpuset with a non-empty | 
|  | 769 | * 'cpus' is removed, then call this routine to rebuild the | 
|  | 770 | * scheduler's dynamic sched domains. | 
|  | 771 | * | 
|  | 772 | * The rebuild_sched_domains() and partition_sched_domains() | 
|  | 773 | * routines must nest cgroup_lock() inside get_online_cpus(), | 
|  | 774 | * but such cpuset changes as these must nest that locking the | 
|  | 775 | * other way, holding cgroup_lock() for much of the code. | 
|  | 776 | * | 
|  | 777 | * So in order to avoid an ABBA deadlock, the cpuset code handling | 
|  | 778 | * these user changes delegates the actual sched domain rebuilding | 
|  | 779 | * to a separate workqueue thread, which ends up processing the | 
|  | 780 | * above do_rebuild_sched_domains() function. | 
|  | 781 | */ | 
|  | 782 | static void async_rebuild_sched_domains(void) | 
|  | 783 | { | 
|  | 784 | queue_work(cpuset_wq, &rebuild_sched_domains_work); | 
|  | 785 | } | 
|  | 786 |  | 
|  | 787 | /* | 
|  | 788 | * Accomplishes the same scheduler domain rebuild as the above | 
|  | 789 | * async_rebuild_sched_domains(), however it directly calls the | 
|  | 790 | * rebuild routine synchronously rather than calling it via an | 
|  | 791 | * asynchronous work thread. | 
|  | 792 | * | 
|  | 793 | * This can only be called from code that is not holding | 
|  | 794 | * cgroup_mutex (not nested in a cgroup_lock() call.) | 
|  | 795 | */ | 
|  | 796 | void rebuild_sched_domains(void) | 
|  | 797 | { | 
|  | 798 | do_rebuild_sched_domains(NULL); | 
|  | 799 | } | 
|  | 800 |  | 
|  | 801 | /** | 
|  | 802 | * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's | 
|  | 803 | * @tsk: task to test | 
|  | 804 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | 
|  | 805 | * | 
|  | 806 | * Call with cgroup_mutex held.  May take callback_mutex during call. | 
|  | 807 | * Called for each task in a cgroup by cgroup_scan_tasks(). | 
|  | 808 | * Return nonzero if this tasks's cpus_allowed mask should be changed (in other | 
|  | 809 | * words, if its mask is not equal to its cpuset's mask). | 
|  | 810 | */ | 
|  | 811 | static int cpuset_test_cpumask(struct task_struct *tsk, | 
|  | 812 | struct cgroup_scanner *scan) | 
|  | 813 | { | 
|  | 814 | return !cpumask_equal(&tsk->cpus_allowed, | 
|  | 815 | (cgroup_cs(scan->cg))->cpus_allowed); | 
|  | 816 | } | 
|  | 817 |  | 
|  | 818 | /** | 
|  | 819 | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | 
|  | 820 | * @tsk: task to test | 
|  | 821 | * @scan: struct cgroup_scanner containing the cgroup of the task | 
|  | 822 | * | 
|  | 823 | * Called by cgroup_scan_tasks() for each task in a cgroup whose | 
|  | 824 | * cpus_allowed mask needs to be changed. | 
|  | 825 | * | 
|  | 826 | * We don't need to re-check for the cgroup/cpuset membership, since we're | 
|  | 827 | * holding cgroup_lock() at this point. | 
|  | 828 | */ | 
|  | 829 | static void cpuset_change_cpumask(struct task_struct *tsk, | 
|  | 830 | struct cgroup_scanner *scan) | 
|  | 831 | { | 
|  | 832 | set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); | 
|  | 833 | } | 
|  | 834 |  | 
|  | 835 | /** | 
|  | 836 | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | 
|  | 837 | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | 
|  | 838 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | 
|  | 839 | * | 
|  | 840 | * Called with cgroup_mutex held | 
|  | 841 | * | 
|  | 842 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 
|  | 843 | * calling callback functions for each. | 
|  | 844 | * | 
|  | 845 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | 
|  | 846 | * if @heap != NULL. | 
|  | 847 | */ | 
|  | 848 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) | 
|  | 849 | { | 
|  | 850 | struct cgroup_scanner scan; | 
|  | 851 |  | 
|  | 852 | scan.cg = cs->css.cgroup; | 
|  | 853 | scan.test_task = cpuset_test_cpumask; | 
|  | 854 | scan.process_task = cpuset_change_cpumask; | 
|  | 855 | scan.heap = heap; | 
|  | 856 | cgroup_scan_tasks(&scan); | 
|  | 857 | } | 
|  | 858 |  | 
|  | 859 | /** | 
|  | 860 | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | 
|  | 861 | * @cs: the cpuset to consider | 
|  | 862 | * @buf: buffer of cpu numbers written to this cpuset | 
|  | 863 | */ | 
|  | 864 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, | 
|  | 865 | const char *buf) | 
|  | 866 | { | 
|  | 867 | struct ptr_heap heap; | 
|  | 868 | int retval; | 
|  | 869 | int is_load_balanced; | 
|  | 870 |  | 
|  | 871 | /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ | 
|  | 872 | if (cs == &top_cpuset) | 
|  | 873 | return -EACCES; | 
|  | 874 |  | 
|  | 875 | /* | 
|  | 876 | * An empty cpus_allowed is ok only if the cpuset has no tasks. | 
|  | 877 | * Since cpulist_parse() fails on an empty mask, we special case | 
|  | 878 | * that parsing.  The validate_change() call ensures that cpusets | 
|  | 879 | * with tasks have cpus. | 
|  | 880 | */ | 
|  | 881 | if (!*buf) { | 
|  | 882 | cpumask_clear(trialcs->cpus_allowed); | 
|  | 883 | } else { | 
|  | 884 | retval = cpulist_parse(buf, trialcs->cpus_allowed); | 
|  | 885 | if (retval < 0) | 
|  | 886 | return retval; | 
|  | 887 |  | 
|  | 888 | if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask)) | 
|  | 889 | return -EINVAL; | 
|  | 890 | } | 
|  | 891 | retval = validate_change(cs, trialcs); | 
|  | 892 | if (retval < 0) | 
|  | 893 | return retval; | 
|  | 894 |  | 
|  | 895 | /* Nothing to do if the cpus didn't change */ | 
|  | 896 | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) | 
|  | 897 | return 0; | 
|  | 898 |  | 
|  | 899 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | 
|  | 900 | if (retval) | 
|  | 901 | return retval; | 
|  | 902 |  | 
|  | 903 | is_load_balanced = is_sched_load_balance(trialcs); | 
|  | 904 |  | 
|  | 905 | mutex_lock(&callback_mutex); | 
|  | 906 | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); | 
|  | 907 | mutex_unlock(&callback_mutex); | 
|  | 908 |  | 
|  | 909 | /* | 
|  | 910 | * Scan tasks in the cpuset, and update the cpumasks of any | 
|  | 911 | * that need an update. | 
|  | 912 | */ | 
|  | 913 | update_tasks_cpumask(cs, &heap); | 
|  | 914 |  | 
|  | 915 | heap_free(&heap); | 
|  | 916 |  | 
|  | 917 | if (is_load_balanced) | 
|  | 918 | async_rebuild_sched_domains(); | 
|  | 919 | return 0; | 
|  | 920 | } | 
|  | 921 |  | 
|  | 922 | /* | 
|  | 923 | * cpuset_migrate_mm | 
|  | 924 | * | 
|  | 925 | *    Migrate memory region from one set of nodes to another. | 
|  | 926 | * | 
|  | 927 | *    Temporarilly set tasks mems_allowed to target nodes of migration, | 
|  | 928 | *    so that the migration code can allocate pages on these nodes. | 
|  | 929 | * | 
|  | 930 | *    Call holding cgroup_mutex, so current's cpuset won't change | 
|  | 931 | *    during this call, as manage_mutex holds off any cpuset_attach() | 
|  | 932 | *    calls.  Therefore we don't need to take task_lock around the | 
|  | 933 | *    call to guarantee_online_mems(), as we know no one is changing | 
|  | 934 | *    our task's cpuset. | 
|  | 935 | * | 
|  | 936 | *    While the mm_struct we are migrating is typically from some | 
|  | 937 | *    other task, the task_struct mems_allowed that we are hacking | 
|  | 938 | *    is for our current task, which must allocate new pages for that | 
|  | 939 | *    migrating memory region. | 
|  | 940 | */ | 
|  | 941 |  | 
|  | 942 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | 
|  | 943 | const nodemask_t *to) | 
|  | 944 | { | 
|  | 945 | struct task_struct *tsk = current; | 
|  | 946 |  | 
|  | 947 | tsk->mems_allowed = *to; | 
|  | 948 |  | 
|  | 949 | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | 
|  | 950 |  | 
|  | 951 | guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); | 
|  | 952 | } | 
|  | 953 |  | 
|  | 954 | /* | 
|  | 955 | * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy | 
|  | 956 | * @tsk: the task to change | 
|  | 957 | * @newmems: new nodes that the task will be set | 
|  | 958 | * | 
|  | 959 | * In order to avoid seeing no nodes if the old and new nodes are disjoint, | 
|  | 960 | * we structure updates as setting all new allowed nodes, then clearing newly | 
|  | 961 | * disallowed ones. | 
|  | 962 | */ | 
|  | 963 | static void cpuset_change_task_nodemask(struct task_struct *tsk, | 
|  | 964 | nodemask_t *newmems) | 
|  | 965 | { | 
|  | 966 | bool need_loop; | 
|  | 967 |  | 
|  | 968 | /* | 
|  | 969 | * Allow tasks that have access to memory reserves because they have | 
|  | 970 | * been OOM killed to get memory anywhere. | 
|  | 971 | */ | 
|  | 972 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | 
|  | 973 | return; | 
|  | 974 | if (current->flags & PF_EXITING) /* Let dying task have memory */ | 
|  | 975 | return; | 
|  | 976 |  | 
|  | 977 | task_lock(tsk); | 
|  | 978 | /* | 
|  | 979 | * Determine if a loop is necessary if another thread is doing | 
|  | 980 | * get_mems_allowed().  If at least one node remains unchanged and | 
|  | 981 | * tsk does not have a mempolicy, then an empty nodemask will not be | 
|  | 982 | * possible when mems_allowed is larger than a word. | 
|  | 983 | */ | 
|  | 984 | need_loop = task_has_mempolicy(tsk) || | 
|  | 985 | !nodes_intersects(*newmems, tsk->mems_allowed); | 
|  | 986 |  | 
|  | 987 | if (need_loop) { | 
|  | 988 | local_irq_disable(); | 
|  | 989 | write_seqcount_begin(&tsk->mems_allowed_seq); | 
|  | 990 | } | 
|  | 991 |  | 
|  | 992 | nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); | 
|  | 993 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); | 
|  | 994 |  | 
|  | 995 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); | 
|  | 996 | tsk->mems_allowed = *newmems; | 
|  | 997 |  | 
|  | 998 | if (need_loop) { | 
|  | 999 | write_seqcount_end(&tsk->mems_allowed_seq); | 
|  | 1000 | local_irq_enable(); | 
|  | 1001 | } | 
|  | 1002 |  | 
|  | 1003 | task_unlock(tsk); | 
|  | 1004 | } | 
|  | 1005 |  | 
|  | 1006 | /* | 
|  | 1007 | * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy | 
|  | 1008 | * of it to cpuset's new mems_allowed, and migrate pages to new nodes if | 
|  | 1009 | * memory_migrate flag is set. Called with cgroup_mutex held. | 
|  | 1010 | */ | 
|  | 1011 | static void cpuset_change_nodemask(struct task_struct *p, | 
|  | 1012 | struct cgroup_scanner *scan) | 
|  | 1013 | { | 
|  | 1014 | struct mm_struct *mm; | 
|  | 1015 | struct cpuset *cs; | 
|  | 1016 | int migrate; | 
|  | 1017 | const nodemask_t *oldmem = scan->data; | 
|  | 1018 | static nodemask_t newmems;	/* protected by cgroup_mutex */ | 
|  | 1019 |  | 
|  | 1020 | cs = cgroup_cs(scan->cg); | 
|  | 1021 | guarantee_online_mems(cs, &newmems); | 
|  | 1022 |  | 
|  | 1023 | cpuset_change_task_nodemask(p, &newmems); | 
|  | 1024 |  | 
|  | 1025 | mm = get_task_mm(p); | 
|  | 1026 | if (!mm) | 
|  | 1027 | return; | 
|  | 1028 |  | 
|  | 1029 | migrate = is_memory_migrate(cs); | 
|  | 1030 |  | 
|  | 1031 | mpol_rebind_mm(mm, &cs->mems_allowed); | 
|  | 1032 | if (migrate) | 
|  | 1033 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); | 
|  | 1034 | mmput(mm); | 
|  | 1035 | } | 
|  | 1036 |  | 
|  | 1037 | static void *cpuset_being_rebound; | 
|  | 1038 |  | 
|  | 1039 | /** | 
|  | 1040 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | 
|  | 1041 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | 
|  | 1042 | * @oldmem: old mems_allowed of cpuset cs | 
|  | 1043 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | 
|  | 1044 | * | 
|  | 1045 | * Called with cgroup_mutex held | 
|  | 1046 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | 
|  | 1047 | * if @heap != NULL. | 
|  | 1048 | */ | 
|  | 1049 | static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem, | 
|  | 1050 | struct ptr_heap *heap) | 
|  | 1051 | { | 
|  | 1052 | struct cgroup_scanner scan; | 
|  | 1053 |  | 
|  | 1054 | cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */ | 
|  | 1055 |  | 
|  | 1056 | scan.cg = cs->css.cgroup; | 
|  | 1057 | scan.test_task = NULL; | 
|  | 1058 | scan.process_task = cpuset_change_nodemask; | 
|  | 1059 | scan.heap = heap; | 
|  | 1060 | scan.data = (nodemask_t *)oldmem; | 
|  | 1061 |  | 
|  | 1062 | /* | 
|  | 1063 | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't | 
|  | 1064 | * take while holding tasklist_lock.  Forks can happen - the | 
|  | 1065 | * mpol_dup() cpuset_being_rebound check will catch such forks, | 
|  | 1066 | * and rebind their vma mempolicies too.  Because we still hold | 
|  | 1067 | * the global cgroup_mutex, we know that no other rebind effort | 
|  | 1068 | * will be contending for the global variable cpuset_being_rebound. | 
|  | 1069 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() | 
|  | 1070 | * is idempotent.  Also migrate pages in each mm to new nodes. | 
|  | 1071 | */ | 
|  | 1072 | cgroup_scan_tasks(&scan); | 
|  | 1073 |  | 
|  | 1074 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ | 
|  | 1075 | cpuset_being_rebound = NULL; | 
|  | 1076 | } | 
|  | 1077 |  | 
|  | 1078 | /* | 
|  | 1079 | * Handle user request to change the 'mems' memory placement | 
|  | 1080 | * of a cpuset.  Needs to validate the request, update the | 
|  | 1081 | * cpusets mems_allowed, and for each task in the cpuset, | 
|  | 1082 | * update mems_allowed and rebind task's mempolicy and any vma | 
|  | 1083 | * mempolicies and if the cpuset is marked 'memory_migrate', | 
|  | 1084 | * migrate the tasks pages to the new memory. | 
|  | 1085 | * | 
|  | 1086 | * Call with cgroup_mutex held.  May take callback_mutex during call. | 
|  | 1087 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | 
|  | 1088 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | 
|  | 1089 | * their mempolicies to the cpusets new mems_allowed. | 
|  | 1090 | */ | 
|  | 1091 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, | 
|  | 1092 | const char *buf) | 
|  | 1093 | { | 
|  | 1094 | NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL); | 
|  | 1095 | int retval; | 
|  | 1096 | struct ptr_heap heap; | 
|  | 1097 |  | 
|  | 1098 | if (!oldmem) | 
|  | 1099 | return -ENOMEM; | 
|  | 1100 |  | 
|  | 1101 | /* | 
|  | 1102 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | 
|  | 1103 | * it's read-only | 
|  | 1104 | */ | 
|  | 1105 | if (cs == &top_cpuset) { | 
|  | 1106 | retval = -EACCES; | 
|  | 1107 | goto done; | 
|  | 1108 | } | 
|  | 1109 |  | 
|  | 1110 | /* | 
|  | 1111 | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | 
|  | 1112 | * Since nodelist_parse() fails on an empty mask, we special case | 
|  | 1113 | * that parsing.  The validate_change() call ensures that cpusets | 
|  | 1114 | * with tasks have memory. | 
|  | 1115 | */ | 
|  | 1116 | if (!*buf) { | 
|  | 1117 | nodes_clear(trialcs->mems_allowed); | 
|  | 1118 | } else { | 
|  | 1119 | retval = nodelist_parse(buf, trialcs->mems_allowed); | 
|  | 1120 | if (retval < 0) | 
|  | 1121 | goto done; | 
|  | 1122 |  | 
|  | 1123 | if (!nodes_subset(trialcs->mems_allowed, | 
|  | 1124 | node_states[N_HIGH_MEMORY])) { | 
|  | 1125 | retval =  -EINVAL; | 
|  | 1126 | goto done; | 
|  | 1127 | } | 
|  | 1128 | } | 
|  | 1129 | *oldmem = cs->mems_allowed; | 
|  | 1130 | if (nodes_equal(*oldmem, trialcs->mems_allowed)) { | 
|  | 1131 | retval = 0;		/* Too easy - nothing to do */ | 
|  | 1132 | goto done; | 
|  | 1133 | } | 
|  | 1134 | retval = validate_change(cs, trialcs); | 
|  | 1135 | if (retval < 0) | 
|  | 1136 | goto done; | 
|  | 1137 |  | 
|  | 1138 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | 
|  | 1139 | if (retval < 0) | 
|  | 1140 | goto done; | 
|  | 1141 |  | 
|  | 1142 | mutex_lock(&callback_mutex); | 
|  | 1143 | cs->mems_allowed = trialcs->mems_allowed; | 
|  | 1144 | mutex_unlock(&callback_mutex); | 
|  | 1145 |  | 
|  | 1146 | update_tasks_nodemask(cs, oldmem, &heap); | 
|  | 1147 |  | 
|  | 1148 | heap_free(&heap); | 
|  | 1149 | done: | 
|  | 1150 | NODEMASK_FREE(oldmem); | 
|  | 1151 | return retval; | 
|  | 1152 | } | 
|  | 1153 |  | 
|  | 1154 | int current_cpuset_is_being_rebound(void) | 
|  | 1155 | { | 
|  | 1156 | int ret; | 
|  | 1157 |  | 
|  | 1158 | rcu_read_lock(); | 
|  | 1159 | ret = task_cs(current) == cpuset_being_rebound; | 
|  | 1160 | rcu_read_unlock(); | 
|  | 1161 |  | 
|  | 1162 | return ret; | 
|  | 1163 | } | 
|  | 1164 |  | 
|  | 1165 | static int update_relax_domain_level(struct cpuset *cs, s64 val) | 
|  | 1166 | { | 
|  | 1167 | #ifdef CONFIG_SMP | 
|  | 1168 | if (val < -1 || val >= sched_domain_level_max) | 
|  | 1169 | return -EINVAL; | 
|  | 1170 | #endif | 
|  | 1171 |  | 
|  | 1172 | if (val != cs->relax_domain_level) { | 
|  | 1173 | cs->relax_domain_level = val; | 
|  | 1174 | if (!cpumask_empty(cs->cpus_allowed) && | 
|  | 1175 | is_sched_load_balance(cs)) | 
|  | 1176 | async_rebuild_sched_domains(); | 
|  | 1177 | } | 
|  | 1178 |  | 
|  | 1179 | return 0; | 
|  | 1180 | } | 
|  | 1181 |  | 
|  | 1182 | /* | 
|  | 1183 | * cpuset_change_flag - make a task's spread flags the same as its cpuset's | 
|  | 1184 | * @tsk: task to be updated | 
|  | 1185 | * @scan: struct cgroup_scanner containing the cgroup of the task | 
|  | 1186 | * | 
|  | 1187 | * Called by cgroup_scan_tasks() for each task in a cgroup. | 
|  | 1188 | * | 
|  | 1189 | * We don't need to re-check for the cgroup/cpuset membership, since we're | 
|  | 1190 | * holding cgroup_lock() at this point. | 
|  | 1191 | */ | 
|  | 1192 | static void cpuset_change_flag(struct task_struct *tsk, | 
|  | 1193 | struct cgroup_scanner *scan) | 
|  | 1194 | { | 
|  | 1195 | cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk); | 
|  | 1196 | } | 
|  | 1197 |  | 
|  | 1198 | /* | 
|  | 1199 | * update_tasks_flags - update the spread flags of tasks in the cpuset. | 
|  | 1200 | * @cs: the cpuset in which each task's spread flags needs to be changed | 
|  | 1201 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | 
|  | 1202 | * | 
|  | 1203 | * Called with cgroup_mutex held | 
|  | 1204 | * | 
|  | 1205 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 
|  | 1206 | * calling callback functions for each. | 
|  | 1207 | * | 
|  | 1208 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | 
|  | 1209 | * if @heap != NULL. | 
|  | 1210 | */ | 
|  | 1211 | static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap) | 
|  | 1212 | { | 
|  | 1213 | struct cgroup_scanner scan; | 
|  | 1214 |  | 
|  | 1215 | scan.cg = cs->css.cgroup; | 
|  | 1216 | scan.test_task = NULL; | 
|  | 1217 | scan.process_task = cpuset_change_flag; | 
|  | 1218 | scan.heap = heap; | 
|  | 1219 | cgroup_scan_tasks(&scan); | 
|  | 1220 | } | 
|  | 1221 |  | 
|  | 1222 | /* | 
|  | 1223 | * update_flag - read a 0 or a 1 in a file and update associated flag | 
|  | 1224 | * bit:		the bit to update (see cpuset_flagbits_t) | 
|  | 1225 | * cs:		the cpuset to update | 
|  | 1226 | * turning_on: 	whether the flag is being set or cleared | 
|  | 1227 | * | 
|  | 1228 | * Call with cgroup_mutex held. | 
|  | 1229 | */ | 
|  | 1230 |  | 
|  | 1231 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, | 
|  | 1232 | int turning_on) | 
|  | 1233 | { | 
|  | 1234 | struct cpuset *trialcs; | 
|  | 1235 | int balance_flag_changed; | 
|  | 1236 | int spread_flag_changed; | 
|  | 1237 | struct ptr_heap heap; | 
|  | 1238 | int err; | 
|  | 1239 |  | 
|  | 1240 | trialcs = alloc_trial_cpuset(cs); | 
|  | 1241 | if (!trialcs) | 
|  | 1242 | return -ENOMEM; | 
|  | 1243 |  | 
|  | 1244 | if (turning_on) | 
|  | 1245 | set_bit(bit, &trialcs->flags); | 
|  | 1246 | else | 
|  | 1247 | clear_bit(bit, &trialcs->flags); | 
|  | 1248 |  | 
|  | 1249 | err = validate_change(cs, trialcs); | 
|  | 1250 | if (err < 0) | 
|  | 1251 | goto out; | 
|  | 1252 |  | 
|  | 1253 | err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | 
|  | 1254 | if (err < 0) | 
|  | 1255 | goto out; | 
|  | 1256 |  | 
|  | 1257 | balance_flag_changed = (is_sched_load_balance(cs) != | 
|  | 1258 | is_sched_load_balance(trialcs)); | 
|  | 1259 |  | 
|  | 1260 | spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) | 
|  | 1261 | || (is_spread_page(cs) != is_spread_page(trialcs))); | 
|  | 1262 |  | 
|  | 1263 | mutex_lock(&callback_mutex); | 
|  | 1264 | cs->flags = trialcs->flags; | 
|  | 1265 | mutex_unlock(&callback_mutex); | 
|  | 1266 |  | 
|  | 1267 | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) | 
|  | 1268 | async_rebuild_sched_domains(); | 
|  | 1269 |  | 
|  | 1270 | if (spread_flag_changed) | 
|  | 1271 | update_tasks_flags(cs, &heap); | 
|  | 1272 | heap_free(&heap); | 
|  | 1273 | out: | 
|  | 1274 | free_trial_cpuset(trialcs); | 
|  | 1275 | return err; | 
|  | 1276 | } | 
|  | 1277 |  | 
|  | 1278 | /* | 
|  | 1279 | * Frequency meter - How fast is some event occurring? | 
|  | 1280 | * | 
|  | 1281 | * These routines manage a digitally filtered, constant time based, | 
|  | 1282 | * event frequency meter.  There are four routines: | 
|  | 1283 | *   fmeter_init() - initialize a frequency meter. | 
|  | 1284 | *   fmeter_markevent() - called each time the event happens. | 
|  | 1285 | *   fmeter_getrate() - returns the recent rate of such events. | 
|  | 1286 | *   fmeter_update() - internal routine used to update fmeter. | 
|  | 1287 | * | 
|  | 1288 | * A common data structure is passed to each of these routines, | 
|  | 1289 | * which is used to keep track of the state required to manage the | 
|  | 1290 | * frequency meter and its digital filter. | 
|  | 1291 | * | 
|  | 1292 | * The filter works on the number of events marked per unit time. | 
|  | 1293 | * The filter is single-pole low-pass recursive (IIR).  The time unit | 
|  | 1294 | * is 1 second.  Arithmetic is done using 32-bit integers scaled to | 
|  | 1295 | * simulate 3 decimal digits of precision (multiplied by 1000). | 
|  | 1296 | * | 
|  | 1297 | * With an FM_COEF of 933, and a time base of 1 second, the filter | 
|  | 1298 | * has a half-life of 10 seconds, meaning that if the events quit | 
|  | 1299 | * happening, then the rate returned from the fmeter_getrate() | 
|  | 1300 | * will be cut in half each 10 seconds, until it converges to zero. | 
|  | 1301 | * | 
|  | 1302 | * It is not worth doing a real infinitely recursive filter.  If more | 
|  | 1303 | * than FM_MAXTICKS ticks have elapsed since the last filter event, | 
|  | 1304 | * just compute FM_MAXTICKS ticks worth, by which point the level | 
|  | 1305 | * will be stable. | 
|  | 1306 | * | 
|  | 1307 | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | 
|  | 1308 | * arithmetic overflow in the fmeter_update() routine. | 
|  | 1309 | * | 
|  | 1310 | * Given the simple 32 bit integer arithmetic used, this meter works | 
|  | 1311 | * best for reporting rates between one per millisecond (msec) and | 
|  | 1312 | * one per 32 (approx) seconds.  At constant rates faster than one | 
|  | 1313 | * per msec it maxes out at values just under 1,000,000.  At constant | 
|  | 1314 | * rates between one per msec, and one per second it will stabilize | 
|  | 1315 | * to a value N*1000, where N is the rate of events per second. | 
|  | 1316 | * At constant rates between one per second and one per 32 seconds, | 
|  | 1317 | * it will be choppy, moving up on the seconds that have an event, | 
|  | 1318 | * and then decaying until the next event.  At rates slower than | 
|  | 1319 | * about one in 32 seconds, it decays all the way back to zero between | 
|  | 1320 | * each event. | 
|  | 1321 | */ | 
|  | 1322 |  | 
|  | 1323 | #define FM_COEF 933		/* coefficient for half-life of 10 secs */ | 
|  | 1324 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | 
|  | 1325 | #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */ | 
|  | 1326 | #define FM_SCALE 1000		/* faux fixed point scale */ | 
|  | 1327 |  | 
|  | 1328 | /* Initialize a frequency meter */ | 
|  | 1329 | static void fmeter_init(struct fmeter *fmp) | 
|  | 1330 | { | 
|  | 1331 | fmp->cnt = 0; | 
|  | 1332 | fmp->val = 0; | 
|  | 1333 | fmp->time = 0; | 
|  | 1334 | spin_lock_init(&fmp->lock); | 
|  | 1335 | } | 
|  | 1336 |  | 
|  | 1337 | /* Internal meter update - process cnt events and update value */ | 
|  | 1338 | static void fmeter_update(struct fmeter *fmp) | 
|  | 1339 | { | 
|  | 1340 | time_t now = get_seconds(); | 
|  | 1341 | time_t ticks = now - fmp->time; | 
|  | 1342 |  | 
|  | 1343 | if (ticks == 0) | 
|  | 1344 | return; | 
|  | 1345 |  | 
|  | 1346 | ticks = min(FM_MAXTICKS, ticks); | 
|  | 1347 | while (ticks-- > 0) | 
|  | 1348 | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | 
|  | 1349 | fmp->time = now; | 
|  | 1350 |  | 
|  | 1351 | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | 
|  | 1352 | fmp->cnt = 0; | 
|  | 1353 | } | 
|  | 1354 |  | 
|  | 1355 | /* Process any previous ticks, then bump cnt by one (times scale). */ | 
|  | 1356 | static void fmeter_markevent(struct fmeter *fmp) | 
|  | 1357 | { | 
|  | 1358 | spin_lock(&fmp->lock); | 
|  | 1359 | fmeter_update(fmp); | 
|  | 1360 | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | 
|  | 1361 | spin_unlock(&fmp->lock); | 
|  | 1362 | } | 
|  | 1363 |  | 
|  | 1364 | /* Process any previous ticks, then return current value. */ | 
|  | 1365 | static int fmeter_getrate(struct fmeter *fmp) | 
|  | 1366 | { | 
|  | 1367 | int val; | 
|  | 1368 |  | 
|  | 1369 | spin_lock(&fmp->lock); | 
|  | 1370 | fmeter_update(fmp); | 
|  | 1371 | val = fmp->val; | 
|  | 1372 | spin_unlock(&fmp->lock); | 
|  | 1373 | return val; | 
|  | 1374 | } | 
|  | 1375 |  | 
|  | 1376 | /* | 
|  | 1377 | * Protected by cgroup_lock. The nodemasks must be stored globally because | 
|  | 1378 | * dynamically allocating them is not allowed in can_attach, and they must | 
|  | 1379 | * persist until attach. | 
|  | 1380 | */ | 
|  | 1381 | static cpumask_var_t cpus_attach; | 
|  | 1382 | static nodemask_t cpuset_attach_nodemask_from; | 
|  | 1383 | static nodemask_t cpuset_attach_nodemask_to; | 
|  | 1384 |  | 
|  | 1385 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ | 
|  | 1386 | static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) | 
|  | 1387 | { | 
|  | 1388 | struct cpuset *cs = cgroup_cs(cgrp); | 
|  | 1389 | struct task_struct *task; | 
|  | 1390 | int ret; | 
|  | 1391 |  | 
|  | 1392 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 
|  | 1393 | return -ENOSPC; | 
|  | 1394 |  | 
|  | 1395 | cgroup_taskset_for_each(task, cgrp, tset) { | 
|  | 1396 | /* | 
|  | 1397 | * Kthreads bound to specific cpus cannot be moved to a new | 
|  | 1398 | * cpuset; we cannot change their cpu affinity and | 
|  | 1399 | * isolating such threads by their set of allowed nodes is | 
|  | 1400 | * unnecessary.  Thus, cpusets are not applicable for such | 
|  | 1401 | * threads.  This prevents checking for success of | 
|  | 1402 | * set_cpus_allowed_ptr() on all attached tasks before | 
|  | 1403 | * cpus_allowed may be changed. | 
|  | 1404 | */ | 
|  | 1405 | if (task->flags & PF_THREAD_BOUND) | 
|  | 1406 | return -EINVAL; | 
|  | 1407 | if ((ret = security_task_setscheduler(task))) | 
|  | 1408 | return ret; | 
|  | 1409 | } | 
|  | 1410 |  | 
|  | 1411 | /* prepare for attach */ | 
|  | 1412 | if (cs == &top_cpuset) | 
|  | 1413 | cpumask_copy(cpus_attach, cpu_possible_mask); | 
|  | 1414 | else | 
|  | 1415 | guarantee_online_cpus(cs, cpus_attach); | 
|  | 1416 |  | 
|  | 1417 | guarantee_online_mems(cs, &cpuset_attach_nodemask_to); | 
|  | 1418 |  | 
|  | 1419 | return 0; | 
|  | 1420 | } | 
|  | 1421 |  | 
|  | 1422 | static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) | 
|  | 1423 | { | 
|  | 1424 | struct mm_struct *mm; | 
|  | 1425 | struct task_struct *task; | 
|  | 1426 | struct task_struct *leader = cgroup_taskset_first(tset); | 
|  | 1427 | struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset); | 
|  | 1428 | struct cpuset *cs = cgroup_cs(cgrp); | 
|  | 1429 | struct cpuset *oldcs = cgroup_cs(oldcgrp); | 
|  | 1430 |  | 
|  | 1431 | cgroup_taskset_for_each(task, cgrp, tset) { | 
|  | 1432 | /* | 
|  | 1433 | * can_attach beforehand should guarantee that this doesn't | 
|  | 1434 | * fail.  TODO: have a better way to handle failure here | 
|  | 1435 | */ | 
|  | 1436 | WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); | 
|  | 1437 |  | 
|  | 1438 | cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); | 
|  | 1439 | cpuset_update_task_spread_flag(cs, task); | 
|  | 1440 | } | 
|  | 1441 |  | 
|  | 1442 | /* | 
|  | 1443 | * Change mm, possibly for multiple threads in a threadgroup. This is | 
|  | 1444 | * expensive and may sleep. | 
|  | 1445 | */ | 
|  | 1446 | cpuset_attach_nodemask_from = oldcs->mems_allowed; | 
|  | 1447 | cpuset_attach_nodemask_to = cs->mems_allowed; | 
|  | 1448 | mm = get_task_mm(leader); | 
|  | 1449 | if (mm) { | 
|  | 1450 | mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); | 
|  | 1451 | if (is_memory_migrate(cs)) | 
|  | 1452 | cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from, | 
|  | 1453 | &cpuset_attach_nodemask_to); | 
|  | 1454 | mmput(mm); | 
|  | 1455 | } | 
|  | 1456 | } | 
|  | 1457 |  | 
|  | 1458 | /* The various types of files and directories in a cpuset file system */ | 
|  | 1459 |  | 
|  | 1460 | typedef enum { | 
|  | 1461 | FILE_MEMORY_MIGRATE, | 
|  | 1462 | FILE_CPULIST, | 
|  | 1463 | FILE_MEMLIST, | 
|  | 1464 | FILE_CPU_EXCLUSIVE, | 
|  | 1465 | FILE_MEM_EXCLUSIVE, | 
|  | 1466 | FILE_MEM_HARDWALL, | 
|  | 1467 | FILE_SCHED_LOAD_BALANCE, | 
|  | 1468 | FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
|  | 1469 | FILE_MEMORY_PRESSURE_ENABLED, | 
|  | 1470 | FILE_MEMORY_PRESSURE, | 
|  | 1471 | FILE_SPREAD_PAGE, | 
|  | 1472 | FILE_SPREAD_SLAB, | 
|  | 1473 | } cpuset_filetype_t; | 
|  | 1474 |  | 
|  | 1475 | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) | 
|  | 1476 | { | 
|  | 1477 | int retval = 0; | 
|  | 1478 | struct cpuset *cs = cgroup_cs(cgrp); | 
|  | 1479 | cpuset_filetype_t type = cft->private; | 
|  | 1480 |  | 
|  | 1481 | if (!cgroup_lock_live_group(cgrp)) | 
|  | 1482 | return -ENODEV; | 
|  | 1483 |  | 
|  | 1484 | switch (type) { | 
|  | 1485 | case FILE_CPU_EXCLUSIVE: | 
|  | 1486 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); | 
|  | 1487 | break; | 
|  | 1488 | case FILE_MEM_EXCLUSIVE: | 
|  | 1489 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); | 
|  | 1490 | break; | 
|  | 1491 | case FILE_MEM_HARDWALL: | 
|  | 1492 | retval = update_flag(CS_MEM_HARDWALL, cs, val); | 
|  | 1493 | break; | 
|  | 1494 | case FILE_SCHED_LOAD_BALANCE: | 
|  | 1495 | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); | 
|  | 1496 | break; | 
|  | 1497 | case FILE_MEMORY_MIGRATE: | 
|  | 1498 | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); | 
|  | 1499 | break; | 
|  | 1500 | case FILE_MEMORY_PRESSURE_ENABLED: | 
|  | 1501 | cpuset_memory_pressure_enabled = !!val; | 
|  | 1502 | break; | 
|  | 1503 | case FILE_MEMORY_PRESSURE: | 
|  | 1504 | retval = -EACCES; | 
|  | 1505 | break; | 
|  | 1506 | case FILE_SPREAD_PAGE: | 
|  | 1507 | retval = update_flag(CS_SPREAD_PAGE, cs, val); | 
|  | 1508 | break; | 
|  | 1509 | case FILE_SPREAD_SLAB: | 
|  | 1510 | retval = update_flag(CS_SPREAD_SLAB, cs, val); | 
|  | 1511 | break; | 
|  | 1512 | default: | 
|  | 1513 | retval = -EINVAL; | 
|  | 1514 | break; | 
|  | 1515 | } | 
|  | 1516 | cgroup_unlock(); | 
|  | 1517 | return retval; | 
|  | 1518 | } | 
|  | 1519 |  | 
|  | 1520 | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) | 
|  | 1521 | { | 
|  | 1522 | int retval = 0; | 
|  | 1523 | struct cpuset *cs = cgroup_cs(cgrp); | 
|  | 1524 | cpuset_filetype_t type = cft->private; | 
|  | 1525 |  | 
|  | 1526 | if (!cgroup_lock_live_group(cgrp)) | 
|  | 1527 | return -ENODEV; | 
|  | 1528 |  | 
|  | 1529 | switch (type) { | 
|  | 1530 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
|  | 1531 | retval = update_relax_domain_level(cs, val); | 
|  | 1532 | break; | 
|  | 1533 | default: | 
|  | 1534 | retval = -EINVAL; | 
|  | 1535 | break; | 
|  | 1536 | } | 
|  | 1537 | cgroup_unlock(); | 
|  | 1538 | return retval; | 
|  | 1539 | } | 
|  | 1540 |  | 
|  | 1541 | /* | 
|  | 1542 | * Common handling for a write to a "cpus" or "mems" file. | 
|  | 1543 | */ | 
|  | 1544 | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, | 
|  | 1545 | const char *buf) | 
|  | 1546 | { | 
|  | 1547 | int retval = 0; | 
|  | 1548 | struct cpuset *cs = cgroup_cs(cgrp); | 
|  | 1549 | struct cpuset *trialcs; | 
|  | 1550 |  | 
|  | 1551 | if (!cgroup_lock_live_group(cgrp)) | 
|  | 1552 | return -ENODEV; | 
|  | 1553 |  | 
|  | 1554 | trialcs = alloc_trial_cpuset(cs); | 
|  | 1555 | if (!trialcs) { | 
|  | 1556 | retval = -ENOMEM; | 
|  | 1557 | goto out; | 
|  | 1558 | } | 
|  | 1559 |  | 
|  | 1560 | switch (cft->private) { | 
|  | 1561 | case FILE_CPULIST: | 
|  | 1562 | retval = update_cpumask(cs, trialcs, buf); | 
|  | 1563 | break; | 
|  | 1564 | case FILE_MEMLIST: | 
|  | 1565 | retval = update_nodemask(cs, trialcs, buf); | 
|  | 1566 | break; | 
|  | 1567 | default: | 
|  | 1568 | retval = -EINVAL; | 
|  | 1569 | break; | 
|  | 1570 | } | 
|  | 1571 |  | 
|  | 1572 | free_trial_cpuset(trialcs); | 
|  | 1573 | out: | 
|  | 1574 | cgroup_unlock(); | 
|  | 1575 | return retval; | 
|  | 1576 | } | 
|  | 1577 |  | 
|  | 1578 | /* | 
|  | 1579 | * These ascii lists should be read in a single call, by using a user | 
|  | 1580 | * buffer large enough to hold the entire map.  If read in smaller | 
|  | 1581 | * chunks, there is no guarantee of atomicity.  Since the display format | 
|  | 1582 | * used, list of ranges of sequential numbers, is variable length, | 
|  | 1583 | * and since these maps can change value dynamically, one could read | 
|  | 1584 | * gibberish by doing partial reads while a list was changing. | 
|  | 1585 | * A single large read to a buffer that crosses a page boundary is | 
|  | 1586 | * ok, because the result being copied to user land is not recomputed | 
|  | 1587 | * across a page fault. | 
|  | 1588 | */ | 
|  | 1589 |  | 
|  | 1590 | static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | 
|  | 1591 | { | 
|  | 1592 | size_t count; | 
|  | 1593 |  | 
|  | 1594 | mutex_lock(&callback_mutex); | 
|  | 1595 | count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); | 
|  | 1596 | mutex_unlock(&callback_mutex); | 
|  | 1597 |  | 
|  | 1598 | return count; | 
|  | 1599 | } | 
|  | 1600 |  | 
|  | 1601 | static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs) | 
|  | 1602 | { | 
|  | 1603 | size_t count; | 
|  | 1604 |  | 
|  | 1605 | mutex_lock(&callback_mutex); | 
|  | 1606 | count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed); | 
|  | 1607 | mutex_unlock(&callback_mutex); | 
|  | 1608 |  | 
|  | 1609 | return count; | 
|  | 1610 | } | 
|  | 1611 |  | 
|  | 1612 | static ssize_t cpuset_common_file_read(struct cgroup *cont, | 
|  | 1613 | struct cftype *cft, | 
|  | 1614 | struct file *file, | 
|  | 1615 | char __user *buf, | 
|  | 1616 | size_t nbytes, loff_t *ppos) | 
|  | 1617 | { | 
|  | 1618 | struct cpuset *cs = cgroup_cs(cont); | 
|  | 1619 | cpuset_filetype_t type = cft->private; | 
|  | 1620 | char *page; | 
|  | 1621 | ssize_t retval = 0; | 
|  | 1622 | char *s; | 
|  | 1623 |  | 
|  | 1624 | if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) | 
|  | 1625 | return -ENOMEM; | 
|  | 1626 |  | 
|  | 1627 | s = page; | 
|  | 1628 |  | 
|  | 1629 | switch (type) { | 
|  | 1630 | case FILE_CPULIST: | 
|  | 1631 | s += cpuset_sprintf_cpulist(s, cs); | 
|  | 1632 | break; | 
|  | 1633 | case FILE_MEMLIST: | 
|  | 1634 | s += cpuset_sprintf_memlist(s, cs); | 
|  | 1635 | break; | 
|  | 1636 | default: | 
|  | 1637 | retval = -EINVAL; | 
|  | 1638 | goto out; | 
|  | 1639 | } | 
|  | 1640 | *s++ = '\n'; | 
|  | 1641 |  | 
|  | 1642 | retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); | 
|  | 1643 | out: | 
|  | 1644 | free_page((unsigned long)page); | 
|  | 1645 | return retval; | 
|  | 1646 | } | 
|  | 1647 |  | 
|  | 1648 | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) | 
|  | 1649 | { | 
|  | 1650 | struct cpuset *cs = cgroup_cs(cont); | 
|  | 1651 | cpuset_filetype_t type = cft->private; | 
|  | 1652 | switch (type) { | 
|  | 1653 | case FILE_CPU_EXCLUSIVE: | 
|  | 1654 | return is_cpu_exclusive(cs); | 
|  | 1655 | case FILE_MEM_EXCLUSIVE: | 
|  | 1656 | return is_mem_exclusive(cs); | 
|  | 1657 | case FILE_MEM_HARDWALL: | 
|  | 1658 | return is_mem_hardwall(cs); | 
|  | 1659 | case FILE_SCHED_LOAD_BALANCE: | 
|  | 1660 | return is_sched_load_balance(cs); | 
|  | 1661 | case FILE_MEMORY_MIGRATE: | 
|  | 1662 | return is_memory_migrate(cs); | 
|  | 1663 | case FILE_MEMORY_PRESSURE_ENABLED: | 
|  | 1664 | return cpuset_memory_pressure_enabled; | 
|  | 1665 | case FILE_MEMORY_PRESSURE: | 
|  | 1666 | return fmeter_getrate(&cs->fmeter); | 
|  | 1667 | case FILE_SPREAD_PAGE: | 
|  | 1668 | return is_spread_page(cs); | 
|  | 1669 | case FILE_SPREAD_SLAB: | 
|  | 1670 | return is_spread_slab(cs); | 
|  | 1671 | default: | 
|  | 1672 | BUG(); | 
|  | 1673 | } | 
|  | 1674 |  | 
|  | 1675 | /* Unreachable but makes gcc happy */ | 
|  | 1676 | return 0; | 
|  | 1677 | } | 
|  | 1678 |  | 
|  | 1679 | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) | 
|  | 1680 | { | 
|  | 1681 | struct cpuset *cs = cgroup_cs(cont); | 
|  | 1682 | cpuset_filetype_t type = cft->private; | 
|  | 1683 | switch (type) { | 
|  | 1684 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
|  | 1685 | return cs->relax_domain_level; | 
|  | 1686 | default: | 
|  | 1687 | BUG(); | 
|  | 1688 | } | 
|  | 1689 |  | 
|  | 1690 | /* Unrechable but makes gcc happy */ | 
|  | 1691 | return 0; | 
|  | 1692 | } | 
|  | 1693 |  | 
|  | 1694 |  | 
|  | 1695 | /* | 
|  | 1696 | * for the common functions, 'private' gives the type of file | 
|  | 1697 | */ | 
|  | 1698 |  | 
|  | 1699 | static struct cftype files[] = { | 
|  | 1700 | { | 
|  | 1701 | .name = "cpus", | 
|  | 1702 | .read = cpuset_common_file_read, | 
|  | 1703 | .write_string = cpuset_write_resmask, | 
|  | 1704 | .max_write_len = (100U + 6 * NR_CPUS), | 
|  | 1705 | .private = FILE_CPULIST, | 
|  | 1706 | }, | 
|  | 1707 |  | 
|  | 1708 | { | 
|  | 1709 | .name = "mems", | 
|  | 1710 | .read = cpuset_common_file_read, | 
|  | 1711 | .write_string = cpuset_write_resmask, | 
|  | 1712 | .max_write_len = (100U + 6 * MAX_NUMNODES), | 
|  | 1713 | .private = FILE_MEMLIST, | 
|  | 1714 | }, | 
|  | 1715 |  | 
|  | 1716 | { | 
|  | 1717 | .name = "cpu_exclusive", | 
|  | 1718 | .read_u64 = cpuset_read_u64, | 
|  | 1719 | .write_u64 = cpuset_write_u64, | 
|  | 1720 | .private = FILE_CPU_EXCLUSIVE, | 
|  | 1721 | }, | 
|  | 1722 |  | 
|  | 1723 | { | 
|  | 1724 | .name = "mem_exclusive", | 
|  | 1725 | .read_u64 = cpuset_read_u64, | 
|  | 1726 | .write_u64 = cpuset_write_u64, | 
|  | 1727 | .private = FILE_MEM_EXCLUSIVE, | 
|  | 1728 | }, | 
|  | 1729 |  | 
|  | 1730 | { | 
|  | 1731 | .name = "mem_hardwall", | 
|  | 1732 | .read_u64 = cpuset_read_u64, | 
|  | 1733 | .write_u64 = cpuset_write_u64, | 
|  | 1734 | .private = FILE_MEM_HARDWALL, | 
|  | 1735 | }, | 
|  | 1736 |  | 
|  | 1737 | { | 
|  | 1738 | .name = "sched_load_balance", | 
|  | 1739 | .read_u64 = cpuset_read_u64, | 
|  | 1740 | .write_u64 = cpuset_write_u64, | 
|  | 1741 | .private = FILE_SCHED_LOAD_BALANCE, | 
|  | 1742 | }, | 
|  | 1743 |  | 
|  | 1744 | { | 
|  | 1745 | .name = "sched_relax_domain_level", | 
|  | 1746 | .read_s64 = cpuset_read_s64, | 
|  | 1747 | .write_s64 = cpuset_write_s64, | 
|  | 1748 | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
|  | 1749 | }, | 
|  | 1750 |  | 
|  | 1751 | { | 
|  | 1752 | .name = "memory_migrate", | 
|  | 1753 | .read_u64 = cpuset_read_u64, | 
|  | 1754 | .write_u64 = cpuset_write_u64, | 
|  | 1755 | .private = FILE_MEMORY_MIGRATE, | 
|  | 1756 | }, | 
|  | 1757 |  | 
|  | 1758 | { | 
|  | 1759 | .name = "memory_pressure", | 
|  | 1760 | .read_u64 = cpuset_read_u64, | 
|  | 1761 | .write_u64 = cpuset_write_u64, | 
|  | 1762 | .private = FILE_MEMORY_PRESSURE, | 
|  | 1763 | .mode = S_IRUGO, | 
|  | 1764 | }, | 
|  | 1765 |  | 
|  | 1766 | { | 
|  | 1767 | .name = "memory_spread_page", | 
|  | 1768 | .read_u64 = cpuset_read_u64, | 
|  | 1769 | .write_u64 = cpuset_write_u64, | 
|  | 1770 | .private = FILE_SPREAD_PAGE, | 
|  | 1771 | }, | 
|  | 1772 |  | 
|  | 1773 | { | 
|  | 1774 | .name = "memory_spread_slab", | 
|  | 1775 | .read_u64 = cpuset_read_u64, | 
|  | 1776 | .write_u64 = cpuset_write_u64, | 
|  | 1777 | .private = FILE_SPREAD_SLAB, | 
|  | 1778 | }, | 
|  | 1779 | }; | 
|  | 1780 |  | 
|  | 1781 | static struct cftype cft_memory_pressure_enabled = { | 
|  | 1782 | .name = "memory_pressure_enabled", | 
|  | 1783 | .read_u64 = cpuset_read_u64, | 
|  | 1784 | .write_u64 = cpuset_write_u64, | 
|  | 1785 | .private = FILE_MEMORY_PRESSURE_ENABLED, | 
|  | 1786 | }; | 
|  | 1787 |  | 
|  | 1788 | static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 
|  | 1789 | { | 
|  | 1790 | int err; | 
|  | 1791 |  | 
|  | 1792 | err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); | 
|  | 1793 | if (err) | 
|  | 1794 | return err; | 
|  | 1795 | /* memory_pressure_enabled is in root cpuset only */ | 
|  | 1796 | if (!cont->parent) | 
|  | 1797 | err = cgroup_add_file(cont, ss, | 
|  | 1798 | &cft_memory_pressure_enabled); | 
|  | 1799 | return err; | 
|  | 1800 | } | 
|  | 1801 |  | 
|  | 1802 | /* | 
|  | 1803 | * post_clone() is called during cgroup_create() when the | 
|  | 1804 | * clone_children mount argument was specified.  The cgroup | 
|  | 1805 | * can not yet have any tasks. | 
|  | 1806 | * | 
|  | 1807 | * Currently we refuse to set up the cgroup - thereby | 
|  | 1808 | * refusing the task to be entered, and as a result refusing | 
|  | 1809 | * the sys_unshare() or clone() which initiated it - if any | 
|  | 1810 | * sibling cpusets have exclusive cpus or mem. | 
|  | 1811 | * | 
|  | 1812 | * If this becomes a problem for some users who wish to | 
|  | 1813 | * allow that scenario, then cpuset_post_clone() could be | 
|  | 1814 | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | 
|  | 1815 | * (and likewise for mems) to the new cgroup. Called with cgroup_mutex | 
|  | 1816 | * held. | 
|  | 1817 | */ | 
|  | 1818 | static void cpuset_post_clone(struct cgroup *cgroup) | 
|  | 1819 | { | 
|  | 1820 | struct cgroup *parent, *child; | 
|  | 1821 | struct cpuset *cs, *parent_cs; | 
|  | 1822 |  | 
|  | 1823 | parent = cgroup->parent; | 
|  | 1824 | list_for_each_entry(child, &parent->children, sibling) { | 
|  | 1825 | cs = cgroup_cs(child); | 
|  | 1826 | if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) | 
|  | 1827 | return; | 
|  | 1828 | } | 
|  | 1829 | cs = cgroup_cs(cgroup); | 
|  | 1830 | parent_cs = cgroup_cs(parent); | 
|  | 1831 |  | 
|  | 1832 | mutex_lock(&callback_mutex); | 
|  | 1833 | cs->mems_allowed = parent_cs->mems_allowed; | 
|  | 1834 | cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); | 
|  | 1835 | mutex_unlock(&callback_mutex); | 
|  | 1836 | return; | 
|  | 1837 | } | 
|  | 1838 |  | 
|  | 1839 | /* | 
|  | 1840 | *	cpuset_create - create a cpuset | 
|  | 1841 | *	cont:	control group that the new cpuset will be part of | 
|  | 1842 | */ | 
|  | 1843 |  | 
|  | 1844 | static struct cgroup_subsys_state *cpuset_create(struct cgroup *cont) | 
|  | 1845 | { | 
|  | 1846 | struct cpuset *cs; | 
|  | 1847 | struct cpuset *parent; | 
|  | 1848 |  | 
|  | 1849 | if (!cont->parent) { | 
|  | 1850 | return &top_cpuset.css; | 
|  | 1851 | } | 
|  | 1852 | parent = cgroup_cs(cont->parent); | 
|  | 1853 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); | 
|  | 1854 | if (!cs) | 
|  | 1855 | return ERR_PTR(-ENOMEM); | 
|  | 1856 | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { | 
|  | 1857 | kfree(cs); | 
|  | 1858 | return ERR_PTR(-ENOMEM); | 
|  | 1859 | } | 
|  | 1860 |  | 
|  | 1861 | cs->flags = 0; | 
|  | 1862 | if (is_spread_page(parent)) | 
|  | 1863 | set_bit(CS_SPREAD_PAGE, &cs->flags); | 
|  | 1864 | if (is_spread_slab(parent)) | 
|  | 1865 | set_bit(CS_SPREAD_SLAB, &cs->flags); | 
|  | 1866 | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
|  | 1867 | cpumask_clear(cs->cpus_allowed); | 
|  | 1868 | nodes_clear(cs->mems_allowed); | 
|  | 1869 | fmeter_init(&cs->fmeter); | 
|  | 1870 | cs->relax_domain_level = -1; | 
|  | 1871 |  | 
|  | 1872 | cs->parent = parent; | 
|  | 1873 | number_of_cpusets++; | 
|  | 1874 | return &cs->css ; | 
|  | 1875 | } | 
|  | 1876 |  | 
|  | 1877 | /* | 
|  | 1878 | * If the cpuset being removed has its flag 'sched_load_balance' | 
|  | 1879 | * enabled, then simulate turning sched_load_balance off, which | 
|  | 1880 | * will call async_rebuild_sched_domains(). | 
|  | 1881 | */ | 
|  | 1882 |  | 
|  | 1883 | static void cpuset_destroy(struct cgroup *cont) | 
|  | 1884 | { | 
|  | 1885 | struct cpuset *cs = cgroup_cs(cont); | 
|  | 1886 |  | 
|  | 1887 | if (is_sched_load_balance(cs)) | 
|  | 1888 | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); | 
|  | 1889 |  | 
|  | 1890 | number_of_cpusets--; | 
|  | 1891 | free_cpumask_var(cs->cpus_allowed); | 
|  | 1892 | kfree(cs); | 
|  | 1893 | } | 
|  | 1894 |  | 
|  | 1895 | struct cgroup_subsys cpuset_subsys = { | 
|  | 1896 | .name = "cpuset", | 
|  | 1897 | .create = cpuset_create, | 
|  | 1898 | .destroy = cpuset_destroy, | 
|  | 1899 | .can_attach = cpuset_can_attach, | 
|  | 1900 | .attach = cpuset_attach, | 
|  | 1901 | .populate = cpuset_populate, | 
|  | 1902 | .post_clone = cpuset_post_clone, | 
|  | 1903 | .subsys_id = cpuset_subsys_id, | 
|  | 1904 | .early_init = 1, | 
|  | 1905 | }; | 
|  | 1906 |  | 
|  | 1907 | /** | 
|  | 1908 | * cpuset_init - initialize cpusets at system boot | 
|  | 1909 | * | 
|  | 1910 | * Description: Initialize top_cpuset and the cpuset internal file system, | 
|  | 1911 | **/ | 
|  | 1912 |  | 
|  | 1913 | int __init cpuset_init(void) | 
|  | 1914 | { | 
|  | 1915 | int err = 0; | 
|  | 1916 |  | 
|  | 1917 | if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) | 
|  | 1918 | BUG(); | 
|  | 1919 |  | 
|  | 1920 | cpumask_setall(top_cpuset.cpus_allowed); | 
|  | 1921 | nodes_setall(top_cpuset.mems_allowed); | 
|  | 1922 |  | 
|  | 1923 | fmeter_init(&top_cpuset.fmeter); | 
|  | 1924 | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); | 
|  | 1925 | top_cpuset.relax_domain_level = -1; | 
|  | 1926 |  | 
|  | 1927 | err = register_filesystem(&cpuset_fs_type); | 
|  | 1928 | if (err < 0) | 
|  | 1929 | return err; | 
|  | 1930 |  | 
|  | 1931 | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) | 
|  | 1932 | BUG(); | 
|  | 1933 |  | 
|  | 1934 | number_of_cpusets = 1; | 
|  | 1935 | return 0; | 
|  | 1936 | } | 
|  | 1937 |  | 
|  | 1938 | /** | 
|  | 1939 | * cpuset_do_move_task - move a given task to another cpuset | 
|  | 1940 | * @tsk: pointer to task_struct the task to move | 
|  | 1941 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | 
|  | 1942 | * | 
|  | 1943 | * Called by cgroup_scan_tasks() for each task in a cgroup. | 
|  | 1944 | * Return nonzero to stop the walk through the tasks. | 
|  | 1945 | */ | 
|  | 1946 | static void cpuset_do_move_task(struct task_struct *tsk, | 
|  | 1947 | struct cgroup_scanner *scan) | 
|  | 1948 | { | 
|  | 1949 | struct cgroup *new_cgroup = scan->data; | 
|  | 1950 |  | 
|  | 1951 | cgroup_attach_task(new_cgroup, tsk); | 
|  | 1952 | } | 
|  | 1953 |  | 
|  | 1954 | /** | 
|  | 1955 | * move_member_tasks_to_cpuset - move tasks from one cpuset to another | 
|  | 1956 | * @from: cpuset in which the tasks currently reside | 
|  | 1957 | * @to: cpuset to which the tasks will be moved | 
|  | 1958 | * | 
|  | 1959 | * Called with cgroup_mutex held | 
|  | 1960 | * callback_mutex must not be held, as cpuset_attach() will take it. | 
|  | 1961 | * | 
|  | 1962 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 
|  | 1963 | * calling callback functions for each. | 
|  | 1964 | */ | 
|  | 1965 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | 
|  | 1966 | { | 
|  | 1967 | struct cgroup_scanner scan; | 
|  | 1968 |  | 
|  | 1969 | scan.cg = from->css.cgroup; | 
|  | 1970 | scan.test_task = NULL; /* select all tasks in cgroup */ | 
|  | 1971 | scan.process_task = cpuset_do_move_task; | 
|  | 1972 | scan.heap = NULL; | 
|  | 1973 | scan.data = to->css.cgroup; | 
|  | 1974 |  | 
|  | 1975 | if (cgroup_scan_tasks(&scan)) | 
|  | 1976 | printk(KERN_ERR "move_member_tasks_to_cpuset: " | 
|  | 1977 | "cgroup_scan_tasks failed\n"); | 
|  | 1978 | } | 
|  | 1979 |  | 
|  | 1980 | /* | 
|  | 1981 | * If CPU and/or memory hotplug handlers, below, unplug any CPUs | 
|  | 1982 | * or memory nodes, we need to walk over the cpuset hierarchy, | 
|  | 1983 | * removing that CPU or node from all cpusets.  If this removes the | 
|  | 1984 | * last CPU or node from a cpuset, then move the tasks in the empty | 
|  | 1985 | * cpuset to its next-highest non-empty parent. | 
|  | 1986 | * | 
|  | 1987 | * Called with cgroup_mutex held | 
|  | 1988 | * callback_mutex must not be held, as cpuset_attach() will take it. | 
|  | 1989 | */ | 
|  | 1990 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) | 
|  | 1991 | { | 
|  | 1992 | struct cpuset *parent; | 
|  | 1993 |  | 
|  | 1994 | /* | 
|  | 1995 | * The cgroup's css_sets list is in use if there are tasks | 
|  | 1996 | * in the cpuset; the list is empty if there are none; | 
|  | 1997 | * the cs->css.refcnt seems always 0. | 
|  | 1998 | */ | 
|  | 1999 | if (list_empty(&cs->css.cgroup->css_sets)) | 
|  | 2000 | return; | 
|  | 2001 |  | 
|  | 2002 | /* | 
|  | 2003 | * Find its next-highest non-empty parent, (top cpuset | 
|  | 2004 | * has online cpus, so can't be empty). | 
|  | 2005 | */ | 
|  | 2006 | parent = cs->parent; | 
|  | 2007 | while (cpumask_empty(parent->cpus_allowed) || | 
|  | 2008 | nodes_empty(parent->mems_allowed)) | 
|  | 2009 | parent = parent->parent; | 
|  | 2010 |  | 
|  | 2011 | move_member_tasks_to_cpuset(cs, parent); | 
|  | 2012 | } | 
|  | 2013 |  | 
|  | 2014 | /* | 
|  | 2015 | * Walk the specified cpuset subtree and look for empty cpusets. | 
|  | 2016 | * The tasks of such cpuset must be moved to a parent cpuset. | 
|  | 2017 | * | 
|  | 2018 | * Called with cgroup_mutex held.  We take callback_mutex to modify | 
|  | 2019 | * cpus_allowed and mems_allowed. | 
|  | 2020 | * | 
|  | 2021 | * This walk processes the tree from top to bottom, completing one layer | 
|  | 2022 | * before dropping down to the next.  It always processes a node before | 
|  | 2023 | * any of its children. | 
|  | 2024 | * | 
|  | 2025 | * For now, since we lack memory hot unplug, we'll never see a cpuset | 
|  | 2026 | * that has tasks along with an empty 'mems'.  But if we did see such | 
|  | 2027 | * a cpuset, we'd handle it just like we do if its 'cpus' was empty. | 
|  | 2028 | */ | 
|  | 2029 | static void scan_for_empty_cpusets(struct cpuset *root) | 
|  | 2030 | { | 
|  | 2031 | LIST_HEAD(queue); | 
|  | 2032 | struct cpuset *cp;	/* scans cpusets being updated */ | 
|  | 2033 | struct cpuset *child;	/* scans child cpusets of cp */ | 
|  | 2034 | struct cgroup *cont; | 
|  | 2035 | static nodemask_t oldmems;	/* protected by cgroup_mutex */ | 
|  | 2036 |  | 
|  | 2037 | list_add_tail((struct list_head *)&root->stack_list, &queue); | 
|  | 2038 |  | 
|  | 2039 | while (!list_empty(&queue)) { | 
|  | 2040 | cp = list_first_entry(&queue, struct cpuset, stack_list); | 
|  | 2041 | list_del(queue.next); | 
|  | 2042 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 
|  | 2043 | child = cgroup_cs(cont); | 
|  | 2044 | list_add_tail(&child->stack_list, &queue); | 
|  | 2045 | } | 
|  | 2046 |  | 
|  | 2047 | /* Continue past cpusets with all cpus, mems online */ | 
|  | 2048 | if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) && | 
|  | 2049 | nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) | 
|  | 2050 | continue; | 
|  | 2051 |  | 
|  | 2052 | oldmems = cp->mems_allowed; | 
|  | 2053 |  | 
|  | 2054 | /* Remove offline cpus and mems from this cpuset. */ | 
|  | 2055 | mutex_lock(&callback_mutex); | 
|  | 2056 | cpumask_and(cp->cpus_allowed, cp->cpus_allowed, | 
|  | 2057 | cpu_active_mask); | 
|  | 2058 | nodes_and(cp->mems_allowed, cp->mems_allowed, | 
|  | 2059 | node_states[N_HIGH_MEMORY]); | 
|  | 2060 | mutex_unlock(&callback_mutex); | 
|  | 2061 |  | 
|  | 2062 | /* Move tasks from the empty cpuset to a parent */ | 
|  | 2063 | if (cpumask_empty(cp->cpus_allowed) || | 
|  | 2064 | nodes_empty(cp->mems_allowed)) | 
|  | 2065 | remove_tasks_in_empty_cpuset(cp); | 
|  | 2066 | else { | 
|  | 2067 | update_tasks_cpumask(cp, NULL); | 
|  | 2068 | update_tasks_nodemask(cp, &oldmems, NULL); | 
|  | 2069 | } | 
|  | 2070 | } | 
|  | 2071 | } | 
|  | 2072 |  | 
|  | 2073 | /* | 
|  | 2074 | * The top_cpuset tracks what CPUs and Memory Nodes are online, | 
|  | 2075 | * period.  This is necessary in order to make cpusets transparent | 
|  | 2076 | * (of no affect) on systems that are actively using CPU hotplug | 
|  | 2077 | * but making no active use of cpusets. | 
|  | 2078 | * | 
|  | 2079 | * The only exception to this is suspend/resume, where we don't | 
|  | 2080 | * modify cpusets at all. | 
|  | 2081 | * | 
|  | 2082 | * This routine ensures that top_cpuset.cpus_allowed tracks | 
|  | 2083 | * cpu_active_mask on each CPU hotplug (cpuhp) event. | 
|  | 2084 | * | 
|  | 2085 | * Called within get_online_cpus().  Needs to call cgroup_lock() | 
|  | 2086 | * before calling generate_sched_domains(). | 
|  | 2087 | */ | 
|  | 2088 | void cpuset_update_active_cpus(void) | 
|  | 2089 | { | 
|  | 2090 | struct sched_domain_attr *attr; | 
|  | 2091 | cpumask_var_t *doms; | 
|  | 2092 | int ndoms; | 
|  | 2093 |  | 
|  | 2094 | cgroup_lock(); | 
|  | 2095 | mutex_lock(&callback_mutex); | 
|  | 2096 | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); | 
|  | 2097 | mutex_unlock(&callback_mutex); | 
|  | 2098 | scan_for_empty_cpusets(&top_cpuset); | 
|  | 2099 | ndoms = generate_sched_domains(&doms, &attr); | 
|  | 2100 | cgroup_unlock(); | 
|  | 2101 |  | 
|  | 2102 | /* Have scheduler rebuild the domains */ | 
|  | 2103 | partition_sched_domains(ndoms, doms, attr); | 
|  | 2104 | } | 
|  | 2105 |  | 
|  | 2106 | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | 2107 | /* | 
|  | 2108 | * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. | 
|  | 2109 | * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. | 
|  | 2110 | * See also the previous routine cpuset_track_online_cpus(). | 
|  | 2111 | */ | 
|  | 2112 | static int cpuset_track_online_nodes(struct notifier_block *self, | 
|  | 2113 | unsigned long action, void *arg) | 
|  | 2114 | { | 
|  | 2115 | static nodemask_t oldmems;	/* protected by cgroup_mutex */ | 
|  | 2116 |  | 
|  | 2117 | cgroup_lock(); | 
|  | 2118 | switch (action) { | 
|  | 2119 | case MEM_ONLINE: | 
|  | 2120 | oldmems = top_cpuset.mems_allowed; | 
|  | 2121 | mutex_lock(&callback_mutex); | 
|  | 2122 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 
|  | 2123 | mutex_unlock(&callback_mutex); | 
|  | 2124 | update_tasks_nodemask(&top_cpuset, &oldmems, NULL); | 
|  | 2125 | break; | 
|  | 2126 | case MEM_OFFLINE: | 
|  | 2127 | /* | 
|  | 2128 | * needn't update top_cpuset.mems_allowed explicitly because | 
|  | 2129 | * scan_for_empty_cpusets() will update it. | 
|  | 2130 | */ | 
|  | 2131 | scan_for_empty_cpusets(&top_cpuset); | 
|  | 2132 | break; | 
|  | 2133 | default: | 
|  | 2134 | break; | 
|  | 2135 | } | 
|  | 2136 | cgroup_unlock(); | 
|  | 2137 |  | 
|  | 2138 | return NOTIFY_OK; | 
|  | 2139 | } | 
|  | 2140 | #endif | 
|  | 2141 |  | 
|  | 2142 | /** | 
|  | 2143 | * cpuset_init_smp - initialize cpus_allowed | 
|  | 2144 | * | 
|  | 2145 | * Description: Finish top cpuset after cpu, node maps are initialized | 
|  | 2146 | **/ | 
|  | 2147 |  | 
|  | 2148 | void __init cpuset_init_smp(void) | 
|  | 2149 | { | 
|  | 2150 | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); | 
|  | 2151 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 
|  | 2152 |  | 
|  | 2153 | hotplug_memory_notifier(cpuset_track_online_nodes, 10); | 
|  | 2154 |  | 
|  | 2155 | cpuset_wq = create_singlethread_workqueue("cpuset"); | 
|  | 2156 | BUG_ON(!cpuset_wq); | 
|  | 2157 | } | 
|  | 2158 |  | 
|  | 2159 | /** | 
|  | 2160 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | 
|  | 2161 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | 
|  | 2162 | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. | 
|  | 2163 | * | 
|  | 2164 | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset | 
|  | 2165 | * attached to the specified @tsk.  Guaranteed to return some non-empty | 
|  | 2166 | * subset of cpu_online_mask, even if this means going outside the | 
|  | 2167 | * tasks cpuset. | 
|  | 2168 | **/ | 
|  | 2169 |  | 
|  | 2170 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) | 
|  | 2171 | { | 
|  | 2172 | mutex_lock(&callback_mutex); | 
|  | 2173 | task_lock(tsk); | 
|  | 2174 | guarantee_online_cpus(task_cs(tsk), pmask); | 
|  | 2175 | task_unlock(tsk); | 
|  | 2176 | mutex_unlock(&callback_mutex); | 
|  | 2177 | } | 
|  | 2178 |  | 
|  | 2179 | void cpuset_cpus_allowed_fallback(struct task_struct *tsk) | 
|  | 2180 | { | 
|  | 2181 | const struct cpuset *cs; | 
|  | 2182 |  | 
|  | 2183 | rcu_read_lock(); | 
|  | 2184 | cs = task_cs(tsk); | 
|  | 2185 | if (cs) | 
|  | 2186 | do_set_cpus_allowed(tsk, cs->cpus_allowed); | 
|  | 2187 | rcu_read_unlock(); | 
|  | 2188 |  | 
|  | 2189 | /* | 
|  | 2190 | * We own tsk->cpus_allowed, nobody can change it under us. | 
|  | 2191 | * | 
|  | 2192 | * But we used cs && cs->cpus_allowed lockless and thus can | 
|  | 2193 | * race with cgroup_attach_task() or update_cpumask() and get | 
|  | 2194 | * the wrong tsk->cpus_allowed. However, both cases imply the | 
|  | 2195 | * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | 
|  | 2196 | * which takes task_rq_lock(). | 
|  | 2197 | * | 
|  | 2198 | * If we are called after it dropped the lock we must see all | 
|  | 2199 | * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | 
|  | 2200 | * set any mask even if it is not right from task_cs() pov, | 
|  | 2201 | * the pending set_cpus_allowed_ptr() will fix things. | 
|  | 2202 | * | 
|  | 2203 | * select_fallback_rq() will fix things ups and set cpu_possible_mask | 
|  | 2204 | * if required. | 
|  | 2205 | */ | 
|  | 2206 | } | 
|  | 2207 |  | 
|  | 2208 | void cpuset_init_current_mems_allowed(void) | 
|  | 2209 | { | 
|  | 2210 | nodes_setall(current->mems_allowed); | 
|  | 2211 | } | 
|  | 2212 |  | 
|  | 2213 | /** | 
|  | 2214 | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | 
|  | 2215 | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | 
|  | 2216 | * | 
|  | 2217 | * Description: Returns the nodemask_t mems_allowed of the cpuset | 
|  | 2218 | * attached to the specified @tsk.  Guaranteed to return some non-empty | 
|  | 2219 | * subset of node_states[N_HIGH_MEMORY], even if this means going outside the | 
|  | 2220 | * tasks cpuset. | 
|  | 2221 | **/ | 
|  | 2222 |  | 
|  | 2223 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | 
|  | 2224 | { | 
|  | 2225 | nodemask_t mask; | 
|  | 2226 |  | 
|  | 2227 | mutex_lock(&callback_mutex); | 
|  | 2228 | task_lock(tsk); | 
|  | 2229 | guarantee_online_mems(task_cs(tsk), &mask); | 
|  | 2230 | task_unlock(tsk); | 
|  | 2231 | mutex_unlock(&callback_mutex); | 
|  | 2232 |  | 
|  | 2233 | return mask; | 
|  | 2234 | } | 
|  | 2235 |  | 
|  | 2236 | /** | 
|  | 2237 | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed | 
|  | 2238 | * @nodemask: the nodemask to be checked | 
|  | 2239 | * | 
|  | 2240 | * Are any of the nodes in the nodemask allowed in current->mems_allowed? | 
|  | 2241 | */ | 
|  | 2242 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) | 
|  | 2243 | { | 
|  | 2244 | return nodes_intersects(*nodemask, current->mems_allowed); | 
|  | 2245 | } | 
|  | 2246 |  | 
|  | 2247 | /* | 
|  | 2248 | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or | 
|  | 2249 | * mem_hardwall ancestor to the specified cpuset.  Call holding | 
|  | 2250 | * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall | 
|  | 2251 | * (an unusual configuration), then returns the root cpuset. | 
|  | 2252 | */ | 
|  | 2253 | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) | 
|  | 2254 | { | 
|  | 2255 | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) | 
|  | 2256 | cs = cs->parent; | 
|  | 2257 | return cs; | 
|  | 2258 | } | 
|  | 2259 |  | 
|  | 2260 | /** | 
|  | 2261 | * cpuset_node_allowed_softwall - Can we allocate on a memory node? | 
|  | 2262 | * @node: is this an allowed node? | 
|  | 2263 | * @gfp_mask: memory allocation flags | 
|  | 2264 | * | 
|  | 2265 | * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is | 
|  | 2266 | * set, yes, we can always allocate.  If node is in our task's mems_allowed, | 
|  | 2267 | * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest | 
|  | 2268 | * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been | 
|  | 2269 | * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE | 
|  | 2270 | * flag, yes. | 
|  | 2271 | * Otherwise, no. | 
|  | 2272 | * | 
|  | 2273 | * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to | 
|  | 2274 | * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall() | 
|  | 2275 | * might sleep, and might allow a node from an enclosing cpuset. | 
|  | 2276 | * | 
|  | 2277 | * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall | 
|  | 2278 | * cpusets, and never sleeps. | 
|  | 2279 | * | 
|  | 2280 | * The __GFP_THISNODE placement logic is really handled elsewhere, | 
|  | 2281 | * by forcibly using a zonelist starting at a specified node, and by | 
|  | 2282 | * (in get_page_from_freelist()) refusing to consider the zones for | 
|  | 2283 | * any node on the zonelist except the first.  By the time any such | 
|  | 2284 | * calls get to this routine, we should just shut up and say 'yes'. | 
|  | 2285 | * | 
|  | 2286 | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, | 
|  | 2287 | * and do not allow allocations outside the current tasks cpuset | 
|  | 2288 | * unless the task has been OOM killed as is marked TIF_MEMDIE. | 
|  | 2289 | * GFP_KERNEL allocations are not so marked, so can escape to the | 
|  | 2290 | * nearest enclosing hardwalled ancestor cpuset. | 
|  | 2291 | * | 
|  | 2292 | * Scanning up parent cpusets requires callback_mutex.  The | 
|  | 2293 | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | 
|  | 2294 | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | 
|  | 2295 | * current tasks mems_allowed came up empty on the first pass over | 
|  | 2296 | * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the | 
|  | 2297 | * cpuset are short of memory, might require taking the callback_mutex | 
|  | 2298 | * mutex. | 
|  | 2299 | * | 
|  | 2300 | * The first call here from mm/page_alloc:get_page_from_freelist() | 
|  | 2301 | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, | 
|  | 2302 | * so no allocation on a node outside the cpuset is allowed (unless | 
|  | 2303 | * in interrupt, of course). | 
|  | 2304 | * | 
|  | 2305 | * The second pass through get_page_from_freelist() doesn't even call | 
|  | 2306 | * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages() | 
|  | 2307 | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | 
|  | 2308 | * in alloc_flags.  That logic and the checks below have the combined | 
|  | 2309 | * affect that: | 
|  | 2310 | *	in_interrupt - any node ok (current task context irrelevant) | 
|  | 2311 | *	GFP_ATOMIC   - any node ok | 
|  | 2312 | *	TIF_MEMDIE   - any node ok | 
|  | 2313 | *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok | 
|  | 2314 | *	GFP_USER     - only nodes in current tasks mems allowed ok. | 
|  | 2315 | * | 
|  | 2316 | * Rule: | 
|  | 2317 | *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you | 
|  | 2318 | *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables | 
|  | 2319 | *    the code that might scan up ancestor cpusets and sleep. | 
|  | 2320 | */ | 
|  | 2321 | int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) | 
|  | 2322 | { | 
|  | 2323 | const struct cpuset *cs;	/* current cpuset ancestors */ | 
|  | 2324 | int allowed;			/* is allocation in zone z allowed? */ | 
|  | 2325 |  | 
|  | 2326 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 
|  | 2327 | return 1; | 
|  | 2328 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); | 
|  | 2329 | if (node_isset(node, current->mems_allowed)) | 
|  | 2330 | return 1; | 
|  | 2331 | /* | 
|  | 2332 | * Allow tasks that have access to memory reserves because they have | 
|  | 2333 | * been OOM killed to get memory anywhere. | 
|  | 2334 | */ | 
|  | 2335 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | 
|  | 2336 | return 1; | 
|  | 2337 | if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */ | 
|  | 2338 | return 0; | 
|  | 2339 |  | 
|  | 2340 | if (current->flags & PF_EXITING) /* Let dying task have memory */ | 
|  | 2341 | return 1; | 
|  | 2342 |  | 
|  | 2343 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ | 
|  | 2344 | mutex_lock(&callback_mutex); | 
|  | 2345 |  | 
|  | 2346 | task_lock(current); | 
|  | 2347 | cs = nearest_hardwall_ancestor(task_cs(current)); | 
|  | 2348 | allowed = node_isset(node, cs->mems_allowed); | 
|  | 2349 | task_unlock(current); | 
|  | 2350 |  | 
|  | 2351 | mutex_unlock(&callback_mutex); | 
|  | 2352 | return allowed; | 
|  | 2353 | } | 
|  | 2354 |  | 
|  | 2355 | /* | 
|  | 2356 | * cpuset_node_allowed_hardwall - Can we allocate on a memory node? | 
|  | 2357 | * @node: is this an allowed node? | 
|  | 2358 | * @gfp_mask: memory allocation flags | 
|  | 2359 | * | 
|  | 2360 | * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is | 
|  | 2361 | * set, yes, we can always allocate.  If node is in our task's mems_allowed, | 
|  | 2362 | * yes.  If the task has been OOM killed and has access to memory reserves as | 
|  | 2363 | * specified by the TIF_MEMDIE flag, yes. | 
|  | 2364 | * Otherwise, no. | 
|  | 2365 | * | 
|  | 2366 | * The __GFP_THISNODE placement logic is really handled elsewhere, | 
|  | 2367 | * by forcibly using a zonelist starting at a specified node, and by | 
|  | 2368 | * (in get_page_from_freelist()) refusing to consider the zones for | 
|  | 2369 | * any node on the zonelist except the first.  By the time any such | 
|  | 2370 | * calls get to this routine, we should just shut up and say 'yes'. | 
|  | 2371 | * | 
|  | 2372 | * Unlike the cpuset_node_allowed_softwall() variant, above, | 
|  | 2373 | * this variant requires that the node be in the current task's | 
|  | 2374 | * mems_allowed or that we're in interrupt.  It does not scan up the | 
|  | 2375 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | 
|  | 2376 | * It never sleeps. | 
|  | 2377 | */ | 
|  | 2378 | int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) | 
|  | 2379 | { | 
|  | 2380 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 
|  | 2381 | return 1; | 
|  | 2382 | if (node_isset(node, current->mems_allowed)) | 
|  | 2383 | return 1; | 
|  | 2384 | /* | 
|  | 2385 | * Allow tasks that have access to memory reserves because they have | 
|  | 2386 | * been OOM killed to get memory anywhere. | 
|  | 2387 | */ | 
|  | 2388 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | 
|  | 2389 | return 1; | 
|  | 2390 | return 0; | 
|  | 2391 | } | 
|  | 2392 |  | 
|  | 2393 | /** | 
|  | 2394 | * cpuset_unlock - release lock on cpuset changes | 
|  | 2395 | * | 
|  | 2396 | * Undo the lock taken in a previous cpuset_lock() call. | 
|  | 2397 | */ | 
|  | 2398 |  | 
|  | 2399 | void cpuset_unlock(void) | 
|  | 2400 | { | 
|  | 2401 | mutex_unlock(&callback_mutex); | 
|  | 2402 | } | 
|  | 2403 |  | 
|  | 2404 | /** | 
|  | 2405 | * cpuset_mem_spread_node() - On which node to begin search for a file page | 
|  | 2406 | * cpuset_slab_spread_node() - On which node to begin search for a slab page | 
|  | 2407 | * | 
|  | 2408 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | 
|  | 2409 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | 
|  | 2410 | * and if the memory allocation used cpuset_mem_spread_node() | 
|  | 2411 | * to determine on which node to start looking, as it will for | 
|  | 2412 | * certain page cache or slab cache pages such as used for file | 
|  | 2413 | * system buffers and inode caches, then instead of starting on the | 
|  | 2414 | * local node to look for a free page, rather spread the starting | 
|  | 2415 | * node around the tasks mems_allowed nodes. | 
|  | 2416 | * | 
|  | 2417 | * We don't have to worry about the returned node being offline | 
|  | 2418 | * because "it can't happen", and even if it did, it would be ok. | 
|  | 2419 | * | 
|  | 2420 | * The routines calling guarantee_online_mems() are careful to | 
|  | 2421 | * only set nodes in task->mems_allowed that are online.  So it | 
|  | 2422 | * should not be possible for the following code to return an | 
|  | 2423 | * offline node.  But if it did, that would be ok, as this routine | 
|  | 2424 | * is not returning the node where the allocation must be, only | 
|  | 2425 | * the node where the search should start.  The zonelist passed to | 
|  | 2426 | * __alloc_pages() will include all nodes.  If the slab allocator | 
|  | 2427 | * is passed an offline node, it will fall back to the local node. | 
|  | 2428 | * See kmem_cache_alloc_node(). | 
|  | 2429 | */ | 
|  | 2430 |  | 
|  | 2431 | static int cpuset_spread_node(int *rotor) | 
|  | 2432 | { | 
|  | 2433 | int node; | 
|  | 2434 |  | 
|  | 2435 | node = next_node(*rotor, current->mems_allowed); | 
|  | 2436 | if (node == MAX_NUMNODES) | 
|  | 2437 | node = first_node(current->mems_allowed); | 
|  | 2438 | *rotor = node; | 
|  | 2439 | return node; | 
|  | 2440 | } | 
|  | 2441 |  | 
|  | 2442 | int cpuset_mem_spread_node(void) | 
|  | 2443 | { | 
|  | 2444 | if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) | 
|  | 2445 | current->cpuset_mem_spread_rotor = | 
|  | 2446 | node_random(¤t->mems_allowed); | 
|  | 2447 |  | 
|  | 2448 | return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); | 
|  | 2449 | } | 
|  | 2450 |  | 
|  | 2451 | int cpuset_slab_spread_node(void) | 
|  | 2452 | { | 
|  | 2453 | if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) | 
|  | 2454 | current->cpuset_slab_spread_rotor = | 
|  | 2455 | node_random(¤t->mems_allowed); | 
|  | 2456 |  | 
|  | 2457 | return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); | 
|  | 2458 | } | 
|  | 2459 |  | 
|  | 2460 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | 
|  | 2461 |  | 
|  | 2462 | /** | 
|  | 2463 | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? | 
|  | 2464 | * @tsk1: pointer to task_struct of some task. | 
|  | 2465 | * @tsk2: pointer to task_struct of some other task. | 
|  | 2466 | * | 
|  | 2467 | * Description: Return true if @tsk1's mems_allowed intersects the | 
|  | 2468 | * mems_allowed of @tsk2.  Used by the OOM killer to determine if | 
|  | 2469 | * one of the task's memory usage might impact the memory available | 
|  | 2470 | * to the other. | 
|  | 2471 | **/ | 
|  | 2472 |  | 
|  | 2473 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 
|  | 2474 | const struct task_struct *tsk2) | 
|  | 2475 | { | 
|  | 2476 | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); | 
|  | 2477 | } | 
|  | 2478 |  | 
|  | 2479 | /** | 
|  | 2480 | * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed | 
|  | 2481 | * @task: pointer to task_struct of some task. | 
|  | 2482 | * | 
|  | 2483 | * Description: Prints @task's name, cpuset name, and cached copy of its | 
|  | 2484 | * mems_allowed to the kernel log.  Must hold task_lock(task) to allow | 
|  | 2485 | * dereferencing task_cs(task). | 
|  | 2486 | */ | 
|  | 2487 | void cpuset_print_task_mems_allowed(struct task_struct *tsk) | 
|  | 2488 | { | 
|  | 2489 | struct dentry *dentry; | 
|  | 2490 |  | 
|  | 2491 | dentry = task_cs(tsk)->css.cgroup->dentry; | 
|  | 2492 | spin_lock(&cpuset_buffer_lock); | 
|  | 2493 |  | 
|  | 2494 | if (!dentry) { | 
|  | 2495 | strcpy(cpuset_name, "/"); | 
|  | 2496 | } else { | 
|  | 2497 | spin_lock(&dentry->d_lock); | 
|  | 2498 | strlcpy(cpuset_name, (const char *)dentry->d_name.name, | 
|  | 2499 | CPUSET_NAME_LEN); | 
|  | 2500 | spin_unlock(&dentry->d_lock); | 
|  | 2501 | } | 
|  | 2502 |  | 
|  | 2503 | nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, | 
|  | 2504 | tsk->mems_allowed); | 
|  | 2505 | printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", | 
|  | 2506 | tsk->comm, cpuset_name, cpuset_nodelist); | 
|  | 2507 | spin_unlock(&cpuset_buffer_lock); | 
|  | 2508 | } | 
|  | 2509 |  | 
|  | 2510 | /* | 
|  | 2511 | * Collection of memory_pressure is suppressed unless | 
|  | 2512 | * this flag is enabled by writing "1" to the special | 
|  | 2513 | * cpuset file 'memory_pressure_enabled' in the root cpuset. | 
|  | 2514 | */ | 
|  | 2515 |  | 
|  | 2516 | int cpuset_memory_pressure_enabled __read_mostly; | 
|  | 2517 |  | 
|  | 2518 | /** | 
|  | 2519 | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | 
|  | 2520 | * | 
|  | 2521 | * Keep a running average of the rate of synchronous (direct) | 
|  | 2522 | * page reclaim efforts initiated by tasks in each cpuset. | 
|  | 2523 | * | 
|  | 2524 | * This represents the rate at which some task in the cpuset | 
|  | 2525 | * ran low on memory on all nodes it was allowed to use, and | 
|  | 2526 | * had to enter the kernels page reclaim code in an effort to | 
|  | 2527 | * create more free memory by tossing clean pages or swapping | 
|  | 2528 | * or writing dirty pages. | 
|  | 2529 | * | 
|  | 2530 | * Display to user space in the per-cpuset read-only file | 
|  | 2531 | * "memory_pressure".  Value displayed is an integer | 
|  | 2532 | * representing the recent rate of entry into the synchronous | 
|  | 2533 | * (direct) page reclaim by any task attached to the cpuset. | 
|  | 2534 | **/ | 
|  | 2535 |  | 
|  | 2536 | void __cpuset_memory_pressure_bump(void) | 
|  | 2537 | { | 
|  | 2538 | task_lock(current); | 
|  | 2539 | fmeter_markevent(&task_cs(current)->fmeter); | 
|  | 2540 | task_unlock(current); | 
|  | 2541 | } | 
|  | 2542 |  | 
|  | 2543 | #ifdef CONFIG_PROC_PID_CPUSET | 
|  | 2544 | /* | 
|  | 2545 | * proc_cpuset_show() | 
|  | 2546 | *  - Print tasks cpuset path into seq_file. | 
|  | 2547 | *  - Used for /proc/<pid>/cpuset. | 
|  | 2548 | *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it | 
|  | 2549 | *    doesn't really matter if tsk->cpuset changes after we read it, | 
|  | 2550 | *    and we take cgroup_mutex, keeping cpuset_attach() from changing it | 
|  | 2551 | *    anyway. | 
|  | 2552 | */ | 
|  | 2553 | static int proc_cpuset_show(struct seq_file *m, void *unused_v) | 
|  | 2554 | { | 
|  | 2555 | struct pid *pid; | 
|  | 2556 | struct task_struct *tsk; | 
|  | 2557 | char *buf; | 
|  | 2558 | struct cgroup_subsys_state *css; | 
|  | 2559 | int retval; | 
|  | 2560 |  | 
|  | 2561 | retval = -ENOMEM; | 
|  | 2562 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | 2563 | if (!buf) | 
|  | 2564 | goto out; | 
|  | 2565 |  | 
|  | 2566 | retval = -ESRCH; | 
|  | 2567 | pid = m->private; | 
|  | 2568 | tsk = get_pid_task(pid, PIDTYPE_PID); | 
|  | 2569 | if (!tsk) | 
|  | 2570 | goto out_free; | 
|  | 2571 |  | 
|  | 2572 | retval = -EINVAL; | 
|  | 2573 | cgroup_lock(); | 
|  | 2574 | css = task_subsys_state(tsk, cpuset_subsys_id); | 
|  | 2575 | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); | 
|  | 2576 | if (retval < 0) | 
|  | 2577 | goto out_unlock; | 
|  | 2578 | seq_puts(m, buf); | 
|  | 2579 | seq_putc(m, '\n'); | 
|  | 2580 | out_unlock: | 
|  | 2581 | cgroup_unlock(); | 
|  | 2582 | put_task_struct(tsk); | 
|  | 2583 | out_free: | 
|  | 2584 | kfree(buf); | 
|  | 2585 | out: | 
|  | 2586 | return retval; | 
|  | 2587 | } | 
|  | 2588 |  | 
|  | 2589 | static int cpuset_open(struct inode *inode, struct file *file) | 
|  | 2590 | { | 
|  | 2591 | struct pid *pid = PROC_I(inode)->pid; | 
|  | 2592 | return single_open(file, proc_cpuset_show, pid); | 
|  | 2593 | } | 
|  | 2594 |  | 
|  | 2595 | const struct file_operations proc_cpuset_operations = { | 
|  | 2596 | .open		= cpuset_open, | 
|  | 2597 | .read		= seq_read, | 
|  | 2598 | .llseek		= seq_lseek, | 
|  | 2599 | .release	= single_release, | 
|  | 2600 | }; | 
|  | 2601 | #endif /* CONFIG_PROC_PID_CPUSET */ | 
|  | 2602 |  | 
|  | 2603 | /* Display task mems_allowed in /proc/<pid>/status file. */ | 
|  | 2604 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) | 
|  | 2605 | { | 
|  | 2606 | seq_printf(m, "Mems_allowed:\t"); | 
|  | 2607 | seq_nodemask(m, &task->mems_allowed); | 
|  | 2608 | seq_printf(m, "\n"); | 
|  | 2609 | seq_printf(m, "Mems_allowed_list:\t"); | 
|  | 2610 | seq_nodemask_list(m, &task->mems_allowed); | 
|  | 2611 | seq_printf(m, "\n"); | 
|  | 2612 | } |