| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | 5 | * this file except in compliance with the License.  You can obtain a copy | 
|  | 6 | * in the file LICENSE in the source distribution or at | 
|  | 7 | * https://www.openssl.org/source/license.html | 
|  | 8 | */ | 
|  | 9 |  | 
|  | 10 | #include <stdio.h> | 
|  | 11 | #include <stdlib.h> | 
|  | 12 | #include <openssl/objects.h> | 
|  | 13 | #include <openssl/evp.h> | 
|  | 14 | #include <openssl/hmac.h> | 
|  | 15 | #include <openssl/ocsp.h> | 
|  | 16 | #include <openssl/conf.h> | 
|  | 17 | #include <openssl/x509v3.h> | 
|  | 18 | #include <openssl/dh.h> | 
|  | 19 | #include <openssl/bn.h> | 
|  | 20 | #include "internal/nelem.h" | 
|  | 21 | #include "ssl_local.h" | 
|  | 22 | #include <openssl/ct.h> | 
|  | 23 |  | 
|  | 24 | static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey); | 
|  | 25 | static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu); | 
|  | 26 |  | 
|  | 27 | SSL3_ENC_METHOD const TLSv1_enc_data = { | 
|  | 28 | tls1_enc, | 
|  | 29 | tls1_mac, | 
|  | 30 | tls1_setup_key_block, | 
|  | 31 | tls1_generate_master_secret, | 
|  | 32 | tls1_change_cipher_state, | 
|  | 33 | tls1_final_finish_mac, | 
|  | 34 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, | 
|  | 35 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, | 
|  | 36 | tls1_alert_code, | 
|  | 37 | tls1_export_keying_material, | 
|  | 38 | 0, | 
|  | 39 | ssl3_set_handshake_header, | 
|  | 40 | tls_close_construct_packet, | 
|  | 41 | ssl3_handshake_write | 
|  | 42 | }; | 
|  | 43 |  | 
|  | 44 | SSL3_ENC_METHOD const TLSv1_1_enc_data = { | 
|  | 45 | tls1_enc, | 
|  | 46 | tls1_mac, | 
|  | 47 | tls1_setup_key_block, | 
|  | 48 | tls1_generate_master_secret, | 
|  | 49 | tls1_change_cipher_state, | 
|  | 50 | tls1_final_finish_mac, | 
|  | 51 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, | 
|  | 52 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, | 
|  | 53 | tls1_alert_code, | 
|  | 54 | tls1_export_keying_material, | 
|  | 55 | SSL_ENC_FLAG_EXPLICIT_IV, | 
|  | 56 | ssl3_set_handshake_header, | 
|  | 57 | tls_close_construct_packet, | 
|  | 58 | ssl3_handshake_write | 
|  | 59 | }; | 
|  | 60 |  | 
|  | 61 | SSL3_ENC_METHOD const TLSv1_2_enc_data = { | 
|  | 62 | tls1_enc, | 
|  | 63 | tls1_mac, | 
|  | 64 | tls1_setup_key_block, | 
|  | 65 | tls1_generate_master_secret, | 
|  | 66 | tls1_change_cipher_state, | 
|  | 67 | tls1_final_finish_mac, | 
|  | 68 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, | 
|  | 69 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, | 
|  | 70 | tls1_alert_code, | 
|  | 71 | tls1_export_keying_material, | 
|  | 72 | SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF | 
|  | 73 | | SSL_ENC_FLAG_TLS1_2_CIPHERS, | 
|  | 74 | ssl3_set_handshake_header, | 
|  | 75 | tls_close_construct_packet, | 
|  | 76 | ssl3_handshake_write | 
|  | 77 | }; | 
|  | 78 |  | 
|  | 79 | SSL3_ENC_METHOD const TLSv1_3_enc_data = { | 
|  | 80 | tls13_enc, | 
|  | 81 | tls1_mac, | 
|  | 82 | tls13_setup_key_block, | 
|  | 83 | tls13_generate_master_secret, | 
|  | 84 | tls13_change_cipher_state, | 
|  | 85 | tls13_final_finish_mac, | 
|  | 86 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, | 
|  | 87 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, | 
|  | 88 | tls13_alert_code, | 
|  | 89 | tls13_export_keying_material, | 
|  | 90 | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, | 
|  | 91 | ssl3_set_handshake_header, | 
|  | 92 | tls_close_construct_packet, | 
|  | 93 | ssl3_handshake_write | 
|  | 94 | }; | 
|  | 95 |  | 
|  | 96 | long tls1_default_timeout(void) | 
|  | 97 | { | 
|  | 98 | /* | 
|  | 99 | * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for | 
|  | 100 | * http, the cache would over fill | 
|  | 101 | */ | 
|  | 102 | return (60 * 60 * 2); | 
|  | 103 | } | 
|  | 104 |  | 
|  | 105 | int tls1_new(SSL *s) | 
|  | 106 | { | 
|  | 107 | if (!ssl3_new(s)) | 
|  | 108 | return 0; | 
|  | 109 | if (!s->method->ssl_clear(s)) | 
|  | 110 | return 0; | 
|  | 111 |  | 
|  | 112 | return 1; | 
|  | 113 | } | 
|  | 114 |  | 
|  | 115 | void tls1_free(SSL *s) | 
|  | 116 | { | 
|  | 117 | OPENSSL_free(s->ext.session_ticket); | 
|  | 118 | ssl3_free(s); | 
|  | 119 | } | 
|  | 120 |  | 
|  | 121 | int tls1_clear(SSL *s) | 
|  | 122 | { | 
|  | 123 | if (!ssl3_clear(s)) | 
|  | 124 | return 0; | 
|  | 125 |  | 
|  | 126 | if (s->method->version == TLS_ANY_VERSION) | 
|  | 127 | s->version = TLS_MAX_VERSION; | 
|  | 128 | else | 
|  | 129 | s->version = s->method->version; | 
|  | 130 |  | 
|  | 131 | return 1; | 
|  | 132 | } | 
|  | 133 |  | 
|  | 134 | #ifndef OPENSSL_NO_EC | 
|  | 135 |  | 
|  | 136 | /* | 
|  | 137 | * Table of curve information. | 
|  | 138 | * Do not delete entries or reorder this array! It is used as a lookup | 
|  | 139 | * table: the index of each entry is one less than the TLS curve id. | 
|  | 140 | */ | 
|  | 141 | static const TLS_GROUP_INFO nid_list[] = { | 
|  | 142 | {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */ | 
|  | 143 | {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */ | 
|  | 144 | {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */ | 
|  | 145 | {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */ | 
|  | 146 | {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */ | 
|  | 147 | {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */ | 
|  | 148 | {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */ | 
|  | 149 | {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */ | 
|  | 150 | {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */ | 
|  | 151 | {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */ | 
|  | 152 | {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */ | 
|  | 153 | {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */ | 
|  | 154 | {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */ | 
|  | 155 | {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */ | 
|  | 156 | {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */ | 
|  | 157 | {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */ | 
|  | 158 | {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */ | 
|  | 159 | {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */ | 
|  | 160 | {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */ | 
|  | 161 | {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */ | 
|  | 162 | {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */ | 
|  | 163 | {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */ | 
|  | 164 | {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */ | 
|  | 165 | {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */ | 
|  | 166 | {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */ | 
|  | 167 | {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */ | 
|  | 168 | {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */ | 
|  | 169 | {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */ | 
|  | 170 | {EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */ | 
|  | 171 | {EVP_PKEY_X448, 224, TLS_CURVE_CUSTOM}, /* X448 (30) */ | 
|  | 172 | }; | 
|  | 173 |  | 
|  | 174 | static const unsigned char ecformats_default[] = { | 
|  | 175 | TLSEXT_ECPOINTFORMAT_uncompressed, | 
|  | 176 | TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, | 
|  | 177 | TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 | 
|  | 178 | }; | 
|  | 179 |  | 
|  | 180 | /* The default curves */ | 
|  | 181 | static const uint16_t eccurves_default[] = { | 
|  | 182 | 29,                      /* X25519 (29) */ | 
|  | 183 | 23,                      /* secp256r1 (23) */ | 
|  | 184 | 30,                      /* X448 (30) */ | 
|  | 185 | 25,                      /* secp521r1 (25) */ | 
|  | 186 | 24,                      /* secp384r1 (24) */ | 
|  | 187 | }; | 
|  | 188 |  | 
|  | 189 | static const uint16_t suiteb_curves[] = { | 
|  | 190 | TLSEXT_curve_P_256, | 
|  | 191 | TLSEXT_curve_P_384 | 
|  | 192 | }; | 
|  | 193 |  | 
|  | 194 | const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id) | 
|  | 195 | { | 
|  | 196 | /* ECC curves from RFC 4492 and RFC 7027 */ | 
|  | 197 | if (group_id < 1 || group_id > OSSL_NELEM(nid_list)) | 
|  | 198 | return NULL; | 
|  | 199 | return &nid_list[group_id - 1]; | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | static uint16_t tls1_nid2group_id(int nid) | 
|  | 203 | { | 
|  | 204 | size_t i; | 
|  | 205 | for (i = 0; i < OSSL_NELEM(nid_list); i++) { | 
|  | 206 | if (nid_list[i].nid == nid) | 
|  | 207 | return (uint16_t)(i + 1); | 
|  | 208 | } | 
|  | 209 | return 0; | 
|  | 210 | } | 
|  | 211 |  | 
|  | 212 | /* | 
|  | 213 | * Set *pgroups to the supported groups list and *pgroupslen to | 
|  | 214 | * the number of groups supported. | 
|  | 215 | */ | 
|  | 216 | void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, | 
|  | 217 | size_t *pgroupslen) | 
|  | 218 | { | 
|  | 219 |  | 
|  | 220 | /* For Suite B mode only include P-256, P-384 */ | 
|  | 221 | switch (tls1_suiteb(s)) { | 
|  | 222 | case SSL_CERT_FLAG_SUITEB_128_LOS: | 
|  | 223 | *pgroups = suiteb_curves; | 
|  | 224 | *pgroupslen = OSSL_NELEM(suiteb_curves); | 
|  | 225 | break; | 
|  | 226 |  | 
|  | 227 | case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: | 
|  | 228 | *pgroups = suiteb_curves; | 
|  | 229 | *pgroupslen = 1; | 
|  | 230 | break; | 
|  | 231 |  | 
|  | 232 | case SSL_CERT_FLAG_SUITEB_192_LOS: | 
|  | 233 | *pgroups = suiteb_curves + 1; | 
|  | 234 | *pgroupslen = 1; | 
|  | 235 | break; | 
|  | 236 |  | 
|  | 237 | default: | 
|  | 238 | if (s->ext.supportedgroups == NULL) { | 
|  | 239 | *pgroups = eccurves_default; | 
|  | 240 | *pgroupslen = OSSL_NELEM(eccurves_default); | 
|  | 241 | } else { | 
|  | 242 | *pgroups = s->ext.supportedgroups; | 
|  | 243 | *pgroupslen = s->ext.supportedgroups_len; | 
|  | 244 | } | 
|  | 245 | break; | 
|  | 246 | } | 
|  | 247 | } | 
|  | 248 |  | 
|  | 249 | /* See if curve is allowed by security callback */ | 
|  | 250 | int tls_curve_allowed(SSL *s, uint16_t curve, int op) | 
|  | 251 | { | 
|  | 252 | const TLS_GROUP_INFO *cinfo = tls1_group_id_lookup(curve); | 
|  | 253 | unsigned char ctmp[2]; | 
|  | 254 |  | 
|  | 255 | if (cinfo == NULL) | 
|  | 256 | return 0; | 
|  | 257 | # ifdef OPENSSL_NO_EC2M | 
|  | 258 | if (cinfo->flags & TLS_CURVE_CHAR2) | 
|  | 259 | return 0; | 
|  | 260 | # endif | 
|  | 261 | ctmp[0] = curve >> 8; | 
|  | 262 | ctmp[1] = curve & 0xff; | 
|  | 263 | return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)ctmp); | 
|  | 264 | } | 
|  | 265 |  | 
|  | 266 | /* Return 1 if "id" is in "list" */ | 
|  | 267 | static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) | 
|  | 268 | { | 
|  | 269 | size_t i; | 
|  | 270 | for (i = 0; i < listlen; i++) | 
|  | 271 | if (list[i] == id) | 
|  | 272 | return 1; | 
|  | 273 | return 0; | 
|  | 274 | } | 
|  | 275 |  | 
|  | 276 | /*- | 
|  | 277 | * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 | 
|  | 278 | * if there is no match. | 
|  | 279 | * For nmatch == -1, return number of matches | 
|  | 280 | * For nmatch == -2, return the id of the group to use for | 
|  | 281 | * a tmp key, or 0 if there is no match. | 
|  | 282 | */ | 
|  | 283 | uint16_t tls1_shared_group(SSL *s, int nmatch) | 
|  | 284 | { | 
|  | 285 | const uint16_t *pref, *supp; | 
|  | 286 | size_t num_pref, num_supp, i; | 
|  | 287 | int k; | 
|  | 288 |  | 
|  | 289 | /* Can't do anything on client side */ | 
|  | 290 | if (s->server == 0) | 
|  | 291 | return 0; | 
|  | 292 | if (nmatch == -2) { | 
|  | 293 | if (tls1_suiteb(s)) { | 
|  | 294 | /* | 
|  | 295 | * For Suite B ciphersuite determines curve: we already know | 
|  | 296 | * these are acceptable due to previous checks. | 
|  | 297 | */ | 
|  | 298 | unsigned long cid = s->s3->tmp.new_cipher->id; | 
|  | 299 |  | 
|  | 300 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) | 
|  | 301 | return TLSEXT_curve_P_256; | 
|  | 302 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) | 
|  | 303 | return TLSEXT_curve_P_384; | 
|  | 304 | /* Should never happen */ | 
|  | 305 | return 0; | 
|  | 306 | } | 
|  | 307 | /* If not Suite B just return first preference shared curve */ | 
|  | 308 | nmatch = 0; | 
|  | 309 | } | 
|  | 310 | /* | 
|  | 311 | * If server preference set, our groups are the preference order | 
|  | 312 | * otherwise peer decides. | 
|  | 313 | */ | 
|  | 314 | if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { | 
|  | 315 | tls1_get_supported_groups(s, &pref, &num_pref); | 
|  | 316 | tls1_get_peer_groups(s, &supp, &num_supp); | 
|  | 317 | } else { | 
|  | 318 | tls1_get_peer_groups(s, &pref, &num_pref); | 
|  | 319 | tls1_get_supported_groups(s, &supp, &num_supp); | 
|  | 320 | } | 
|  | 321 |  | 
|  | 322 | for (k = 0, i = 0; i < num_pref; i++) { | 
|  | 323 | uint16_t id = pref[i]; | 
|  | 324 |  | 
|  | 325 | if (!tls1_in_list(id, supp, num_supp) | 
|  | 326 | || !tls_curve_allowed(s, id, SSL_SECOP_CURVE_SHARED)) | 
|  | 327 | continue; | 
|  | 328 | if (nmatch == k) | 
|  | 329 | return id; | 
|  | 330 | k++; | 
|  | 331 | } | 
|  | 332 | if (nmatch == -1) | 
|  | 333 | return k; | 
|  | 334 | /* Out of range (nmatch > k). */ | 
|  | 335 | return 0; | 
|  | 336 | } | 
|  | 337 |  | 
|  | 338 | int tls1_set_groups(uint16_t **pext, size_t *pextlen, | 
|  | 339 | int *groups, size_t ngroups) | 
|  | 340 | { | 
|  | 341 | uint16_t *glist; | 
|  | 342 | size_t i; | 
|  | 343 | /* | 
|  | 344 | * Bitmap of groups included to detect duplicates: only works while group | 
|  | 345 | * ids < 32 | 
|  | 346 | */ | 
|  | 347 | unsigned long dup_list = 0; | 
|  | 348 |  | 
|  | 349 | if (ngroups == 0) { | 
|  | 350 | SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH); | 
|  | 351 | return 0; | 
|  | 352 | } | 
|  | 353 | if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) { | 
|  | 354 | SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE); | 
|  | 355 | return 0; | 
|  | 356 | } | 
|  | 357 | for (i = 0; i < ngroups; i++) { | 
|  | 358 | unsigned long idmask; | 
|  | 359 | uint16_t id; | 
|  | 360 | /* TODO(TLS1.3): Convert for DH groups */ | 
|  | 361 | id = tls1_nid2group_id(groups[i]); | 
|  | 362 | idmask = 1L << id; | 
|  | 363 | if (!id || (dup_list & idmask)) { | 
|  | 364 | OPENSSL_free(glist); | 
|  | 365 | return 0; | 
|  | 366 | } | 
|  | 367 | dup_list |= idmask; | 
|  | 368 | glist[i] = id; | 
|  | 369 | } | 
|  | 370 | OPENSSL_free(*pext); | 
|  | 371 | *pext = glist; | 
|  | 372 | *pextlen = ngroups; | 
|  | 373 | return 1; | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | # define MAX_CURVELIST   OSSL_NELEM(nid_list) | 
|  | 377 |  | 
|  | 378 | typedef struct { | 
|  | 379 | size_t nidcnt; | 
|  | 380 | int nid_arr[MAX_CURVELIST]; | 
|  | 381 | } nid_cb_st; | 
|  | 382 |  | 
|  | 383 | static int nid_cb(const char *elem, int len, void *arg) | 
|  | 384 | { | 
|  | 385 | nid_cb_st *narg = arg; | 
|  | 386 | size_t i; | 
|  | 387 | int nid; | 
|  | 388 | char etmp[20]; | 
|  | 389 | if (elem == NULL) | 
|  | 390 | return 0; | 
|  | 391 | if (narg->nidcnt == MAX_CURVELIST) | 
|  | 392 | return 0; | 
|  | 393 | if (len > (int)(sizeof(etmp) - 1)) | 
|  | 394 | return 0; | 
|  | 395 | memcpy(etmp, elem, len); | 
|  | 396 | etmp[len] = 0; | 
|  | 397 | nid = EC_curve_nist2nid(etmp); | 
|  | 398 | if (nid == NID_undef) | 
|  | 399 | nid = OBJ_sn2nid(etmp); | 
|  | 400 | if (nid == NID_undef) | 
|  | 401 | nid = OBJ_ln2nid(etmp); | 
|  | 402 | if (nid == NID_undef) | 
|  | 403 | return 0; | 
|  | 404 | for (i = 0; i < narg->nidcnt; i++) | 
|  | 405 | if (narg->nid_arr[i] == nid) | 
|  | 406 | return 0; | 
|  | 407 | narg->nid_arr[narg->nidcnt++] = nid; | 
|  | 408 | return 1; | 
|  | 409 | } | 
|  | 410 |  | 
|  | 411 | /* Set groups based on a colon separate list */ | 
|  | 412 | int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str) | 
|  | 413 | { | 
|  | 414 | nid_cb_st ncb; | 
|  | 415 | ncb.nidcnt = 0; | 
|  | 416 | if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) | 
|  | 417 | return 0; | 
|  | 418 | if (pext == NULL) | 
|  | 419 | return 1; | 
|  | 420 | return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt); | 
|  | 421 | } | 
|  | 422 | /* Return group id of a key */ | 
|  | 423 | static uint16_t tls1_get_group_id(EVP_PKEY *pkey) | 
|  | 424 | { | 
|  | 425 | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); | 
|  | 426 | const EC_GROUP *grp; | 
|  | 427 |  | 
|  | 428 | if (ec == NULL) | 
|  | 429 | return 0; | 
|  | 430 | grp = EC_KEY_get0_group(ec); | 
|  | 431 | return tls1_nid2group_id(EC_GROUP_get_curve_name(grp)); | 
|  | 432 | } | 
|  | 433 |  | 
|  | 434 | /* Check a key is compatible with compression extension */ | 
|  | 435 | static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey) | 
|  | 436 | { | 
|  | 437 | const EC_KEY *ec; | 
|  | 438 | const EC_GROUP *grp; | 
|  | 439 | unsigned char comp_id; | 
|  | 440 | size_t i; | 
|  | 441 |  | 
|  | 442 | /* If not an EC key nothing to check */ | 
|  | 443 | if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) | 
|  | 444 | return 1; | 
|  | 445 | ec = EVP_PKEY_get0_EC_KEY(pkey); | 
|  | 446 | grp = EC_KEY_get0_group(ec); | 
|  | 447 |  | 
|  | 448 | /* Get required compression id */ | 
|  | 449 | if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) { | 
|  | 450 | comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; | 
|  | 451 | } else if (SSL_IS_TLS13(s)) { | 
|  | 452 | /* | 
|  | 453 | * ec_point_formats extension is not used in TLSv1.3 so we ignore | 
|  | 454 | * this check. | 
|  | 455 | */ | 
|  | 456 | return 1; | 
|  | 457 | } else { | 
|  | 458 | int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp)); | 
|  | 459 |  | 
|  | 460 | if (field_type == NID_X9_62_prime_field) | 
|  | 461 | comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; | 
|  | 462 | else if (field_type == NID_X9_62_characteristic_two_field) | 
|  | 463 | comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; | 
|  | 464 | else | 
|  | 465 | return 0; | 
|  | 466 | } | 
|  | 467 | /* | 
|  | 468 | * If point formats extension present check it, otherwise everything is | 
|  | 469 | * supported (see RFC4492). | 
|  | 470 | */ | 
|  | 471 | if (s->ext.peer_ecpointformats == NULL) | 
|  | 472 | return 1; | 
|  | 473 |  | 
|  | 474 | for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { | 
|  | 475 | if (s->ext.peer_ecpointformats[i] == comp_id) | 
|  | 476 | return 1; | 
|  | 477 | } | 
|  | 478 | return 0; | 
|  | 479 | } | 
|  | 480 |  | 
|  | 481 | /* Check a group id matches preferences */ | 
|  | 482 | int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) | 
|  | 483 | { | 
|  | 484 | const uint16_t *groups; | 
|  | 485 | size_t groups_len; | 
|  | 486 |  | 
|  | 487 | if (group_id == 0) | 
|  | 488 | return 0; | 
|  | 489 |  | 
|  | 490 | /* Check for Suite B compliance */ | 
|  | 491 | if (tls1_suiteb(s) && s->s3->tmp.new_cipher != NULL) { | 
|  | 492 | unsigned long cid = s->s3->tmp.new_cipher->id; | 
|  | 493 |  | 
|  | 494 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { | 
|  | 495 | if (group_id != TLSEXT_curve_P_256) | 
|  | 496 | return 0; | 
|  | 497 | } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { | 
|  | 498 | if (group_id != TLSEXT_curve_P_384) | 
|  | 499 | return 0; | 
|  | 500 | } else { | 
|  | 501 | /* Should never happen */ | 
|  | 502 | return 0; | 
|  | 503 | } | 
|  | 504 | } | 
|  | 505 |  | 
|  | 506 | if (check_own_groups) { | 
|  | 507 | /* Check group is one of our preferences */ | 
|  | 508 | tls1_get_supported_groups(s, &groups, &groups_len); | 
|  | 509 | if (!tls1_in_list(group_id, groups, groups_len)) | 
|  | 510 | return 0; | 
|  | 511 | } | 
|  | 512 |  | 
|  | 513 | if (!tls_curve_allowed(s, group_id, SSL_SECOP_CURVE_CHECK)) | 
|  | 514 | return 0; | 
|  | 515 |  | 
|  | 516 | /* For clients, nothing more to check */ | 
|  | 517 | if (!s->server) | 
|  | 518 | return 1; | 
|  | 519 |  | 
|  | 520 | /* Check group is one of peers preferences */ | 
|  | 521 | tls1_get_peer_groups(s, &groups, &groups_len); | 
|  | 522 |  | 
|  | 523 | /* | 
|  | 524 | * RFC 4492 does not require the supported elliptic curves extension | 
|  | 525 | * so if it is not sent we can just choose any curve. | 
|  | 526 | * It is invalid to send an empty list in the supported groups | 
|  | 527 | * extension, so groups_len == 0 always means no extension. | 
|  | 528 | */ | 
|  | 529 | if (groups_len == 0) | 
|  | 530 | return 1; | 
|  | 531 | return tls1_in_list(group_id, groups, groups_len); | 
|  | 532 | } | 
|  | 533 |  | 
|  | 534 | void tls1_get_formatlist(SSL *s, const unsigned char **pformats, | 
|  | 535 | size_t *num_formats) | 
|  | 536 | { | 
|  | 537 | /* | 
|  | 538 | * If we have a custom point format list use it otherwise use default | 
|  | 539 | */ | 
|  | 540 | if (s->ext.ecpointformats) { | 
|  | 541 | *pformats = s->ext.ecpointformats; | 
|  | 542 | *num_formats = s->ext.ecpointformats_len; | 
|  | 543 | } else { | 
|  | 544 | *pformats = ecformats_default; | 
|  | 545 | /* For Suite B we don't support char2 fields */ | 
|  | 546 | if (tls1_suiteb(s)) | 
|  | 547 | *num_formats = sizeof(ecformats_default) - 1; | 
|  | 548 | else | 
|  | 549 | *num_formats = sizeof(ecformats_default); | 
|  | 550 | } | 
|  | 551 | } | 
|  | 552 |  | 
|  | 553 | /* | 
|  | 554 | * Check cert parameters compatible with extensions: currently just checks EC | 
|  | 555 | * certificates have compatible curves and compression. | 
|  | 556 | */ | 
|  | 557 | static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) | 
|  | 558 | { | 
|  | 559 | uint16_t group_id; | 
|  | 560 | EVP_PKEY *pkey; | 
|  | 561 | pkey = X509_get0_pubkey(x); | 
|  | 562 | if (pkey == NULL) | 
|  | 563 | return 0; | 
|  | 564 | /* If not EC nothing to do */ | 
|  | 565 | if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) | 
|  | 566 | return 1; | 
|  | 567 | /* Check compression */ | 
|  | 568 | if (!tls1_check_pkey_comp(s, pkey)) | 
|  | 569 | return 0; | 
|  | 570 | group_id = tls1_get_group_id(pkey); | 
|  | 571 | /* | 
|  | 572 | * For a server we allow the certificate to not be in our list of supported | 
|  | 573 | * groups. | 
|  | 574 | */ | 
|  | 575 | if (!tls1_check_group_id(s, group_id, !s->server)) | 
|  | 576 | return 0; | 
|  | 577 | /* | 
|  | 578 | * Special case for suite B. We *MUST* sign using SHA256+P-256 or | 
|  | 579 | * SHA384+P-384. | 
|  | 580 | */ | 
|  | 581 | if (check_ee_md && tls1_suiteb(s)) { | 
|  | 582 | int check_md; | 
|  | 583 | size_t i; | 
|  | 584 |  | 
|  | 585 | /* Check to see we have necessary signing algorithm */ | 
|  | 586 | if (group_id == TLSEXT_curve_P_256) | 
|  | 587 | check_md = NID_ecdsa_with_SHA256; | 
|  | 588 | else if (group_id == TLSEXT_curve_P_384) | 
|  | 589 | check_md = NID_ecdsa_with_SHA384; | 
|  | 590 | else | 
|  | 591 | return 0;           /* Should never happen */ | 
|  | 592 | for (i = 0; i < s->shared_sigalgslen; i++) { | 
|  | 593 | if (check_md == s->shared_sigalgs[i]->sigandhash) | 
|  | 594 | return 1;; | 
|  | 595 | } | 
|  | 596 | return 0; | 
|  | 597 | } | 
|  | 598 | return 1; | 
|  | 599 | } | 
|  | 600 |  | 
|  | 601 | /* | 
|  | 602 | * tls1_check_ec_tmp_key - Check EC temporary key compatibility | 
|  | 603 | * @s: SSL connection | 
|  | 604 | * @cid: Cipher ID we're considering using | 
|  | 605 | * | 
|  | 606 | * Checks that the kECDHE cipher suite we're considering using | 
|  | 607 | * is compatible with the client extensions. | 
|  | 608 | * | 
|  | 609 | * Returns 0 when the cipher can't be used or 1 when it can. | 
|  | 610 | */ | 
|  | 611 | int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) | 
|  | 612 | { | 
|  | 613 | /* If not Suite B just need a shared group */ | 
|  | 614 | if (!tls1_suiteb(s)) | 
|  | 615 | return tls1_shared_group(s, 0) != 0; | 
|  | 616 | /* | 
|  | 617 | * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other | 
|  | 618 | * curves permitted. | 
|  | 619 | */ | 
|  | 620 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) | 
|  | 621 | return tls1_check_group_id(s, TLSEXT_curve_P_256, 1); | 
|  | 622 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) | 
|  | 623 | return tls1_check_group_id(s, TLSEXT_curve_P_384, 1); | 
|  | 624 |  | 
|  | 625 | return 0; | 
|  | 626 | } | 
|  | 627 |  | 
|  | 628 | #else | 
|  | 629 |  | 
|  | 630 | static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) | 
|  | 631 | { | 
|  | 632 | return 1; | 
|  | 633 | } | 
|  | 634 |  | 
|  | 635 | #endif                          /* OPENSSL_NO_EC */ | 
|  | 636 |  | 
|  | 637 | /* Default sigalg schemes */ | 
|  | 638 | static const uint16_t tls12_sigalgs[] = { | 
|  | 639 | #ifndef OPENSSL_NO_EC | 
|  | 640 | TLSEXT_SIGALG_ecdsa_secp256r1_sha256, | 
|  | 641 | TLSEXT_SIGALG_ecdsa_secp384r1_sha384, | 
|  | 642 | TLSEXT_SIGALG_ecdsa_secp521r1_sha512, | 
|  | 643 | TLSEXT_SIGALG_ed25519, | 
|  | 644 | TLSEXT_SIGALG_ed448, | 
|  | 645 | #endif | 
|  | 646 |  | 
|  | 647 | TLSEXT_SIGALG_rsa_pss_pss_sha256, | 
|  | 648 | TLSEXT_SIGALG_rsa_pss_pss_sha384, | 
|  | 649 | TLSEXT_SIGALG_rsa_pss_pss_sha512, | 
|  | 650 | TLSEXT_SIGALG_rsa_pss_rsae_sha256, | 
|  | 651 | TLSEXT_SIGALG_rsa_pss_rsae_sha384, | 
|  | 652 | TLSEXT_SIGALG_rsa_pss_rsae_sha512, | 
|  | 653 |  | 
|  | 654 | TLSEXT_SIGALG_rsa_pkcs1_sha256, | 
|  | 655 | TLSEXT_SIGALG_rsa_pkcs1_sha384, | 
|  | 656 | TLSEXT_SIGALG_rsa_pkcs1_sha512, | 
|  | 657 |  | 
|  | 658 | #ifndef OPENSSL_NO_EC | 
|  | 659 | TLSEXT_SIGALG_ecdsa_sha224, | 
|  | 660 | TLSEXT_SIGALG_ecdsa_sha1, | 
|  | 661 | #endif | 
|  | 662 | TLSEXT_SIGALG_rsa_pkcs1_sha224, | 
|  | 663 | TLSEXT_SIGALG_rsa_pkcs1_sha1, | 
|  | 664 | #ifndef OPENSSL_NO_DSA | 
|  | 665 | TLSEXT_SIGALG_dsa_sha224, | 
|  | 666 | TLSEXT_SIGALG_dsa_sha1, | 
|  | 667 |  | 
|  | 668 | TLSEXT_SIGALG_dsa_sha256, | 
|  | 669 | TLSEXT_SIGALG_dsa_sha384, | 
|  | 670 | TLSEXT_SIGALG_dsa_sha512, | 
|  | 671 | #endif | 
|  | 672 | #ifndef OPENSSL_NO_GOST | 
|  | 673 | TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, | 
|  | 674 | TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, | 
|  | 675 | TLSEXT_SIGALG_gostr34102001_gostr3411, | 
|  | 676 | #endif | 
|  | 677 | }; | 
|  | 678 |  | 
|  | 679 | #ifndef OPENSSL_NO_EC | 
|  | 680 | static const uint16_t suiteb_sigalgs[] = { | 
|  | 681 | TLSEXT_SIGALG_ecdsa_secp256r1_sha256, | 
|  | 682 | TLSEXT_SIGALG_ecdsa_secp384r1_sha384 | 
|  | 683 | }; | 
|  | 684 | #endif | 
|  | 685 |  | 
|  | 686 | static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { | 
|  | 687 | #ifndef OPENSSL_NO_EC | 
|  | 688 | {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, | 
|  | 689 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, | 
|  | 690 | NID_ecdsa_with_SHA256, NID_X9_62_prime256v1}, | 
|  | 691 | {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, | 
|  | 692 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, | 
|  | 693 | NID_ecdsa_with_SHA384, NID_secp384r1}, | 
|  | 694 | {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, | 
|  | 695 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, | 
|  | 696 | NID_ecdsa_with_SHA512, NID_secp521r1}, | 
|  | 697 | {"ed25519", TLSEXT_SIGALG_ed25519, | 
|  | 698 | NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, | 
|  | 699 | NID_undef, NID_undef}, | 
|  | 700 | {"ed448", TLSEXT_SIGALG_ed448, | 
|  | 701 | NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, | 
|  | 702 | NID_undef, NID_undef}, | 
|  | 703 | {NULL, TLSEXT_SIGALG_ecdsa_sha224, | 
|  | 704 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, | 
|  | 705 | NID_ecdsa_with_SHA224, NID_undef}, | 
|  | 706 | {NULL, TLSEXT_SIGALG_ecdsa_sha1, | 
|  | 707 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, | 
|  | 708 | NID_ecdsa_with_SHA1, NID_undef}, | 
|  | 709 | #endif | 
|  | 710 | {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, | 
|  | 711 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, | 
|  | 712 | NID_undef, NID_undef}, | 
|  | 713 | {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, | 
|  | 714 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, | 
|  | 715 | NID_undef, NID_undef}, | 
|  | 716 | {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, | 
|  | 717 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, | 
|  | 718 | NID_undef, NID_undef}, | 
|  | 719 | {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, | 
|  | 720 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, | 
|  | 721 | NID_undef, NID_undef}, | 
|  | 722 | {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, | 
|  | 723 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, | 
|  | 724 | NID_undef, NID_undef}, | 
|  | 725 | {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, | 
|  | 726 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, | 
|  | 727 | NID_undef, NID_undef}, | 
|  | 728 | {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, | 
|  | 729 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, | 
|  | 730 | NID_sha256WithRSAEncryption, NID_undef}, | 
|  | 731 | {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, | 
|  | 732 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, | 
|  | 733 | NID_sha384WithRSAEncryption, NID_undef}, | 
|  | 734 | {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, | 
|  | 735 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, | 
|  | 736 | NID_sha512WithRSAEncryption, NID_undef}, | 
|  | 737 | {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, | 
|  | 738 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, | 
|  | 739 | NID_sha224WithRSAEncryption, NID_undef}, | 
|  | 740 | {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, | 
|  | 741 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, | 
|  | 742 | NID_sha1WithRSAEncryption, NID_undef}, | 
|  | 743 | #ifndef OPENSSL_NO_DSA | 
|  | 744 | {NULL, TLSEXT_SIGALG_dsa_sha256, | 
|  | 745 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, | 
|  | 746 | NID_dsa_with_SHA256, NID_undef}, | 
|  | 747 | {NULL, TLSEXT_SIGALG_dsa_sha384, | 
|  | 748 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, | 
|  | 749 | NID_undef, NID_undef}, | 
|  | 750 | {NULL, TLSEXT_SIGALG_dsa_sha512, | 
|  | 751 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, | 
|  | 752 | NID_undef, NID_undef}, | 
|  | 753 | {NULL, TLSEXT_SIGALG_dsa_sha224, | 
|  | 754 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, | 
|  | 755 | NID_undef, NID_undef}, | 
|  | 756 | {NULL, TLSEXT_SIGALG_dsa_sha1, | 
|  | 757 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, | 
|  | 758 | NID_dsaWithSHA1, NID_undef}, | 
|  | 759 | #endif | 
|  | 760 | #ifndef OPENSSL_NO_GOST | 
|  | 761 | {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, | 
|  | 762 | NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, | 
|  | 763 | NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, | 
|  | 764 | NID_undef, NID_undef}, | 
|  | 765 | {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, | 
|  | 766 | NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, | 
|  | 767 | NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, | 
|  | 768 | NID_undef, NID_undef}, | 
|  | 769 | {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, | 
|  | 770 | NID_id_GostR3411_94, SSL_MD_GOST94_IDX, | 
|  | 771 | NID_id_GostR3410_2001, SSL_PKEY_GOST01, | 
|  | 772 | NID_undef, NID_undef} | 
|  | 773 | #endif | 
|  | 774 | }; | 
|  | 775 | /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ | 
|  | 776 | static const SIGALG_LOOKUP legacy_rsa_sigalg = { | 
|  | 777 | "rsa_pkcs1_md5_sha1", 0, | 
|  | 778 | NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, | 
|  | 779 | EVP_PKEY_RSA, SSL_PKEY_RSA, | 
|  | 780 | NID_undef, NID_undef | 
|  | 781 | }; | 
|  | 782 |  | 
|  | 783 | /* | 
|  | 784 | * Default signature algorithm values used if signature algorithms not present. | 
|  | 785 | * From RFC5246. Note: order must match certificate index order. | 
|  | 786 | */ | 
|  | 787 | static const uint16_t tls_default_sigalg[] = { | 
|  | 788 | TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */ | 
|  | 789 | 0, /* SSL_PKEY_RSA_PSS_SIGN */ | 
|  | 790 | TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */ | 
|  | 791 | TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */ | 
|  | 792 | TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */ | 
|  | 793 | TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */ | 
|  | 794 | TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */ | 
|  | 795 | 0, /* SSL_PKEY_ED25519 */ | 
|  | 796 | 0, /* SSL_PKEY_ED448 */ | 
|  | 797 | }; | 
|  | 798 |  | 
|  | 799 | /* Lookup TLS signature algorithm */ | 
|  | 800 | static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg) | 
|  | 801 | { | 
|  | 802 | size_t i; | 
|  | 803 | const SIGALG_LOOKUP *s; | 
|  | 804 |  | 
|  | 805 | for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); | 
|  | 806 | i++, s++) { | 
|  | 807 | if (s->sigalg == sigalg) | 
|  | 808 | return s; | 
|  | 809 | } | 
|  | 810 | return NULL; | 
|  | 811 | } | 
|  | 812 | /* Lookup hash: return 0 if invalid or not enabled */ | 
|  | 813 | int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd) | 
|  | 814 | { | 
|  | 815 | const EVP_MD *md; | 
|  | 816 | if (lu == NULL) | 
|  | 817 | return 0; | 
|  | 818 | /* lu->hash == NID_undef means no associated digest */ | 
|  | 819 | if (lu->hash == NID_undef) { | 
|  | 820 | md = NULL; | 
|  | 821 | } else { | 
|  | 822 | md = ssl_md(lu->hash_idx); | 
|  | 823 | if (md == NULL) | 
|  | 824 | return 0; | 
|  | 825 | } | 
|  | 826 | if (pmd) | 
|  | 827 | *pmd = md; | 
|  | 828 | return 1; | 
|  | 829 | } | 
|  | 830 |  | 
|  | 831 | /* | 
|  | 832 | * Check if key is large enough to generate RSA-PSS signature. | 
|  | 833 | * | 
|  | 834 | * The key must greater than or equal to 2 * hash length + 2. | 
|  | 835 | * SHA512 has a hash length of 64 bytes, which is incompatible | 
|  | 836 | * with a 128 byte (1024 bit) key. | 
|  | 837 | */ | 
|  | 838 | #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2) | 
|  | 839 | static int rsa_pss_check_min_key_size(const RSA *rsa, const SIGALG_LOOKUP *lu) | 
|  | 840 | { | 
|  | 841 | const EVP_MD *md; | 
|  | 842 |  | 
|  | 843 | if (rsa == NULL) | 
|  | 844 | return 0; | 
|  | 845 | if (!tls1_lookup_md(lu, &md) || md == NULL) | 
|  | 846 | return 0; | 
|  | 847 | if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md)) | 
|  | 848 | return 0; | 
|  | 849 | return 1; | 
|  | 850 | } | 
|  | 851 |  | 
|  | 852 | /* | 
|  | 853 | * Returns a signature algorithm when the peer did not send a list of supported | 
|  | 854 | * signature algorithms. The signature algorithm is fixed for the certificate | 
|  | 855 | * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the | 
|  | 856 | * certificate type from |s| will be used. | 
|  | 857 | * Returns the signature algorithm to use, or NULL on error. | 
|  | 858 | */ | 
|  | 859 | static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) | 
|  | 860 | { | 
|  | 861 | if (idx == -1) { | 
|  | 862 | if (s->server) { | 
|  | 863 | size_t i; | 
|  | 864 |  | 
|  | 865 | /* Work out index corresponding to ciphersuite */ | 
|  | 866 | for (i = 0; i < SSL_PKEY_NUM; i++) { | 
|  | 867 | const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i); | 
|  | 868 |  | 
|  | 869 | if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) { | 
|  | 870 | idx = i; | 
|  | 871 | break; | 
|  | 872 | } | 
|  | 873 | } | 
|  | 874 |  | 
|  | 875 | /* | 
|  | 876 | * Some GOST ciphersuites allow more than one signature algorithms | 
|  | 877 | * */ | 
|  | 878 | if (idx == SSL_PKEY_GOST01 && s->s3->tmp.new_cipher->algorithm_auth != SSL_aGOST01) { | 
|  | 879 | int real_idx; | 
|  | 880 |  | 
|  | 881 | for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01; | 
|  | 882 | real_idx--) { | 
|  | 883 | if (s->cert->pkeys[real_idx].privatekey != NULL) { | 
|  | 884 | idx = real_idx; | 
|  | 885 | break; | 
|  | 886 | } | 
|  | 887 | } | 
|  | 888 | } | 
|  | 889 | } else { | 
|  | 890 | idx = s->cert->key - s->cert->pkeys; | 
|  | 891 | } | 
|  | 892 | } | 
|  | 893 | if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) | 
|  | 894 | return NULL; | 
|  | 895 | if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { | 
|  | 896 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]); | 
|  | 897 |  | 
|  | 898 | if (!tls1_lookup_md(lu, NULL)) | 
|  | 899 | return NULL; | 
|  | 900 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) | 
|  | 901 | return NULL; | 
|  | 902 | return lu; | 
|  | 903 | } | 
|  | 904 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg)) | 
|  | 905 | return NULL; | 
|  | 906 | return &legacy_rsa_sigalg; | 
|  | 907 | } | 
|  | 908 | /* Set peer sigalg based key type */ | 
|  | 909 | int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey) | 
|  | 910 | { | 
|  | 911 | size_t idx; | 
|  | 912 | const SIGALG_LOOKUP *lu; | 
|  | 913 |  | 
|  | 914 | if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) | 
|  | 915 | return 0; | 
|  | 916 | lu = tls1_get_legacy_sigalg(s, idx); | 
|  | 917 | if (lu == NULL) | 
|  | 918 | return 0; | 
|  | 919 | s->s3->tmp.peer_sigalg = lu; | 
|  | 920 | return 1; | 
|  | 921 | } | 
|  | 922 |  | 
|  | 923 | size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) | 
|  | 924 | { | 
|  | 925 | /* | 
|  | 926 | * If Suite B mode use Suite B sigalgs only, ignore any other | 
|  | 927 | * preferences. | 
|  | 928 | */ | 
|  | 929 | #ifndef OPENSSL_NO_EC | 
|  | 930 | switch (tls1_suiteb(s)) { | 
|  | 931 | case SSL_CERT_FLAG_SUITEB_128_LOS: | 
|  | 932 | *psigs = suiteb_sigalgs; | 
|  | 933 | return OSSL_NELEM(suiteb_sigalgs); | 
|  | 934 |  | 
|  | 935 | case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: | 
|  | 936 | *psigs = suiteb_sigalgs; | 
|  | 937 | return 1; | 
|  | 938 |  | 
|  | 939 | case SSL_CERT_FLAG_SUITEB_192_LOS: | 
|  | 940 | *psigs = suiteb_sigalgs + 1; | 
|  | 941 | return 1; | 
|  | 942 | } | 
|  | 943 | #endif | 
|  | 944 | /* | 
|  | 945 | *  We use client_sigalgs (if not NULL) if we're a server | 
|  | 946 | *  and sending a certificate request or if we're a client and | 
|  | 947 | *  determining which shared algorithm to use. | 
|  | 948 | */ | 
|  | 949 | if ((s->server == sent) && s->cert->client_sigalgs != NULL) { | 
|  | 950 | *psigs = s->cert->client_sigalgs; | 
|  | 951 | return s->cert->client_sigalgslen; | 
|  | 952 | } else if (s->cert->conf_sigalgs) { | 
|  | 953 | *psigs = s->cert->conf_sigalgs; | 
|  | 954 | return s->cert->conf_sigalgslen; | 
|  | 955 | } else { | 
|  | 956 | *psigs = tls12_sigalgs; | 
|  | 957 | return OSSL_NELEM(tls12_sigalgs); | 
|  | 958 | } | 
|  | 959 | } | 
|  | 960 |  | 
|  | 961 | #ifndef OPENSSL_NO_EC | 
|  | 962 | /* | 
|  | 963 | * Called by servers only. Checks that we have a sig alg that supports the | 
|  | 964 | * specified EC curve. | 
|  | 965 | */ | 
|  | 966 | int tls_check_sigalg_curve(const SSL *s, int curve) | 
|  | 967 | { | 
|  | 968 | const uint16_t *sigs; | 
|  | 969 | size_t siglen, i; | 
|  | 970 |  | 
|  | 971 | if (s->cert->conf_sigalgs) { | 
|  | 972 | sigs = s->cert->conf_sigalgs; | 
|  | 973 | siglen = s->cert->conf_sigalgslen; | 
|  | 974 | } else { | 
|  | 975 | sigs = tls12_sigalgs; | 
|  | 976 | siglen = OSSL_NELEM(tls12_sigalgs); | 
|  | 977 | } | 
|  | 978 |  | 
|  | 979 | for (i = 0; i < siglen; i++) { | 
|  | 980 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]); | 
|  | 981 |  | 
|  | 982 | if (lu == NULL) | 
|  | 983 | continue; | 
|  | 984 | if (lu->sig == EVP_PKEY_EC | 
|  | 985 | && lu->curve != NID_undef | 
|  | 986 | && curve == lu->curve) | 
|  | 987 | return 1; | 
|  | 988 | } | 
|  | 989 |  | 
|  | 990 | return 0; | 
|  | 991 | } | 
|  | 992 | #endif | 
|  | 993 |  | 
|  | 994 | /* | 
|  | 995 | * Return the number of security bits for the signature algorithm, or 0 on | 
|  | 996 | * error. | 
|  | 997 | */ | 
|  | 998 | static int sigalg_security_bits(const SIGALG_LOOKUP *lu) | 
|  | 999 | { | 
|  | 1000 | const EVP_MD *md = NULL; | 
|  | 1001 | int secbits = 0; | 
|  | 1002 |  | 
|  | 1003 | if (!tls1_lookup_md(lu, &md)) | 
|  | 1004 | return 0; | 
|  | 1005 | if (md != NULL) | 
|  | 1006 | { | 
|  | 1007 | /* Security bits: half digest bits */ | 
|  | 1008 | secbits = EVP_MD_size(md) * 4; | 
|  | 1009 | } else { | 
|  | 1010 | /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */ | 
|  | 1011 | if (lu->sigalg == TLSEXT_SIGALG_ed25519) | 
|  | 1012 | secbits = 128; | 
|  | 1013 | else if (lu->sigalg == TLSEXT_SIGALG_ed448) | 
|  | 1014 | secbits = 224; | 
|  | 1015 | } | 
|  | 1016 | return secbits; | 
|  | 1017 | } | 
|  | 1018 |  | 
|  | 1019 | /* | 
|  | 1020 | * Check signature algorithm is consistent with sent supported signature | 
|  | 1021 | * algorithms and if so set relevant digest and signature scheme in | 
|  | 1022 | * s. | 
|  | 1023 | */ | 
|  | 1024 | int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) | 
|  | 1025 | { | 
|  | 1026 | const uint16_t *sent_sigs; | 
|  | 1027 | const EVP_MD *md = NULL; | 
|  | 1028 | char sigalgstr[2]; | 
|  | 1029 | size_t sent_sigslen, i, cidx; | 
|  | 1030 | int pkeyid = EVP_PKEY_id(pkey); | 
|  | 1031 | const SIGALG_LOOKUP *lu; | 
|  | 1032 | int secbits = 0; | 
|  | 1033 |  | 
|  | 1034 | /* Should never happen */ | 
|  | 1035 | if (pkeyid == -1) | 
|  | 1036 | return -1; | 
|  | 1037 | if (SSL_IS_TLS13(s)) { | 
|  | 1038 | /* Disallow DSA for TLS 1.3 */ | 
|  | 1039 | if (pkeyid == EVP_PKEY_DSA) { | 
|  | 1040 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, | 
|  | 1041 | SSL_R_WRONG_SIGNATURE_TYPE); | 
|  | 1042 | return 0; | 
|  | 1043 | } | 
|  | 1044 | /* Only allow PSS for TLS 1.3 */ | 
|  | 1045 | if (pkeyid == EVP_PKEY_RSA) | 
|  | 1046 | pkeyid = EVP_PKEY_RSA_PSS; | 
|  | 1047 | } | 
|  | 1048 | lu = tls1_lookup_sigalg(sig); | 
|  | 1049 | /* | 
|  | 1050 | * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type | 
|  | 1051 | * is consistent with signature: RSA keys can be used for RSA-PSS | 
|  | 1052 | */ | 
|  | 1053 | if (lu == NULL | 
|  | 1054 | || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) | 
|  | 1055 | || (pkeyid != lu->sig | 
|  | 1056 | && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { | 
|  | 1057 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, | 
|  | 1058 | SSL_R_WRONG_SIGNATURE_TYPE); | 
|  | 1059 | return 0; | 
|  | 1060 | } | 
|  | 1061 | /* Check the sigalg is consistent with the key OID */ | 
|  | 1062 | if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx) | 
|  | 1063 | || lu->sig_idx != (int)cidx) { | 
|  | 1064 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, | 
|  | 1065 | SSL_R_WRONG_SIGNATURE_TYPE); | 
|  | 1066 | return 0; | 
|  | 1067 | } | 
|  | 1068 |  | 
|  | 1069 | #ifndef OPENSSL_NO_EC | 
|  | 1070 | if (pkeyid == EVP_PKEY_EC) { | 
|  | 1071 |  | 
|  | 1072 | /* Check point compression is permitted */ | 
|  | 1073 | if (!tls1_check_pkey_comp(s, pkey)) { | 
|  | 1074 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, | 
|  | 1075 | SSL_F_TLS12_CHECK_PEER_SIGALG, | 
|  | 1076 | SSL_R_ILLEGAL_POINT_COMPRESSION); | 
|  | 1077 | return 0; | 
|  | 1078 | } | 
|  | 1079 |  | 
|  | 1080 | /* For TLS 1.3 or Suite B check curve matches signature algorithm */ | 
|  | 1081 | if (SSL_IS_TLS13(s) || tls1_suiteb(s)) { | 
|  | 1082 | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); | 
|  | 1083 | int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); | 
|  | 1084 |  | 
|  | 1085 | if (lu->curve != NID_undef && curve != lu->curve) { | 
|  | 1086 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, | 
|  | 1087 | SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); | 
|  | 1088 | return 0; | 
|  | 1089 | } | 
|  | 1090 | } | 
|  | 1091 | if (!SSL_IS_TLS13(s)) { | 
|  | 1092 | /* Check curve matches extensions */ | 
|  | 1093 | if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { | 
|  | 1094 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, | 
|  | 1095 | SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); | 
|  | 1096 | return 0; | 
|  | 1097 | } | 
|  | 1098 | if (tls1_suiteb(s)) { | 
|  | 1099 | /* Check sigalg matches a permissible Suite B value */ | 
|  | 1100 | if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 | 
|  | 1101 | && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { | 
|  | 1102 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, | 
|  | 1103 | SSL_F_TLS12_CHECK_PEER_SIGALG, | 
|  | 1104 | SSL_R_WRONG_SIGNATURE_TYPE); | 
|  | 1105 | return 0; | 
|  | 1106 | } | 
|  | 1107 | } | 
|  | 1108 | } | 
|  | 1109 | } else if (tls1_suiteb(s)) { | 
|  | 1110 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, | 
|  | 1111 | SSL_R_WRONG_SIGNATURE_TYPE); | 
|  | 1112 | return 0; | 
|  | 1113 | } | 
|  | 1114 | #endif | 
|  | 1115 |  | 
|  | 1116 | /* Check signature matches a type we sent */ | 
|  | 1117 | sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); | 
|  | 1118 | for (i = 0; i < sent_sigslen; i++, sent_sigs++) { | 
|  | 1119 | if (sig == *sent_sigs) | 
|  | 1120 | break; | 
|  | 1121 | } | 
|  | 1122 | /* Allow fallback to SHA1 if not strict mode */ | 
|  | 1123 | if (i == sent_sigslen && (lu->hash != NID_sha1 | 
|  | 1124 | || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { | 
|  | 1125 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, | 
|  | 1126 | SSL_R_WRONG_SIGNATURE_TYPE); | 
|  | 1127 | return 0; | 
|  | 1128 | } | 
|  | 1129 | if (!tls1_lookup_md(lu, &md)) { | 
|  | 1130 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, | 
|  | 1131 | SSL_R_UNKNOWN_DIGEST); | 
|  | 1132 | return 0; | 
|  | 1133 | } | 
|  | 1134 | /* | 
|  | 1135 | * Make sure security callback allows algorithm. For historical | 
|  | 1136 | * reasons we have to pass the sigalg as a two byte char array. | 
|  | 1137 | */ | 
|  | 1138 | sigalgstr[0] = (sig >> 8) & 0xff; | 
|  | 1139 | sigalgstr[1] = sig & 0xff; | 
|  | 1140 | secbits = sigalg_security_bits(lu); | 
|  | 1141 | if (secbits == 0 || | 
|  | 1142 | !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, | 
|  | 1143 | md != NULL ? EVP_MD_type(md) : NID_undef, | 
|  | 1144 | (void *)sigalgstr)) { | 
|  | 1145 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, | 
|  | 1146 | SSL_R_WRONG_SIGNATURE_TYPE); | 
|  | 1147 | return 0; | 
|  | 1148 | } | 
|  | 1149 | /* Store the sigalg the peer uses */ | 
|  | 1150 | s->s3->tmp.peer_sigalg = lu; | 
|  | 1151 | return 1; | 
|  | 1152 | } | 
|  | 1153 |  | 
|  | 1154 | int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) | 
|  | 1155 | { | 
|  | 1156 | if (s->s3->tmp.peer_sigalg == NULL) | 
|  | 1157 | return 0; | 
|  | 1158 | *pnid = s->s3->tmp.peer_sigalg->sig; | 
|  | 1159 | return 1; | 
|  | 1160 | } | 
|  | 1161 |  | 
|  | 1162 | int SSL_get_signature_type_nid(const SSL *s, int *pnid) | 
|  | 1163 | { | 
|  | 1164 | if (s->s3->tmp.sigalg == NULL) | 
|  | 1165 | return 0; | 
|  | 1166 | *pnid = s->s3->tmp.sigalg->sig; | 
|  | 1167 | return 1; | 
|  | 1168 | } | 
|  | 1169 |  | 
|  | 1170 | /* | 
|  | 1171 | * Set a mask of disabled algorithms: an algorithm is disabled if it isn't | 
|  | 1172 | * supported, doesn't appear in supported signature algorithms, isn't supported | 
|  | 1173 | * by the enabled protocol versions or by the security level. | 
|  | 1174 | * | 
|  | 1175 | * This function should only be used for checking which ciphers are supported | 
|  | 1176 | * by the client. | 
|  | 1177 | * | 
|  | 1178 | * Call ssl_cipher_disabled() to check that it's enabled or not. | 
|  | 1179 | */ | 
|  | 1180 | int ssl_set_client_disabled(SSL *s) | 
|  | 1181 | { | 
|  | 1182 | s->s3->tmp.mask_a = 0; | 
|  | 1183 | s->s3->tmp.mask_k = 0; | 
|  | 1184 | ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); | 
|  | 1185 | if (ssl_get_min_max_version(s, &s->s3->tmp.min_ver, | 
|  | 1186 | &s->s3->tmp.max_ver, NULL) != 0) | 
|  | 1187 | return 0; | 
|  | 1188 | #ifndef OPENSSL_NO_PSK | 
|  | 1189 | /* with PSK there must be client callback set */ | 
|  | 1190 | if (!s->psk_client_callback) { | 
|  | 1191 | s->s3->tmp.mask_a |= SSL_aPSK; | 
|  | 1192 | s->s3->tmp.mask_k |= SSL_PSK; | 
|  | 1193 | } | 
|  | 1194 | #endif                          /* OPENSSL_NO_PSK */ | 
|  | 1195 | #ifndef OPENSSL_NO_SRP | 
|  | 1196 | if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { | 
|  | 1197 | s->s3->tmp.mask_a |= SSL_aSRP; | 
|  | 1198 | s->s3->tmp.mask_k |= SSL_kSRP; | 
|  | 1199 | } | 
|  | 1200 | #endif | 
|  | 1201 | return 1; | 
|  | 1202 | } | 
|  | 1203 |  | 
|  | 1204 | /* | 
|  | 1205 | * ssl_cipher_disabled - check that a cipher is disabled or not | 
|  | 1206 | * @s: SSL connection that you want to use the cipher on | 
|  | 1207 | * @c: cipher to check | 
|  | 1208 | * @op: Security check that you want to do | 
|  | 1209 | * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3 | 
|  | 1210 | * | 
|  | 1211 | * Returns 1 when it's disabled, 0 when enabled. | 
|  | 1212 | */ | 
|  | 1213 | int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe) | 
|  | 1214 | { | 
|  | 1215 | if (c->algorithm_mkey & s->s3->tmp.mask_k | 
|  | 1216 | || c->algorithm_auth & s->s3->tmp.mask_a) | 
|  | 1217 | return 1; | 
|  | 1218 | if (s->s3->tmp.max_ver == 0) | 
|  | 1219 | return 1; | 
|  | 1220 | if (!SSL_IS_DTLS(s)) { | 
|  | 1221 | int min_tls = c->min_tls; | 
|  | 1222 |  | 
|  | 1223 | /* | 
|  | 1224 | * For historical reasons we will allow ECHDE to be selected by a server | 
|  | 1225 | * in SSLv3 if we are a client | 
|  | 1226 | */ | 
|  | 1227 | if (min_tls == TLS1_VERSION && ecdhe | 
|  | 1228 | && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) | 
|  | 1229 | min_tls = SSL3_VERSION; | 
|  | 1230 |  | 
|  | 1231 | if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver)) | 
|  | 1232 | return 1; | 
|  | 1233 | } | 
|  | 1234 | if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver) | 
|  | 1235 | || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver))) | 
|  | 1236 | return 1; | 
|  | 1237 |  | 
|  | 1238 | return !ssl_security(s, op, c->strength_bits, 0, (void *)c); | 
|  | 1239 | } | 
|  | 1240 |  | 
|  | 1241 | int tls_use_ticket(SSL *s) | 
|  | 1242 | { | 
|  | 1243 | if ((s->options & SSL_OP_NO_TICKET)) | 
|  | 1244 | return 0; | 
|  | 1245 | return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); | 
|  | 1246 | } | 
|  | 1247 |  | 
|  | 1248 | int tls1_set_server_sigalgs(SSL *s) | 
|  | 1249 | { | 
|  | 1250 | size_t i; | 
|  | 1251 |  | 
|  | 1252 | /* Clear any shared signature algorithms */ | 
|  | 1253 | OPENSSL_free(s->shared_sigalgs); | 
|  | 1254 | s->shared_sigalgs = NULL; | 
|  | 1255 | s->shared_sigalgslen = 0; | 
|  | 1256 | /* Clear certificate validity flags */ | 
|  | 1257 | for (i = 0; i < SSL_PKEY_NUM; i++) | 
|  | 1258 | s->s3->tmp.valid_flags[i] = 0; | 
|  | 1259 | /* | 
|  | 1260 | * If peer sent no signature algorithms check to see if we support | 
|  | 1261 | * the default algorithm for each certificate type | 
|  | 1262 | */ | 
|  | 1263 | if (s->s3->tmp.peer_cert_sigalgs == NULL | 
|  | 1264 | && s->s3->tmp.peer_sigalgs == NULL) { | 
|  | 1265 | const uint16_t *sent_sigs; | 
|  | 1266 | size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); | 
|  | 1267 |  | 
|  | 1268 | for (i = 0; i < SSL_PKEY_NUM; i++) { | 
|  | 1269 | const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); | 
|  | 1270 | size_t j; | 
|  | 1271 |  | 
|  | 1272 | if (lu == NULL) | 
|  | 1273 | continue; | 
|  | 1274 | /* Check default matches a type we sent */ | 
|  | 1275 | for (j = 0; j < sent_sigslen; j++) { | 
|  | 1276 | if (lu->sigalg == sent_sigs[j]) { | 
|  | 1277 | s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN; | 
|  | 1278 | break; | 
|  | 1279 | } | 
|  | 1280 | } | 
|  | 1281 | } | 
|  | 1282 | return 1; | 
|  | 1283 | } | 
|  | 1284 |  | 
|  | 1285 | if (!tls1_process_sigalgs(s)) { | 
|  | 1286 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, | 
|  | 1287 | SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR); | 
|  | 1288 | return 0; | 
|  | 1289 | } | 
|  | 1290 | if (s->shared_sigalgs != NULL) | 
|  | 1291 | return 1; | 
|  | 1292 |  | 
|  | 1293 | /* Fatal error if no shared signature algorithms */ | 
|  | 1294 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS, | 
|  | 1295 | SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); | 
|  | 1296 | return 0; | 
|  | 1297 | } | 
|  | 1298 |  | 
|  | 1299 | /*- | 
|  | 1300 | * Gets the ticket information supplied by the client if any. | 
|  | 1301 | * | 
|  | 1302 | *   hello: The parsed ClientHello data | 
|  | 1303 | *   ret: (output) on return, if a ticket was decrypted, then this is set to | 
|  | 1304 | *       point to the resulting session. | 
|  | 1305 | */ | 
|  | 1306 | SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, | 
|  | 1307 | SSL_SESSION **ret) | 
|  | 1308 | { | 
|  | 1309 | size_t size; | 
|  | 1310 | RAW_EXTENSION *ticketext; | 
|  | 1311 |  | 
|  | 1312 | *ret = NULL; | 
|  | 1313 | s->ext.ticket_expected = 0; | 
|  | 1314 |  | 
|  | 1315 | /* | 
|  | 1316 | * If tickets disabled or not supported by the protocol version | 
|  | 1317 | * (e.g. TLSv1.3) behave as if no ticket present to permit stateful | 
|  | 1318 | * resumption. | 
|  | 1319 | */ | 
|  | 1320 | if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) | 
|  | 1321 | return SSL_TICKET_NONE; | 
|  | 1322 |  | 
|  | 1323 | ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; | 
|  | 1324 | if (!ticketext->present) | 
|  | 1325 | return SSL_TICKET_NONE; | 
|  | 1326 |  | 
|  | 1327 | size = PACKET_remaining(&ticketext->data); | 
|  | 1328 |  | 
|  | 1329 | return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, | 
|  | 1330 | hello->session_id, hello->session_id_len, ret); | 
|  | 1331 | } | 
|  | 1332 |  | 
|  | 1333 | /*- | 
|  | 1334 | * tls_decrypt_ticket attempts to decrypt a session ticket. | 
|  | 1335 | * | 
|  | 1336 | * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are | 
|  | 1337 | * expecting a pre-shared key ciphersuite, in which case we have no use for | 
|  | 1338 | * session tickets and one will never be decrypted, nor will | 
|  | 1339 | * s->ext.ticket_expected be set to 1. | 
|  | 1340 | * | 
|  | 1341 | * Side effects: | 
|  | 1342 | *   Sets s->ext.ticket_expected to 1 if the server will have to issue | 
|  | 1343 | *   a new session ticket to the client because the client indicated support | 
|  | 1344 | *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have | 
|  | 1345 | *   a session ticket or we couldn't use the one it gave us, or if | 
|  | 1346 | *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket. | 
|  | 1347 | *   Otherwise, s->ext.ticket_expected is set to 0. | 
|  | 1348 | * | 
|  | 1349 | *   etick: points to the body of the session ticket extension. | 
|  | 1350 | *   eticklen: the length of the session tickets extension. | 
|  | 1351 | *   sess_id: points at the session ID. | 
|  | 1352 | *   sesslen: the length of the session ID. | 
|  | 1353 | *   psess: (output) on return, if a ticket was decrypted, then this is set to | 
|  | 1354 | *       point to the resulting session. | 
|  | 1355 | */ | 
|  | 1356 | SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, | 
|  | 1357 | size_t eticklen, const unsigned char *sess_id, | 
|  | 1358 | size_t sesslen, SSL_SESSION **psess) | 
|  | 1359 | { | 
|  | 1360 | SSL_SESSION *sess = NULL; | 
|  | 1361 | unsigned char *sdec; | 
|  | 1362 | const unsigned char *p; | 
|  | 1363 | int slen, renew_ticket = 0, declen; | 
|  | 1364 | SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER; | 
|  | 1365 | size_t mlen; | 
|  | 1366 | unsigned char tick_hmac[EVP_MAX_MD_SIZE]; | 
|  | 1367 | HMAC_CTX *hctx = NULL; | 
|  | 1368 | EVP_CIPHER_CTX *ctx = NULL; | 
|  | 1369 | SSL_CTX *tctx = s->session_ctx; | 
|  | 1370 |  | 
|  | 1371 | if (eticklen == 0) { | 
|  | 1372 | /* | 
|  | 1373 | * The client will accept a ticket but doesn't currently have | 
|  | 1374 | * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3 | 
|  | 1375 | */ | 
|  | 1376 | ret = SSL_TICKET_EMPTY; | 
|  | 1377 | goto end; | 
|  | 1378 | } | 
|  | 1379 | if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) { | 
|  | 1380 | /* | 
|  | 1381 | * Indicate that the ticket couldn't be decrypted rather than | 
|  | 1382 | * generating the session from ticket now, trigger | 
|  | 1383 | * abbreviated handshake based on external mechanism to | 
|  | 1384 | * calculate the master secret later. | 
|  | 1385 | */ | 
|  | 1386 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1387 | goto end; | 
|  | 1388 | } | 
|  | 1389 |  | 
|  | 1390 | /* Need at least keyname + iv */ | 
|  | 1391 | if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { | 
|  | 1392 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1393 | goto end; | 
|  | 1394 | } | 
|  | 1395 |  | 
|  | 1396 | /* Initialize session ticket encryption and HMAC contexts */ | 
|  | 1397 | hctx = HMAC_CTX_new(); | 
|  | 1398 | if (hctx == NULL) { | 
|  | 1399 | ret = SSL_TICKET_FATAL_ERR_MALLOC; | 
|  | 1400 | goto end; | 
|  | 1401 | } | 
|  | 1402 | ctx = EVP_CIPHER_CTX_new(); | 
|  | 1403 | if (ctx == NULL) { | 
|  | 1404 | ret = SSL_TICKET_FATAL_ERR_MALLOC; | 
|  | 1405 | goto end; | 
|  | 1406 | } | 
|  | 1407 | if (tctx->ext.ticket_key_cb) { | 
|  | 1408 | unsigned char *nctick = (unsigned char *)etick; | 
|  | 1409 | int rv = tctx->ext.ticket_key_cb(s, nctick, | 
|  | 1410 | nctick + TLSEXT_KEYNAME_LENGTH, | 
|  | 1411 | ctx, hctx, 0); | 
|  | 1412 | if (rv < 0) { | 
|  | 1413 | ret = SSL_TICKET_FATAL_ERR_OTHER; | 
|  | 1414 | goto end; | 
|  | 1415 | } | 
|  | 1416 | if (rv == 0) { | 
|  | 1417 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1418 | goto end; | 
|  | 1419 | } | 
|  | 1420 | if (rv == 2) | 
|  | 1421 | renew_ticket = 1; | 
|  | 1422 | } else { | 
|  | 1423 | /* Check key name matches */ | 
|  | 1424 | if (memcmp(etick, tctx->ext.tick_key_name, | 
|  | 1425 | TLSEXT_KEYNAME_LENGTH) != 0) { | 
|  | 1426 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1427 | goto end; | 
|  | 1428 | } | 
|  | 1429 | if (HMAC_Init_ex(hctx, tctx->ext.secure->tick_hmac_key, | 
|  | 1430 | sizeof(tctx->ext.secure->tick_hmac_key), | 
|  | 1431 | EVP_sha256(), NULL) <= 0 | 
|  | 1432 | || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, | 
|  | 1433 | tctx->ext.secure->tick_aes_key, | 
|  | 1434 | etick + TLSEXT_KEYNAME_LENGTH) <= 0) { | 
|  | 1435 | ret = SSL_TICKET_FATAL_ERR_OTHER; | 
|  | 1436 | goto end; | 
|  | 1437 | } | 
|  | 1438 | if (SSL_IS_TLS13(s)) | 
|  | 1439 | renew_ticket = 1; | 
|  | 1440 | } | 
|  | 1441 | /* | 
|  | 1442 | * Attempt to process session ticket, first conduct sanity and integrity | 
|  | 1443 | * checks on ticket. | 
|  | 1444 | */ | 
|  | 1445 | mlen = HMAC_size(hctx); | 
|  | 1446 | if (mlen == 0) { | 
|  | 1447 | ret = SSL_TICKET_FATAL_ERR_OTHER; | 
|  | 1448 | goto end; | 
|  | 1449 | } | 
|  | 1450 |  | 
|  | 1451 | /* Sanity check ticket length: must exceed keyname + IV + HMAC */ | 
|  | 1452 | if (eticklen <= | 
|  | 1453 | TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) { | 
|  | 1454 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1455 | goto end; | 
|  | 1456 | } | 
|  | 1457 | eticklen -= mlen; | 
|  | 1458 | /* Check HMAC of encrypted ticket */ | 
|  | 1459 | if (HMAC_Update(hctx, etick, eticklen) <= 0 | 
|  | 1460 | || HMAC_Final(hctx, tick_hmac, NULL) <= 0) { | 
|  | 1461 | ret = SSL_TICKET_FATAL_ERR_OTHER; | 
|  | 1462 | goto end; | 
|  | 1463 | } | 
|  | 1464 |  | 
|  | 1465 | if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { | 
|  | 1466 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1467 | goto end; | 
|  | 1468 | } | 
|  | 1469 | /* Attempt to decrypt session data */ | 
|  | 1470 | /* Move p after IV to start of encrypted ticket, update length */ | 
|  | 1471 | p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); | 
|  | 1472 | eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); | 
|  | 1473 | sdec = OPENSSL_malloc(eticklen); | 
|  | 1474 | if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, | 
|  | 1475 | (int)eticklen) <= 0) { | 
|  | 1476 | OPENSSL_free(sdec); | 
|  | 1477 | ret = SSL_TICKET_FATAL_ERR_OTHER; | 
|  | 1478 | goto end; | 
|  | 1479 | } | 
|  | 1480 | if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { | 
|  | 1481 | OPENSSL_free(sdec); | 
|  | 1482 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1483 | goto end; | 
|  | 1484 | } | 
|  | 1485 | slen += declen; | 
|  | 1486 | p = sdec; | 
|  | 1487 |  | 
|  | 1488 | sess = d2i_SSL_SESSION(NULL, &p, slen); | 
|  | 1489 | slen -= p - sdec; | 
|  | 1490 | OPENSSL_free(sdec); | 
|  | 1491 | if (sess) { | 
|  | 1492 | /* Some additional consistency checks */ | 
|  | 1493 | if (slen != 0) { | 
|  | 1494 | SSL_SESSION_free(sess); | 
|  | 1495 | sess = NULL; | 
|  | 1496 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1497 | goto end; | 
|  | 1498 | } | 
|  | 1499 | /* | 
|  | 1500 | * The session ID, if non-empty, is used by some clients to detect | 
|  | 1501 | * that the ticket has been accepted. So we copy it to the session | 
|  | 1502 | * structure. If it is empty set length to zero as required by | 
|  | 1503 | * standard. | 
|  | 1504 | */ | 
|  | 1505 | if (sesslen) { | 
|  | 1506 | memcpy(sess->session_id, sess_id, sesslen); | 
|  | 1507 | sess->session_id_length = sesslen; | 
|  | 1508 | } | 
|  | 1509 | if (renew_ticket) | 
|  | 1510 | ret = SSL_TICKET_SUCCESS_RENEW; | 
|  | 1511 | else | 
|  | 1512 | ret = SSL_TICKET_SUCCESS; | 
|  | 1513 | goto end; | 
|  | 1514 | } | 
|  | 1515 | ERR_clear_error(); | 
|  | 1516 | /* | 
|  | 1517 | * For session parse failure, indicate that we need to send a new ticket. | 
|  | 1518 | */ | 
|  | 1519 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1520 |  | 
|  | 1521 | end: | 
|  | 1522 | EVP_CIPHER_CTX_free(ctx); | 
|  | 1523 | HMAC_CTX_free(hctx); | 
|  | 1524 |  | 
|  | 1525 | /* | 
|  | 1526 | * If set, the decrypt_ticket_cb() is called unless a fatal error was | 
|  | 1527 | * detected above. The callback is responsible for checking |ret| before it | 
|  | 1528 | * performs any action | 
|  | 1529 | */ | 
|  | 1530 | if (s->session_ctx->decrypt_ticket_cb != NULL | 
|  | 1531 | && (ret == SSL_TICKET_EMPTY | 
|  | 1532 | || ret == SSL_TICKET_NO_DECRYPT | 
|  | 1533 | || ret == SSL_TICKET_SUCCESS | 
|  | 1534 | || ret == SSL_TICKET_SUCCESS_RENEW)) { | 
|  | 1535 | size_t keyname_len = eticklen; | 
|  | 1536 | int retcb; | 
|  | 1537 |  | 
|  | 1538 | if (keyname_len > TLSEXT_KEYNAME_LENGTH) | 
|  | 1539 | keyname_len = TLSEXT_KEYNAME_LENGTH; | 
|  | 1540 | retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len, | 
|  | 1541 | ret, | 
|  | 1542 | s->session_ctx->ticket_cb_data); | 
|  | 1543 | switch (retcb) { | 
|  | 1544 | case SSL_TICKET_RETURN_ABORT: | 
|  | 1545 | ret = SSL_TICKET_FATAL_ERR_OTHER; | 
|  | 1546 | break; | 
|  | 1547 |  | 
|  | 1548 | case SSL_TICKET_RETURN_IGNORE: | 
|  | 1549 | ret = SSL_TICKET_NONE; | 
|  | 1550 | SSL_SESSION_free(sess); | 
|  | 1551 | sess = NULL; | 
|  | 1552 | break; | 
|  | 1553 |  | 
|  | 1554 | case SSL_TICKET_RETURN_IGNORE_RENEW: | 
|  | 1555 | if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT) | 
|  | 1556 | ret = SSL_TICKET_NO_DECRYPT; | 
|  | 1557 | /* else the value of |ret| will already do the right thing */ | 
|  | 1558 | SSL_SESSION_free(sess); | 
|  | 1559 | sess = NULL; | 
|  | 1560 | break; | 
|  | 1561 |  | 
|  | 1562 | case SSL_TICKET_RETURN_USE: | 
|  | 1563 | case SSL_TICKET_RETURN_USE_RENEW: | 
|  | 1564 | if (ret != SSL_TICKET_SUCCESS | 
|  | 1565 | && ret != SSL_TICKET_SUCCESS_RENEW) | 
|  | 1566 | ret = SSL_TICKET_FATAL_ERR_OTHER; | 
|  | 1567 | else if (retcb == SSL_TICKET_RETURN_USE) | 
|  | 1568 | ret = SSL_TICKET_SUCCESS; | 
|  | 1569 | else | 
|  | 1570 | ret = SSL_TICKET_SUCCESS_RENEW; | 
|  | 1571 | break; | 
|  | 1572 |  | 
|  | 1573 | default: | 
|  | 1574 | ret = SSL_TICKET_FATAL_ERR_OTHER; | 
|  | 1575 | } | 
|  | 1576 | } | 
|  | 1577 |  | 
|  | 1578 | if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) { | 
|  | 1579 | switch (ret) { | 
|  | 1580 | case SSL_TICKET_NO_DECRYPT: | 
|  | 1581 | case SSL_TICKET_SUCCESS_RENEW: | 
|  | 1582 | case SSL_TICKET_EMPTY: | 
|  | 1583 | s->ext.ticket_expected = 1; | 
|  | 1584 | } | 
|  | 1585 | } | 
|  | 1586 |  | 
|  | 1587 | *psess = sess; | 
|  | 1588 |  | 
|  | 1589 | return ret; | 
|  | 1590 | } | 
|  | 1591 |  | 
|  | 1592 | /* Check to see if a signature algorithm is allowed */ | 
|  | 1593 | static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) | 
|  | 1594 | { | 
|  | 1595 | unsigned char sigalgstr[2]; | 
|  | 1596 | int secbits; | 
|  | 1597 |  | 
|  | 1598 | /* See if sigalgs is recognised and if hash is enabled */ | 
|  | 1599 | if (!tls1_lookup_md(lu, NULL)) | 
|  | 1600 | return 0; | 
|  | 1601 | /* DSA is not allowed in TLS 1.3 */ | 
|  | 1602 | if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) | 
|  | 1603 | return 0; | 
|  | 1604 | /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */ | 
|  | 1605 | if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION | 
|  | 1606 | && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX | 
|  | 1607 | || lu->hash_idx == SSL_MD_MD5_IDX | 
|  | 1608 | || lu->hash_idx == SSL_MD_SHA224_IDX)) | 
|  | 1609 | return 0; | 
|  | 1610 |  | 
|  | 1611 | /* See if public key algorithm allowed */ | 
|  | 1612 | if (ssl_cert_is_disabled(lu->sig_idx)) | 
|  | 1613 | return 0; | 
|  | 1614 |  | 
|  | 1615 | if (lu->sig == NID_id_GostR3410_2012_256 | 
|  | 1616 | || lu->sig == NID_id_GostR3410_2012_512 | 
|  | 1617 | || lu->sig == NID_id_GostR3410_2001) { | 
|  | 1618 | /* We never allow GOST sig algs on the server with TLSv1.3 */ | 
|  | 1619 | if (s->server && SSL_IS_TLS13(s)) | 
|  | 1620 | return 0; | 
|  | 1621 | if (!s->server | 
|  | 1622 | && s->method->version == TLS_ANY_VERSION | 
|  | 1623 | && s->s3->tmp.max_ver >= TLS1_3_VERSION) { | 
|  | 1624 | int i, num; | 
|  | 1625 | STACK_OF(SSL_CIPHER) *sk; | 
|  | 1626 |  | 
|  | 1627 | /* | 
|  | 1628 | * We're a client that could negotiate TLSv1.3. We only allow GOST | 
|  | 1629 | * sig algs if we could negotiate TLSv1.2 or below and we have GOST | 
|  | 1630 | * ciphersuites enabled. | 
|  | 1631 | */ | 
|  | 1632 |  | 
|  | 1633 | if (s->s3->tmp.min_ver >= TLS1_3_VERSION) | 
|  | 1634 | return 0; | 
|  | 1635 |  | 
|  | 1636 | sk = SSL_get_ciphers(s); | 
|  | 1637 | num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; | 
|  | 1638 | for (i = 0; i < num; i++) { | 
|  | 1639 | const SSL_CIPHER *c; | 
|  | 1640 |  | 
|  | 1641 | c = sk_SSL_CIPHER_value(sk, i); | 
|  | 1642 | /* Skip disabled ciphers */ | 
|  | 1643 | if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) | 
|  | 1644 | continue; | 
|  | 1645 |  | 
|  | 1646 | if ((c->algorithm_mkey & SSL_kGOST) != 0) | 
|  | 1647 | break; | 
|  | 1648 | } | 
|  | 1649 | if (i == num) | 
|  | 1650 | return 0; | 
|  | 1651 | } | 
|  | 1652 | } | 
|  | 1653 |  | 
|  | 1654 | /* Finally see if security callback allows it */ | 
|  | 1655 | secbits = sigalg_security_bits(lu); | 
|  | 1656 | sigalgstr[0] = (lu->sigalg >> 8) & 0xff; | 
|  | 1657 | sigalgstr[1] = lu->sigalg & 0xff; | 
|  | 1658 | return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); | 
|  | 1659 | } | 
|  | 1660 |  | 
|  | 1661 | /* | 
|  | 1662 | * Get a mask of disabled public key algorithms based on supported signature | 
|  | 1663 | * algorithms. For example if no signature algorithm supports RSA then RSA is | 
|  | 1664 | * disabled. | 
|  | 1665 | */ | 
|  | 1666 |  | 
|  | 1667 | void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) | 
|  | 1668 | { | 
|  | 1669 | const uint16_t *sigalgs; | 
|  | 1670 | size_t i, sigalgslen; | 
|  | 1671 | uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA; | 
|  | 1672 | /* | 
|  | 1673 | * Go through all signature algorithms seeing if we support any | 
|  | 1674 | * in disabled_mask. | 
|  | 1675 | */ | 
|  | 1676 | sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); | 
|  | 1677 | for (i = 0; i < sigalgslen; i++, sigalgs++) { | 
|  | 1678 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs); | 
|  | 1679 | const SSL_CERT_LOOKUP *clu; | 
|  | 1680 |  | 
|  | 1681 | if (lu == NULL) | 
|  | 1682 | continue; | 
|  | 1683 |  | 
|  | 1684 | clu = ssl_cert_lookup_by_idx(lu->sig_idx); | 
|  | 1685 | if (clu == NULL) | 
|  | 1686 | continue; | 
|  | 1687 |  | 
|  | 1688 | /* If algorithm is disabled see if we can enable it */ | 
|  | 1689 | if ((clu->amask & disabled_mask) != 0 | 
|  | 1690 | && tls12_sigalg_allowed(s, op, lu)) | 
|  | 1691 | disabled_mask &= ~clu->amask; | 
|  | 1692 | } | 
|  | 1693 | *pmask_a |= disabled_mask; | 
|  | 1694 | } | 
|  | 1695 |  | 
|  | 1696 | int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, | 
|  | 1697 | const uint16_t *psig, size_t psiglen) | 
|  | 1698 | { | 
|  | 1699 | size_t i; | 
|  | 1700 | int rv = 0; | 
|  | 1701 |  | 
|  | 1702 | for (i = 0; i < psiglen; i++, psig++) { | 
|  | 1703 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig); | 
|  | 1704 |  | 
|  | 1705 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) | 
|  | 1706 | continue; | 
|  | 1707 | if (!WPACKET_put_bytes_u16(pkt, *psig)) | 
|  | 1708 | return 0; | 
|  | 1709 | /* | 
|  | 1710 | * If TLS 1.3 must have at least one valid TLS 1.3 message | 
|  | 1711 | * signing algorithm: i.e. neither RSA nor SHA1/SHA224 | 
|  | 1712 | */ | 
|  | 1713 | if (rv == 0 && (!SSL_IS_TLS13(s) | 
|  | 1714 | || (lu->sig != EVP_PKEY_RSA | 
|  | 1715 | && lu->hash != NID_sha1 | 
|  | 1716 | && lu->hash != NID_sha224))) | 
|  | 1717 | rv = 1; | 
|  | 1718 | } | 
|  | 1719 | if (rv == 0) | 
|  | 1720 | SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); | 
|  | 1721 | return rv; | 
|  | 1722 | } | 
|  | 1723 |  | 
|  | 1724 | /* Given preference and allowed sigalgs set shared sigalgs */ | 
|  | 1725 | static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, | 
|  | 1726 | const uint16_t *pref, size_t preflen, | 
|  | 1727 | const uint16_t *allow, size_t allowlen) | 
|  | 1728 | { | 
|  | 1729 | const uint16_t *ptmp, *atmp; | 
|  | 1730 | size_t i, j, nmatch = 0; | 
|  | 1731 | for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { | 
|  | 1732 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp); | 
|  | 1733 |  | 
|  | 1734 | /* Skip disabled hashes or signature algorithms */ | 
|  | 1735 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu)) | 
|  | 1736 | continue; | 
|  | 1737 | for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { | 
|  | 1738 | if (*ptmp == *atmp) { | 
|  | 1739 | nmatch++; | 
|  | 1740 | if (shsig) | 
|  | 1741 | *shsig++ = lu; | 
|  | 1742 | break; | 
|  | 1743 | } | 
|  | 1744 | } | 
|  | 1745 | } | 
|  | 1746 | return nmatch; | 
|  | 1747 | } | 
|  | 1748 |  | 
|  | 1749 | /* Set shared signature algorithms for SSL structures */ | 
|  | 1750 | static int tls1_set_shared_sigalgs(SSL *s) | 
|  | 1751 | { | 
|  | 1752 | const uint16_t *pref, *allow, *conf; | 
|  | 1753 | size_t preflen, allowlen, conflen; | 
|  | 1754 | size_t nmatch; | 
|  | 1755 | const SIGALG_LOOKUP **salgs = NULL; | 
|  | 1756 | CERT *c = s->cert; | 
|  | 1757 | unsigned int is_suiteb = tls1_suiteb(s); | 
|  | 1758 |  | 
|  | 1759 | OPENSSL_free(s->shared_sigalgs); | 
|  | 1760 | s->shared_sigalgs = NULL; | 
|  | 1761 | s->shared_sigalgslen = 0; | 
|  | 1762 | /* If client use client signature algorithms if not NULL */ | 
|  | 1763 | if (!s->server && c->client_sigalgs && !is_suiteb) { | 
|  | 1764 | conf = c->client_sigalgs; | 
|  | 1765 | conflen = c->client_sigalgslen; | 
|  | 1766 | } else if (c->conf_sigalgs && !is_suiteb) { | 
|  | 1767 | conf = c->conf_sigalgs; | 
|  | 1768 | conflen = c->conf_sigalgslen; | 
|  | 1769 | } else | 
|  | 1770 | conflen = tls12_get_psigalgs(s, 0, &conf); | 
|  | 1771 | if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { | 
|  | 1772 | pref = conf; | 
|  | 1773 | preflen = conflen; | 
|  | 1774 | allow = s->s3->tmp.peer_sigalgs; | 
|  | 1775 | allowlen = s->s3->tmp.peer_sigalgslen; | 
|  | 1776 | } else { | 
|  | 1777 | allow = conf; | 
|  | 1778 | allowlen = conflen; | 
|  | 1779 | pref = s->s3->tmp.peer_sigalgs; | 
|  | 1780 | preflen = s->s3->tmp.peer_sigalgslen; | 
|  | 1781 | } | 
|  | 1782 | nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); | 
|  | 1783 | if (nmatch) { | 
|  | 1784 | if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) { | 
|  | 1785 | SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE); | 
|  | 1786 | return 0; | 
|  | 1787 | } | 
|  | 1788 | nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); | 
|  | 1789 | } else { | 
|  | 1790 | salgs = NULL; | 
|  | 1791 | } | 
|  | 1792 | s->shared_sigalgs = salgs; | 
|  | 1793 | s->shared_sigalgslen = nmatch; | 
|  | 1794 | return 1; | 
|  | 1795 | } | 
|  | 1796 |  | 
|  | 1797 | int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) | 
|  | 1798 | { | 
|  | 1799 | unsigned int stmp; | 
|  | 1800 | size_t size, i; | 
|  | 1801 | uint16_t *buf; | 
|  | 1802 |  | 
|  | 1803 | size = PACKET_remaining(pkt); | 
|  | 1804 |  | 
|  | 1805 | /* Invalid data length */ | 
|  | 1806 | if (size == 0 || (size & 1) != 0) | 
|  | 1807 | return 0; | 
|  | 1808 |  | 
|  | 1809 | size >>= 1; | 
|  | 1810 |  | 
|  | 1811 | if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)  { | 
|  | 1812 | SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE); | 
|  | 1813 | return 0; | 
|  | 1814 | } | 
|  | 1815 | for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) | 
|  | 1816 | buf[i] = stmp; | 
|  | 1817 |  | 
|  | 1818 | if (i != size) { | 
|  | 1819 | OPENSSL_free(buf); | 
|  | 1820 | return 0; | 
|  | 1821 | } | 
|  | 1822 |  | 
|  | 1823 | OPENSSL_free(*pdest); | 
|  | 1824 | *pdest = buf; | 
|  | 1825 | *pdestlen = size; | 
|  | 1826 |  | 
|  | 1827 | return 1; | 
|  | 1828 | } | 
|  | 1829 |  | 
|  | 1830 | int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert) | 
|  | 1831 | { | 
|  | 1832 | /* Extension ignored for inappropriate versions */ | 
|  | 1833 | if (!SSL_USE_SIGALGS(s)) | 
|  | 1834 | return 1; | 
|  | 1835 | /* Should never happen */ | 
|  | 1836 | if (s->cert == NULL) | 
|  | 1837 | return 0; | 
|  | 1838 |  | 
|  | 1839 | if (cert) | 
|  | 1840 | return tls1_save_u16(pkt, &s->s3->tmp.peer_cert_sigalgs, | 
|  | 1841 | &s->s3->tmp.peer_cert_sigalgslen); | 
|  | 1842 | else | 
|  | 1843 | return tls1_save_u16(pkt, &s->s3->tmp.peer_sigalgs, | 
|  | 1844 | &s->s3->tmp.peer_sigalgslen); | 
|  | 1845 |  | 
|  | 1846 | } | 
|  | 1847 |  | 
|  | 1848 | /* Set preferred digest for each key type */ | 
|  | 1849 |  | 
|  | 1850 | int tls1_process_sigalgs(SSL *s) | 
|  | 1851 | { | 
|  | 1852 | size_t i; | 
|  | 1853 | uint32_t *pvalid = s->s3->tmp.valid_flags; | 
|  | 1854 |  | 
|  | 1855 | if (!tls1_set_shared_sigalgs(s)) | 
|  | 1856 | return 0; | 
|  | 1857 |  | 
|  | 1858 | for (i = 0; i < SSL_PKEY_NUM; i++) | 
|  | 1859 | pvalid[i] = 0; | 
|  | 1860 |  | 
|  | 1861 | for (i = 0; i < s->shared_sigalgslen; i++) { | 
|  | 1862 | const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i]; | 
|  | 1863 | int idx = sigptr->sig_idx; | 
|  | 1864 |  | 
|  | 1865 | /* Ignore PKCS1 based sig algs in TLSv1.3 */ | 
|  | 1866 | if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) | 
|  | 1867 | continue; | 
|  | 1868 | /* If not disabled indicate we can explicitly sign */ | 
|  | 1869 | if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx)) | 
|  | 1870 | pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; | 
|  | 1871 | } | 
|  | 1872 | return 1; | 
|  | 1873 | } | 
|  | 1874 |  | 
|  | 1875 | int SSL_get_sigalgs(SSL *s, int idx, | 
|  | 1876 | int *psign, int *phash, int *psignhash, | 
|  | 1877 | unsigned char *rsig, unsigned char *rhash) | 
|  | 1878 | { | 
|  | 1879 | uint16_t *psig = s->s3->tmp.peer_sigalgs; | 
|  | 1880 | size_t numsigalgs = s->s3->tmp.peer_sigalgslen; | 
|  | 1881 | if (psig == NULL || numsigalgs > INT_MAX) | 
|  | 1882 | return 0; | 
|  | 1883 | if (idx >= 0) { | 
|  | 1884 | const SIGALG_LOOKUP *lu; | 
|  | 1885 |  | 
|  | 1886 | if (idx >= (int)numsigalgs) | 
|  | 1887 | return 0; | 
|  | 1888 | psig += idx; | 
|  | 1889 | if (rhash != NULL) | 
|  | 1890 | *rhash = (unsigned char)((*psig >> 8) & 0xff); | 
|  | 1891 | if (rsig != NULL) | 
|  | 1892 | *rsig = (unsigned char)(*psig & 0xff); | 
|  | 1893 | lu = tls1_lookup_sigalg(*psig); | 
|  | 1894 | if (psign != NULL) | 
|  | 1895 | *psign = lu != NULL ? lu->sig : NID_undef; | 
|  | 1896 | if (phash != NULL) | 
|  | 1897 | *phash = lu != NULL ? lu->hash : NID_undef; | 
|  | 1898 | if (psignhash != NULL) | 
|  | 1899 | *psignhash = lu != NULL ? lu->sigandhash : NID_undef; | 
|  | 1900 | } | 
|  | 1901 | return (int)numsigalgs; | 
|  | 1902 | } | 
|  | 1903 |  | 
|  | 1904 | int SSL_get_shared_sigalgs(SSL *s, int idx, | 
|  | 1905 | int *psign, int *phash, int *psignhash, | 
|  | 1906 | unsigned char *rsig, unsigned char *rhash) | 
|  | 1907 | { | 
|  | 1908 | const SIGALG_LOOKUP *shsigalgs; | 
|  | 1909 | if (s->shared_sigalgs == NULL | 
|  | 1910 | || idx < 0 | 
|  | 1911 | || idx >= (int)s->shared_sigalgslen | 
|  | 1912 | || s->shared_sigalgslen > INT_MAX) | 
|  | 1913 | return 0; | 
|  | 1914 | shsigalgs = s->shared_sigalgs[idx]; | 
|  | 1915 | if (phash != NULL) | 
|  | 1916 | *phash = shsigalgs->hash; | 
|  | 1917 | if (psign != NULL) | 
|  | 1918 | *psign = shsigalgs->sig; | 
|  | 1919 | if (psignhash != NULL) | 
|  | 1920 | *psignhash = shsigalgs->sigandhash; | 
|  | 1921 | if (rsig != NULL) | 
|  | 1922 | *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); | 
|  | 1923 | if (rhash != NULL) | 
|  | 1924 | *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); | 
|  | 1925 | return (int)s->shared_sigalgslen; | 
|  | 1926 | } | 
|  | 1927 |  | 
|  | 1928 | /* Maximum possible number of unique entries in sigalgs array */ | 
|  | 1929 | #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) | 
|  | 1930 |  | 
|  | 1931 | typedef struct { | 
|  | 1932 | size_t sigalgcnt; | 
|  | 1933 | /* TLSEXT_SIGALG_XXX values */ | 
|  | 1934 | uint16_t sigalgs[TLS_MAX_SIGALGCNT]; | 
|  | 1935 | } sig_cb_st; | 
|  | 1936 |  | 
|  | 1937 | static void get_sigorhash(int *psig, int *phash, const char *str) | 
|  | 1938 | { | 
|  | 1939 | if (strcmp(str, "RSA") == 0) { | 
|  | 1940 | *psig = EVP_PKEY_RSA; | 
|  | 1941 | } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { | 
|  | 1942 | *psig = EVP_PKEY_RSA_PSS; | 
|  | 1943 | } else if (strcmp(str, "DSA") == 0) { | 
|  | 1944 | *psig = EVP_PKEY_DSA; | 
|  | 1945 | } else if (strcmp(str, "ECDSA") == 0) { | 
|  | 1946 | *psig = EVP_PKEY_EC; | 
|  | 1947 | } else { | 
|  | 1948 | *phash = OBJ_sn2nid(str); | 
|  | 1949 | if (*phash == NID_undef) | 
|  | 1950 | *phash = OBJ_ln2nid(str); | 
|  | 1951 | } | 
|  | 1952 | } | 
|  | 1953 | /* Maximum length of a signature algorithm string component */ | 
|  | 1954 | #define TLS_MAX_SIGSTRING_LEN   40 | 
|  | 1955 |  | 
|  | 1956 | static int sig_cb(const char *elem, int len, void *arg) | 
|  | 1957 | { | 
|  | 1958 | sig_cb_st *sarg = arg; | 
|  | 1959 | size_t i; | 
|  | 1960 | const SIGALG_LOOKUP *s; | 
|  | 1961 | char etmp[TLS_MAX_SIGSTRING_LEN], *p; | 
|  | 1962 | int sig_alg = NID_undef, hash_alg = NID_undef; | 
|  | 1963 | if (elem == NULL) | 
|  | 1964 | return 0; | 
|  | 1965 | if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) | 
|  | 1966 | return 0; | 
|  | 1967 | if (len > (int)(sizeof(etmp) - 1)) | 
|  | 1968 | return 0; | 
|  | 1969 | memcpy(etmp, elem, len); | 
|  | 1970 | etmp[len] = 0; | 
|  | 1971 | p = strchr(etmp, '+'); | 
|  | 1972 | /* | 
|  | 1973 | * We only allow SignatureSchemes listed in the sigalg_lookup_tbl; | 
|  | 1974 | * if there's no '+' in the provided name, look for the new-style combined | 
|  | 1975 | * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP. | 
|  | 1976 | * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and | 
|  | 1977 | * rsa_pss_rsae_* that differ only by public key OID; in such cases | 
|  | 1978 | * we will pick the _rsae_ variant, by virtue of them appearing earlier | 
|  | 1979 | * in the table. | 
|  | 1980 | */ | 
|  | 1981 | if (p == NULL) { | 
|  | 1982 | for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); | 
|  | 1983 | i++, s++) { | 
|  | 1984 | if (s->name != NULL && strcmp(etmp, s->name) == 0) { | 
|  | 1985 | sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; | 
|  | 1986 | break; | 
|  | 1987 | } | 
|  | 1988 | } | 
|  | 1989 | if (i == OSSL_NELEM(sigalg_lookup_tbl)) | 
|  | 1990 | return 0; | 
|  | 1991 | } else { | 
|  | 1992 | *p = 0; | 
|  | 1993 | p++; | 
|  | 1994 | if (*p == 0) | 
|  | 1995 | return 0; | 
|  | 1996 | get_sigorhash(&sig_alg, &hash_alg, etmp); | 
|  | 1997 | get_sigorhash(&sig_alg, &hash_alg, p); | 
|  | 1998 | if (sig_alg == NID_undef || hash_alg == NID_undef) | 
|  | 1999 | return 0; | 
|  | 2000 | for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); | 
|  | 2001 | i++, s++) { | 
|  | 2002 | if (s->hash == hash_alg && s->sig == sig_alg) { | 
|  | 2003 | sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; | 
|  | 2004 | break; | 
|  | 2005 | } | 
|  | 2006 | } | 
|  | 2007 | if (i == OSSL_NELEM(sigalg_lookup_tbl)) | 
|  | 2008 | return 0; | 
|  | 2009 | } | 
|  | 2010 |  | 
|  | 2011 | /* Reject duplicates */ | 
|  | 2012 | for (i = 0; i < sarg->sigalgcnt - 1; i++) { | 
|  | 2013 | if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { | 
|  | 2014 | sarg->sigalgcnt--; | 
|  | 2015 | return 0; | 
|  | 2016 | } | 
|  | 2017 | } | 
|  | 2018 | return 1; | 
|  | 2019 | } | 
|  | 2020 |  | 
|  | 2021 | /* | 
|  | 2022 | * Set supported signature algorithms based on a colon separated list of the | 
|  | 2023 | * form sig+hash e.g. RSA+SHA512:DSA+SHA512 | 
|  | 2024 | */ | 
|  | 2025 | int tls1_set_sigalgs_list(CERT *c, const char *str, int client) | 
|  | 2026 | { | 
|  | 2027 | sig_cb_st sig; | 
|  | 2028 | sig.sigalgcnt = 0; | 
|  | 2029 | if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) | 
|  | 2030 | return 0; | 
|  | 2031 | if (c == NULL) | 
|  | 2032 | return 1; | 
|  | 2033 | return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); | 
|  | 2034 | } | 
|  | 2035 |  | 
|  | 2036 | int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, | 
|  | 2037 | int client) | 
|  | 2038 | { | 
|  | 2039 | uint16_t *sigalgs; | 
|  | 2040 |  | 
|  | 2041 | if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) { | 
|  | 2042 | SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE); | 
|  | 2043 | return 0; | 
|  | 2044 | } | 
|  | 2045 | memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); | 
|  | 2046 |  | 
|  | 2047 | if (client) { | 
|  | 2048 | OPENSSL_free(c->client_sigalgs); | 
|  | 2049 | c->client_sigalgs = sigalgs; | 
|  | 2050 | c->client_sigalgslen = salglen; | 
|  | 2051 | } else { | 
|  | 2052 | OPENSSL_free(c->conf_sigalgs); | 
|  | 2053 | c->conf_sigalgs = sigalgs; | 
|  | 2054 | c->conf_sigalgslen = salglen; | 
|  | 2055 | } | 
|  | 2056 |  | 
|  | 2057 | return 1; | 
|  | 2058 | } | 
|  | 2059 |  | 
|  | 2060 | int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) | 
|  | 2061 | { | 
|  | 2062 | uint16_t *sigalgs, *sptr; | 
|  | 2063 | size_t i; | 
|  | 2064 |  | 
|  | 2065 | if (salglen & 1) | 
|  | 2066 | return 0; | 
|  | 2067 | if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) { | 
|  | 2068 | SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE); | 
|  | 2069 | return 0; | 
|  | 2070 | } | 
|  | 2071 | for (i = 0, sptr = sigalgs; i < salglen; i += 2) { | 
|  | 2072 | size_t j; | 
|  | 2073 | const SIGALG_LOOKUP *curr; | 
|  | 2074 | int md_id = *psig_nids++; | 
|  | 2075 | int sig_id = *psig_nids++; | 
|  | 2076 |  | 
|  | 2077 | for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); | 
|  | 2078 | j++, curr++) { | 
|  | 2079 | if (curr->hash == md_id && curr->sig == sig_id) { | 
|  | 2080 | *sptr++ = curr->sigalg; | 
|  | 2081 | break; | 
|  | 2082 | } | 
|  | 2083 | } | 
|  | 2084 |  | 
|  | 2085 | if (j == OSSL_NELEM(sigalg_lookup_tbl)) | 
|  | 2086 | goto err; | 
|  | 2087 | } | 
|  | 2088 |  | 
|  | 2089 | if (client) { | 
|  | 2090 | OPENSSL_free(c->client_sigalgs); | 
|  | 2091 | c->client_sigalgs = sigalgs; | 
|  | 2092 | c->client_sigalgslen = salglen / 2; | 
|  | 2093 | } else { | 
|  | 2094 | OPENSSL_free(c->conf_sigalgs); | 
|  | 2095 | c->conf_sigalgs = sigalgs; | 
|  | 2096 | c->conf_sigalgslen = salglen / 2; | 
|  | 2097 | } | 
|  | 2098 |  | 
|  | 2099 | return 1; | 
|  | 2100 |  | 
|  | 2101 | err: | 
|  | 2102 | OPENSSL_free(sigalgs); | 
|  | 2103 | return 0; | 
|  | 2104 | } | 
|  | 2105 |  | 
|  | 2106 | static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid) | 
|  | 2107 | { | 
|  | 2108 | int sig_nid, use_pc_sigalgs = 0; | 
|  | 2109 | size_t i; | 
|  | 2110 | const SIGALG_LOOKUP *sigalg; | 
|  | 2111 | size_t sigalgslen; | 
|  | 2112 | if (default_nid == -1) | 
|  | 2113 | return 1; | 
|  | 2114 | sig_nid = X509_get_signature_nid(x); | 
|  | 2115 | if (default_nid) | 
|  | 2116 | return sig_nid == default_nid ? 1 : 0; | 
|  | 2117 |  | 
|  | 2118 | if (SSL_IS_TLS13(s) && s->s3->tmp.peer_cert_sigalgs != NULL) { | 
|  | 2119 | /* | 
|  | 2120 | * If we're in TLSv1.3 then we only get here if we're checking the | 
|  | 2121 | * chain. If the peer has specified peer_cert_sigalgs then we use them | 
|  | 2122 | * otherwise we default to normal sigalgs. | 
|  | 2123 | */ | 
|  | 2124 | sigalgslen = s->s3->tmp.peer_cert_sigalgslen; | 
|  | 2125 | use_pc_sigalgs = 1; | 
|  | 2126 | } else { | 
|  | 2127 | sigalgslen = s->shared_sigalgslen; | 
|  | 2128 | } | 
|  | 2129 | for (i = 0; i < sigalgslen; i++) { | 
|  | 2130 | sigalg = use_pc_sigalgs | 
|  | 2131 | ? tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]) | 
|  | 2132 | : s->shared_sigalgs[i]; | 
|  | 2133 | if (sigalg != NULL && sig_nid == sigalg->sigandhash) | 
|  | 2134 | return 1; | 
|  | 2135 | } | 
|  | 2136 | return 0; | 
|  | 2137 | } | 
|  | 2138 |  | 
|  | 2139 | /* Check to see if a certificate issuer name matches list of CA names */ | 
|  | 2140 | static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) | 
|  | 2141 | { | 
|  | 2142 | X509_NAME *nm; | 
|  | 2143 | int i; | 
|  | 2144 | nm = X509_get_issuer_name(x); | 
|  | 2145 | for (i = 0; i < sk_X509_NAME_num(names); i++) { | 
|  | 2146 | if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) | 
|  | 2147 | return 1; | 
|  | 2148 | } | 
|  | 2149 | return 0; | 
|  | 2150 | } | 
|  | 2151 |  | 
|  | 2152 | /* | 
|  | 2153 | * Check certificate chain is consistent with TLS extensions and is usable by | 
|  | 2154 | * server. This servers two purposes: it allows users to check chains before | 
|  | 2155 | * passing them to the server and it allows the server to check chains before | 
|  | 2156 | * attempting to use them. | 
|  | 2157 | */ | 
|  | 2158 |  | 
|  | 2159 | /* Flags which need to be set for a certificate when strict mode not set */ | 
|  | 2160 |  | 
|  | 2161 | #define CERT_PKEY_VALID_FLAGS \ | 
|  | 2162 | (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) | 
|  | 2163 | /* Strict mode flags */ | 
|  | 2164 | #define CERT_PKEY_STRICT_FLAGS \ | 
|  | 2165 | (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ | 
|  | 2166 | | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) | 
|  | 2167 |  | 
|  | 2168 | int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, | 
|  | 2169 | int idx) | 
|  | 2170 | { | 
|  | 2171 | int i; | 
|  | 2172 | int rv = 0; | 
|  | 2173 | int check_flags = 0, strict_mode; | 
|  | 2174 | CERT_PKEY *cpk = NULL; | 
|  | 2175 | CERT *c = s->cert; | 
|  | 2176 | uint32_t *pvalid; | 
|  | 2177 | unsigned int suiteb_flags = tls1_suiteb(s); | 
|  | 2178 | /* idx == -1 means checking server chains */ | 
|  | 2179 | if (idx != -1) { | 
|  | 2180 | /* idx == -2 means checking client certificate chains */ | 
|  | 2181 | if (idx == -2) { | 
|  | 2182 | cpk = c->key; | 
|  | 2183 | idx = (int)(cpk - c->pkeys); | 
|  | 2184 | } else | 
|  | 2185 | cpk = c->pkeys + idx; | 
|  | 2186 | pvalid = s->s3->tmp.valid_flags + idx; | 
|  | 2187 | x = cpk->x509; | 
|  | 2188 | pk = cpk->privatekey; | 
|  | 2189 | chain = cpk->chain; | 
|  | 2190 | strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; | 
|  | 2191 | /* If no cert or key, forget it */ | 
|  | 2192 | if (!x || !pk) | 
|  | 2193 | goto end; | 
|  | 2194 | } else { | 
|  | 2195 | size_t certidx; | 
|  | 2196 |  | 
|  | 2197 | if (!x || !pk) | 
|  | 2198 | return 0; | 
|  | 2199 |  | 
|  | 2200 | if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL) | 
|  | 2201 | return 0; | 
|  | 2202 | idx = certidx; | 
|  | 2203 | pvalid = s->s3->tmp.valid_flags + idx; | 
|  | 2204 |  | 
|  | 2205 | if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) | 
|  | 2206 | check_flags = CERT_PKEY_STRICT_FLAGS; | 
|  | 2207 | else | 
|  | 2208 | check_flags = CERT_PKEY_VALID_FLAGS; | 
|  | 2209 | strict_mode = 1; | 
|  | 2210 | } | 
|  | 2211 |  | 
|  | 2212 | if (suiteb_flags) { | 
|  | 2213 | int ok; | 
|  | 2214 | if (check_flags) | 
|  | 2215 | check_flags |= CERT_PKEY_SUITEB; | 
|  | 2216 | ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); | 
|  | 2217 | if (ok == X509_V_OK) | 
|  | 2218 | rv |= CERT_PKEY_SUITEB; | 
|  | 2219 | else if (!check_flags) | 
|  | 2220 | goto end; | 
|  | 2221 | } | 
|  | 2222 |  | 
|  | 2223 | /* | 
|  | 2224 | * Check all signature algorithms are consistent with signature | 
|  | 2225 | * algorithms extension if TLS 1.2 or later and strict mode. | 
|  | 2226 | */ | 
|  | 2227 | if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { | 
|  | 2228 | int default_nid; | 
|  | 2229 | int rsign = 0; | 
|  | 2230 | if (s->s3->tmp.peer_cert_sigalgs != NULL | 
|  | 2231 | || s->s3->tmp.peer_sigalgs != NULL) { | 
|  | 2232 | default_nid = 0; | 
|  | 2233 | /* If no sigalgs extension use defaults from RFC5246 */ | 
|  | 2234 | } else { | 
|  | 2235 | switch (idx) { | 
|  | 2236 | case SSL_PKEY_RSA: | 
|  | 2237 | rsign = EVP_PKEY_RSA; | 
|  | 2238 | default_nid = NID_sha1WithRSAEncryption; | 
|  | 2239 | break; | 
|  | 2240 |  | 
|  | 2241 | case SSL_PKEY_DSA_SIGN: | 
|  | 2242 | rsign = EVP_PKEY_DSA; | 
|  | 2243 | default_nid = NID_dsaWithSHA1; | 
|  | 2244 | break; | 
|  | 2245 |  | 
|  | 2246 | case SSL_PKEY_ECC: | 
|  | 2247 | rsign = EVP_PKEY_EC; | 
|  | 2248 | default_nid = NID_ecdsa_with_SHA1; | 
|  | 2249 | break; | 
|  | 2250 |  | 
|  | 2251 | case SSL_PKEY_GOST01: | 
|  | 2252 | rsign = NID_id_GostR3410_2001; | 
|  | 2253 | default_nid = NID_id_GostR3411_94_with_GostR3410_2001; | 
|  | 2254 | break; | 
|  | 2255 |  | 
|  | 2256 | case SSL_PKEY_GOST12_256: | 
|  | 2257 | rsign = NID_id_GostR3410_2012_256; | 
|  | 2258 | default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; | 
|  | 2259 | break; | 
|  | 2260 |  | 
|  | 2261 | case SSL_PKEY_GOST12_512: | 
|  | 2262 | rsign = NID_id_GostR3410_2012_512; | 
|  | 2263 | default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; | 
|  | 2264 | break; | 
|  | 2265 |  | 
|  | 2266 | default: | 
|  | 2267 | default_nid = -1; | 
|  | 2268 | break; | 
|  | 2269 | } | 
|  | 2270 | } | 
|  | 2271 | /* | 
|  | 2272 | * If peer sent no signature algorithms extension and we have set | 
|  | 2273 | * preferred signature algorithms check we support sha1. | 
|  | 2274 | */ | 
|  | 2275 | if (default_nid > 0 && c->conf_sigalgs) { | 
|  | 2276 | size_t j; | 
|  | 2277 | const uint16_t *p = c->conf_sigalgs; | 
|  | 2278 | for (j = 0; j < c->conf_sigalgslen; j++, p++) { | 
|  | 2279 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p); | 
|  | 2280 |  | 
|  | 2281 | if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) | 
|  | 2282 | break; | 
|  | 2283 | } | 
|  | 2284 | if (j == c->conf_sigalgslen) { | 
|  | 2285 | if (check_flags) | 
|  | 2286 | goto skip_sigs; | 
|  | 2287 | else | 
|  | 2288 | goto end; | 
|  | 2289 | } | 
|  | 2290 | } | 
|  | 2291 | /* Check signature algorithm of each cert in chain */ | 
|  | 2292 | if (SSL_IS_TLS13(s)) { | 
|  | 2293 | /* | 
|  | 2294 | * We only get here if the application has called SSL_check_chain(), | 
|  | 2295 | * so check_flags is always set. | 
|  | 2296 | */ | 
|  | 2297 | if (find_sig_alg(s, x, pk) != NULL) | 
|  | 2298 | rv |= CERT_PKEY_EE_SIGNATURE; | 
|  | 2299 | } else if (!tls1_check_sig_alg(s, x, default_nid)) { | 
|  | 2300 | if (!check_flags) | 
|  | 2301 | goto end; | 
|  | 2302 | } else | 
|  | 2303 | rv |= CERT_PKEY_EE_SIGNATURE; | 
|  | 2304 | rv |= CERT_PKEY_CA_SIGNATURE; | 
|  | 2305 | for (i = 0; i < sk_X509_num(chain); i++) { | 
|  | 2306 | if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { | 
|  | 2307 | if (check_flags) { | 
|  | 2308 | rv &= ~CERT_PKEY_CA_SIGNATURE; | 
|  | 2309 | break; | 
|  | 2310 | } else | 
|  | 2311 | goto end; | 
|  | 2312 | } | 
|  | 2313 | } | 
|  | 2314 | } | 
|  | 2315 | /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ | 
|  | 2316 | else if (check_flags) | 
|  | 2317 | rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; | 
|  | 2318 | skip_sigs: | 
|  | 2319 | /* Check cert parameters are consistent */ | 
|  | 2320 | if (tls1_check_cert_param(s, x, 1)) | 
|  | 2321 | rv |= CERT_PKEY_EE_PARAM; | 
|  | 2322 | else if (!check_flags) | 
|  | 2323 | goto end; | 
|  | 2324 | if (!s->server) | 
|  | 2325 | rv |= CERT_PKEY_CA_PARAM; | 
|  | 2326 | /* In strict mode check rest of chain too */ | 
|  | 2327 | else if (strict_mode) { | 
|  | 2328 | rv |= CERT_PKEY_CA_PARAM; | 
|  | 2329 | for (i = 0; i < sk_X509_num(chain); i++) { | 
|  | 2330 | X509 *ca = sk_X509_value(chain, i); | 
|  | 2331 | if (!tls1_check_cert_param(s, ca, 0)) { | 
|  | 2332 | if (check_flags) { | 
|  | 2333 | rv &= ~CERT_PKEY_CA_PARAM; | 
|  | 2334 | break; | 
|  | 2335 | } else | 
|  | 2336 | goto end; | 
|  | 2337 | } | 
|  | 2338 | } | 
|  | 2339 | } | 
|  | 2340 | if (!s->server && strict_mode) { | 
|  | 2341 | STACK_OF(X509_NAME) *ca_dn; | 
|  | 2342 | int check_type = 0; | 
|  | 2343 | switch (EVP_PKEY_id(pk)) { | 
|  | 2344 | case EVP_PKEY_RSA: | 
|  | 2345 | check_type = TLS_CT_RSA_SIGN; | 
|  | 2346 | break; | 
|  | 2347 | case EVP_PKEY_DSA: | 
|  | 2348 | check_type = TLS_CT_DSS_SIGN; | 
|  | 2349 | break; | 
|  | 2350 | case EVP_PKEY_EC: | 
|  | 2351 | check_type = TLS_CT_ECDSA_SIGN; | 
|  | 2352 | break; | 
|  | 2353 | } | 
|  | 2354 | if (check_type) { | 
|  | 2355 | const uint8_t *ctypes = s->s3->tmp.ctype; | 
|  | 2356 | size_t j; | 
|  | 2357 |  | 
|  | 2358 | for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) { | 
|  | 2359 | if (*ctypes == check_type) { | 
|  | 2360 | rv |= CERT_PKEY_CERT_TYPE; | 
|  | 2361 | break; | 
|  | 2362 | } | 
|  | 2363 | } | 
|  | 2364 | if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) | 
|  | 2365 | goto end; | 
|  | 2366 | } else { | 
|  | 2367 | rv |= CERT_PKEY_CERT_TYPE; | 
|  | 2368 | } | 
|  | 2369 |  | 
|  | 2370 | ca_dn = s->s3->tmp.peer_ca_names; | 
|  | 2371 |  | 
|  | 2372 | if (ca_dn == NULL | 
|  | 2373 | || sk_X509_NAME_num(ca_dn) == 0 | 
|  | 2374 | || ssl_check_ca_name(ca_dn, x)) | 
|  | 2375 | rv |= CERT_PKEY_ISSUER_NAME; | 
|  | 2376 | else | 
|  | 2377 | for (i = 0; i < sk_X509_num(chain); i++) { | 
|  | 2378 | X509 *xtmp = sk_X509_value(chain, i); | 
|  | 2379 |  | 
|  | 2380 | if (ssl_check_ca_name(ca_dn, xtmp)) { | 
|  | 2381 | rv |= CERT_PKEY_ISSUER_NAME; | 
|  | 2382 | break; | 
|  | 2383 | } | 
|  | 2384 | } | 
|  | 2385 |  | 
|  | 2386 | if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) | 
|  | 2387 | goto end; | 
|  | 2388 | } else | 
|  | 2389 | rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; | 
|  | 2390 |  | 
|  | 2391 | if (!check_flags || (rv & check_flags) == check_flags) | 
|  | 2392 | rv |= CERT_PKEY_VALID; | 
|  | 2393 |  | 
|  | 2394 | end: | 
|  | 2395 |  | 
|  | 2396 | if (TLS1_get_version(s) >= TLS1_2_VERSION) | 
|  | 2397 | rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); | 
|  | 2398 | else | 
|  | 2399 | rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; | 
|  | 2400 |  | 
|  | 2401 | /* | 
|  | 2402 | * When checking a CERT_PKEY structure all flags are irrelevant if the | 
|  | 2403 | * chain is invalid. | 
|  | 2404 | */ | 
|  | 2405 | if (!check_flags) { | 
|  | 2406 | if (rv & CERT_PKEY_VALID) { | 
|  | 2407 | *pvalid = rv; | 
|  | 2408 | } else { | 
|  | 2409 | /* Preserve sign and explicit sign flag, clear rest */ | 
|  | 2410 | *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; | 
|  | 2411 | return 0; | 
|  | 2412 | } | 
|  | 2413 | } | 
|  | 2414 | return rv; | 
|  | 2415 | } | 
|  | 2416 |  | 
|  | 2417 | /* Set validity of certificates in an SSL structure */ | 
|  | 2418 | void tls1_set_cert_validity(SSL *s) | 
|  | 2419 | { | 
|  | 2420 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); | 
|  | 2421 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); | 
|  | 2422 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); | 
|  | 2423 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); | 
|  | 2424 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); | 
|  | 2425 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); | 
|  | 2426 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); | 
|  | 2427 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519); | 
|  | 2428 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448); | 
|  | 2429 | } | 
|  | 2430 |  | 
|  | 2431 | /* User level utility function to check a chain is suitable */ | 
|  | 2432 | int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) | 
|  | 2433 | { | 
|  | 2434 | return tls1_check_chain(s, x, pk, chain, -1); | 
|  | 2435 | } | 
|  | 2436 |  | 
|  | 2437 | #ifndef OPENSSL_NO_DH | 
|  | 2438 | DH *ssl_get_auto_dh(SSL *s) | 
|  | 2439 | { | 
|  | 2440 | DH *dhp = NULL; | 
|  | 2441 | BIGNUM *p = NULL, *g = NULL; | 
|  | 2442 | int dh_secbits = 80, sec_level_bits; | 
|  | 2443 |  | 
|  | 2444 | if (s->cert->dh_tmp_auto != 2) { | 
|  | 2445 | if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { | 
|  | 2446 | if (s->s3->tmp.new_cipher->strength_bits == 256) | 
|  | 2447 | dh_secbits = 128; | 
|  | 2448 | else | 
|  | 2449 | dh_secbits = 80; | 
|  | 2450 | } else { | 
|  | 2451 | if (s->s3->tmp.cert == NULL) | 
|  | 2452 | return NULL; | 
|  | 2453 | dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey); | 
|  | 2454 | } | 
|  | 2455 | } | 
|  | 2456 |  | 
|  | 2457 | dhp = DH_new(); | 
|  | 2458 | if (dhp == NULL) | 
|  | 2459 | return NULL; | 
|  | 2460 | g = BN_new(); | 
|  | 2461 | if (g == NULL || !BN_set_word(g, 2)) { | 
|  | 2462 | DH_free(dhp); | 
|  | 2463 | BN_free(g); | 
|  | 2464 | return NULL; | 
|  | 2465 | } | 
|  | 2466 |  | 
|  | 2467 | /* Do not pick a prime that is too weak for the current security level */ | 
|  | 2468 | sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL); | 
|  | 2469 | if (dh_secbits < sec_level_bits) | 
|  | 2470 | dh_secbits = sec_level_bits; | 
|  | 2471 |  | 
|  | 2472 | if (dh_secbits >= 192) | 
|  | 2473 | p = BN_get_rfc3526_prime_8192(NULL); | 
|  | 2474 | else if (dh_secbits >= 152) | 
|  | 2475 | p = BN_get_rfc3526_prime_4096(NULL); | 
|  | 2476 | else if (dh_secbits >= 128) | 
|  | 2477 | p = BN_get_rfc3526_prime_3072(NULL); | 
|  | 2478 | else if (dh_secbits >= 112) | 
|  | 2479 | p = BN_get_rfc3526_prime_2048(NULL); | 
|  | 2480 | else | 
|  | 2481 | p = BN_get_rfc2409_prime_1024(NULL); | 
|  | 2482 | if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) { | 
|  | 2483 | DH_free(dhp); | 
|  | 2484 | BN_free(p); | 
|  | 2485 | BN_free(g); | 
|  | 2486 | return NULL; | 
|  | 2487 | } | 
|  | 2488 | return dhp; | 
|  | 2489 | } | 
|  | 2490 | #endif | 
|  | 2491 |  | 
|  | 2492 | static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) | 
|  | 2493 | { | 
|  | 2494 | int secbits = -1; | 
|  | 2495 | EVP_PKEY *pkey = X509_get0_pubkey(x); | 
|  | 2496 | if (pkey) { | 
|  | 2497 | /* | 
|  | 2498 | * If no parameters this will return -1 and fail using the default | 
|  | 2499 | * security callback for any non-zero security level. This will | 
|  | 2500 | * reject keys which omit parameters but this only affects DSA and | 
|  | 2501 | * omission of parameters is never (?) done in practice. | 
|  | 2502 | */ | 
|  | 2503 | secbits = EVP_PKEY_security_bits(pkey); | 
|  | 2504 | } | 
|  | 2505 | if (s) | 
|  | 2506 | return ssl_security(s, op, secbits, 0, x); | 
|  | 2507 | else | 
|  | 2508 | return ssl_ctx_security(ctx, op, secbits, 0, x); | 
|  | 2509 | } | 
|  | 2510 |  | 
|  | 2511 | static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) | 
|  | 2512 | { | 
|  | 2513 | /* Lookup signature algorithm digest */ | 
|  | 2514 | int secbits, nid, pknid; | 
|  | 2515 | /* Don't check signature if self signed */ | 
|  | 2516 | if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) | 
|  | 2517 | return 1; | 
|  | 2518 | if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL)) | 
|  | 2519 | secbits = -1; | 
|  | 2520 | /* If digest NID not defined use signature NID */ | 
|  | 2521 | if (nid == NID_undef) | 
|  | 2522 | nid = pknid; | 
|  | 2523 | if (s) | 
|  | 2524 | return ssl_security(s, op, secbits, nid, x); | 
|  | 2525 | else | 
|  | 2526 | return ssl_ctx_security(ctx, op, secbits, nid, x); | 
|  | 2527 | } | 
|  | 2528 |  | 
|  | 2529 | int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) | 
|  | 2530 | { | 
|  | 2531 | if (vfy) | 
|  | 2532 | vfy = SSL_SECOP_PEER; | 
|  | 2533 | if (is_ee) { | 
|  | 2534 | if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) | 
|  | 2535 | return SSL_R_EE_KEY_TOO_SMALL; | 
|  | 2536 | } else { | 
|  | 2537 | if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) | 
|  | 2538 | return SSL_R_CA_KEY_TOO_SMALL; | 
|  | 2539 | } | 
|  | 2540 | if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) | 
|  | 2541 | return SSL_R_CA_MD_TOO_WEAK; | 
|  | 2542 | return 1; | 
|  | 2543 | } | 
|  | 2544 |  | 
|  | 2545 | /* | 
|  | 2546 | * Check security of a chain, if |sk| includes the end entity certificate then | 
|  | 2547 | * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending | 
|  | 2548 | * one to the peer. Return values: 1 if ok otherwise error code to use | 
|  | 2549 | */ | 
|  | 2550 |  | 
|  | 2551 | int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) | 
|  | 2552 | { | 
|  | 2553 | int rv, start_idx, i; | 
|  | 2554 | if (x == NULL) { | 
|  | 2555 | x = sk_X509_value(sk, 0); | 
|  | 2556 | if (x == NULL) | 
|  | 2557 | return ERR_R_INTERNAL_ERROR; | 
|  | 2558 | start_idx = 1; | 
|  | 2559 | } else | 
|  | 2560 | start_idx = 0; | 
|  | 2561 |  | 
|  | 2562 | rv = ssl_security_cert(s, NULL, x, vfy, 1); | 
|  | 2563 | if (rv != 1) | 
|  | 2564 | return rv; | 
|  | 2565 |  | 
|  | 2566 | for (i = start_idx; i < sk_X509_num(sk); i++) { | 
|  | 2567 | x = sk_X509_value(sk, i); | 
|  | 2568 | rv = ssl_security_cert(s, NULL, x, vfy, 0); | 
|  | 2569 | if (rv != 1) | 
|  | 2570 | return rv; | 
|  | 2571 | } | 
|  | 2572 | return 1; | 
|  | 2573 | } | 
|  | 2574 |  | 
|  | 2575 | /* | 
|  | 2576 | * For TLS 1.2 servers check if we have a certificate which can be used | 
|  | 2577 | * with the signature algorithm "lu" and return index of certificate. | 
|  | 2578 | */ | 
|  | 2579 |  | 
|  | 2580 | static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) | 
|  | 2581 | { | 
|  | 2582 | int sig_idx = lu->sig_idx; | 
|  | 2583 | const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx); | 
|  | 2584 |  | 
|  | 2585 | /* If not recognised or not supported by cipher mask it is not suitable */ | 
|  | 2586 | if (clu == NULL | 
|  | 2587 | || (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) == 0 | 
|  | 2588 | || (clu->nid == EVP_PKEY_RSA_PSS | 
|  | 2589 | && (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) | 
|  | 2590 | return -1; | 
|  | 2591 |  | 
|  | 2592 | return s->s3->tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; | 
|  | 2593 | } | 
|  | 2594 |  | 
|  | 2595 | /* | 
|  | 2596 | * Checks the given cert against signature_algorithm_cert restrictions sent by | 
|  | 2597 | * the peer (if any) as well as whether the hash from the sigalg is usable with | 
|  | 2598 | * the key. | 
|  | 2599 | * Returns true if the cert is usable and false otherwise. | 
|  | 2600 | */ | 
|  | 2601 | static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, | 
|  | 2602 | EVP_PKEY *pkey) | 
|  | 2603 | { | 
|  | 2604 | const SIGALG_LOOKUP *lu; | 
|  | 2605 | int mdnid, pknid, default_mdnid; | 
|  | 2606 | size_t i; | 
|  | 2607 |  | 
|  | 2608 | /* If the EVP_PKEY reports a mandatory digest, allow nothing else. */ | 
|  | 2609 | ERR_set_mark(); | 
|  | 2610 | if (EVP_PKEY_get_default_digest_nid(pkey, &default_mdnid) == 2 && | 
|  | 2611 | sig->hash != default_mdnid) | 
|  | 2612 | return 0; | 
|  | 2613 |  | 
|  | 2614 | /* If it didn't report a mandatory NID, for whatever reasons, | 
|  | 2615 | * just clear the error and allow all hashes to be used. */ | 
|  | 2616 | ERR_pop_to_mark(); | 
|  | 2617 |  | 
|  | 2618 | if (s->s3->tmp.peer_cert_sigalgs != NULL) { | 
|  | 2619 | for (i = 0; i < s->s3->tmp.peer_cert_sigalgslen; i++) { | 
|  | 2620 | lu = tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]); | 
|  | 2621 | if (lu == NULL | 
|  | 2622 | || !X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL)) | 
|  | 2623 | continue; | 
|  | 2624 | /* | 
|  | 2625 | * TODO this does not differentiate between the | 
|  | 2626 | * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not | 
|  | 2627 | * have a chain here that lets us look at the key OID in the | 
|  | 2628 | * signing certificate. | 
|  | 2629 | */ | 
|  | 2630 | if (mdnid == lu->hash && pknid == lu->sig) | 
|  | 2631 | return 1; | 
|  | 2632 | } | 
|  | 2633 | return 0; | 
|  | 2634 | } | 
|  | 2635 | return 1; | 
|  | 2636 | } | 
|  | 2637 |  | 
|  | 2638 | /* | 
|  | 2639 | * Returns true if |s| has a usable certificate configured for use | 
|  | 2640 | * with signature scheme |sig|. | 
|  | 2641 | * "Usable" includes a check for presence as well as applying | 
|  | 2642 | * the signature_algorithm_cert restrictions sent by the peer (if any). | 
|  | 2643 | * Returns false if no usable certificate is found. | 
|  | 2644 | */ | 
|  | 2645 | static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx) | 
|  | 2646 | { | 
|  | 2647 | /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */ | 
|  | 2648 | if (idx == -1) | 
|  | 2649 | idx = sig->sig_idx; | 
|  | 2650 | if (!ssl_has_cert(s, idx)) | 
|  | 2651 | return 0; | 
|  | 2652 |  | 
|  | 2653 | return check_cert_usable(s, sig, s->cert->pkeys[idx].x509, | 
|  | 2654 | s->cert->pkeys[idx].privatekey); | 
|  | 2655 | } | 
|  | 2656 |  | 
|  | 2657 | /* | 
|  | 2658 | * Returns true if the supplied cert |x| and key |pkey| is usable with the | 
|  | 2659 | * specified signature scheme |sig|, or false otherwise. | 
|  | 2660 | */ | 
|  | 2661 | static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, | 
|  | 2662 | EVP_PKEY *pkey) | 
|  | 2663 | { | 
|  | 2664 | size_t idx; | 
|  | 2665 |  | 
|  | 2666 | if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) | 
|  | 2667 | return 0; | 
|  | 2668 |  | 
|  | 2669 | /* Check the key is consistent with the sig alg */ | 
|  | 2670 | if ((int)idx != sig->sig_idx) | 
|  | 2671 | return 0; | 
|  | 2672 |  | 
|  | 2673 | return check_cert_usable(s, sig, x, pkey); | 
|  | 2674 | } | 
|  | 2675 |  | 
|  | 2676 | /* | 
|  | 2677 | * Find a signature scheme that works with the supplied certificate |x| and key | 
|  | 2678 | * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our | 
|  | 2679 | * available certs/keys to find one that works. | 
|  | 2680 | */ | 
|  | 2681 | static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey) | 
|  | 2682 | { | 
|  | 2683 | const SIGALG_LOOKUP *lu = NULL; | 
|  | 2684 | size_t i; | 
|  | 2685 | #ifndef OPENSSL_NO_EC | 
|  | 2686 | int curve = -1; | 
|  | 2687 | #endif | 
|  | 2688 | EVP_PKEY *tmppkey; | 
|  | 2689 |  | 
|  | 2690 | /* Look for a shared sigalgs matching possible certificates */ | 
|  | 2691 | for (i = 0; i < s->shared_sigalgslen; i++) { | 
|  | 2692 | lu = s->shared_sigalgs[i]; | 
|  | 2693 |  | 
|  | 2694 | /* Skip SHA1, SHA224, DSA and RSA if not PSS */ | 
|  | 2695 | if (lu->hash == NID_sha1 | 
|  | 2696 | || lu->hash == NID_sha224 | 
|  | 2697 | || lu->sig == EVP_PKEY_DSA | 
|  | 2698 | || lu->sig == EVP_PKEY_RSA) | 
|  | 2699 | continue; | 
|  | 2700 | /* Check that we have a cert, and signature_algorithms_cert */ | 
|  | 2701 | if (!tls1_lookup_md(lu, NULL)) | 
|  | 2702 | continue; | 
|  | 2703 | if ((pkey == NULL && !has_usable_cert(s, lu, -1)) | 
|  | 2704 | || (pkey != NULL && !is_cert_usable(s, lu, x, pkey))) | 
|  | 2705 | continue; | 
|  | 2706 |  | 
|  | 2707 | tmppkey = (pkey != NULL) ? pkey | 
|  | 2708 | : s->cert->pkeys[lu->sig_idx].privatekey; | 
|  | 2709 |  | 
|  | 2710 | if (lu->sig == EVP_PKEY_EC) { | 
|  | 2711 | #ifndef OPENSSL_NO_EC | 
|  | 2712 | if (curve == -1) { | 
|  | 2713 | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(tmppkey); | 
|  | 2714 | curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); | 
|  | 2715 | } | 
|  | 2716 | if (lu->curve != NID_undef && curve != lu->curve) | 
|  | 2717 | continue; | 
|  | 2718 | #else | 
|  | 2719 | continue; | 
|  | 2720 | #endif | 
|  | 2721 | } else if (lu->sig == EVP_PKEY_RSA_PSS) { | 
|  | 2722 | /* validate that key is large enough for the signature algorithm */ | 
|  | 2723 | if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(tmppkey), lu)) | 
|  | 2724 | continue; | 
|  | 2725 | } | 
|  | 2726 | break; | 
|  | 2727 | } | 
|  | 2728 |  | 
|  | 2729 | if (i == s->shared_sigalgslen) | 
|  | 2730 | return NULL; | 
|  | 2731 |  | 
|  | 2732 | return lu; | 
|  | 2733 | } | 
|  | 2734 |  | 
|  | 2735 | /* | 
|  | 2736 | * Choose an appropriate signature algorithm based on available certificates | 
|  | 2737 | * Sets chosen certificate and signature algorithm. | 
|  | 2738 | * | 
|  | 2739 | * For servers if we fail to find a required certificate it is a fatal error, | 
|  | 2740 | * an appropriate error code is set and a TLS alert is sent. | 
|  | 2741 | * | 
|  | 2742 | * For clients fatalerrs is set to 0. If a certificate is not suitable it is not | 
|  | 2743 | * a fatal error: we will either try another certificate or not present one | 
|  | 2744 | * to the server. In this case no error is set. | 
|  | 2745 | */ | 
|  | 2746 | int tls_choose_sigalg(SSL *s, int fatalerrs) | 
|  | 2747 | { | 
|  | 2748 | const SIGALG_LOOKUP *lu = NULL; | 
|  | 2749 | int sig_idx = -1; | 
|  | 2750 |  | 
|  | 2751 | s->s3->tmp.cert = NULL; | 
|  | 2752 | s->s3->tmp.sigalg = NULL; | 
|  | 2753 |  | 
|  | 2754 | if (SSL_IS_TLS13(s)) { | 
|  | 2755 | lu = find_sig_alg(s, NULL, NULL); | 
|  | 2756 | if (lu == NULL) { | 
|  | 2757 | if (!fatalerrs) | 
|  | 2758 | return 1; | 
|  | 2759 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG, | 
|  | 2760 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); | 
|  | 2761 | return 0; | 
|  | 2762 | } | 
|  | 2763 | } else { | 
|  | 2764 | /* If ciphersuite doesn't require a cert nothing to do */ | 
|  | 2765 | if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT)) | 
|  | 2766 | return 1; | 
|  | 2767 | if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys)) | 
|  | 2768 | return 1; | 
|  | 2769 |  | 
|  | 2770 | if (SSL_USE_SIGALGS(s)) { | 
|  | 2771 | size_t i; | 
|  | 2772 | if (s->s3->tmp.peer_sigalgs != NULL) { | 
|  | 2773 | #ifndef OPENSSL_NO_EC | 
|  | 2774 | int curve; | 
|  | 2775 |  | 
|  | 2776 | /* For Suite B need to match signature algorithm to curve */ | 
|  | 2777 | if (tls1_suiteb(s)) { | 
|  | 2778 | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey); | 
|  | 2779 | curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); | 
|  | 2780 | } else { | 
|  | 2781 | curve = -1; | 
|  | 2782 | } | 
|  | 2783 | #endif | 
|  | 2784 |  | 
|  | 2785 | /* | 
|  | 2786 | * Find highest preference signature algorithm matching | 
|  | 2787 | * cert type | 
|  | 2788 | */ | 
|  | 2789 | for (i = 0; i < s->shared_sigalgslen; i++) { | 
|  | 2790 | lu = s->shared_sigalgs[i]; | 
|  | 2791 |  | 
|  | 2792 | if (s->server) { | 
|  | 2793 | if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) | 
|  | 2794 | continue; | 
|  | 2795 | } else { | 
|  | 2796 | int cc_idx = s->cert->key - s->cert->pkeys; | 
|  | 2797 |  | 
|  | 2798 | sig_idx = lu->sig_idx; | 
|  | 2799 | if (cc_idx != sig_idx) | 
|  | 2800 | continue; | 
|  | 2801 | } | 
|  | 2802 | /* Check that we have a cert, and sig_algs_cert */ | 
|  | 2803 | if (!has_usable_cert(s, lu, sig_idx)) | 
|  | 2804 | continue; | 
|  | 2805 | if (lu->sig == EVP_PKEY_RSA_PSS) { | 
|  | 2806 | /* validate that key is large enough for the signature algorithm */ | 
|  | 2807 | EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; | 
|  | 2808 |  | 
|  | 2809 | if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu)) | 
|  | 2810 | continue; | 
|  | 2811 | } | 
|  | 2812 | #ifndef OPENSSL_NO_EC | 
|  | 2813 | if (curve == -1 || lu->curve == curve) | 
|  | 2814 | #endif | 
|  | 2815 | break; | 
|  | 2816 | } | 
|  | 2817 | #ifndef OPENSSL_NO_GOST | 
|  | 2818 | /* | 
|  | 2819 | * Some Windows-based implementations do not send GOST algorithms indication | 
|  | 2820 | * in supported_algorithms extension, so when we have GOST-based ciphersuite, | 
|  | 2821 | * we have to assume GOST support. | 
|  | 2822 | */ | 
|  | 2823 | if (i == s->shared_sigalgslen && s->s3->tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) { | 
|  | 2824 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { | 
|  | 2825 | if (!fatalerrs) | 
|  | 2826 | return 1; | 
|  | 2827 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, | 
|  | 2828 | SSL_F_TLS_CHOOSE_SIGALG, | 
|  | 2829 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); | 
|  | 2830 | return 0; | 
|  | 2831 | } else { | 
|  | 2832 | i = 0; | 
|  | 2833 | sig_idx = lu->sig_idx; | 
|  | 2834 | } | 
|  | 2835 | } | 
|  | 2836 | #endif | 
|  | 2837 | if (i == s->shared_sigalgslen) { | 
|  | 2838 | if (!fatalerrs) | 
|  | 2839 | return 1; | 
|  | 2840 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, | 
|  | 2841 | SSL_F_TLS_CHOOSE_SIGALG, | 
|  | 2842 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); | 
|  | 2843 | return 0; | 
|  | 2844 | } | 
|  | 2845 | } else { | 
|  | 2846 | /* | 
|  | 2847 | * If we have no sigalg use defaults | 
|  | 2848 | */ | 
|  | 2849 | const uint16_t *sent_sigs; | 
|  | 2850 | size_t sent_sigslen; | 
|  | 2851 |  | 
|  | 2852 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { | 
|  | 2853 | if (!fatalerrs) | 
|  | 2854 | return 1; | 
|  | 2855 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, | 
|  | 2856 | ERR_R_INTERNAL_ERROR); | 
|  | 2857 | return 0; | 
|  | 2858 | } | 
|  | 2859 |  | 
|  | 2860 | /* Check signature matches a type we sent */ | 
|  | 2861 | sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); | 
|  | 2862 | for (i = 0; i < sent_sigslen; i++, sent_sigs++) { | 
|  | 2863 | if (lu->sigalg == *sent_sigs | 
|  | 2864 | && has_usable_cert(s, lu, lu->sig_idx)) | 
|  | 2865 | break; | 
|  | 2866 | } | 
|  | 2867 | if (i == sent_sigslen) { | 
|  | 2868 | if (!fatalerrs) | 
|  | 2869 | return 1; | 
|  | 2870 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, | 
|  | 2871 | SSL_F_TLS_CHOOSE_SIGALG, | 
|  | 2872 | SSL_R_WRONG_SIGNATURE_TYPE); | 
|  | 2873 | return 0; | 
|  | 2874 | } | 
|  | 2875 | } | 
|  | 2876 | } else { | 
|  | 2877 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { | 
|  | 2878 | if (!fatalerrs) | 
|  | 2879 | return 1; | 
|  | 2880 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, | 
|  | 2881 | ERR_R_INTERNAL_ERROR); | 
|  | 2882 | return 0; | 
|  | 2883 | } | 
|  | 2884 | } | 
|  | 2885 | } | 
|  | 2886 | if (sig_idx == -1) | 
|  | 2887 | sig_idx = lu->sig_idx; | 
|  | 2888 | s->s3->tmp.cert = &s->cert->pkeys[sig_idx]; | 
|  | 2889 | s->cert->key = s->s3->tmp.cert; | 
|  | 2890 | s->s3->tmp.sigalg = lu; | 
|  | 2891 | return 1; | 
|  | 2892 | } | 
|  | 2893 |  | 
|  | 2894 | int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) | 
|  | 2895 | { | 
|  | 2896 | if (mode != TLSEXT_max_fragment_length_DISABLED | 
|  | 2897 | && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { | 
|  | 2898 | SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH, | 
|  | 2899 | SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); | 
|  | 2900 | return 0; | 
|  | 2901 | } | 
|  | 2902 |  | 
|  | 2903 | ctx->ext.max_fragment_len_mode = mode; | 
|  | 2904 | return 1; | 
|  | 2905 | } | 
|  | 2906 |  | 
|  | 2907 | int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) | 
|  | 2908 | { | 
|  | 2909 | if (mode != TLSEXT_max_fragment_length_DISABLED | 
|  | 2910 | && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { | 
|  | 2911 | SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH, | 
|  | 2912 | SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); | 
|  | 2913 | return 0; | 
|  | 2914 | } | 
|  | 2915 |  | 
|  | 2916 | ssl->ext.max_fragment_len_mode = mode; | 
|  | 2917 | return 1; | 
|  | 2918 | } | 
|  | 2919 |  | 
|  | 2920 | uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session) | 
|  | 2921 | { | 
|  | 2922 | return session->ext.max_fragment_len_mode; | 
|  | 2923 | } |