| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/mm/swapfile.c | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 | 5 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 | 6 |  */ | 
 | 7 |  | 
 | 8 | #include <linux/mm.h> | 
 | 9 | #include <linux/hugetlb.h> | 
 | 10 | #include <linux/mman.h> | 
 | 11 | #include <linux/slab.h> | 
 | 12 | #include <linux/kernel_stat.h> | 
 | 13 | #include <linux/swap.h> | 
 | 14 | #include <linux/vmalloc.h> | 
 | 15 | #include <linux/pagemap.h> | 
 | 16 | #include <linux/namei.h> | 
 | 17 | #include <linux/shmem_fs.h> | 
 | 18 | #include <linux/blkdev.h> | 
 | 19 | #include <linux/random.h> | 
 | 20 | #include <linux/writeback.h> | 
 | 21 | #include <linux/proc_fs.h> | 
 | 22 | #include <linux/seq_file.h> | 
 | 23 | #include <linux/init.h> | 
 | 24 | #include <linux/ksm.h> | 
 | 25 | #include <linux/rmap.h> | 
 | 26 | #include <linux/security.h> | 
 | 27 | #include <linux/backing-dev.h> | 
 | 28 | #include <linux/mutex.h> | 
 | 29 | #include <linux/capability.h> | 
 | 30 | #include <linux/syscalls.h> | 
 | 31 | #include <linux/memcontrol.h> | 
 | 32 | #include <linux/poll.h> | 
 | 33 | #include <linux/oom.h> | 
 | 34 |  | 
 | 35 | #include <asm/pgtable.h> | 
 | 36 | #include <asm/tlbflush.h> | 
 | 37 | #include <linux/swapops.h> | 
 | 38 | #include <linux/page_cgroup.h> | 
 | 39 |  | 
 | 40 | static bool swap_count_continued(struct swap_info_struct *, pgoff_t, | 
 | 41 | 				 unsigned char); | 
 | 42 | static void free_swap_count_continuations(struct swap_info_struct *); | 
 | 43 | static sector_t map_swap_entry(swp_entry_t, struct block_device**); | 
 | 44 |  | 
 | 45 | static DEFINE_SPINLOCK(swap_lock); | 
 | 46 | static unsigned int nr_swapfiles; | 
 | 47 | long nr_swap_pages; | 
 | 48 | long total_swap_pages; | 
 | 49 | static int least_priority; | 
 | 50 |  | 
 | 51 | static const char Bad_file[] = "Bad swap file entry "; | 
 | 52 | static const char Unused_file[] = "Unused swap file entry "; | 
 | 53 | static const char Bad_offset[] = "Bad swap offset entry "; | 
 | 54 | static const char Unused_offset[] = "Unused swap offset entry "; | 
 | 55 |  | 
 | 56 | static struct swap_list_t swap_list = {-1, -1}; | 
 | 57 |  | 
 | 58 | static struct swap_info_struct *swap_info[MAX_SWAPFILES]; | 
 | 59 |  | 
 | 60 | static DEFINE_MUTEX(swapon_mutex); | 
 | 61 |  | 
 | 62 | static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); | 
 | 63 | /* Activity counter to indicate that a swapon or swapoff has occurred */ | 
 | 64 | static atomic_t proc_poll_event = ATOMIC_INIT(0); | 
 | 65 |  | 
 | 66 | static inline unsigned char swap_count(unsigned char ent) | 
 | 67 | { | 
 | 68 | 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */ | 
 | 69 | } | 
 | 70 |  | 
 | 71 | /* returns 1 if swap entry is freed */ | 
 | 72 | static int | 
 | 73 | __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) | 
 | 74 | { | 
 | 75 | 	swp_entry_t entry = swp_entry(si->type, offset); | 
 | 76 | 	struct page *page; | 
 | 77 | 	int ret = 0; | 
 | 78 |  | 
 | 79 | 	page = find_get_page(&swapper_space, entry.val); | 
 | 80 | 	if (!page) | 
 | 81 | 		return 0; | 
 | 82 | 	/* | 
 | 83 | 	 * This function is called from scan_swap_map() and it's called | 
 | 84 | 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. | 
 | 85 | 	 * We have to use trylock for avoiding deadlock. This is a special | 
 | 86 | 	 * case and you should use try_to_free_swap() with explicit lock_page() | 
 | 87 | 	 * in usual operations. | 
 | 88 | 	 */ | 
 | 89 | 	if (trylock_page(page)) { | 
 | 90 | 		ret = try_to_free_swap(page); | 
 | 91 | 		unlock_page(page); | 
 | 92 | 	} | 
 | 93 | 	page_cache_release(page); | 
 | 94 | 	return ret; | 
 | 95 | } | 
 | 96 |  | 
 | 97 | /* | 
 | 98 |  * swapon tell device that all the old swap contents can be discarded, | 
 | 99 |  * to allow the swap device to optimize its wear-levelling. | 
 | 100 |  */ | 
 | 101 | static int discard_swap(struct swap_info_struct *si) | 
 | 102 | { | 
 | 103 | 	struct swap_extent *se; | 
 | 104 | 	sector_t start_block; | 
 | 105 | 	sector_t nr_blocks; | 
 | 106 | 	int err = 0; | 
 | 107 |  | 
 | 108 | 	/* Do not discard the swap header page! */ | 
 | 109 | 	se = &si->first_swap_extent; | 
 | 110 | 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); | 
 | 111 | 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); | 
 | 112 | 	if (nr_blocks) { | 
 | 113 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 114 | 				nr_blocks, GFP_KERNEL, 0); | 
 | 115 | 		if (err) | 
 | 116 | 			return err; | 
 | 117 | 		cond_resched(); | 
 | 118 | 	} | 
 | 119 |  | 
 | 120 | 	list_for_each_entry(se, &si->first_swap_extent.list, list) { | 
 | 121 | 		start_block = se->start_block << (PAGE_SHIFT - 9); | 
 | 122 | 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); | 
 | 123 |  | 
 | 124 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 125 | 				nr_blocks, GFP_KERNEL, 0); | 
 | 126 | 		if (err) | 
 | 127 | 			break; | 
 | 128 |  | 
 | 129 | 		cond_resched(); | 
 | 130 | 	} | 
 | 131 | 	return err;		/* That will often be -EOPNOTSUPP */ | 
 | 132 | } | 
 | 133 |  | 
 | 134 | /* | 
 | 135 |  * swap allocation tell device that a cluster of swap can now be discarded, | 
 | 136 |  * to allow the swap device to optimize its wear-levelling. | 
 | 137 |  */ | 
 | 138 | static void discard_swap_cluster(struct swap_info_struct *si, | 
 | 139 | 				 pgoff_t start_page, pgoff_t nr_pages) | 
 | 140 | { | 
 | 141 | 	struct swap_extent *se = si->curr_swap_extent; | 
 | 142 | 	int found_extent = 0; | 
 | 143 |  | 
 | 144 | 	while (nr_pages) { | 
 | 145 | 		struct list_head *lh; | 
 | 146 |  | 
 | 147 | 		if (se->start_page <= start_page && | 
 | 148 | 		    start_page < se->start_page + se->nr_pages) { | 
 | 149 | 			pgoff_t offset = start_page - se->start_page; | 
 | 150 | 			sector_t start_block = se->start_block + offset; | 
 | 151 | 			sector_t nr_blocks = se->nr_pages - offset; | 
 | 152 |  | 
 | 153 | 			if (nr_blocks > nr_pages) | 
 | 154 | 				nr_blocks = nr_pages; | 
 | 155 | 			start_page += nr_blocks; | 
 | 156 | 			nr_pages -= nr_blocks; | 
 | 157 |  | 
 | 158 | 			if (!found_extent++) | 
 | 159 | 				si->curr_swap_extent = se; | 
 | 160 |  | 
 | 161 | 			start_block <<= PAGE_SHIFT - 9; | 
 | 162 | 			nr_blocks <<= PAGE_SHIFT - 9; | 
 | 163 | 			if (blkdev_issue_discard(si->bdev, start_block, | 
 | 164 | 				    nr_blocks, GFP_NOIO, 0)) | 
 | 165 | 				break; | 
 | 166 | 		} | 
 | 167 |  | 
 | 168 | 		lh = se->list.next; | 
 | 169 | 		se = list_entry(lh, struct swap_extent, list); | 
 | 170 | 	} | 
 | 171 | } | 
 | 172 |  | 
 | 173 | static int wait_for_discard(void *word) | 
 | 174 | { | 
 | 175 | 	schedule(); | 
 | 176 | 	return 0; | 
 | 177 | } | 
 | 178 |  | 
 | 179 | #define SWAPFILE_CLUSTER	256 | 
 | 180 | #define LATENCY_LIMIT		256 | 
 | 181 |  | 
 | 182 | static unsigned long scan_swap_map(struct swap_info_struct *si, | 
 | 183 | 				   unsigned char usage) | 
 | 184 | { | 
 | 185 | 	unsigned long offset; | 
 | 186 | 	unsigned long scan_base; | 
 | 187 | 	unsigned long last_in_cluster = 0; | 
 | 188 | 	int latency_ration = LATENCY_LIMIT; | 
 | 189 | 	int found_free_cluster = 0; | 
 | 190 |  | 
 | 191 | 	/* | 
 | 192 | 	 * We try to cluster swap pages by allocating them sequentially | 
 | 193 | 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this | 
 | 194 | 	 * way, however, we resort to first-free allocation, starting | 
 | 195 | 	 * a new cluster.  This prevents us from scattering swap pages | 
 | 196 | 	 * all over the entire swap partition, so that we reduce | 
 | 197 | 	 * overall disk seek times between swap pages.  -- sct | 
 | 198 | 	 * But we do now try to find an empty cluster.  -Andrea | 
 | 199 | 	 * And we let swap pages go all over an SSD partition.  Hugh | 
 | 200 | 	 */ | 
 | 201 |  | 
 | 202 | 	si->flags += SWP_SCANNING; | 
 | 203 | 	scan_base = offset = si->cluster_next; | 
 | 204 |  | 
 | 205 | 	if (unlikely(!si->cluster_nr--)) { | 
 | 206 | 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { | 
 | 207 | 			si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 208 | 			goto checks; | 
 | 209 | 		} | 
 | 210 | 		if (si->flags & SWP_DISCARDABLE) { | 
 | 211 | 			/* | 
 | 212 | 			 * Start range check on racing allocations, in case | 
 | 213 | 			 * they overlap the cluster we eventually decide on | 
 | 214 | 			 * (we scan without swap_lock to allow preemption). | 
 | 215 | 			 * It's hardly conceivable that cluster_nr could be | 
 | 216 | 			 * wrapped during our scan, but don't depend on it. | 
 | 217 | 			 */ | 
 | 218 | 			if (si->lowest_alloc) | 
 | 219 | 				goto checks; | 
 | 220 | 			si->lowest_alloc = si->max; | 
 | 221 | 			si->highest_alloc = 0; | 
 | 222 | 		} | 
 | 223 | 		spin_unlock(&swap_lock); | 
 | 224 |  | 
 | 225 | 		/* | 
 | 226 | 		 * If seek is expensive, start searching for new cluster from | 
 | 227 | 		 * start of partition, to minimize the span of allocated swap. | 
 | 228 | 		 * But if seek is cheap, search from our current position, so | 
 | 229 | 		 * that swap is allocated from all over the partition: if the | 
 | 230 | 		 * Flash Translation Layer only remaps within limited zones, | 
 | 231 | 		 * we don't want to wear out the first zone too quickly. | 
 | 232 | 		 */ | 
 | 233 | 		if (!(si->flags & SWP_SOLIDSTATE)) | 
 | 234 | 			scan_base = offset = si->lowest_bit; | 
 | 235 | 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1; | 
 | 236 |  | 
 | 237 | 		/* Locate the first empty (unaligned) cluster */ | 
 | 238 | 		for (; last_in_cluster <= si->highest_bit; offset++) { | 
 | 239 | 			if (si->swap_map[offset]) | 
 | 240 | 				last_in_cluster = offset + SWAPFILE_CLUSTER; | 
 | 241 | 			else if (offset == last_in_cluster) { | 
 | 242 | 				spin_lock(&swap_lock); | 
 | 243 | 				offset -= SWAPFILE_CLUSTER - 1; | 
 | 244 | 				si->cluster_next = offset; | 
 | 245 | 				si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 246 | 				found_free_cluster = 1; | 
 | 247 | 				goto checks; | 
 | 248 | 			} | 
 | 249 | 			if (unlikely(--latency_ration < 0)) { | 
 | 250 | 				cond_resched(); | 
 | 251 | 				latency_ration = LATENCY_LIMIT; | 
 | 252 | 			} | 
 | 253 | 		} | 
 | 254 |  | 
 | 255 | 		offset = si->lowest_bit; | 
 | 256 | 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1; | 
 | 257 |  | 
 | 258 | 		/* Locate the first empty (unaligned) cluster */ | 
 | 259 | 		for (; last_in_cluster < scan_base; offset++) { | 
 | 260 | 			if (si->swap_map[offset]) | 
 | 261 | 				last_in_cluster = offset + SWAPFILE_CLUSTER; | 
 | 262 | 			else if (offset == last_in_cluster) { | 
 | 263 | 				spin_lock(&swap_lock); | 
 | 264 | 				offset -= SWAPFILE_CLUSTER - 1; | 
 | 265 | 				si->cluster_next = offset; | 
 | 266 | 				si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 267 | 				found_free_cluster = 1; | 
 | 268 | 				goto checks; | 
 | 269 | 			} | 
 | 270 | 			if (unlikely(--latency_ration < 0)) { | 
 | 271 | 				cond_resched(); | 
 | 272 | 				latency_ration = LATENCY_LIMIT; | 
 | 273 | 			} | 
 | 274 | 		} | 
 | 275 |  | 
 | 276 | 		offset = scan_base; | 
 | 277 | 		spin_lock(&swap_lock); | 
 | 278 | 		si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 279 | 		si->lowest_alloc = 0; | 
 | 280 | 	} | 
 | 281 |  | 
 | 282 | checks: | 
 | 283 | 	if (!(si->flags & SWP_WRITEOK)) | 
 | 284 | 		goto no_page; | 
 | 285 | 	if (!si->highest_bit) | 
 | 286 | 		goto no_page; | 
 | 287 | 	if (offset > si->highest_bit) | 
 | 288 | 		scan_base = offset = si->lowest_bit; | 
 | 289 |  | 
 | 290 | 	/* reuse swap entry of cache-only swap if not busy. */ | 
 | 291 | 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 292 | 		int swap_was_freed; | 
 | 293 | 		spin_unlock(&swap_lock); | 
 | 294 | 		swap_was_freed = __try_to_reclaim_swap(si, offset); | 
 | 295 | 		spin_lock(&swap_lock); | 
 | 296 | 		/* entry was freed successfully, try to use this again */ | 
 | 297 | 		if (swap_was_freed) | 
 | 298 | 			goto checks; | 
 | 299 | 		goto scan; /* check next one */ | 
 | 300 | 	} | 
 | 301 |  | 
 | 302 | 	if (si->swap_map[offset]) | 
 | 303 | 		goto scan; | 
 | 304 |  | 
 | 305 | 	if (offset == si->lowest_bit) | 
 | 306 | 		si->lowest_bit++; | 
 | 307 | 	if (offset == si->highest_bit) | 
 | 308 | 		si->highest_bit--; | 
 | 309 | 	si->inuse_pages++; | 
 | 310 | 	if (si->inuse_pages == si->pages) { | 
 | 311 | 		si->lowest_bit = si->max; | 
 | 312 | 		si->highest_bit = 0; | 
 | 313 | 	} | 
 | 314 | 	si->swap_map[offset] = usage; | 
 | 315 | 	si->cluster_next = offset + 1; | 
 | 316 | 	si->flags -= SWP_SCANNING; | 
 | 317 |  | 
 | 318 | 	if (si->lowest_alloc) { | 
 | 319 | 		/* | 
 | 320 | 		 * Only set when SWP_DISCARDABLE, and there's a scan | 
 | 321 | 		 * for a free cluster in progress or just completed. | 
 | 322 | 		 */ | 
 | 323 | 		if (found_free_cluster) { | 
 | 324 | 			/* | 
 | 325 | 			 * To optimize wear-levelling, discard the | 
 | 326 | 			 * old data of the cluster, taking care not to | 
 | 327 | 			 * discard any of its pages that have already | 
 | 328 | 			 * been allocated by racing tasks (offset has | 
 | 329 | 			 * already stepped over any at the beginning). | 
 | 330 | 			 */ | 
 | 331 | 			if (offset < si->highest_alloc && | 
 | 332 | 			    si->lowest_alloc <= last_in_cluster) | 
 | 333 | 				last_in_cluster = si->lowest_alloc - 1; | 
 | 334 | 			si->flags |= SWP_DISCARDING; | 
 | 335 | 			spin_unlock(&swap_lock); | 
 | 336 |  | 
 | 337 | 			if (offset < last_in_cluster) | 
 | 338 | 				discard_swap_cluster(si, offset, | 
 | 339 | 					last_in_cluster - offset + 1); | 
 | 340 |  | 
 | 341 | 			spin_lock(&swap_lock); | 
 | 342 | 			si->lowest_alloc = 0; | 
 | 343 | 			si->flags &= ~SWP_DISCARDING; | 
 | 344 |  | 
 | 345 | 			smp_mb();	/* wake_up_bit advises this */ | 
 | 346 | 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); | 
 | 347 |  | 
 | 348 | 		} else if (si->flags & SWP_DISCARDING) { | 
 | 349 | 			/* | 
 | 350 | 			 * Delay using pages allocated by racing tasks | 
 | 351 | 			 * until the whole discard has been issued. We | 
 | 352 | 			 * could defer that delay until swap_writepage, | 
 | 353 | 			 * but it's easier to keep this self-contained. | 
 | 354 | 			 */ | 
 | 355 | 			spin_unlock(&swap_lock); | 
 | 356 | 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), | 
 | 357 | 				wait_for_discard, TASK_UNINTERRUPTIBLE); | 
 | 358 | 			spin_lock(&swap_lock); | 
 | 359 | 		} else { | 
 | 360 | 			/* | 
 | 361 | 			 * Note pages allocated by racing tasks while | 
 | 362 | 			 * scan for a free cluster is in progress, so | 
 | 363 | 			 * that its final discard can exclude them. | 
 | 364 | 			 */ | 
 | 365 | 			if (offset < si->lowest_alloc) | 
 | 366 | 				si->lowest_alloc = offset; | 
 | 367 | 			if (offset > si->highest_alloc) | 
 | 368 | 				si->highest_alloc = offset; | 
 | 369 | 		} | 
 | 370 | 	} | 
 | 371 | 	return offset; | 
 | 372 |  | 
 | 373 | scan: | 
 | 374 | 	spin_unlock(&swap_lock); | 
 | 375 | 	while (++offset <= si->highest_bit) { | 
 | 376 | 		if (!si->swap_map[offset]) { | 
 | 377 | 			spin_lock(&swap_lock); | 
 | 378 | 			goto checks; | 
 | 379 | 		} | 
 | 380 | 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 381 | 			spin_lock(&swap_lock); | 
 | 382 | 			goto checks; | 
 | 383 | 		} | 
 | 384 | 		if (unlikely(--latency_ration < 0)) { | 
 | 385 | 			cond_resched(); | 
 | 386 | 			latency_ration = LATENCY_LIMIT; | 
 | 387 | 		} | 
 | 388 | 	} | 
 | 389 | 	offset = si->lowest_bit; | 
 | 390 | 	while (++offset < scan_base) { | 
 | 391 | 		if (!si->swap_map[offset]) { | 
 | 392 | 			spin_lock(&swap_lock); | 
 | 393 | 			goto checks; | 
 | 394 | 		} | 
 | 395 | 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 396 | 			spin_lock(&swap_lock); | 
 | 397 | 			goto checks; | 
 | 398 | 		} | 
 | 399 | 		if (unlikely(--latency_ration < 0)) { | 
 | 400 | 			cond_resched(); | 
 | 401 | 			latency_ration = LATENCY_LIMIT; | 
 | 402 | 		} | 
 | 403 | 	} | 
 | 404 | 	spin_lock(&swap_lock); | 
 | 405 |  | 
 | 406 | no_page: | 
 | 407 | 	si->flags -= SWP_SCANNING; | 
 | 408 | 	return 0; | 
 | 409 | } | 
 | 410 |  | 
 | 411 | swp_entry_t get_swap_page(void) | 
 | 412 | { | 
 | 413 | 	struct swap_info_struct *si; | 
 | 414 | 	pgoff_t offset; | 
 | 415 | 	int type, next; | 
 | 416 | 	int wrapped = 0; | 
 | 417 |  | 
 | 418 | 	spin_lock(&swap_lock); | 
 | 419 | 	if (nr_swap_pages <= 0) | 
 | 420 | 		goto noswap; | 
 | 421 | 	nr_swap_pages--; | 
 | 422 |  | 
 | 423 | 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { | 
 | 424 | 		si = swap_info[type]; | 
 | 425 | 		next = si->next; | 
 | 426 | 		if (next < 0 || | 
 | 427 | 		    (!wrapped && si->prio != swap_info[next]->prio)) { | 
 | 428 | 			next = swap_list.head; | 
 | 429 | 			wrapped++; | 
 | 430 | 		} | 
 | 431 |  | 
 | 432 | 		if (!si->highest_bit) | 
 | 433 | 			continue; | 
 | 434 | 		if (!(si->flags & SWP_WRITEOK)) | 
 | 435 | 			continue; | 
 | 436 |  | 
 | 437 | 		swap_list.next = next; | 
 | 438 | 		/* This is called for allocating swap entry for cache */ | 
 | 439 | 		offset = scan_swap_map(si, SWAP_HAS_CACHE); | 
 | 440 | 		if (offset) { | 
 | 441 | 			spin_unlock(&swap_lock); | 
 | 442 | 			return swp_entry(type, offset); | 
 | 443 | 		} | 
 | 444 | 		next = swap_list.next; | 
 | 445 | 	} | 
 | 446 |  | 
 | 447 | 	nr_swap_pages++; | 
 | 448 | noswap: | 
 | 449 | 	spin_unlock(&swap_lock); | 
 | 450 | 	return (swp_entry_t) {0}; | 
 | 451 | } | 
 | 452 |  | 
 | 453 | /* The only caller of this function is now susupend routine */ | 
 | 454 | swp_entry_t get_swap_page_of_type(int type) | 
 | 455 | { | 
 | 456 | 	struct swap_info_struct *si; | 
 | 457 | 	pgoff_t offset; | 
 | 458 |  | 
 | 459 | 	spin_lock(&swap_lock); | 
 | 460 | 	si = swap_info[type]; | 
 | 461 | 	if (si && (si->flags & SWP_WRITEOK)) { | 
 | 462 | 		nr_swap_pages--; | 
 | 463 | 		/* This is called for allocating swap entry, not cache */ | 
 | 464 | 		offset = scan_swap_map(si, 1); | 
 | 465 | 		if (offset) { | 
 | 466 | 			spin_unlock(&swap_lock); | 
 | 467 | 			return swp_entry(type, offset); | 
 | 468 | 		} | 
 | 469 | 		nr_swap_pages++; | 
 | 470 | 	} | 
 | 471 | 	spin_unlock(&swap_lock); | 
 | 472 | 	return (swp_entry_t) {0}; | 
 | 473 | } | 
 | 474 |  | 
 | 475 | static struct swap_info_struct *swap_info_get(swp_entry_t entry) | 
 | 476 | { | 
 | 477 | 	struct swap_info_struct *p; | 
 | 478 | 	unsigned long offset, type; | 
 | 479 |  | 
 | 480 | 	if (!entry.val) | 
 | 481 | 		goto out; | 
 | 482 | 	type = swp_type(entry); | 
 | 483 | 	if (type >= nr_swapfiles) | 
 | 484 | 		goto bad_nofile; | 
 | 485 | 	p = swap_info[type]; | 
 | 486 | 	if (!(p->flags & SWP_USED)) | 
 | 487 | 		goto bad_device; | 
 | 488 | 	offset = swp_offset(entry); | 
 | 489 | 	if (offset >= p->max) | 
 | 490 | 		goto bad_offset; | 
 | 491 | 	if (!p->swap_map[offset]) | 
 | 492 | 		goto bad_free; | 
 | 493 | 	spin_lock(&swap_lock); | 
 | 494 | 	return p; | 
 | 495 |  | 
 | 496 | bad_free: | 
 | 497 | 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); | 
 | 498 | 	goto out; | 
 | 499 | bad_offset: | 
 | 500 | 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); | 
 | 501 | 	goto out; | 
 | 502 | bad_device: | 
 | 503 | 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); | 
 | 504 | 	goto out; | 
 | 505 | bad_nofile: | 
 | 506 | 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); | 
 | 507 | out: | 
 | 508 | 	return NULL; | 
 | 509 | } | 
 | 510 |  | 
 | 511 | static unsigned char swap_entry_free(struct swap_info_struct *p, | 
 | 512 | 				     swp_entry_t entry, unsigned char usage) | 
 | 513 | { | 
 | 514 | 	unsigned long offset = swp_offset(entry); | 
 | 515 | 	unsigned char count; | 
 | 516 | 	unsigned char has_cache; | 
 | 517 |  | 
 | 518 | 	count = p->swap_map[offset]; | 
 | 519 | 	has_cache = count & SWAP_HAS_CACHE; | 
 | 520 | 	count &= ~SWAP_HAS_CACHE; | 
 | 521 |  | 
 | 522 | 	if (usage == SWAP_HAS_CACHE) { | 
 | 523 | 		VM_BUG_ON(!has_cache); | 
 | 524 | 		has_cache = 0; | 
 | 525 | 	} else if (count == SWAP_MAP_SHMEM) { | 
 | 526 | 		/* | 
 | 527 | 		 * Or we could insist on shmem.c using a special | 
 | 528 | 		 * swap_shmem_free() and free_shmem_swap_and_cache()... | 
 | 529 | 		 */ | 
 | 530 | 		count = 0; | 
 | 531 | 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { | 
 | 532 | 		if (count == COUNT_CONTINUED) { | 
 | 533 | 			if (swap_count_continued(p, offset, count)) | 
 | 534 | 				count = SWAP_MAP_MAX | COUNT_CONTINUED; | 
 | 535 | 			else | 
 | 536 | 				count = SWAP_MAP_MAX; | 
 | 537 | 		} else | 
 | 538 | 			count--; | 
 | 539 | 	} | 
 | 540 |  | 
 | 541 | 	if (!count) | 
 | 542 | 		mem_cgroup_uncharge_swap(entry); | 
 | 543 |  | 
 | 544 | 	usage = count | has_cache; | 
 | 545 | 	p->swap_map[offset] = usage; | 
 | 546 |  | 
 | 547 | 	/* free if no reference */ | 
 | 548 | 	if (!usage) { | 
 | 549 | 		struct gendisk *disk = p->bdev->bd_disk; | 
 | 550 | 		if (offset < p->lowest_bit) | 
 | 551 | 			p->lowest_bit = offset; | 
 | 552 | 		if (offset > p->highest_bit) | 
 | 553 | 			p->highest_bit = offset; | 
 | 554 | 		if (swap_list.next >= 0 && | 
 | 555 | 		    p->prio > swap_info[swap_list.next]->prio) | 
 | 556 | 			swap_list.next = p->type; | 
 | 557 | 		nr_swap_pages++; | 
 | 558 | 		p->inuse_pages--; | 
 | 559 | 		if ((p->flags & SWP_BLKDEV) && | 
 | 560 | 				disk->fops->swap_slot_free_notify) | 
 | 561 | 			disk->fops->swap_slot_free_notify(p->bdev, offset); | 
 | 562 | 	} | 
 | 563 |  | 
 | 564 | 	return usage; | 
 | 565 | } | 
 | 566 |  | 
 | 567 | /* | 
 | 568 |  * Caller has made sure that the swapdevice corresponding to entry | 
 | 569 |  * is still around or has not been recycled. | 
 | 570 |  */ | 
 | 571 | void swap_free(swp_entry_t entry) | 
 | 572 | { | 
 | 573 | 	struct swap_info_struct *p; | 
 | 574 |  | 
 | 575 | 	p = swap_info_get(entry); | 
 | 576 | 	if (p) { | 
 | 577 | 		swap_entry_free(p, entry, 1); | 
 | 578 | 		spin_unlock(&swap_lock); | 
 | 579 | 	} | 
 | 580 | } | 
 | 581 |  | 
 | 582 | /* | 
 | 583 |  * Called after dropping swapcache to decrease refcnt to swap entries. | 
 | 584 |  */ | 
 | 585 | void swapcache_free(swp_entry_t entry, struct page *page) | 
 | 586 | { | 
 | 587 | 	struct swap_info_struct *p; | 
 | 588 | 	unsigned char count; | 
 | 589 |  | 
 | 590 | 	p = swap_info_get(entry); | 
 | 591 | 	if (p) { | 
 | 592 | 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE); | 
 | 593 | 		if (page) | 
 | 594 | 			mem_cgroup_uncharge_swapcache(page, entry, count != 0); | 
 | 595 | 		spin_unlock(&swap_lock); | 
 | 596 | 	} | 
 | 597 | } | 
 | 598 |  | 
 | 599 | /* | 
 | 600 |  * How many references to page are currently swapped out? | 
 | 601 |  * This does not give an exact answer when swap count is continued, | 
 | 602 |  * but does include the high COUNT_CONTINUED flag to allow for that. | 
 | 603 |  */ | 
 | 604 | static inline int page_swapcount(struct page *page) | 
 | 605 | { | 
 | 606 | 	int count = 0; | 
 | 607 | 	struct swap_info_struct *p; | 
 | 608 | 	swp_entry_t entry; | 
 | 609 |  | 
 | 610 | 	entry.val = page_private(page); | 
 | 611 | 	p = swap_info_get(entry); | 
 | 612 | 	if (p) { | 
 | 613 | 		count = swap_count(p->swap_map[swp_offset(entry)]); | 
 | 614 | 		spin_unlock(&swap_lock); | 
 | 615 | 	} | 
 | 616 | 	return count; | 
 | 617 | } | 
 | 618 |  | 
 | 619 | /* | 
 | 620 |  * We can write to an anon page without COW if there are no other references | 
 | 621 |  * to it.  And as a side-effect, free up its swap: because the old content | 
 | 622 |  * on disk will never be read, and seeking back there to write new content | 
 | 623 |  * later would only waste time away from clustering. | 
 | 624 |  */ | 
 | 625 | int reuse_swap_page(struct page *page) | 
 | 626 | { | 
 | 627 | 	int count; | 
 | 628 |  | 
 | 629 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 630 | 	if (unlikely(PageKsm(page))) | 
 | 631 | 		return 0; | 
 | 632 | 	count = page_mapcount(page); | 
 | 633 | 	if (count <= 1 && PageSwapCache(page)) { | 
 | 634 | 		count += page_swapcount(page); | 
 | 635 | 		if (count == 1 && !PageWriteback(page)) { | 
 | 636 | 			delete_from_swap_cache(page); | 
 | 637 | 			SetPageDirty(page); | 
 | 638 | 		} | 
 | 639 | 	} | 
 | 640 | 	return count <= 1; | 
 | 641 | } | 
 | 642 |  | 
 | 643 | /* | 
 | 644 |  * If swap is getting full, or if there are no more mappings of this page, | 
 | 645 |  * then try_to_free_swap is called to free its swap space. | 
 | 646 |  */ | 
 | 647 | int try_to_free_swap(struct page *page) | 
 | 648 | { | 
 | 649 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 650 |  | 
 | 651 | 	if (!PageSwapCache(page)) | 
 | 652 | 		return 0; | 
 | 653 | 	if (PageWriteback(page)) | 
 | 654 | 		return 0; | 
 | 655 | 	if (page_swapcount(page)) | 
 | 656 | 		return 0; | 
 | 657 |  | 
 | 658 | 	/* | 
 | 659 | 	 * Once hibernation has begun to create its image of memory, | 
 | 660 | 	 * there's a danger that one of the calls to try_to_free_swap() | 
 | 661 | 	 * - most probably a call from __try_to_reclaim_swap() while | 
 | 662 | 	 * hibernation is allocating its own swap pages for the image, | 
 | 663 | 	 * but conceivably even a call from memory reclaim - will free | 
 | 664 | 	 * the swap from a page which has already been recorded in the | 
 | 665 | 	 * image as a clean swapcache page, and then reuse its swap for | 
 | 666 | 	 * another page of the image.  On waking from hibernation, the | 
 | 667 | 	 * original page might be freed under memory pressure, then | 
 | 668 | 	 * later read back in from swap, now with the wrong data. | 
 | 669 | 	 * | 
 | 670 | 	 * Hibration suspends storage while it is writing the image | 
 | 671 | 	 * to disk so check that here. | 
 | 672 | 	 */ | 
 | 673 | 	if (pm_suspended_storage()) | 
 | 674 | 		return 0; | 
 | 675 |  | 
 | 676 | 	delete_from_swap_cache(page); | 
 | 677 | 	SetPageDirty(page); | 
 | 678 | 	return 1; | 
 | 679 | } | 
 | 680 |  | 
 | 681 | /* | 
 | 682 |  * Free the swap entry like above, but also try to | 
 | 683 |  * free the page cache entry if it is the last user. | 
 | 684 |  */ | 
 | 685 | int free_swap_and_cache(swp_entry_t entry) | 
 | 686 | { | 
 | 687 | 	struct swap_info_struct *p; | 
 | 688 | 	struct page *page = NULL; | 
 | 689 |  | 
 | 690 | 	if (non_swap_entry(entry)) | 
 | 691 | 		return 1; | 
 | 692 |  | 
 | 693 | 	p = swap_info_get(entry); | 
 | 694 | 	if (p) { | 
 | 695 | 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { | 
 | 696 | 			page = find_get_page(&swapper_space, entry.val); | 
 | 697 | 			if (page && !trylock_page(page)) { | 
 | 698 | 				page_cache_release(page); | 
 | 699 | 				page = NULL; | 
 | 700 | 			} | 
 | 701 | 		} | 
 | 702 | 		spin_unlock(&swap_lock); | 
 | 703 | 	} | 
 | 704 | 	if (page) { | 
 | 705 | 		/* | 
 | 706 | 		 * Not mapped elsewhere, or swap space full? Free it! | 
 | 707 | 		 * Also recheck PageSwapCache now page is locked (above). | 
 | 708 | 		 */ | 
 | 709 | 		if (PageSwapCache(page) && !PageWriteback(page) && | 
 | 710 | 				(!page_mapped(page) || vm_swap_full())) { | 
 | 711 | 			delete_from_swap_cache(page); | 
 | 712 | 			SetPageDirty(page); | 
 | 713 | 		} | 
 | 714 | 		unlock_page(page); | 
 | 715 | 		page_cache_release(page); | 
 | 716 | 	} | 
 | 717 | 	return p != NULL; | 
 | 718 | } | 
 | 719 |  | 
 | 720 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 
 | 721 | /** | 
 | 722 |  * mem_cgroup_count_swap_user - count the user of a swap entry | 
 | 723 |  * @ent: the swap entry to be checked | 
 | 724 |  * @pagep: the pointer for the swap cache page of the entry to be stored | 
 | 725 |  * | 
 | 726 |  * Returns the number of the user of the swap entry. The number is valid only | 
 | 727 |  * for swaps of anonymous pages. | 
 | 728 |  * If the entry is found on swap cache, the page is stored to pagep with | 
 | 729 |  * refcount of it being incremented. | 
 | 730 |  */ | 
 | 731 | int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) | 
 | 732 | { | 
 | 733 | 	struct page *page; | 
 | 734 | 	struct swap_info_struct *p; | 
 | 735 | 	int count = 0; | 
 | 736 |  | 
 | 737 | 	page = find_get_page(&swapper_space, ent.val); | 
 | 738 | 	if (page) | 
 | 739 | 		count += page_mapcount(page); | 
 | 740 | 	p = swap_info_get(ent); | 
 | 741 | 	if (p) { | 
 | 742 | 		count += swap_count(p->swap_map[swp_offset(ent)]); | 
 | 743 | 		spin_unlock(&swap_lock); | 
 | 744 | 	} | 
 | 745 |  | 
 | 746 | 	*pagep = page; | 
 | 747 | 	return count; | 
 | 748 | } | 
 | 749 | #endif | 
 | 750 |  | 
 | 751 | #ifdef CONFIG_HIBERNATION | 
 | 752 | /* | 
 | 753 |  * Find the swap type that corresponds to given device (if any). | 
 | 754 |  * | 
 | 755 |  * @offset - number of the PAGE_SIZE-sized block of the device, starting | 
 | 756 |  * from 0, in which the swap header is expected to be located. | 
 | 757 |  * | 
 | 758 |  * This is needed for the suspend to disk (aka swsusp). | 
 | 759 |  */ | 
 | 760 | int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) | 
 | 761 | { | 
 | 762 | 	struct block_device *bdev = NULL; | 
 | 763 | 	int type; | 
 | 764 |  | 
 | 765 | 	if (device) | 
 | 766 | 		bdev = bdget(device); | 
 | 767 |  | 
 | 768 | 	spin_lock(&swap_lock); | 
 | 769 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 770 | 		struct swap_info_struct *sis = swap_info[type]; | 
 | 771 |  | 
 | 772 | 		if (!(sis->flags & SWP_WRITEOK)) | 
 | 773 | 			continue; | 
 | 774 |  | 
 | 775 | 		if (!bdev) { | 
 | 776 | 			if (bdev_p) | 
 | 777 | 				*bdev_p = bdgrab(sis->bdev); | 
 | 778 |  | 
 | 779 | 			spin_unlock(&swap_lock); | 
 | 780 | 			return type; | 
 | 781 | 		} | 
 | 782 | 		if (bdev == sis->bdev) { | 
 | 783 | 			struct swap_extent *se = &sis->first_swap_extent; | 
 | 784 |  | 
 | 785 | 			if (se->start_block == offset) { | 
 | 786 | 				if (bdev_p) | 
 | 787 | 					*bdev_p = bdgrab(sis->bdev); | 
 | 788 |  | 
 | 789 | 				spin_unlock(&swap_lock); | 
 | 790 | 				bdput(bdev); | 
 | 791 | 				return type; | 
 | 792 | 			} | 
 | 793 | 		} | 
 | 794 | 	} | 
 | 795 | 	spin_unlock(&swap_lock); | 
 | 796 | 	if (bdev) | 
 | 797 | 		bdput(bdev); | 
 | 798 |  | 
 | 799 | 	return -ENODEV; | 
 | 800 | } | 
 | 801 |  | 
 | 802 | /* | 
 | 803 |  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev | 
 | 804 |  * corresponding to given index in swap_info (swap type). | 
 | 805 |  */ | 
 | 806 | sector_t swapdev_block(int type, pgoff_t offset) | 
 | 807 | { | 
 | 808 | 	struct block_device *bdev; | 
 | 809 |  | 
 | 810 | 	if ((unsigned int)type >= nr_swapfiles) | 
 | 811 | 		return 0; | 
 | 812 | 	if (!(swap_info[type]->flags & SWP_WRITEOK)) | 
 | 813 | 		return 0; | 
 | 814 | 	return map_swap_entry(swp_entry(type, offset), &bdev); | 
 | 815 | } | 
 | 816 |  | 
 | 817 | /* | 
 | 818 |  * Return either the total number of swap pages of given type, or the number | 
 | 819 |  * of free pages of that type (depending on @free) | 
 | 820 |  * | 
 | 821 |  * This is needed for software suspend | 
 | 822 |  */ | 
 | 823 | unsigned int count_swap_pages(int type, int free) | 
 | 824 | { | 
 | 825 | 	unsigned int n = 0; | 
 | 826 |  | 
 | 827 | 	spin_lock(&swap_lock); | 
 | 828 | 	if ((unsigned int)type < nr_swapfiles) { | 
 | 829 | 		struct swap_info_struct *sis = swap_info[type]; | 
 | 830 |  | 
 | 831 | 		if (sis->flags & SWP_WRITEOK) { | 
 | 832 | 			n = sis->pages; | 
 | 833 | 			if (free) | 
 | 834 | 				n -= sis->inuse_pages; | 
 | 835 | 		} | 
 | 836 | 	} | 
 | 837 | 	spin_unlock(&swap_lock); | 
 | 838 | 	return n; | 
 | 839 | } | 
 | 840 | #endif /* CONFIG_HIBERNATION */ | 
 | 841 |  | 
 | 842 | /* | 
 | 843 |  * No need to decide whether this PTE shares the swap entry with others, | 
 | 844 |  * just let do_wp_page work it out if a write is requested later - to | 
 | 845 |  * force COW, vm_page_prot omits write permission from any private vma. | 
 | 846 |  */ | 
 | 847 | static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 848 | 		unsigned long addr, swp_entry_t entry, struct page *page) | 
 | 849 | { | 
 | 850 | 	struct mem_cgroup *memcg; | 
 | 851 | 	spinlock_t *ptl; | 
 | 852 | 	pte_t *pte; | 
 | 853 | 	int ret = 1; | 
 | 854 |  | 
 | 855 | 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, | 
 | 856 | 					 GFP_KERNEL, &memcg)) { | 
 | 857 | 		ret = -ENOMEM; | 
 | 858 | 		goto out_nolock; | 
 | 859 | 	} | 
 | 860 |  | 
 | 861 | 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
 | 862 | 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { | 
 | 863 | 		if (ret > 0) | 
 | 864 | 			mem_cgroup_cancel_charge_swapin(memcg); | 
 | 865 | 		ret = 0; | 
 | 866 | 		goto out; | 
 | 867 | 	} | 
 | 868 |  | 
 | 869 | 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS); | 
 | 870 | 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES); | 
 | 871 | 	get_page(page); | 
 | 872 | 	set_pte_at(vma->vm_mm, addr, pte, | 
 | 873 | 		   pte_mkold(mk_pte(page, vma->vm_page_prot))); | 
 | 874 | 	page_add_anon_rmap(page, vma, addr); | 
 | 875 | 	mem_cgroup_commit_charge_swapin(page, memcg); | 
 | 876 | 	swap_free(entry); | 
 | 877 | 	/* | 
 | 878 | 	 * Move the page to the active list so it is not | 
 | 879 | 	 * immediately swapped out again after swapon. | 
 | 880 | 	 */ | 
 | 881 | 	activate_page(page); | 
 | 882 | out: | 
 | 883 | 	pte_unmap_unlock(pte, ptl); | 
 | 884 | out_nolock: | 
 | 885 | 	return ret; | 
 | 886 | } | 
 | 887 |  | 
 | 888 | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 889 | 				unsigned long addr, unsigned long end, | 
 | 890 | 				swp_entry_t entry, struct page *page) | 
 | 891 | { | 
 | 892 | 	pte_t swp_pte = swp_entry_to_pte(entry); | 
 | 893 | 	pte_t *pte; | 
 | 894 | 	int ret = 0; | 
 | 895 |  | 
 | 896 | 	/* | 
 | 897 | 	 * We don't actually need pte lock while scanning for swp_pte: since | 
 | 898 | 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the | 
 | 899 | 	 * page table while we're scanning; though it could get zapped, and on | 
 | 900 | 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse | 
 | 901 | 	 * of unmatched parts which look like swp_pte, so unuse_pte must | 
 | 902 | 	 * recheck under pte lock.  Scanning without pte lock lets it be | 
 | 903 | 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. | 
 | 904 | 	 */ | 
 | 905 | 	pte = pte_offset_map(pmd, addr); | 
 | 906 | 	do { | 
 | 907 | 		/* | 
 | 908 | 		 * swapoff spends a _lot_ of time in this loop! | 
 | 909 | 		 * Test inline before going to call unuse_pte. | 
 | 910 | 		 */ | 
 | 911 | 		if (unlikely(pte_same(*pte, swp_pte))) { | 
 | 912 | 			pte_unmap(pte); | 
 | 913 | 			ret = unuse_pte(vma, pmd, addr, entry, page); | 
 | 914 | 			if (ret) | 
 | 915 | 				goto out; | 
 | 916 | 			pte = pte_offset_map(pmd, addr); | 
 | 917 | 		} | 
 | 918 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 919 | 	pte_unmap(pte - 1); | 
 | 920 | out: | 
 | 921 | 	return ret; | 
 | 922 | } | 
 | 923 |  | 
 | 924 | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, | 
 | 925 | 				unsigned long addr, unsigned long end, | 
 | 926 | 				swp_entry_t entry, struct page *page) | 
 | 927 | { | 
 | 928 | 	pmd_t *pmd; | 
 | 929 | 	unsigned long next; | 
 | 930 | 	int ret; | 
 | 931 |  | 
 | 932 | 	pmd = pmd_offset(pud, addr); | 
 | 933 | 	do { | 
 | 934 | 		next = pmd_addr_end(addr, end); | 
 | 935 | 		if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | 
 | 936 | 			continue; | 
 | 937 | 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page); | 
 | 938 | 		if (ret) | 
 | 939 | 			return ret; | 
 | 940 | 	} while (pmd++, addr = next, addr != end); | 
 | 941 | 	return 0; | 
 | 942 | } | 
 | 943 |  | 
 | 944 | static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, | 
 | 945 | 				unsigned long addr, unsigned long end, | 
 | 946 | 				swp_entry_t entry, struct page *page) | 
 | 947 | { | 
 | 948 | 	pud_t *pud; | 
 | 949 | 	unsigned long next; | 
 | 950 | 	int ret; | 
 | 951 |  | 
 | 952 | 	pud = pud_offset(pgd, addr); | 
 | 953 | 	do { | 
 | 954 | 		next = pud_addr_end(addr, end); | 
 | 955 | 		if (pud_none_or_clear_bad(pud)) | 
 | 956 | 			continue; | 
 | 957 | 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page); | 
 | 958 | 		if (ret) | 
 | 959 | 			return ret; | 
 | 960 | 	} while (pud++, addr = next, addr != end); | 
 | 961 | 	return 0; | 
 | 962 | } | 
 | 963 |  | 
 | 964 | static int unuse_vma(struct vm_area_struct *vma, | 
 | 965 | 				swp_entry_t entry, struct page *page) | 
 | 966 | { | 
 | 967 | 	pgd_t *pgd; | 
 | 968 | 	unsigned long addr, end, next; | 
 | 969 | 	int ret; | 
 | 970 |  | 
 | 971 | 	if (page_anon_vma(page)) { | 
 | 972 | 		addr = page_address_in_vma(page, vma); | 
 | 973 | 		if (addr == -EFAULT) | 
 | 974 | 			return 0; | 
 | 975 | 		else | 
 | 976 | 			end = addr + PAGE_SIZE; | 
 | 977 | 	} else { | 
 | 978 | 		addr = vma->vm_start; | 
 | 979 | 		end = vma->vm_end; | 
 | 980 | 	} | 
 | 981 |  | 
 | 982 | 	pgd = pgd_offset(vma->vm_mm, addr); | 
 | 983 | 	do { | 
 | 984 | 		next = pgd_addr_end(addr, end); | 
 | 985 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 986 | 			continue; | 
 | 987 | 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page); | 
 | 988 | 		if (ret) | 
 | 989 | 			return ret; | 
 | 990 | 	} while (pgd++, addr = next, addr != end); | 
 | 991 | 	return 0; | 
 | 992 | } | 
 | 993 |  | 
 | 994 | static int unuse_mm(struct mm_struct *mm, | 
 | 995 | 				swp_entry_t entry, struct page *page) | 
 | 996 | { | 
 | 997 | 	struct vm_area_struct *vma; | 
 | 998 | 	int ret = 0; | 
 | 999 |  | 
 | 1000 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 1001 | 		/* | 
 | 1002 | 		 * Activate page so shrink_inactive_list is unlikely to unmap | 
 | 1003 | 		 * its ptes while lock is dropped, so swapoff can make progress. | 
 | 1004 | 		 */ | 
 | 1005 | 		activate_page(page); | 
 | 1006 | 		unlock_page(page); | 
 | 1007 | 		down_read(&mm->mmap_sem); | 
 | 1008 | 		lock_page(page); | 
 | 1009 | 	} | 
 | 1010 | 	for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
 | 1011 | 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) | 
 | 1012 | 			break; | 
 | 1013 | 	} | 
 | 1014 | 	up_read(&mm->mmap_sem); | 
 | 1015 | 	return (ret < 0)? ret: 0; | 
 | 1016 | } | 
 | 1017 |  | 
 | 1018 | /* | 
 | 1019 |  * Scan swap_map from current position to next entry still in use. | 
 | 1020 |  * Recycle to start on reaching the end, returning 0 when empty. | 
 | 1021 |  */ | 
 | 1022 | static unsigned int find_next_to_unuse(struct swap_info_struct *si, | 
 | 1023 | 					unsigned int prev) | 
 | 1024 | { | 
 | 1025 | 	unsigned int max = si->max; | 
 | 1026 | 	unsigned int i = prev; | 
 | 1027 | 	unsigned char count; | 
 | 1028 |  | 
 | 1029 | 	/* | 
 | 1030 | 	 * No need for swap_lock here: we're just looking | 
 | 1031 | 	 * for whether an entry is in use, not modifying it; false | 
 | 1032 | 	 * hits are okay, and sys_swapoff() has already prevented new | 
 | 1033 | 	 * allocations from this area (while holding swap_lock). | 
 | 1034 | 	 */ | 
 | 1035 | 	for (;;) { | 
 | 1036 | 		if (++i >= max) { | 
 | 1037 | 			if (!prev) { | 
 | 1038 | 				i = 0; | 
 | 1039 | 				break; | 
 | 1040 | 			} | 
 | 1041 | 			/* | 
 | 1042 | 			 * No entries in use at top of swap_map, | 
 | 1043 | 			 * loop back to start and recheck there. | 
 | 1044 | 			 */ | 
 | 1045 | 			max = prev + 1; | 
 | 1046 | 			prev = 0; | 
 | 1047 | 			i = 1; | 
 | 1048 | 		} | 
 | 1049 | 		count = si->swap_map[i]; | 
 | 1050 | 		if (count && swap_count(count) != SWAP_MAP_BAD) | 
 | 1051 | 			break; | 
 | 1052 | 	} | 
 | 1053 | 	return i; | 
 | 1054 | } | 
 | 1055 |  | 
 | 1056 | /* | 
 | 1057 |  * We completely avoid races by reading each swap page in advance, | 
 | 1058 |  * and then search for the process using it.  All the necessary | 
 | 1059 |  * page table adjustments can then be made atomically. | 
 | 1060 |  */ | 
 | 1061 | static int try_to_unuse(unsigned int type) | 
 | 1062 | { | 
 | 1063 | 	struct swap_info_struct *si = swap_info[type]; | 
 | 1064 | 	struct mm_struct *start_mm; | 
 | 1065 | 	unsigned char *swap_map; | 
 | 1066 | 	unsigned char swcount; | 
 | 1067 | 	struct page *page; | 
 | 1068 | 	swp_entry_t entry; | 
 | 1069 | 	unsigned int i = 0; | 
 | 1070 | 	int retval = 0; | 
 | 1071 |  | 
 | 1072 | 	/* | 
 | 1073 | 	 * When searching mms for an entry, a good strategy is to | 
 | 1074 | 	 * start at the first mm we freed the previous entry from | 
 | 1075 | 	 * (though actually we don't notice whether we or coincidence | 
 | 1076 | 	 * freed the entry).  Initialize this start_mm with a hold. | 
 | 1077 | 	 * | 
 | 1078 | 	 * A simpler strategy would be to start at the last mm we | 
 | 1079 | 	 * freed the previous entry from; but that would take less | 
 | 1080 | 	 * advantage of mmlist ordering, which clusters forked mms | 
 | 1081 | 	 * together, child after parent.  If we race with dup_mmap(), we | 
 | 1082 | 	 * prefer to resolve parent before child, lest we miss entries | 
 | 1083 | 	 * duplicated after we scanned child: using last mm would invert | 
 | 1084 | 	 * that. | 
 | 1085 | 	 */ | 
 | 1086 | 	start_mm = &init_mm; | 
 | 1087 | 	atomic_inc(&init_mm.mm_users); | 
 | 1088 |  | 
 | 1089 | 	/* | 
 | 1090 | 	 * Keep on scanning until all entries have gone.  Usually, | 
 | 1091 | 	 * one pass through swap_map is enough, but not necessarily: | 
 | 1092 | 	 * there are races when an instance of an entry might be missed. | 
 | 1093 | 	 */ | 
 | 1094 | 	while ((i = find_next_to_unuse(si, i)) != 0) { | 
 | 1095 | 		if (signal_pending(current)) { | 
 | 1096 | 			retval = -EINTR; | 
 | 1097 | 			break; | 
 | 1098 | 		} | 
 | 1099 |  | 
 | 1100 | 		/* | 
 | 1101 | 		 * Get a page for the entry, using the existing swap | 
 | 1102 | 		 * cache page if there is one.  Otherwise, get a clean | 
 | 1103 | 		 * page and read the swap into it. | 
 | 1104 | 		 */ | 
 | 1105 | 		swap_map = &si->swap_map[i]; | 
 | 1106 | 		entry = swp_entry(type, i); | 
 | 1107 | 		page = read_swap_cache_async(entry, | 
 | 1108 | 					GFP_HIGHUSER_MOVABLE, NULL, 0); | 
 | 1109 | 		if (!page) { | 
 | 1110 | 			/* | 
 | 1111 | 			 * Either swap_duplicate() failed because entry | 
 | 1112 | 			 * has been freed independently, and will not be | 
 | 1113 | 			 * reused since sys_swapoff() already disabled | 
 | 1114 | 			 * allocation from here, or alloc_page() failed. | 
 | 1115 | 			 */ | 
 | 1116 | 			if (!*swap_map) | 
 | 1117 | 				continue; | 
 | 1118 | 			retval = -ENOMEM; | 
 | 1119 | 			break; | 
 | 1120 | 		} | 
 | 1121 |  | 
 | 1122 | 		/* | 
 | 1123 | 		 * Don't hold on to start_mm if it looks like exiting. | 
 | 1124 | 		 */ | 
 | 1125 | 		if (atomic_read(&start_mm->mm_users) == 1) { | 
 | 1126 | 			mmput(start_mm); | 
 | 1127 | 			start_mm = &init_mm; | 
 | 1128 | 			atomic_inc(&init_mm.mm_users); | 
 | 1129 | 		} | 
 | 1130 |  | 
 | 1131 | 		/* | 
 | 1132 | 		 * Wait for and lock page.  When do_swap_page races with | 
 | 1133 | 		 * try_to_unuse, do_swap_page can handle the fault much | 
 | 1134 | 		 * faster than try_to_unuse can locate the entry.  This | 
 | 1135 | 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse | 
 | 1136 | 		 * defer to do_swap_page in such a case - in some tests, | 
 | 1137 | 		 * do_swap_page and try_to_unuse repeatedly compete. | 
 | 1138 | 		 */ | 
 | 1139 | 		wait_on_page_locked(page); | 
 | 1140 | 		wait_on_page_writeback(page); | 
 | 1141 | 		lock_page(page); | 
 | 1142 | 		wait_on_page_writeback(page); | 
 | 1143 |  | 
 | 1144 | 		/* | 
 | 1145 | 		 * Remove all references to entry. | 
 | 1146 | 		 */ | 
 | 1147 | 		swcount = *swap_map; | 
 | 1148 | 		if (swap_count(swcount) == SWAP_MAP_SHMEM) { | 
 | 1149 | 			retval = shmem_unuse(entry, page); | 
 | 1150 | 			/* page has already been unlocked and released */ | 
 | 1151 | 			if (retval < 0) | 
 | 1152 | 				break; | 
 | 1153 | 			continue; | 
 | 1154 | 		} | 
 | 1155 | 		if (swap_count(swcount) && start_mm != &init_mm) | 
 | 1156 | 			retval = unuse_mm(start_mm, entry, page); | 
 | 1157 |  | 
 | 1158 | 		if (swap_count(*swap_map)) { | 
 | 1159 | 			int set_start_mm = (*swap_map >= swcount); | 
 | 1160 | 			struct list_head *p = &start_mm->mmlist; | 
 | 1161 | 			struct mm_struct *new_start_mm = start_mm; | 
 | 1162 | 			struct mm_struct *prev_mm = start_mm; | 
 | 1163 | 			struct mm_struct *mm; | 
 | 1164 |  | 
 | 1165 | 			atomic_inc(&new_start_mm->mm_users); | 
 | 1166 | 			atomic_inc(&prev_mm->mm_users); | 
 | 1167 | 			spin_lock(&mmlist_lock); | 
 | 1168 | 			while (swap_count(*swap_map) && !retval && | 
 | 1169 | 					(p = p->next) != &start_mm->mmlist) { | 
 | 1170 | 				mm = list_entry(p, struct mm_struct, mmlist); | 
 | 1171 | 				if (!atomic_inc_not_zero(&mm->mm_users)) | 
 | 1172 | 					continue; | 
 | 1173 | 				spin_unlock(&mmlist_lock); | 
 | 1174 | 				mmput(prev_mm); | 
 | 1175 | 				prev_mm = mm; | 
 | 1176 |  | 
 | 1177 | 				cond_resched(); | 
 | 1178 |  | 
 | 1179 | 				swcount = *swap_map; | 
 | 1180 | 				if (!swap_count(swcount)) /* any usage ? */ | 
 | 1181 | 					; | 
 | 1182 | 				else if (mm == &init_mm) | 
 | 1183 | 					set_start_mm = 1; | 
 | 1184 | 				else | 
 | 1185 | 					retval = unuse_mm(mm, entry, page); | 
 | 1186 |  | 
 | 1187 | 				if (set_start_mm && *swap_map < swcount) { | 
 | 1188 | 					mmput(new_start_mm); | 
 | 1189 | 					atomic_inc(&mm->mm_users); | 
 | 1190 | 					new_start_mm = mm; | 
 | 1191 | 					set_start_mm = 0; | 
 | 1192 | 				} | 
 | 1193 | 				spin_lock(&mmlist_lock); | 
 | 1194 | 			} | 
 | 1195 | 			spin_unlock(&mmlist_lock); | 
 | 1196 | 			mmput(prev_mm); | 
 | 1197 | 			mmput(start_mm); | 
 | 1198 | 			start_mm = new_start_mm; | 
 | 1199 | 		} | 
 | 1200 | 		if (retval) { | 
 | 1201 | 			unlock_page(page); | 
 | 1202 | 			page_cache_release(page); | 
 | 1203 | 			break; | 
 | 1204 | 		} | 
 | 1205 |  | 
 | 1206 | 		/* | 
 | 1207 | 		 * If a reference remains (rare), we would like to leave | 
 | 1208 | 		 * the page in the swap cache; but try_to_unmap could | 
 | 1209 | 		 * then re-duplicate the entry once we drop page lock, | 
 | 1210 | 		 * so we might loop indefinitely; also, that page could | 
 | 1211 | 		 * not be swapped out to other storage meanwhile.  So: | 
 | 1212 | 		 * delete from cache even if there's another reference, | 
 | 1213 | 		 * after ensuring that the data has been saved to disk - | 
 | 1214 | 		 * since if the reference remains (rarer), it will be | 
 | 1215 | 		 * read from disk into another page.  Splitting into two | 
 | 1216 | 		 * pages would be incorrect if swap supported "shared | 
 | 1217 | 		 * private" pages, but they are handled by tmpfs files. | 
 | 1218 | 		 * | 
 | 1219 | 		 * Given how unuse_vma() targets one particular offset | 
 | 1220 | 		 * in an anon_vma, once the anon_vma has been determined, | 
 | 1221 | 		 * this splitting happens to be just what is needed to | 
 | 1222 | 		 * handle where KSM pages have been swapped out: re-reading | 
 | 1223 | 		 * is unnecessarily slow, but we can fix that later on. | 
 | 1224 | 		 */ | 
 | 1225 | 		if (swap_count(*swap_map) && | 
 | 1226 | 		     PageDirty(page) && PageSwapCache(page)) { | 
 | 1227 | 			struct writeback_control wbc = { | 
 | 1228 | 				.sync_mode = WB_SYNC_NONE, | 
 | 1229 | 			}; | 
 | 1230 |  | 
 | 1231 | 			swap_writepage(page, &wbc); | 
 | 1232 | 			lock_page(page); | 
 | 1233 | 			wait_on_page_writeback(page); | 
 | 1234 | 		} | 
 | 1235 |  | 
 | 1236 | 		/* | 
 | 1237 | 		 * It is conceivable that a racing task removed this page from | 
 | 1238 | 		 * swap cache just before we acquired the page lock at the top, | 
 | 1239 | 		 * or while we dropped it in unuse_mm().  The page might even | 
 | 1240 | 		 * be back in swap cache on another swap area: that we must not | 
 | 1241 | 		 * delete, since it may not have been written out to swap yet. | 
 | 1242 | 		 */ | 
 | 1243 | 		if (PageSwapCache(page) && | 
 | 1244 | 		    likely(page_private(page) == entry.val)) | 
 | 1245 | 			delete_from_swap_cache(page); | 
 | 1246 |  | 
 | 1247 | 		/* | 
 | 1248 | 		 * So we could skip searching mms once swap count went | 
 | 1249 | 		 * to 1, we did not mark any present ptes as dirty: must | 
 | 1250 | 		 * mark page dirty so shrink_page_list will preserve it. | 
 | 1251 | 		 */ | 
 | 1252 | 		SetPageDirty(page); | 
 | 1253 | 		unlock_page(page); | 
 | 1254 | 		page_cache_release(page); | 
 | 1255 |  | 
 | 1256 | 		/* | 
 | 1257 | 		 * Make sure that we aren't completely killing | 
 | 1258 | 		 * interactive performance. | 
 | 1259 | 		 */ | 
 | 1260 | 		cond_resched(); | 
 | 1261 | 	} | 
 | 1262 |  | 
 | 1263 | 	mmput(start_mm); | 
 | 1264 | 	return retval; | 
 | 1265 | } | 
 | 1266 |  | 
 | 1267 | /* | 
 | 1268 |  * After a successful try_to_unuse, if no swap is now in use, we know | 
 | 1269 |  * we can empty the mmlist.  swap_lock must be held on entry and exit. | 
 | 1270 |  * Note that mmlist_lock nests inside swap_lock, and an mm must be | 
 | 1271 |  * added to the mmlist just after page_duplicate - before would be racy. | 
 | 1272 |  */ | 
 | 1273 | static void drain_mmlist(void) | 
 | 1274 | { | 
 | 1275 | 	struct list_head *p, *next; | 
 | 1276 | 	unsigned int type; | 
 | 1277 |  | 
 | 1278 | 	for (type = 0; type < nr_swapfiles; type++) | 
 | 1279 | 		if (swap_info[type]->inuse_pages) | 
 | 1280 | 			return; | 
 | 1281 | 	spin_lock(&mmlist_lock); | 
 | 1282 | 	list_for_each_safe(p, next, &init_mm.mmlist) | 
 | 1283 | 		list_del_init(p); | 
 | 1284 | 	spin_unlock(&mmlist_lock); | 
 | 1285 | } | 
 | 1286 |  | 
 | 1287 | /* | 
 | 1288 |  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which | 
 | 1289 |  * corresponds to page offset for the specified swap entry. | 
 | 1290 |  * Note that the type of this function is sector_t, but it returns page offset | 
 | 1291 |  * into the bdev, not sector offset. | 
 | 1292 |  */ | 
 | 1293 | static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) | 
 | 1294 | { | 
 | 1295 | 	struct swap_info_struct *sis; | 
 | 1296 | 	struct swap_extent *start_se; | 
 | 1297 | 	struct swap_extent *se; | 
 | 1298 | 	pgoff_t offset; | 
 | 1299 |  | 
 | 1300 | 	sis = swap_info[swp_type(entry)]; | 
 | 1301 | 	*bdev = sis->bdev; | 
 | 1302 |  | 
 | 1303 | 	offset = swp_offset(entry); | 
 | 1304 | 	start_se = sis->curr_swap_extent; | 
 | 1305 | 	se = start_se; | 
 | 1306 |  | 
 | 1307 | 	for ( ; ; ) { | 
 | 1308 | 		struct list_head *lh; | 
 | 1309 |  | 
 | 1310 | 		if (se->start_page <= offset && | 
 | 1311 | 				offset < (se->start_page + se->nr_pages)) { | 
 | 1312 | 			return se->start_block + (offset - se->start_page); | 
 | 1313 | 		} | 
 | 1314 | 		lh = se->list.next; | 
 | 1315 | 		se = list_entry(lh, struct swap_extent, list); | 
 | 1316 | 		sis->curr_swap_extent = se; | 
 | 1317 | 		BUG_ON(se == start_se);		/* It *must* be present */ | 
 | 1318 | 	} | 
 | 1319 | } | 
 | 1320 |  | 
 | 1321 | /* | 
 | 1322 |  * Returns the page offset into bdev for the specified page's swap entry. | 
 | 1323 |  */ | 
 | 1324 | sector_t map_swap_page(struct page *page, struct block_device **bdev) | 
 | 1325 | { | 
 | 1326 | 	swp_entry_t entry; | 
 | 1327 | 	entry.val = page_private(page); | 
 | 1328 | 	return map_swap_entry(entry, bdev); | 
 | 1329 | } | 
 | 1330 |  | 
 | 1331 | /* | 
 | 1332 |  * Free all of a swapdev's extent information | 
 | 1333 |  */ | 
 | 1334 | static void destroy_swap_extents(struct swap_info_struct *sis) | 
 | 1335 | { | 
 | 1336 | 	while (!list_empty(&sis->first_swap_extent.list)) { | 
 | 1337 | 		struct swap_extent *se; | 
 | 1338 |  | 
 | 1339 | 		se = list_entry(sis->first_swap_extent.list.next, | 
 | 1340 | 				struct swap_extent, list); | 
 | 1341 | 		list_del(&se->list); | 
 | 1342 | 		kfree(se); | 
 | 1343 | 	} | 
 | 1344 | } | 
 | 1345 |  | 
 | 1346 | /* | 
 | 1347 |  * Add a block range (and the corresponding page range) into this swapdev's | 
 | 1348 |  * extent list.  The extent list is kept sorted in page order. | 
 | 1349 |  * | 
 | 1350 |  * This function rather assumes that it is called in ascending page order. | 
 | 1351 |  */ | 
 | 1352 | static int | 
 | 1353 | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, | 
 | 1354 | 		unsigned long nr_pages, sector_t start_block) | 
 | 1355 | { | 
 | 1356 | 	struct swap_extent *se; | 
 | 1357 | 	struct swap_extent *new_se; | 
 | 1358 | 	struct list_head *lh; | 
 | 1359 |  | 
 | 1360 | 	if (start_page == 0) { | 
 | 1361 | 		se = &sis->first_swap_extent; | 
 | 1362 | 		sis->curr_swap_extent = se; | 
 | 1363 | 		se->start_page = 0; | 
 | 1364 | 		se->nr_pages = nr_pages; | 
 | 1365 | 		se->start_block = start_block; | 
 | 1366 | 		return 1; | 
 | 1367 | 	} else { | 
 | 1368 | 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */ | 
 | 1369 | 		se = list_entry(lh, struct swap_extent, list); | 
 | 1370 | 		BUG_ON(se->start_page + se->nr_pages != start_page); | 
 | 1371 | 		if (se->start_block + se->nr_pages == start_block) { | 
 | 1372 | 			/* Merge it */ | 
 | 1373 | 			se->nr_pages += nr_pages; | 
 | 1374 | 			return 0; | 
 | 1375 | 		} | 
 | 1376 | 	} | 
 | 1377 |  | 
 | 1378 | 	/* | 
 | 1379 | 	 * No merge.  Insert a new extent, preserving ordering. | 
 | 1380 | 	 */ | 
 | 1381 | 	new_se = kmalloc(sizeof(*se), GFP_KERNEL); | 
 | 1382 | 	if (new_se == NULL) | 
 | 1383 | 		return -ENOMEM; | 
 | 1384 | 	new_se->start_page = start_page; | 
 | 1385 | 	new_se->nr_pages = nr_pages; | 
 | 1386 | 	new_se->start_block = start_block; | 
 | 1387 |  | 
 | 1388 | 	list_add_tail(&new_se->list, &sis->first_swap_extent.list); | 
 | 1389 | 	return 1; | 
 | 1390 | } | 
 | 1391 |  | 
 | 1392 | /* | 
 | 1393 |  * A `swap extent' is a simple thing which maps a contiguous range of pages | 
 | 1394 |  * onto a contiguous range of disk blocks.  An ordered list of swap extents | 
 | 1395 |  * is built at swapon time and is then used at swap_writepage/swap_readpage | 
 | 1396 |  * time for locating where on disk a page belongs. | 
 | 1397 |  * | 
 | 1398 |  * If the swapfile is an S_ISBLK block device, a single extent is installed. | 
 | 1399 |  * This is done so that the main operating code can treat S_ISBLK and S_ISREG | 
 | 1400 |  * swap files identically. | 
 | 1401 |  * | 
 | 1402 |  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap | 
 | 1403 |  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK | 
 | 1404 |  * swapfiles are handled *identically* after swapon time. | 
 | 1405 |  * | 
 | 1406 |  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks | 
 | 1407 |  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If | 
 | 1408 |  * some stray blocks are found which do not fall within the PAGE_SIZE alignment | 
 | 1409 |  * requirements, they are simply tossed out - we will never use those blocks | 
 | 1410 |  * for swapping. | 
 | 1411 |  * | 
 | 1412 |  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This | 
 | 1413 |  * prevents root from shooting her foot off by ftruncating an in-use swapfile, | 
 | 1414 |  * which will scribble on the fs. | 
 | 1415 |  * | 
 | 1416 |  * The amount of disk space which a single swap extent represents varies. | 
 | 1417 |  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of | 
 | 1418 |  * extents in the list.  To avoid much list walking, we cache the previous | 
 | 1419 |  * search location in `curr_swap_extent', and start new searches from there. | 
 | 1420 |  * This is extremely effective.  The average number of iterations in | 
 | 1421 |  * map_swap_page() has been measured at about 0.3 per page.  - akpm. | 
 | 1422 |  */ | 
 | 1423 | static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) | 
 | 1424 | { | 
 | 1425 | 	struct inode *inode; | 
 | 1426 | 	unsigned blocks_per_page; | 
 | 1427 | 	unsigned long page_no; | 
 | 1428 | 	unsigned blkbits; | 
 | 1429 | 	sector_t probe_block; | 
 | 1430 | 	sector_t last_block; | 
 | 1431 | 	sector_t lowest_block = -1; | 
 | 1432 | 	sector_t highest_block = 0; | 
 | 1433 | 	int nr_extents = 0; | 
 | 1434 | 	int ret; | 
 | 1435 |  | 
 | 1436 | 	inode = sis->swap_file->f_mapping->host; | 
 | 1437 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 1438 | 		ret = add_swap_extent(sis, 0, sis->max, 0); | 
 | 1439 | 		*span = sis->pages; | 
 | 1440 | 		goto out; | 
 | 1441 | 	} | 
 | 1442 |  | 
 | 1443 | 	blkbits = inode->i_blkbits; | 
 | 1444 | 	blocks_per_page = PAGE_SIZE >> blkbits; | 
 | 1445 |  | 
 | 1446 | 	/* | 
 | 1447 | 	 * Map all the blocks into the extent list.  This code doesn't try | 
 | 1448 | 	 * to be very smart. | 
 | 1449 | 	 */ | 
 | 1450 | 	probe_block = 0; | 
 | 1451 | 	page_no = 0; | 
 | 1452 | 	last_block = i_size_read(inode) >> blkbits; | 
 | 1453 | 	while ((probe_block + blocks_per_page) <= last_block && | 
 | 1454 | 			page_no < sis->max) { | 
 | 1455 | 		unsigned block_in_page; | 
 | 1456 | 		sector_t first_block; | 
 | 1457 |  | 
 | 1458 | 		first_block = bmap(inode, probe_block); | 
 | 1459 | 		if (first_block == 0) | 
 | 1460 | 			goto bad_bmap; | 
 | 1461 |  | 
 | 1462 | 		/* | 
 | 1463 | 		 * It must be PAGE_SIZE aligned on-disk | 
 | 1464 | 		 */ | 
 | 1465 | 		if (first_block & (blocks_per_page - 1)) { | 
 | 1466 | 			probe_block++; | 
 | 1467 | 			goto reprobe; | 
 | 1468 | 		} | 
 | 1469 |  | 
 | 1470 | 		for (block_in_page = 1; block_in_page < blocks_per_page; | 
 | 1471 | 					block_in_page++) { | 
 | 1472 | 			sector_t block; | 
 | 1473 |  | 
 | 1474 | 			block = bmap(inode, probe_block + block_in_page); | 
 | 1475 | 			if (block == 0) | 
 | 1476 | 				goto bad_bmap; | 
 | 1477 | 			if (block != first_block + block_in_page) { | 
 | 1478 | 				/* Discontiguity */ | 
 | 1479 | 				probe_block++; | 
 | 1480 | 				goto reprobe; | 
 | 1481 | 			} | 
 | 1482 | 		} | 
 | 1483 |  | 
 | 1484 | 		first_block >>= (PAGE_SHIFT - blkbits); | 
 | 1485 | 		if (page_no) {	/* exclude the header page */ | 
 | 1486 | 			if (first_block < lowest_block) | 
 | 1487 | 				lowest_block = first_block; | 
 | 1488 | 			if (first_block > highest_block) | 
 | 1489 | 				highest_block = first_block; | 
 | 1490 | 		} | 
 | 1491 |  | 
 | 1492 | 		/* | 
 | 1493 | 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks | 
 | 1494 | 		 */ | 
 | 1495 | 		ret = add_swap_extent(sis, page_no, 1, first_block); | 
 | 1496 | 		if (ret < 0) | 
 | 1497 | 			goto out; | 
 | 1498 | 		nr_extents += ret; | 
 | 1499 | 		page_no++; | 
 | 1500 | 		probe_block += blocks_per_page; | 
 | 1501 | reprobe: | 
 | 1502 | 		continue; | 
 | 1503 | 	} | 
 | 1504 | 	ret = nr_extents; | 
 | 1505 | 	*span = 1 + highest_block - lowest_block; | 
 | 1506 | 	if (page_no == 0) | 
 | 1507 | 		page_no = 1;	/* force Empty message */ | 
 | 1508 | 	sis->max = page_no; | 
 | 1509 | 	sis->pages = page_no - 1; | 
 | 1510 | 	sis->highest_bit = page_no - 1; | 
 | 1511 | out: | 
 | 1512 | 	return ret; | 
 | 1513 | bad_bmap: | 
 | 1514 | 	printk(KERN_ERR "swapon: swapfile has holes\n"); | 
 | 1515 | 	ret = -EINVAL; | 
 | 1516 | 	goto out; | 
 | 1517 | } | 
 | 1518 |  | 
 | 1519 | static void enable_swap_info(struct swap_info_struct *p, int prio, | 
 | 1520 | 				unsigned char *swap_map) | 
 | 1521 | { | 
 | 1522 | 	int i, prev; | 
 | 1523 |  | 
 | 1524 | 	spin_lock(&swap_lock); | 
 | 1525 | 	if (prio >= 0) | 
 | 1526 | 		p->prio = prio; | 
 | 1527 | 	else | 
 | 1528 | 		p->prio = --least_priority; | 
 | 1529 | 	p->swap_map = swap_map; | 
 | 1530 | 	p->flags |= SWP_WRITEOK; | 
 | 1531 | 	nr_swap_pages += p->pages; | 
 | 1532 | 	total_swap_pages += p->pages; | 
 | 1533 |  | 
 | 1534 | 	/* insert swap space into swap_list: */ | 
 | 1535 | 	prev = -1; | 
 | 1536 | 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { | 
 | 1537 | 		if (p->prio >= swap_info[i]->prio) | 
 | 1538 | 			break; | 
 | 1539 | 		prev = i; | 
 | 1540 | 	} | 
 | 1541 | 	p->next = i; | 
 | 1542 | 	if (prev < 0) | 
 | 1543 | 		swap_list.head = swap_list.next = p->type; | 
 | 1544 | 	else | 
 | 1545 | 		swap_info[prev]->next = p->type; | 
 | 1546 | 	spin_unlock(&swap_lock); | 
 | 1547 | } | 
 | 1548 |  | 
 | 1549 | SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) | 
 | 1550 | { | 
 | 1551 | 	struct swap_info_struct *p = NULL; | 
 | 1552 | 	unsigned char *swap_map; | 
 | 1553 | 	struct file *swap_file, *victim; | 
 | 1554 | 	struct address_space *mapping; | 
 | 1555 | 	struct inode *inode; | 
 | 1556 | 	char *pathname; | 
 | 1557 | 	int oom_score_adj; | 
 | 1558 | 	int i, type, prev; | 
 | 1559 | 	int err; | 
 | 1560 |  | 
 | 1561 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 1562 | 		return -EPERM; | 
 | 1563 |  | 
 | 1564 | 	BUG_ON(!current->mm); | 
 | 1565 |  | 
 | 1566 | 	pathname = getname(specialfile); | 
 | 1567 | 	err = PTR_ERR(pathname); | 
 | 1568 | 	if (IS_ERR(pathname)) | 
 | 1569 | 		goto out; | 
 | 1570 |  | 
 | 1571 | 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); | 
 | 1572 | 	putname(pathname); | 
 | 1573 | 	err = PTR_ERR(victim); | 
 | 1574 | 	if (IS_ERR(victim)) | 
 | 1575 | 		goto out; | 
 | 1576 |  | 
 | 1577 | 	mapping = victim->f_mapping; | 
 | 1578 | 	prev = -1; | 
 | 1579 | 	spin_lock(&swap_lock); | 
 | 1580 | 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { | 
 | 1581 | 		p = swap_info[type]; | 
 | 1582 | 		if (p->flags & SWP_WRITEOK) { | 
 | 1583 | 			if (p->swap_file->f_mapping == mapping) | 
 | 1584 | 				break; | 
 | 1585 | 		} | 
 | 1586 | 		prev = type; | 
 | 1587 | 	} | 
 | 1588 | 	if (type < 0) { | 
 | 1589 | 		err = -EINVAL; | 
 | 1590 | 		spin_unlock(&swap_lock); | 
 | 1591 | 		goto out_dput; | 
 | 1592 | 	} | 
 | 1593 | 	if (!security_vm_enough_memory_mm(current->mm, p->pages)) | 
 | 1594 | 		vm_unacct_memory(p->pages); | 
 | 1595 | 	else { | 
 | 1596 | 		err = -ENOMEM; | 
 | 1597 | 		spin_unlock(&swap_lock); | 
 | 1598 | 		goto out_dput; | 
 | 1599 | 	} | 
 | 1600 | 	if (prev < 0) | 
 | 1601 | 		swap_list.head = p->next; | 
 | 1602 | 	else | 
 | 1603 | 		swap_info[prev]->next = p->next; | 
 | 1604 | 	if (type == swap_list.next) { | 
 | 1605 | 		/* just pick something that's safe... */ | 
 | 1606 | 		swap_list.next = swap_list.head; | 
 | 1607 | 	} | 
 | 1608 | 	if (p->prio < 0) { | 
 | 1609 | 		for (i = p->next; i >= 0; i = swap_info[i]->next) | 
 | 1610 | 			swap_info[i]->prio = p->prio--; | 
 | 1611 | 		least_priority++; | 
 | 1612 | 	} | 
 | 1613 | 	nr_swap_pages -= p->pages; | 
 | 1614 | 	total_swap_pages -= p->pages; | 
 | 1615 | 	p->flags &= ~SWP_WRITEOK; | 
 | 1616 | 	spin_unlock(&swap_lock); | 
 | 1617 |  | 
 | 1618 | 	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); | 
 | 1619 | 	err = try_to_unuse(type); | 
 | 1620 | 	compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); | 
 | 1621 |  | 
 | 1622 | 	if (err) { | 
 | 1623 | 		/* | 
 | 1624 | 		 * reading p->prio and p->swap_map outside the lock is | 
 | 1625 | 		 * safe here because only sys_swapon and sys_swapoff | 
 | 1626 | 		 * change them, and there can be no other sys_swapon or | 
 | 1627 | 		 * sys_swapoff for this swap_info_struct at this point. | 
 | 1628 | 		 */ | 
 | 1629 | 		/* re-insert swap space back into swap_list */ | 
 | 1630 | 		enable_swap_info(p, p->prio, p->swap_map); | 
 | 1631 | 		goto out_dput; | 
 | 1632 | 	} | 
 | 1633 |  | 
 | 1634 | 	destroy_swap_extents(p); | 
 | 1635 | 	if (p->flags & SWP_CONTINUED) | 
 | 1636 | 		free_swap_count_continuations(p); | 
 | 1637 |  | 
 | 1638 | 	mutex_lock(&swapon_mutex); | 
 | 1639 | 	spin_lock(&swap_lock); | 
 | 1640 | 	drain_mmlist(); | 
 | 1641 |  | 
 | 1642 | 	/* wait for anyone still in scan_swap_map */ | 
 | 1643 | 	p->highest_bit = 0;		/* cuts scans short */ | 
 | 1644 | 	while (p->flags >= SWP_SCANNING) { | 
 | 1645 | 		spin_unlock(&swap_lock); | 
 | 1646 | 		schedule_timeout_uninterruptible(1); | 
 | 1647 | 		spin_lock(&swap_lock); | 
 | 1648 | 	} | 
 | 1649 |  | 
 | 1650 | 	swap_file = p->swap_file; | 
 | 1651 | 	p->swap_file = NULL; | 
 | 1652 | 	p->max = 0; | 
 | 1653 | 	swap_map = p->swap_map; | 
 | 1654 | 	p->swap_map = NULL; | 
 | 1655 | 	p->flags = 0; | 
 | 1656 | 	spin_unlock(&swap_lock); | 
 | 1657 | 	mutex_unlock(&swapon_mutex); | 
 | 1658 | 	vfree(swap_map); | 
 | 1659 | 	/* Destroy swap account informatin */ | 
 | 1660 | 	swap_cgroup_swapoff(type); | 
 | 1661 |  | 
 | 1662 | 	inode = mapping->host; | 
 | 1663 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 1664 | 		struct block_device *bdev = I_BDEV(inode); | 
 | 1665 | 		set_blocksize(bdev, p->old_block_size); | 
 | 1666 | 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); | 
 | 1667 | 	} else { | 
 | 1668 | 		mutex_lock(&inode->i_mutex); | 
 | 1669 | 		inode->i_flags &= ~S_SWAPFILE; | 
 | 1670 | 		mutex_unlock(&inode->i_mutex); | 
 | 1671 | 	} | 
 | 1672 | 	filp_close(swap_file, NULL); | 
 | 1673 | 	err = 0; | 
 | 1674 | 	atomic_inc(&proc_poll_event); | 
 | 1675 | 	wake_up_interruptible(&proc_poll_wait); | 
 | 1676 |  | 
 | 1677 | out_dput: | 
 | 1678 | 	filp_close(victim, NULL); | 
 | 1679 | out: | 
 | 1680 | 	return err; | 
 | 1681 | } | 
 | 1682 |  | 
 | 1683 | #ifdef CONFIG_PROC_FS | 
 | 1684 | static unsigned swaps_poll(struct file *file, poll_table *wait) | 
 | 1685 | { | 
 | 1686 | 	struct seq_file *seq = file->private_data; | 
 | 1687 |  | 
 | 1688 | 	poll_wait(file, &proc_poll_wait, wait); | 
 | 1689 |  | 
 | 1690 | 	if (seq->poll_event != atomic_read(&proc_poll_event)) { | 
 | 1691 | 		seq->poll_event = atomic_read(&proc_poll_event); | 
 | 1692 | 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI; | 
 | 1693 | 	} | 
 | 1694 |  | 
 | 1695 | 	return POLLIN | POLLRDNORM; | 
 | 1696 | } | 
 | 1697 |  | 
 | 1698 | /* iterator */ | 
 | 1699 | static void *swap_start(struct seq_file *swap, loff_t *pos) | 
 | 1700 | { | 
 | 1701 | 	struct swap_info_struct *si; | 
 | 1702 | 	int type; | 
 | 1703 | 	loff_t l = *pos; | 
 | 1704 |  | 
 | 1705 | 	mutex_lock(&swapon_mutex); | 
 | 1706 |  | 
 | 1707 | 	if (!l) | 
 | 1708 | 		return SEQ_START_TOKEN; | 
 | 1709 |  | 
 | 1710 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 1711 | 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */ | 
 | 1712 | 		si = swap_info[type]; | 
 | 1713 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 1714 | 			continue; | 
 | 1715 | 		if (!--l) | 
 | 1716 | 			return si; | 
 | 1717 | 	} | 
 | 1718 |  | 
 | 1719 | 	return NULL; | 
 | 1720 | } | 
 | 1721 |  | 
 | 1722 | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) | 
 | 1723 | { | 
 | 1724 | 	struct swap_info_struct *si = v; | 
 | 1725 | 	int type; | 
 | 1726 |  | 
 | 1727 | 	if (v == SEQ_START_TOKEN) | 
 | 1728 | 		type = 0; | 
 | 1729 | 	else | 
 | 1730 | 		type = si->type + 1; | 
 | 1731 |  | 
 | 1732 | 	for (; type < nr_swapfiles; type++) { | 
 | 1733 | 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */ | 
 | 1734 | 		si = swap_info[type]; | 
 | 1735 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 1736 | 			continue; | 
 | 1737 | 		++*pos; | 
 | 1738 | 		return si; | 
 | 1739 | 	} | 
 | 1740 |  | 
 | 1741 | 	return NULL; | 
 | 1742 | } | 
 | 1743 |  | 
 | 1744 | static void swap_stop(struct seq_file *swap, void *v) | 
 | 1745 | { | 
 | 1746 | 	mutex_unlock(&swapon_mutex); | 
 | 1747 | } | 
 | 1748 |  | 
 | 1749 | static int swap_show(struct seq_file *swap, void *v) | 
 | 1750 | { | 
 | 1751 | 	struct swap_info_struct *si = v; | 
 | 1752 | 	struct file *file; | 
 | 1753 | 	int len; | 
 | 1754 |  | 
 | 1755 | 	if (si == SEQ_START_TOKEN) { | 
 | 1756 | 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); | 
 | 1757 | 		return 0; | 
 | 1758 | 	} | 
 | 1759 |  | 
 | 1760 | 	file = si->swap_file; | 
 | 1761 | 	len = seq_path(swap, &file->f_path, " \t\n\\"); | 
 | 1762 | 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", | 
 | 1763 | 			len < 40 ? 40 - len : 1, " ", | 
 | 1764 | 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? | 
 | 1765 | 				"partition" : "file\t", | 
 | 1766 | 			si->pages << (PAGE_SHIFT - 10), | 
 | 1767 | 			si->inuse_pages << (PAGE_SHIFT - 10), | 
 | 1768 | 			si->prio); | 
 | 1769 | 	return 0; | 
 | 1770 | } | 
 | 1771 |  | 
 | 1772 | static const struct seq_operations swaps_op = { | 
 | 1773 | 	.start =	swap_start, | 
 | 1774 | 	.next =		swap_next, | 
 | 1775 | 	.stop =		swap_stop, | 
 | 1776 | 	.show =		swap_show | 
 | 1777 | }; | 
 | 1778 |  | 
 | 1779 | static int swaps_open(struct inode *inode, struct file *file) | 
 | 1780 | { | 
 | 1781 | 	struct seq_file *seq; | 
 | 1782 | 	int ret; | 
 | 1783 |  | 
 | 1784 | 	ret = seq_open(file, &swaps_op); | 
 | 1785 | 	if (ret) | 
 | 1786 | 		return ret; | 
 | 1787 |  | 
 | 1788 | 	seq = file->private_data; | 
 | 1789 | 	seq->poll_event = atomic_read(&proc_poll_event); | 
 | 1790 | 	return 0; | 
 | 1791 | } | 
 | 1792 |  | 
 | 1793 | static const struct file_operations proc_swaps_operations = { | 
 | 1794 | 	.open		= swaps_open, | 
 | 1795 | 	.read		= seq_read, | 
 | 1796 | 	.llseek		= seq_lseek, | 
 | 1797 | 	.release	= seq_release, | 
 | 1798 | 	.poll		= swaps_poll, | 
 | 1799 | }; | 
 | 1800 |  | 
 | 1801 | static int __init procswaps_init(void) | 
 | 1802 | { | 
 | 1803 | 	proc_create("swaps", 0, NULL, &proc_swaps_operations); | 
 | 1804 | 	return 0; | 
 | 1805 | } | 
 | 1806 | __initcall(procswaps_init); | 
 | 1807 | #endif /* CONFIG_PROC_FS */ | 
 | 1808 |  | 
 | 1809 | #ifdef MAX_SWAPFILES_CHECK | 
 | 1810 | static int __init max_swapfiles_check(void) | 
 | 1811 | { | 
 | 1812 | 	MAX_SWAPFILES_CHECK(); | 
 | 1813 | 	return 0; | 
 | 1814 | } | 
 | 1815 | late_initcall(max_swapfiles_check); | 
 | 1816 | #endif | 
 | 1817 |  | 
 | 1818 | static struct swap_info_struct *alloc_swap_info(void) | 
 | 1819 | { | 
 | 1820 | 	struct swap_info_struct *p; | 
 | 1821 | 	unsigned int type; | 
 | 1822 |  | 
 | 1823 | 	p = kzalloc(sizeof(*p), GFP_KERNEL); | 
 | 1824 | 	if (!p) | 
 | 1825 | 		return ERR_PTR(-ENOMEM); | 
 | 1826 |  | 
 | 1827 | 	spin_lock(&swap_lock); | 
 | 1828 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 1829 | 		if (!(swap_info[type]->flags & SWP_USED)) | 
 | 1830 | 			break; | 
 | 1831 | 	} | 
 | 1832 | 	if (type >= MAX_SWAPFILES) { | 
 | 1833 | 		spin_unlock(&swap_lock); | 
 | 1834 | 		kfree(p); | 
 | 1835 | 		return ERR_PTR(-EPERM); | 
 | 1836 | 	} | 
 | 1837 | 	if (type >= nr_swapfiles) { | 
 | 1838 | 		p->type = type; | 
 | 1839 | 		swap_info[type] = p; | 
 | 1840 | 		/* | 
 | 1841 | 		 * Write swap_info[type] before nr_swapfiles, in case a | 
 | 1842 | 		 * racing procfs swap_start() or swap_next() is reading them. | 
 | 1843 | 		 * (We never shrink nr_swapfiles, we never free this entry.) | 
 | 1844 | 		 */ | 
 | 1845 | 		smp_wmb(); | 
 | 1846 | 		nr_swapfiles++; | 
 | 1847 | 	} else { | 
 | 1848 | 		kfree(p); | 
 | 1849 | 		p = swap_info[type]; | 
 | 1850 | 		/* | 
 | 1851 | 		 * Do not memset this entry: a racing procfs swap_next() | 
 | 1852 | 		 * would be relying on p->type to remain valid. | 
 | 1853 | 		 */ | 
 | 1854 | 	} | 
 | 1855 | 	INIT_LIST_HEAD(&p->first_swap_extent.list); | 
 | 1856 | 	p->flags = SWP_USED; | 
 | 1857 | 	p->next = -1; | 
 | 1858 | 	spin_unlock(&swap_lock); | 
 | 1859 |  | 
 | 1860 | 	return p; | 
 | 1861 | } | 
 | 1862 |  | 
 | 1863 | static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) | 
 | 1864 | { | 
 | 1865 | 	int error; | 
 | 1866 |  | 
 | 1867 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 1868 | 		p->bdev = bdgrab(I_BDEV(inode)); | 
 | 1869 | 		error = blkdev_get(p->bdev, | 
 | 1870 | 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, | 
 | 1871 | 				   sys_swapon); | 
 | 1872 | 		if (error < 0) { | 
 | 1873 | 			p->bdev = NULL; | 
 | 1874 | 			return -EINVAL; | 
 | 1875 | 		} | 
 | 1876 | 		p->old_block_size = block_size(p->bdev); | 
 | 1877 | 		error = set_blocksize(p->bdev, PAGE_SIZE); | 
 | 1878 | 		if (error < 0) | 
 | 1879 | 			return error; | 
 | 1880 | 		p->flags |= SWP_BLKDEV; | 
 | 1881 | 	} else if (S_ISREG(inode->i_mode)) { | 
 | 1882 | 		p->bdev = inode->i_sb->s_bdev; | 
 | 1883 | 		mutex_lock(&inode->i_mutex); | 
 | 1884 | 		if (IS_SWAPFILE(inode)) | 
 | 1885 | 			return -EBUSY; | 
 | 1886 | 	} else | 
 | 1887 | 		return -EINVAL; | 
 | 1888 |  | 
 | 1889 | 	return 0; | 
 | 1890 | } | 
 | 1891 |  | 
 | 1892 | static unsigned long read_swap_header(struct swap_info_struct *p, | 
 | 1893 | 					union swap_header *swap_header, | 
 | 1894 | 					struct inode *inode) | 
 | 1895 | { | 
 | 1896 | 	int i; | 
 | 1897 | 	unsigned long maxpages; | 
 | 1898 | 	unsigned long swapfilepages; | 
 | 1899 |  | 
 | 1900 | 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { | 
 | 1901 | 		printk(KERN_ERR "Unable to find swap-space signature\n"); | 
 | 1902 | 		return 0; | 
 | 1903 | 	} | 
 | 1904 |  | 
 | 1905 | 	/* swap partition endianess hack... */ | 
 | 1906 | 	if (swab32(swap_header->info.version) == 1) { | 
 | 1907 | 		swab32s(&swap_header->info.version); | 
 | 1908 | 		swab32s(&swap_header->info.last_page); | 
 | 1909 | 		swab32s(&swap_header->info.nr_badpages); | 
 | 1910 | 		for (i = 0; i < swap_header->info.nr_badpages; i++) | 
 | 1911 | 			swab32s(&swap_header->info.badpages[i]); | 
 | 1912 | 	} | 
 | 1913 | 	/* Check the swap header's sub-version */ | 
 | 1914 | 	if (swap_header->info.version != 1) { | 
 | 1915 | 		printk(KERN_WARNING | 
 | 1916 | 		       "Unable to handle swap header version %d\n", | 
 | 1917 | 		       swap_header->info.version); | 
 | 1918 | 		return 0; | 
 | 1919 | 	} | 
 | 1920 |  | 
 | 1921 | 	p->lowest_bit  = 1; | 
 | 1922 | 	p->cluster_next = 1; | 
 | 1923 | 	p->cluster_nr = 0; | 
 | 1924 |  | 
 | 1925 | 	/* | 
 | 1926 | 	 * Find out how many pages are allowed for a single swap | 
 | 1927 | 	 * device. There are two limiting factors: 1) the number | 
 | 1928 | 	 * of bits for the swap offset in the swp_entry_t type, and | 
 | 1929 | 	 * 2) the number of bits in the swap pte as defined by the | 
 | 1930 | 	 * different architectures. In order to find the | 
 | 1931 | 	 * largest possible bit mask, a swap entry with swap type 0 | 
 | 1932 | 	 * and swap offset ~0UL is created, encoded to a swap pte, | 
 | 1933 | 	 * decoded to a swp_entry_t again, and finally the swap | 
 | 1934 | 	 * offset is extracted. This will mask all the bits from | 
 | 1935 | 	 * the initial ~0UL mask that can't be encoded in either | 
 | 1936 | 	 * the swp_entry_t or the architecture definition of a | 
 | 1937 | 	 * swap pte. | 
 | 1938 | 	 */ | 
 | 1939 | 	maxpages = swp_offset(pte_to_swp_entry( | 
 | 1940 | 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; | 
 | 1941 | 	if (maxpages > swap_header->info.last_page) { | 
 | 1942 | 		maxpages = swap_header->info.last_page + 1; | 
 | 1943 | 		/* p->max is an unsigned int: don't overflow it */ | 
 | 1944 | 		if ((unsigned int)maxpages == 0) | 
 | 1945 | 			maxpages = UINT_MAX; | 
 | 1946 | 	} | 
 | 1947 | 	p->highest_bit = maxpages - 1; | 
 | 1948 |  | 
 | 1949 | 	if (!maxpages) | 
 | 1950 | 		return 0; | 
 | 1951 | 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT; | 
 | 1952 | 	if (swapfilepages && maxpages > swapfilepages) { | 
 | 1953 | 		printk(KERN_WARNING | 
 | 1954 | 		       "Swap area shorter than signature indicates\n"); | 
 | 1955 | 		return 0; | 
 | 1956 | 	} | 
 | 1957 | 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) | 
 | 1958 | 		return 0; | 
 | 1959 | 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
 | 1960 | 		return 0; | 
 | 1961 |  | 
 | 1962 | 	return maxpages; | 
 | 1963 | } | 
 | 1964 |  | 
 | 1965 | static int setup_swap_map_and_extents(struct swap_info_struct *p, | 
 | 1966 | 					union swap_header *swap_header, | 
 | 1967 | 					unsigned char *swap_map, | 
 | 1968 | 					unsigned long maxpages, | 
 | 1969 | 					sector_t *span) | 
 | 1970 | { | 
 | 1971 | 	int i; | 
 | 1972 | 	unsigned int nr_good_pages; | 
 | 1973 | 	int nr_extents; | 
 | 1974 |  | 
 | 1975 | 	nr_good_pages = maxpages - 1;	/* omit header page */ | 
 | 1976 |  | 
 | 1977 | 	for (i = 0; i < swap_header->info.nr_badpages; i++) { | 
 | 1978 | 		unsigned int page_nr = swap_header->info.badpages[i]; | 
 | 1979 | 		if (page_nr == 0 || page_nr > swap_header->info.last_page) | 
 | 1980 | 			return -EINVAL; | 
 | 1981 | 		if (page_nr < maxpages) { | 
 | 1982 | 			swap_map[page_nr] = SWAP_MAP_BAD; | 
 | 1983 | 			nr_good_pages--; | 
 | 1984 | 		} | 
 | 1985 | 	} | 
 | 1986 |  | 
 | 1987 | 	if (nr_good_pages) { | 
 | 1988 | 		swap_map[0] = SWAP_MAP_BAD; | 
 | 1989 | 		p->max = maxpages; | 
 | 1990 | 		p->pages = nr_good_pages; | 
 | 1991 | 		nr_extents = setup_swap_extents(p, span); | 
 | 1992 | 		if (nr_extents < 0) | 
 | 1993 | 			return nr_extents; | 
 | 1994 | 		nr_good_pages = p->pages; | 
 | 1995 | 	} | 
 | 1996 | 	if (!nr_good_pages) { | 
 | 1997 | 		printk(KERN_WARNING "Empty swap-file\n"); | 
 | 1998 | 		return -EINVAL; | 
 | 1999 | 	} | 
 | 2000 |  | 
 | 2001 | 	return nr_extents; | 
 | 2002 | } | 
 | 2003 |  | 
 | 2004 | SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) | 
 | 2005 | { | 
 | 2006 | 	struct swap_info_struct *p; | 
 | 2007 | 	char *name; | 
 | 2008 | 	struct file *swap_file = NULL; | 
 | 2009 | 	struct address_space *mapping; | 
 | 2010 | 	int i; | 
 | 2011 | 	int prio; | 
 | 2012 | 	int error; | 
 | 2013 | 	union swap_header *swap_header; | 
 | 2014 | 	int nr_extents; | 
 | 2015 | 	sector_t span; | 
 | 2016 | 	unsigned long maxpages; | 
 | 2017 | 	unsigned char *swap_map = NULL; | 
 | 2018 | 	struct page *page = NULL; | 
 | 2019 | 	struct inode *inode = NULL; | 
 | 2020 |  | 
 | 2021 | 	if (swap_flags & ~SWAP_FLAGS_VALID) | 
 | 2022 | 		return -EINVAL; | 
 | 2023 |  | 
 | 2024 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 2025 | 		return -EPERM; | 
 | 2026 |  | 
 | 2027 | 	p = alloc_swap_info(); | 
 | 2028 | 	if (IS_ERR(p)) | 
 | 2029 | 		return PTR_ERR(p); | 
 | 2030 |  | 
 | 2031 | 	name = getname(specialfile); | 
 | 2032 | 	if (IS_ERR(name)) { | 
 | 2033 | 		error = PTR_ERR(name); | 
 | 2034 | 		name = NULL; | 
 | 2035 | 		goto bad_swap; | 
 | 2036 | 	} | 
 | 2037 | 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); | 
 | 2038 | 	if (IS_ERR(swap_file)) { | 
 | 2039 | 		error = PTR_ERR(swap_file); | 
 | 2040 | 		swap_file = NULL; | 
 | 2041 | 		goto bad_swap; | 
 | 2042 | 	} | 
 | 2043 |  | 
 | 2044 | 	p->swap_file = swap_file; | 
 | 2045 | 	mapping = swap_file->f_mapping; | 
 | 2046 |  | 
 | 2047 | 	for (i = 0; i < nr_swapfiles; i++) { | 
 | 2048 | 		struct swap_info_struct *q = swap_info[i]; | 
 | 2049 |  | 
 | 2050 | 		if (q == p || !q->swap_file) | 
 | 2051 | 			continue; | 
 | 2052 | 		if (mapping == q->swap_file->f_mapping) { | 
 | 2053 | 			error = -EBUSY; | 
 | 2054 | 			goto bad_swap; | 
 | 2055 | 		} | 
 | 2056 | 	} | 
 | 2057 |  | 
 | 2058 | 	inode = mapping->host; | 
 | 2059 | 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ | 
 | 2060 | 	error = claim_swapfile(p, inode); | 
 | 2061 | 	if (unlikely(error)) | 
 | 2062 | 		goto bad_swap; | 
 | 2063 |  | 
 | 2064 | 	/* | 
 | 2065 | 	 * Read the swap header. | 
 | 2066 | 	 */ | 
 | 2067 | 	if (!mapping->a_ops->readpage) { | 
 | 2068 | 		error = -EINVAL; | 
 | 2069 | 		goto bad_swap; | 
 | 2070 | 	} | 
 | 2071 | 	page = read_mapping_page(mapping, 0, swap_file); | 
 | 2072 | 	if (IS_ERR(page)) { | 
 | 2073 | 		error = PTR_ERR(page); | 
 | 2074 | 		goto bad_swap; | 
 | 2075 | 	} | 
 | 2076 | 	swap_header = kmap(page); | 
 | 2077 |  | 
 | 2078 | 	maxpages = read_swap_header(p, swap_header, inode); | 
 | 2079 | 	if (unlikely(!maxpages)) { | 
 | 2080 | 		error = -EINVAL; | 
 | 2081 | 		goto bad_swap; | 
 | 2082 | 	} | 
 | 2083 |  | 
 | 2084 | 	/* OK, set up the swap map and apply the bad block list */ | 
 | 2085 | 	swap_map = vzalloc(maxpages); | 
 | 2086 | 	if (!swap_map) { | 
 | 2087 | 		error = -ENOMEM; | 
 | 2088 | 		goto bad_swap; | 
 | 2089 | 	} | 
 | 2090 |  | 
 | 2091 | 	error = swap_cgroup_swapon(p->type, maxpages); | 
 | 2092 | 	if (error) | 
 | 2093 | 		goto bad_swap; | 
 | 2094 |  | 
 | 2095 | 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, | 
 | 2096 | 		maxpages, &span); | 
 | 2097 | 	if (unlikely(nr_extents < 0)) { | 
 | 2098 | 		error = nr_extents; | 
 | 2099 | 		goto bad_swap; | 
 | 2100 | 	} | 
 | 2101 |  | 
 | 2102 | 	if (p->bdev) { | 
 | 2103 | 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { | 
 | 2104 | 			p->flags |= SWP_SOLIDSTATE; | 
 | 2105 | 			p->cluster_next = 1 + (random32() % p->highest_bit); | 
 | 2106 | 		} | 
 | 2107 | 		if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0) | 
 | 2108 | 			p->flags |= SWP_DISCARDABLE; | 
 | 2109 | 	} | 
 | 2110 |  | 
 | 2111 | 	mutex_lock(&swapon_mutex); | 
 | 2112 | 	prio = -1; | 
 | 2113 | 	if (swap_flags & SWAP_FLAG_PREFER) | 
 | 2114 | 		prio = | 
 | 2115 | 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; | 
 | 2116 | 	enable_swap_info(p, prio, swap_map); | 
 | 2117 |  | 
 | 2118 | 	printk(KERN_INFO "Adding %uk swap on %s.  " | 
 | 2119 | 			"Priority:%d extents:%d across:%lluk %s%s\n", | 
 | 2120 | 		p->pages<<(PAGE_SHIFT-10), name, p->prio, | 
 | 2121 | 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), | 
 | 2122 | 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "", | 
 | 2123 | 		(p->flags & SWP_DISCARDABLE) ? "D" : ""); | 
 | 2124 |  | 
 | 2125 | 	mutex_unlock(&swapon_mutex); | 
 | 2126 | 	atomic_inc(&proc_poll_event); | 
 | 2127 | 	wake_up_interruptible(&proc_poll_wait); | 
 | 2128 |  | 
 | 2129 | 	if (S_ISREG(inode->i_mode)) | 
 | 2130 | 		inode->i_flags |= S_SWAPFILE; | 
 | 2131 | 	error = 0; | 
 | 2132 | 	goto out; | 
 | 2133 | bad_swap: | 
 | 2134 | 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) { | 
 | 2135 | 		set_blocksize(p->bdev, p->old_block_size); | 
 | 2136 | 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); | 
 | 2137 | 	} | 
 | 2138 | 	destroy_swap_extents(p); | 
 | 2139 | 	swap_cgroup_swapoff(p->type); | 
 | 2140 | 	spin_lock(&swap_lock); | 
 | 2141 | 	p->swap_file = NULL; | 
 | 2142 | 	p->flags = 0; | 
 | 2143 | 	spin_unlock(&swap_lock); | 
 | 2144 | 	vfree(swap_map); | 
 | 2145 | 	if (swap_file) { | 
 | 2146 | 		if (inode && S_ISREG(inode->i_mode)) { | 
 | 2147 | 			mutex_unlock(&inode->i_mutex); | 
 | 2148 | 			inode = NULL; | 
 | 2149 | 		} | 
 | 2150 | 		filp_close(swap_file, NULL); | 
 | 2151 | 	} | 
 | 2152 | out: | 
 | 2153 | 	if (page && !IS_ERR(page)) { | 
 | 2154 | 		kunmap(page); | 
 | 2155 | 		page_cache_release(page); | 
 | 2156 | 	} | 
 | 2157 | 	if (name) | 
 | 2158 | 		putname(name); | 
 | 2159 | 	if (inode && S_ISREG(inode->i_mode)) | 
 | 2160 | 		mutex_unlock(&inode->i_mutex); | 
 | 2161 | 	return error; | 
 | 2162 | } | 
 | 2163 |  | 
 | 2164 | void si_swapinfo(struct sysinfo *val) | 
 | 2165 | { | 
 | 2166 | 	unsigned int type; | 
 | 2167 | 	unsigned long nr_to_be_unused = 0; | 
 | 2168 |  | 
 | 2169 | 	spin_lock(&swap_lock); | 
 | 2170 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 2171 | 		struct swap_info_struct *si = swap_info[type]; | 
 | 2172 |  | 
 | 2173 | 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) | 
 | 2174 | 			nr_to_be_unused += si->inuse_pages; | 
 | 2175 | 	} | 
 | 2176 | 	val->freeswap = nr_swap_pages + nr_to_be_unused; | 
 | 2177 | 	val->totalswap = total_swap_pages + nr_to_be_unused; | 
 | 2178 | 	spin_unlock(&swap_lock); | 
 | 2179 | } | 
 | 2180 |  | 
 | 2181 | /* | 
 | 2182 |  * Verify that a swap entry is valid and increment its swap map count. | 
 | 2183 |  * | 
 | 2184 |  * Returns error code in following case. | 
 | 2185 |  * - success -> 0 | 
 | 2186 |  * - swp_entry is invalid -> EINVAL | 
 | 2187 |  * - swp_entry is migration entry -> EINVAL | 
 | 2188 |  * - swap-cache reference is requested but there is already one. -> EEXIST | 
 | 2189 |  * - swap-cache reference is requested but the entry is not used. -> ENOENT | 
 | 2190 |  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM | 
 | 2191 |  */ | 
 | 2192 | static int __swap_duplicate(swp_entry_t entry, unsigned char usage) | 
 | 2193 | { | 
 | 2194 | 	struct swap_info_struct *p; | 
 | 2195 | 	unsigned long offset, type; | 
 | 2196 | 	unsigned char count; | 
 | 2197 | 	unsigned char has_cache; | 
 | 2198 | 	int err = -EINVAL; | 
 | 2199 |  | 
 | 2200 | 	if (non_swap_entry(entry)) | 
 | 2201 | 		goto out; | 
 | 2202 |  | 
 | 2203 | 	type = swp_type(entry); | 
 | 2204 | 	if (type >= nr_swapfiles) | 
 | 2205 | 		goto bad_file; | 
 | 2206 | 	p = swap_info[type]; | 
 | 2207 | 	offset = swp_offset(entry); | 
 | 2208 |  | 
 | 2209 | 	spin_lock(&swap_lock); | 
 | 2210 | 	if (unlikely(offset >= p->max)) | 
 | 2211 | 		goto unlock_out; | 
 | 2212 |  | 
 | 2213 | 	count = p->swap_map[offset]; | 
 | 2214 | 	has_cache = count & SWAP_HAS_CACHE; | 
 | 2215 | 	count &= ~SWAP_HAS_CACHE; | 
 | 2216 | 	err = 0; | 
 | 2217 |  | 
 | 2218 | 	if (usage == SWAP_HAS_CACHE) { | 
 | 2219 |  | 
 | 2220 | 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */ | 
 | 2221 | 		if (!has_cache && count) | 
 | 2222 | 			has_cache = SWAP_HAS_CACHE; | 
 | 2223 | 		else if (has_cache)		/* someone else added cache */ | 
 | 2224 | 			err = -EEXIST; | 
 | 2225 | 		else				/* no users remaining */ | 
 | 2226 | 			err = -ENOENT; | 
 | 2227 |  | 
 | 2228 | 	} else if (count || has_cache) { | 
 | 2229 |  | 
 | 2230 | 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) | 
 | 2231 | 			count += usage; | 
 | 2232 | 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) | 
 | 2233 | 			err = -EINVAL; | 
 | 2234 | 		else if (swap_count_continued(p, offset, count)) | 
 | 2235 | 			count = COUNT_CONTINUED; | 
 | 2236 | 		else | 
 | 2237 | 			err = -ENOMEM; | 
 | 2238 | 	} else | 
 | 2239 | 		err = -ENOENT;			/* unused swap entry */ | 
 | 2240 |  | 
 | 2241 | 	p->swap_map[offset] = count | has_cache; | 
 | 2242 |  | 
 | 2243 | unlock_out: | 
 | 2244 | 	spin_unlock(&swap_lock); | 
 | 2245 | out: | 
 | 2246 | 	return err; | 
 | 2247 |  | 
 | 2248 | bad_file: | 
 | 2249 | 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); | 
 | 2250 | 	goto out; | 
 | 2251 | } | 
 | 2252 |  | 
 | 2253 | /* | 
 | 2254 |  * Help swapoff by noting that swap entry belongs to shmem/tmpfs | 
 | 2255 |  * (in which case its reference count is never incremented). | 
 | 2256 |  */ | 
 | 2257 | void swap_shmem_alloc(swp_entry_t entry) | 
 | 2258 | { | 
 | 2259 | 	__swap_duplicate(entry, SWAP_MAP_SHMEM); | 
 | 2260 | } | 
 | 2261 |  | 
 | 2262 | /* | 
 | 2263 |  * Increase reference count of swap entry by 1. | 
 | 2264 |  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required | 
 | 2265 |  * but could not be atomically allocated.  Returns 0, just as if it succeeded, | 
 | 2266 |  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which | 
 | 2267 |  * might occur if a page table entry has got corrupted. | 
 | 2268 |  */ | 
 | 2269 | int swap_duplicate(swp_entry_t entry) | 
 | 2270 | { | 
 | 2271 | 	int err = 0; | 
 | 2272 |  | 
 | 2273 | 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM) | 
 | 2274 | 		err = add_swap_count_continuation(entry, GFP_ATOMIC); | 
 | 2275 | 	return err; | 
 | 2276 | } | 
 | 2277 |  | 
 | 2278 | /* | 
 | 2279 |  * @entry: swap entry for which we allocate swap cache. | 
 | 2280 |  * | 
 | 2281 |  * Called when allocating swap cache for existing swap entry, | 
 | 2282 |  * This can return error codes. Returns 0 at success. | 
 | 2283 |  * -EBUSY means there is a swap cache. | 
 | 2284 |  * Note: return code is different from swap_duplicate(). | 
 | 2285 |  */ | 
 | 2286 | int swapcache_prepare(swp_entry_t entry) | 
 | 2287 | { | 
 | 2288 | 	return __swap_duplicate(entry, SWAP_HAS_CACHE); | 
 | 2289 | } | 
 | 2290 |  | 
 | 2291 | /* | 
 | 2292 |  * add_swap_count_continuation - called when a swap count is duplicated | 
 | 2293 |  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's | 
 | 2294 |  * page of the original vmalloc'ed swap_map, to hold the continuation count | 
 | 2295 |  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called | 
 | 2296 |  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. | 
 | 2297 |  * | 
 | 2298 |  * These continuation pages are seldom referenced: the common paths all work | 
 | 2299 |  * on the original swap_map, only referring to a continuation page when the | 
 | 2300 |  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. | 
 | 2301 |  * | 
 | 2302 |  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding | 
 | 2303 |  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) | 
 | 2304 |  * can be called after dropping locks. | 
 | 2305 |  */ | 
 | 2306 | int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) | 
 | 2307 | { | 
 | 2308 | 	struct swap_info_struct *si; | 
 | 2309 | 	struct page *head; | 
 | 2310 | 	struct page *page; | 
 | 2311 | 	struct page *list_page; | 
 | 2312 | 	pgoff_t offset; | 
 | 2313 | 	unsigned char count; | 
 | 2314 |  | 
 | 2315 | 	/* | 
 | 2316 | 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better | 
 | 2317 | 	 * for latency not to zero a page while GFP_ATOMIC and holding locks. | 
 | 2318 | 	 */ | 
 | 2319 | 	page = alloc_page(gfp_mask | __GFP_HIGHMEM); | 
 | 2320 |  | 
 | 2321 | 	si = swap_info_get(entry); | 
 | 2322 | 	if (!si) { | 
 | 2323 | 		/* | 
 | 2324 | 		 * An acceptable race has occurred since the failing | 
 | 2325 | 		 * __swap_duplicate(): the swap entry has been freed, | 
 | 2326 | 		 * perhaps even the whole swap_map cleared for swapoff. | 
 | 2327 | 		 */ | 
 | 2328 | 		goto outer; | 
 | 2329 | 	} | 
 | 2330 |  | 
 | 2331 | 	offset = swp_offset(entry); | 
 | 2332 | 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE; | 
 | 2333 |  | 
 | 2334 | 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { | 
 | 2335 | 		/* | 
 | 2336 | 		 * The higher the swap count, the more likely it is that tasks | 
 | 2337 | 		 * will race to add swap count continuation: we need to avoid | 
 | 2338 | 		 * over-provisioning. | 
 | 2339 | 		 */ | 
 | 2340 | 		goto out; | 
 | 2341 | 	} | 
 | 2342 |  | 
 | 2343 | 	if (!page) { | 
 | 2344 | 		spin_unlock(&swap_lock); | 
 | 2345 | 		return -ENOMEM; | 
 | 2346 | 	} | 
 | 2347 |  | 
 | 2348 | 	/* | 
 | 2349 | 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map, | 
 | 2350 | 	 * no architecture is using highmem pages for kernel pagetables: so it | 
 | 2351 | 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. | 
 | 2352 | 	 */ | 
 | 2353 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 2354 | 	offset &= ~PAGE_MASK; | 
 | 2355 |  | 
 | 2356 | 	/* | 
 | 2357 | 	 * Page allocation does not initialize the page's lru field, | 
 | 2358 | 	 * but it does always reset its private field. | 
 | 2359 | 	 */ | 
 | 2360 | 	if (!page_private(head)) { | 
 | 2361 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 2362 | 		INIT_LIST_HEAD(&head->lru); | 
 | 2363 | 		set_page_private(head, SWP_CONTINUED); | 
 | 2364 | 		si->flags |= SWP_CONTINUED; | 
 | 2365 | 	} | 
 | 2366 |  | 
 | 2367 | 	list_for_each_entry(list_page, &head->lru, lru) { | 
 | 2368 | 		unsigned char *map; | 
 | 2369 |  | 
 | 2370 | 		/* | 
 | 2371 | 		 * If the previous map said no continuation, but we've found | 
 | 2372 | 		 * a continuation page, free our allocation and use this one. | 
 | 2373 | 		 */ | 
 | 2374 | 		if (!(count & COUNT_CONTINUED)) | 
 | 2375 | 			goto out; | 
 | 2376 |  | 
 | 2377 | 		map = kmap_atomic(list_page) + offset; | 
 | 2378 | 		count = *map; | 
 | 2379 | 		kunmap_atomic(map); | 
 | 2380 |  | 
 | 2381 | 		/* | 
 | 2382 | 		 * If this continuation count now has some space in it, | 
 | 2383 | 		 * free our allocation and use this one. | 
 | 2384 | 		 */ | 
 | 2385 | 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) | 
 | 2386 | 			goto out; | 
 | 2387 | 	} | 
 | 2388 |  | 
 | 2389 | 	list_add_tail(&page->lru, &head->lru); | 
 | 2390 | 	page = NULL;			/* now it's attached, don't free it */ | 
 | 2391 | out: | 
 | 2392 | 	spin_unlock(&swap_lock); | 
 | 2393 | outer: | 
 | 2394 | 	if (page) | 
 | 2395 | 		__free_page(page); | 
 | 2396 | 	return 0; | 
 | 2397 | } | 
 | 2398 |  | 
 | 2399 | /* | 
 | 2400 |  * swap_count_continued - when the original swap_map count is incremented | 
 | 2401 |  * from SWAP_MAP_MAX, check if there is already a continuation page to carry | 
 | 2402 |  * into, carry if so, or else fail until a new continuation page is allocated; | 
 | 2403 |  * when the original swap_map count is decremented from 0 with continuation, | 
 | 2404 |  * borrow from the continuation and report whether it still holds more. | 
 | 2405 |  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. | 
 | 2406 |  */ | 
 | 2407 | static bool swap_count_continued(struct swap_info_struct *si, | 
 | 2408 | 				 pgoff_t offset, unsigned char count) | 
 | 2409 | { | 
 | 2410 | 	struct page *head; | 
 | 2411 | 	struct page *page; | 
 | 2412 | 	unsigned char *map; | 
 | 2413 |  | 
 | 2414 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 2415 | 	if (page_private(head) != SWP_CONTINUED) { | 
 | 2416 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 2417 | 		return false;		/* need to add count continuation */ | 
 | 2418 | 	} | 
 | 2419 |  | 
 | 2420 | 	offset &= ~PAGE_MASK; | 
 | 2421 | 	page = list_entry(head->lru.next, struct page, lru); | 
 | 2422 | 	map = kmap_atomic(page) + offset; | 
 | 2423 |  | 
 | 2424 | 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */ | 
 | 2425 | 		goto init_map;		/* jump over SWAP_CONT_MAX checks */ | 
 | 2426 |  | 
 | 2427 | 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ | 
 | 2428 | 		/* | 
 | 2429 | 		 * Think of how you add 1 to 999 | 
 | 2430 | 		 */ | 
 | 2431 | 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { | 
 | 2432 | 			kunmap_atomic(map); | 
 | 2433 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 2434 | 			BUG_ON(page == head); | 
 | 2435 | 			map = kmap_atomic(page) + offset; | 
 | 2436 | 		} | 
 | 2437 | 		if (*map == SWAP_CONT_MAX) { | 
 | 2438 | 			kunmap_atomic(map); | 
 | 2439 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 2440 | 			if (page == head) | 
 | 2441 | 				return false;	/* add count continuation */ | 
 | 2442 | 			map = kmap_atomic(page) + offset; | 
 | 2443 | init_map:		*map = 0;		/* we didn't zero the page */ | 
 | 2444 | 		} | 
 | 2445 | 		*map += 1; | 
 | 2446 | 		kunmap_atomic(map); | 
 | 2447 | 		page = list_entry(page->lru.prev, struct page, lru); | 
 | 2448 | 		while (page != head) { | 
 | 2449 | 			map = kmap_atomic(page) + offset; | 
 | 2450 | 			*map = COUNT_CONTINUED; | 
 | 2451 | 			kunmap_atomic(map); | 
 | 2452 | 			page = list_entry(page->lru.prev, struct page, lru); | 
 | 2453 | 		} | 
 | 2454 | 		return true;			/* incremented */ | 
 | 2455 |  | 
 | 2456 | 	} else {				/* decrementing */ | 
 | 2457 | 		/* | 
 | 2458 | 		 * Think of how you subtract 1 from 1000 | 
 | 2459 | 		 */ | 
 | 2460 | 		BUG_ON(count != COUNT_CONTINUED); | 
 | 2461 | 		while (*map == COUNT_CONTINUED) { | 
 | 2462 | 			kunmap_atomic(map); | 
 | 2463 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 2464 | 			BUG_ON(page == head); | 
 | 2465 | 			map = kmap_atomic(page) + offset; | 
 | 2466 | 		} | 
 | 2467 | 		BUG_ON(*map == 0); | 
 | 2468 | 		*map -= 1; | 
 | 2469 | 		if (*map == 0) | 
 | 2470 | 			count = 0; | 
 | 2471 | 		kunmap_atomic(map); | 
 | 2472 | 		page = list_entry(page->lru.prev, struct page, lru); | 
 | 2473 | 		while (page != head) { | 
 | 2474 | 			map = kmap_atomic(page) + offset; | 
 | 2475 | 			*map = SWAP_CONT_MAX | count; | 
 | 2476 | 			count = COUNT_CONTINUED; | 
 | 2477 | 			kunmap_atomic(map); | 
 | 2478 | 			page = list_entry(page->lru.prev, struct page, lru); | 
 | 2479 | 		} | 
 | 2480 | 		return count == COUNT_CONTINUED; | 
 | 2481 | 	} | 
 | 2482 | } | 
 | 2483 |  | 
 | 2484 | /* | 
 | 2485 |  * free_swap_count_continuations - swapoff free all the continuation pages | 
 | 2486 |  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. | 
 | 2487 |  */ | 
 | 2488 | static void free_swap_count_continuations(struct swap_info_struct *si) | 
 | 2489 | { | 
 | 2490 | 	pgoff_t offset; | 
 | 2491 |  | 
 | 2492 | 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) { | 
 | 2493 | 		struct page *head; | 
 | 2494 | 		head = vmalloc_to_page(si->swap_map + offset); | 
 | 2495 | 		if (page_private(head)) { | 
 | 2496 | 			struct list_head *this, *next; | 
 | 2497 | 			list_for_each_safe(this, next, &head->lru) { | 
 | 2498 | 				struct page *page; | 
 | 2499 | 				page = list_entry(this, struct page, lru); | 
 | 2500 | 				list_del(this); | 
 | 2501 | 				__free_page(page); | 
 | 2502 | 			} | 
 | 2503 | 		} | 
 | 2504 | 	} | 
 | 2505 | } |