blob: bc36e280ce8bdeaa98525da7ef3c9a4a1b3be3bd [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <linux/io.h>
28
29#include <linux/hugetlb.h>
30#include <linux/node.h>
31#include "internal.h"
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
41__initdata LIST_HEAD(huge_boot_pages);
42
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
46static unsigned long __initdata default_hstate_size;
47
48#define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
55
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
132}
133
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267}
268
269static long region_count(struct list_head *head, long f, long t)
270{
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 int seg_from;
277 int seg_to;
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291}
292
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
299{
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
302}
303
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306{
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324}
325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336 return vma_kernel_pagesize(vma);
337}
338#endif
339
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370 return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375{
376 vma->vm_private_data = (void *)value;
377}
378
379struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382};
383
384static struct resv_map *resv_map_alloc(void)
385{
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394}
395
396static void resv_map_release(struct kref *ref)
397{
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406{
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
412}
413
414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415{
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435 return (get_vma_private_data(vma) & flag) != 0;
436}
437
438/* Decrement the reserved pages in the hugepage pool by one */
439static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
441{
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
444
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 /*
450 * Only the process that called mmap() has reserves for
451 * private mappings.
452 */
453 h->resv_huge_pages--;
454 }
455}
456
457/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459{
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
463}
464
465/* Returns true if the VMA has associated reserve pages */
466static int vma_has_reserves(struct vm_area_struct *vma)
467{
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
473}
474
475static void copy_gigantic_page(struct page *dst, struct page *src)
476{
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490}
491
492void copy_huge_page(struct page *dst, struct page *src)
493{
494 int i;
495 struct hstate *h = page_hstate(src);
496
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
500 }
501
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
506 }
507}
508
509static void enqueue_huge_page(struct hstate *h, struct page *page)
510{
511 int nid = page_to_nid(page);
512 list_add(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
515}
516
517static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518{
519 struct page *page;
520
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_del(&page->lru);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
529}
530
531static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
534{
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
539 struct zone *zone;
540 struct zoneref *z;
541 unsigned int cpuset_mems_cookie;
542
543retry_cpuset:
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
547 /*
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
551 */
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
555
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
559
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
568 }
569 }
570 }
571
572 mpol_cond_put(mpol);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
575 return page;
576
577err:
578 mpol_cond_put(mpol);
579 return NULL;
580}
581
582static void update_and_free_page(struct hstate *h, struct page *page)
583{
584 int i;
585
586 VM_BUG_ON(h->order >= MAX_ORDER);
587
588 h->nr_huge_pages--;
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
595 }
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
598 arch_release_hugepage(page);
599 __free_pages(page, huge_page_order(h));
600}
601
602struct hstate *size_to_hstate(unsigned long size)
603{
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611}
612
613static void free_huge_page(struct page *page)
614{
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
619 struct hstate *h = page_hstate(page);
620 int nid = page_to_nid(page);
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
623
624 set_page_private(page, 0);
625 page->mapping = NULL;
626 BUG_ON(page_count(page));
627 BUG_ON(page_mapcount(page));
628 INIT_LIST_HEAD(&page->lru);
629
630 spin_lock(&hugetlb_lock);
631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 update_and_free_page(h, page);
633 h->surplus_huge_pages--;
634 h->surplus_huge_pages_node[nid]--;
635 } else {
636 enqueue_huge_page(h, page);
637 }
638 spin_unlock(&hugetlb_lock);
639 hugepage_subpool_put_pages(spool, 1);
640}
641
642static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
643{
644 set_compound_page_dtor(page, free_huge_page);
645 spin_lock(&hugetlb_lock);
646 h->nr_huge_pages++;
647 h->nr_huge_pages_node[nid]++;
648 spin_unlock(&hugetlb_lock);
649 put_page(page); /* free it into the hugepage allocator */
650}
651
652static void prep_compound_gigantic_page(struct page *page, unsigned long order)
653{
654 int i;
655 int nr_pages = 1 << order;
656 struct page *p = page + 1;
657
658 /* we rely on prep_new_huge_page to set the destructor */
659 set_compound_order(page, order);
660 __SetPageHead(page);
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 __SetPageTail(p);
663 set_page_count(p, 0);
664 p->first_page = page;
665 }
666}
667
668int PageHuge(struct page *page)
669{
670 compound_page_dtor *dtor;
671
672 if (!PageCompound(page))
673 return 0;
674
675 page = compound_head(page);
676 dtor = get_compound_page_dtor(page);
677
678 return dtor == free_huge_page;
679}
680EXPORT_SYMBOL_GPL(PageHuge);
681
682/*
683 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
684 * normal or transparent huge pages.
685 */
686int PageHeadHuge(struct page *page_head)
687{
688 compound_page_dtor *dtor;
689
690 if (!PageHead(page_head))
691 return 0;
692
693 dtor = get_compound_page_dtor(page_head);
694
695 return dtor == free_huge_page;
696}
697EXPORT_SYMBOL_GPL(PageHeadHuge);
698
699pgoff_t __basepage_index(struct page *page)
700{
701 struct page *page_head = compound_head(page);
702 pgoff_t index = page_index(page_head);
703 unsigned long compound_idx;
704
705 if (!PageHuge(page_head))
706 return page_index(page);
707
708 if (compound_order(page_head) >= MAX_ORDER)
709 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
710 else
711 compound_idx = page - page_head;
712
713 return (index << compound_order(page_head)) + compound_idx;
714}
715
716static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
717{
718 struct page *page;
719
720 if (h->order >= MAX_ORDER)
721 return NULL;
722
723 page = alloc_pages_exact_node(nid,
724 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
725 __GFP_REPEAT|__GFP_NOWARN,
726 huge_page_order(h));
727 if (page) {
728 if (arch_prepare_hugepage(page)) {
729 __free_pages(page, huge_page_order(h));
730 return NULL;
731 }
732 prep_new_huge_page(h, page, nid);
733 }
734
735 return page;
736}
737
738/*
739 * common helper functions for hstate_next_node_to_{alloc|free}.
740 * We may have allocated or freed a huge page based on a different
741 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
742 * be outside of *nodes_allowed. Ensure that we use an allowed
743 * node for alloc or free.
744 */
745static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
746{
747 nid = next_node(nid, *nodes_allowed);
748 if (nid == MAX_NUMNODES)
749 nid = first_node(*nodes_allowed);
750 VM_BUG_ON(nid >= MAX_NUMNODES);
751
752 return nid;
753}
754
755static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
756{
757 if (!node_isset(nid, *nodes_allowed))
758 nid = next_node_allowed(nid, nodes_allowed);
759 return nid;
760}
761
762/*
763 * returns the previously saved node ["this node"] from which to
764 * allocate a persistent huge page for the pool and advance the
765 * next node from which to allocate, handling wrap at end of node
766 * mask.
767 */
768static int hstate_next_node_to_alloc(struct hstate *h,
769 nodemask_t *nodes_allowed)
770{
771 int nid;
772
773 VM_BUG_ON(!nodes_allowed);
774
775 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
776 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
777
778 return nid;
779}
780
781static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
782{
783 struct page *page;
784 int start_nid;
785 int next_nid;
786 int ret = 0;
787
788 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
789 next_nid = start_nid;
790
791 do {
792 page = alloc_fresh_huge_page_node(h, next_nid);
793 if (page) {
794 ret = 1;
795 break;
796 }
797 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
798 } while (next_nid != start_nid);
799
800 if (ret)
801 count_vm_event(HTLB_BUDDY_PGALLOC);
802 else
803 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
804
805 return ret;
806}
807
808/*
809 * helper for free_pool_huge_page() - return the previously saved
810 * node ["this node"] from which to free a huge page. Advance the
811 * next node id whether or not we find a free huge page to free so
812 * that the next attempt to free addresses the next node.
813 */
814static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
815{
816 int nid;
817
818 VM_BUG_ON(!nodes_allowed);
819
820 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
821 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
822
823 return nid;
824}
825
826/*
827 * Free huge page from pool from next node to free.
828 * Attempt to keep persistent huge pages more or less
829 * balanced over allowed nodes.
830 * Called with hugetlb_lock locked.
831 */
832static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
833 bool acct_surplus)
834{
835 int start_nid;
836 int next_nid;
837 int ret = 0;
838
839 start_nid = hstate_next_node_to_free(h, nodes_allowed);
840 next_nid = start_nid;
841
842 do {
843 /*
844 * If we're returning unused surplus pages, only examine
845 * nodes with surplus pages.
846 */
847 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
848 !list_empty(&h->hugepage_freelists[next_nid])) {
849 struct page *page =
850 list_entry(h->hugepage_freelists[next_nid].next,
851 struct page, lru);
852 list_del(&page->lru);
853 h->free_huge_pages--;
854 h->free_huge_pages_node[next_nid]--;
855 if (acct_surplus) {
856 h->surplus_huge_pages--;
857 h->surplus_huge_pages_node[next_nid]--;
858 }
859 update_and_free_page(h, page);
860 ret = 1;
861 break;
862 }
863 next_nid = hstate_next_node_to_free(h, nodes_allowed);
864 } while (next_nid != start_nid);
865
866 return ret;
867}
868
869static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
870{
871 struct page *page;
872 unsigned int r_nid;
873
874 if (h->order >= MAX_ORDER)
875 return NULL;
876
877 /*
878 * Assume we will successfully allocate the surplus page to
879 * prevent racing processes from causing the surplus to exceed
880 * overcommit
881 *
882 * This however introduces a different race, where a process B
883 * tries to grow the static hugepage pool while alloc_pages() is
884 * called by process A. B will only examine the per-node
885 * counters in determining if surplus huge pages can be
886 * converted to normal huge pages in adjust_pool_surplus(). A
887 * won't be able to increment the per-node counter, until the
888 * lock is dropped by B, but B doesn't drop hugetlb_lock until
889 * no more huge pages can be converted from surplus to normal
890 * state (and doesn't try to convert again). Thus, we have a
891 * case where a surplus huge page exists, the pool is grown, and
892 * the surplus huge page still exists after, even though it
893 * should just have been converted to a normal huge page. This
894 * does not leak memory, though, as the hugepage will be freed
895 * once it is out of use. It also does not allow the counters to
896 * go out of whack in adjust_pool_surplus() as we don't modify
897 * the node values until we've gotten the hugepage and only the
898 * per-node value is checked there.
899 */
900 spin_lock(&hugetlb_lock);
901 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
902 spin_unlock(&hugetlb_lock);
903 return NULL;
904 } else {
905 h->nr_huge_pages++;
906 h->surplus_huge_pages++;
907 }
908 spin_unlock(&hugetlb_lock);
909
910 if (nid == NUMA_NO_NODE)
911 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
912 __GFP_REPEAT|__GFP_NOWARN,
913 huge_page_order(h));
914 else
915 page = alloc_pages_exact_node(nid,
916 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
917 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
918
919 if (page && arch_prepare_hugepage(page)) {
920 __free_pages(page, huge_page_order(h));
921 page = NULL;
922 }
923
924 spin_lock(&hugetlb_lock);
925 if (page) {
926 r_nid = page_to_nid(page);
927 set_compound_page_dtor(page, free_huge_page);
928 /*
929 * We incremented the global counters already
930 */
931 h->nr_huge_pages_node[r_nid]++;
932 h->surplus_huge_pages_node[r_nid]++;
933 __count_vm_event(HTLB_BUDDY_PGALLOC);
934 } else {
935 h->nr_huge_pages--;
936 h->surplus_huge_pages--;
937 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
938 }
939 spin_unlock(&hugetlb_lock);
940
941 return page;
942}
943
944/*
945 * This allocation function is useful in the context where vma is irrelevant.
946 * E.g. soft-offlining uses this function because it only cares physical
947 * address of error page.
948 */
949struct page *alloc_huge_page_node(struct hstate *h, int nid)
950{
951 struct page *page;
952
953 spin_lock(&hugetlb_lock);
954 page = dequeue_huge_page_node(h, nid);
955 spin_unlock(&hugetlb_lock);
956
957 if (!page)
958 page = alloc_buddy_huge_page(h, nid);
959
960 return page;
961}
962
963/*
964 * Increase the hugetlb pool such that it can accommodate a reservation
965 * of size 'delta'.
966 */
967static int gather_surplus_pages(struct hstate *h, int delta)
968{
969 struct list_head surplus_list;
970 struct page *page, *tmp;
971 int ret, i;
972 int needed, allocated;
973 bool alloc_ok = true;
974
975 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
976 if (needed <= 0) {
977 h->resv_huge_pages += delta;
978 return 0;
979 }
980
981 allocated = 0;
982 INIT_LIST_HEAD(&surplus_list);
983
984 ret = -ENOMEM;
985retry:
986 spin_unlock(&hugetlb_lock);
987 for (i = 0; i < needed; i++) {
988 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
989 if (!page) {
990 alloc_ok = false;
991 break;
992 }
993 list_add(&page->lru, &surplus_list);
994 }
995 allocated += i;
996
997 /*
998 * After retaking hugetlb_lock, we need to recalculate 'needed'
999 * because either resv_huge_pages or free_huge_pages may have changed.
1000 */
1001 spin_lock(&hugetlb_lock);
1002 needed = (h->resv_huge_pages + delta) -
1003 (h->free_huge_pages + allocated);
1004 if (needed > 0) {
1005 if (alloc_ok)
1006 goto retry;
1007 /*
1008 * We were not able to allocate enough pages to
1009 * satisfy the entire reservation so we free what
1010 * we've allocated so far.
1011 */
1012 goto free;
1013 }
1014 /*
1015 * The surplus_list now contains _at_least_ the number of extra pages
1016 * needed to accommodate the reservation. Add the appropriate number
1017 * of pages to the hugetlb pool and free the extras back to the buddy
1018 * allocator. Commit the entire reservation here to prevent another
1019 * process from stealing the pages as they are added to the pool but
1020 * before they are reserved.
1021 */
1022 needed += allocated;
1023 h->resv_huge_pages += delta;
1024 ret = 0;
1025
1026 /* Free the needed pages to the hugetlb pool */
1027 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1028 if ((--needed) < 0)
1029 break;
1030 list_del(&page->lru);
1031 /*
1032 * This page is now managed by the hugetlb allocator and has
1033 * no users -- drop the buddy allocator's reference.
1034 */
1035 put_page_testzero(page);
1036 VM_BUG_ON(page_count(page));
1037 enqueue_huge_page(h, page);
1038 }
1039free:
1040 spin_unlock(&hugetlb_lock);
1041
1042 /* Free unnecessary surplus pages to the buddy allocator */
1043 if (!list_empty(&surplus_list)) {
1044 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1045 list_del(&page->lru);
1046 put_page(page);
1047 }
1048 }
1049 spin_lock(&hugetlb_lock);
1050
1051 return ret;
1052}
1053
1054/*
1055 * When releasing a hugetlb pool reservation, any surplus pages that were
1056 * allocated to satisfy the reservation must be explicitly freed if they were
1057 * never used.
1058 * Called with hugetlb_lock held.
1059 */
1060static void return_unused_surplus_pages(struct hstate *h,
1061 unsigned long unused_resv_pages)
1062{
1063 unsigned long nr_pages;
1064
1065 /* Uncommit the reservation */
1066 h->resv_huge_pages -= unused_resv_pages;
1067
1068 /* Cannot return gigantic pages currently */
1069 if (h->order >= MAX_ORDER)
1070 return;
1071
1072 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1073
1074 /*
1075 * We want to release as many surplus pages as possible, spread
1076 * evenly across all nodes with memory. Iterate across these nodes
1077 * until we can no longer free unreserved surplus pages. This occurs
1078 * when the nodes with surplus pages have no free pages.
1079 * free_pool_huge_page() will balance the the freed pages across the
1080 * on-line nodes with memory and will handle the hstate accounting.
1081 */
1082 while (nr_pages--) {
1083 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1084 break;
1085 cond_resched_lock(&hugetlb_lock);
1086 }
1087}
1088
1089/*
1090 * Determine if the huge page at addr within the vma has an associated
1091 * reservation. Where it does not we will need to logically increase
1092 * reservation and actually increase subpool usage before an allocation
1093 * can occur. Where any new reservation would be required the
1094 * reservation change is prepared, but not committed. Once the page
1095 * has been allocated from the subpool and instantiated the change should
1096 * be committed via vma_commit_reservation. No action is required on
1097 * failure.
1098 */
1099static long vma_needs_reservation(struct hstate *h,
1100 struct vm_area_struct *vma, unsigned long addr)
1101{
1102 struct address_space *mapping = vma->vm_file->f_mapping;
1103 struct inode *inode = mapping->host;
1104
1105 if (vma->vm_flags & VM_MAYSHARE) {
1106 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1107 return region_chg(&inode->i_mapping->private_list,
1108 idx, idx + 1);
1109
1110 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1111 return 1;
1112
1113 } else {
1114 long err;
1115 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1116 struct resv_map *reservations = vma_resv_map(vma);
1117
1118 err = region_chg(&reservations->regions, idx, idx + 1);
1119 if (err < 0)
1120 return err;
1121 return 0;
1122 }
1123}
1124static void vma_commit_reservation(struct hstate *h,
1125 struct vm_area_struct *vma, unsigned long addr)
1126{
1127 struct address_space *mapping = vma->vm_file->f_mapping;
1128 struct inode *inode = mapping->host;
1129
1130 if (vma->vm_flags & VM_MAYSHARE) {
1131 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1132 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1133
1134 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1135 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1136 struct resv_map *reservations = vma_resv_map(vma);
1137
1138 /* Mark this page used in the map. */
1139 region_add(&reservations->regions, idx, idx + 1);
1140 }
1141}
1142
1143static struct page *alloc_huge_page(struct vm_area_struct *vma,
1144 unsigned long addr, int avoid_reserve)
1145{
1146 struct hugepage_subpool *spool = subpool_vma(vma);
1147 struct hstate *h = hstate_vma(vma);
1148 struct page *page;
1149 long chg;
1150
1151 /*
1152 * Processes that did not create the mapping will have no
1153 * reserves and will not have accounted against subpool
1154 * limit. Check that the subpool limit can be made before
1155 * satisfying the allocation MAP_NORESERVE mappings may also
1156 * need pages and subpool limit allocated allocated if no reserve
1157 * mapping overlaps.
1158 */
1159 chg = vma_needs_reservation(h, vma, addr);
1160 if (chg < 0)
1161 return ERR_PTR(-VM_FAULT_OOM);
1162 if (chg)
1163 if (hugepage_subpool_get_pages(spool, chg))
1164 return ERR_PTR(-VM_FAULT_SIGBUS);
1165
1166 spin_lock(&hugetlb_lock);
1167 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1168 spin_unlock(&hugetlb_lock);
1169
1170 if (!page) {
1171 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1172 if (!page) {
1173 hugepage_subpool_put_pages(spool, chg);
1174 return ERR_PTR(-VM_FAULT_SIGBUS);
1175 }
1176 }
1177
1178 set_page_private(page, (unsigned long)spool);
1179
1180 vma_commit_reservation(h, vma, addr);
1181
1182 return page;
1183}
1184
1185int __weak alloc_bootmem_huge_page(struct hstate *h)
1186{
1187 struct huge_bootmem_page *m;
1188 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1189
1190 while (nr_nodes) {
1191 void *addr;
1192
1193 addr = __alloc_bootmem_node_nopanic(
1194 NODE_DATA(hstate_next_node_to_alloc(h,
1195 &node_states[N_HIGH_MEMORY])),
1196 huge_page_size(h), huge_page_size(h), 0);
1197
1198 if (addr) {
1199 /*
1200 * Use the beginning of the huge page to store the
1201 * huge_bootmem_page struct (until gather_bootmem
1202 * puts them into the mem_map).
1203 */
1204 m = addr;
1205 goto found;
1206 }
1207 nr_nodes--;
1208 }
1209 return 0;
1210
1211found:
1212 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1213 /* Put them into a private list first because mem_map is not up yet */
1214 list_add(&m->list, &huge_boot_pages);
1215 m->hstate = h;
1216 return 1;
1217}
1218
1219static void prep_compound_huge_page(struct page *page, int order)
1220{
1221 if (unlikely(order > (MAX_ORDER - 1)))
1222 prep_compound_gigantic_page(page, order);
1223 else
1224 prep_compound_page(page, order);
1225}
1226
1227/* Put bootmem huge pages into the standard lists after mem_map is up */
1228static void __init gather_bootmem_prealloc(void)
1229{
1230 struct huge_bootmem_page *m;
1231
1232 list_for_each_entry(m, &huge_boot_pages, list) {
1233 struct hstate *h = m->hstate;
1234 struct page *page;
1235
1236#ifdef CONFIG_HIGHMEM
1237 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1238 free_bootmem_late((unsigned long)m,
1239 sizeof(struct huge_bootmem_page));
1240#else
1241 page = virt_to_page(m);
1242#endif
1243 __ClearPageReserved(page);
1244 WARN_ON(page_count(page) != 1);
1245 prep_compound_huge_page(page, h->order);
1246 prep_new_huge_page(h, page, page_to_nid(page));
1247 /*
1248 * If we had gigantic hugepages allocated at boot time, we need
1249 * to restore the 'stolen' pages to totalram_pages in order to
1250 * fix confusing memory reports from free(1) and another
1251 * side-effects, like CommitLimit going negative.
1252 */
1253 if (h->order > (MAX_ORDER - 1))
1254 totalram_pages += 1 << h->order;
1255 }
1256}
1257
1258static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1259{
1260 unsigned long i;
1261
1262 for (i = 0; i < h->max_huge_pages; ++i) {
1263 if (h->order >= MAX_ORDER) {
1264 if (!alloc_bootmem_huge_page(h))
1265 break;
1266 } else if (!alloc_fresh_huge_page(h,
1267 &node_states[N_HIGH_MEMORY]))
1268 break;
1269 }
1270 h->max_huge_pages = i;
1271}
1272
1273static void __init hugetlb_init_hstates(void)
1274{
1275 struct hstate *h;
1276
1277 for_each_hstate(h) {
1278 /* oversize hugepages were init'ed in early boot */
1279 if (h->order < MAX_ORDER)
1280 hugetlb_hstate_alloc_pages(h);
1281 }
1282}
1283
1284static char * __init memfmt(char *buf, unsigned long n)
1285{
1286 if (n >= (1UL << 30))
1287 sprintf(buf, "%lu GB", n >> 30);
1288 else if (n >= (1UL << 20))
1289 sprintf(buf, "%lu MB", n >> 20);
1290 else
1291 sprintf(buf, "%lu KB", n >> 10);
1292 return buf;
1293}
1294
1295static void __init report_hugepages(void)
1296{
1297 struct hstate *h;
1298
1299 for_each_hstate(h) {
1300 char buf[32];
1301 printk(KERN_INFO "HugeTLB registered %s page size, "
1302 "pre-allocated %ld pages\n",
1303 memfmt(buf, huge_page_size(h)),
1304 h->free_huge_pages);
1305 }
1306}
1307
1308#ifdef CONFIG_HIGHMEM
1309static void try_to_free_low(struct hstate *h, unsigned long count,
1310 nodemask_t *nodes_allowed)
1311{
1312 int i;
1313
1314 if (h->order >= MAX_ORDER)
1315 return;
1316
1317 for_each_node_mask(i, *nodes_allowed) {
1318 struct page *page, *next;
1319 struct list_head *freel = &h->hugepage_freelists[i];
1320 list_for_each_entry_safe(page, next, freel, lru) {
1321 if (count >= h->nr_huge_pages)
1322 return;
1323 if (PageHighMem(page))
1324 continue;
1325 list_del(&page->lru);
1326 update_and_free_page(h, page);
1327 h->free_huge_pages--;
1328 h->free_huge_pages_node[page_to_nid(page)]--;
1329 }
1330 }
1331}
1332#else
1333static inline void try_to_free_low(struct hstate *h, unsigned long count,
1334 nodemask_t *nodes_allowed)
1335{
1336}
1337#endif
1338
1339/*
1340 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1341 * balanced by operating on them in a round-robin fashion.
1342 * Returns 1 if an adjustment was made.
1343 */
1344static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1345 int delta)
1346{
1347 int start_nid, next_nid;
1348 int ret = 0;
1349
1350 VM_BUG_ON(delta != -1 && delta != 1);
1351
1352 if (delta < 0)
1353 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1354 else
1355 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1356 next_nid = start_nid;
1357
1358 do {
1359 int nid = next_nid;
1360 if (delta < 0) {
1361 /*
1362 * To shrink on this node, there must be a surplus page
1363 */
1364 if (!h->surplus_huge_pages_node[nid]) {
1365 next_nid = hstate_next_node_to_alloc(h,
1366 nodes_allowed);
1367 continue;
1368 }
1369 }
1370 if (delta > 0) {
1371 /*
1372 * Surplus cannot exceed the total number of pages
1373 */
1374 if (h->surplus_huge_pages_node[nid] >=
1375 h->nr_huge_pages_node[nid]) {
1376 next_nid = hstate_next_node_to_free(h,
1377 nodes_allowed);
1378 continue;
1379 }
1380 }
1381
1382 h->surplus_huge_pages += delta;
1383 h->surplus_huge_pages_node[nid] += delta;
1384 ret = 1;
1385 break;
1386 } while (next_nid != start_nid);
1387
1388 return ret;
1389}
1390
1391#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1392static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1393 nodemask_t *nodes_allowed)
1394{
1395 unsigned long min_count, ret;
1396
1397 if (h->order >= MAX_ORDER)
1398 return h->max_huge_pages;
1399
1400 /*
1401 * Increase the pool size
1402 * First take pages out of surplus state. Then make up the
1403 * remaining difference by allocating fresh huge pages.
1404 *
1405 * We might race with alloc_buddy_huge_page() here and be unable
1406 * to convert a surplus huge page to a normal huge page. That is
1407 * not critical, though, it just means the overall size of the
1408 * pool might be one hugepage larger than it needs to be, but
1409 * within all the constraints specified by the sysctls.
1410 */
1411 spin_lock(&hugetlb_lock);
1412 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1413 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1414 break;
1415 }
1416
1417 while (count > persistent_huge_pages(h)) {
1418 /*
1419 * If this allocation races such that we no longer need the
1420 * page, free_huge_page will handle it by freeing the page
1421 * and reducing the surplus.
1422 */
1423 spin_unlock(&hugetlb_lock);
1424 ret = alloc_fresh_huge_page(h, nodes_allowed);
1425 spin_lock(&hugetlb_lock);
1426 if (!ret)
1427 goto out;
1428
1429 /* Bail for signals. Probably ctrl-c from user */
1430 if (signal_pending(current))
1431 goto out;
1432 }
1433
1434 /*
1435 * Decrease the pool size
1436 * First return free pages to the buddy allocator (being careful
1437 * to keep enough around to satisfy reservations). Then place
1438 * pages into surplus state as needed so the pool will shrink
1439 * to the desired size as pages become free.
1440 *
1441 * By placing pages into the surplus state independent of the
1442 * overcommit value, we are allowing the surplus pool size to
1443 * exceed overcommit. There are few sane options here. Since
1444 * alloc_buddy_huge_page() is checking the global counter,
1445 * though, we'll note that we're not allowed to exceed surplus
1446 * and won't grow the pool anywhere else. Not until one of the
1447 * sysctls are changed, or the surplus pages go out of use.
1448 */
1449 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1450 min_count = max(count, min_count);
1451 try_to_free_low(h, min_count, nodes_allowed);
1452 while (min_count < persistent_huge_pages(h)) {
1453 if (!free_pool_huge_page(h, nodes_allowed, 0))
1454 break;
1455 cond_resched_lock(&hugetlb_lock);
1456 }
1457 while (count < persistent_huge_pages(h)) {
1458 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1459 break;
1460 }
1461out:
1462 ret = persistent_huge_pages(h);
1463 spin_unlock(&hugetlb_lock);
1464 return ret;
1465}
1466
1467#define HSTATE_ATTR_RO(_name) \
1468 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1469
1470#define HSTATE_ATTR(_name) \
1471 static struct kobj_attribute _name##_attr = \
1472 __ATTR(_name, 0644, _name##_show, _name##_store)
1473
1474static struct kobject *hugepages_kobj;
1475static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1476
1477static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1478
1479static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1480{
1481 int i;
1482
1483 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1484 if (hstate_kobjs[i] == kobj) {
1485 if (nidp)
1486 *nidp = NUMA_NO_NODE;
1487 return &hstates[i];
1488 }
1489
1490 return kobj_to_node_hstate(kobj, nidp);
1491}
1492
1493static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1494 struct kobj_attribute *attr, char *buf)
1495{
1496 struct hstate *h;
1497 unsigned long nr_huge_pages;
1498 int nid;
1499
1500 h = kobj_to_hstate(kobj, &nid);
1501 if (nid == NUMA_NO_NODE)
1502 nr_huge_pages = h->nr_huge_pages;
1503 else
1504 nr_huge_pages = h->nr_huge_pages_node[nid];
1505
1506 return sprintf(buf, "%lu\n", nr_huge_pages);
1507}
1508
1509static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1510 struct kobject *kobj, struct kobj_attribute *attr,
1511 const char *buf, size_t len)
1512{
1513 int err;
1514 int nid;
1515 unsigned long count;
1516 struct hstate *h;
1517 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1518
1519 err = strict_strtoul(buf, 10, &count);
1520 if (err)
1521 goto out;
1522
1523 h = kobj_to_hstate(kobj, &nid);
1524 if (h->order >= MAX_ORDER) {
1525 err = -EINVAL;
1526 goto out;
1527 }
1528
1529 if (nid == NUMA_NO_NODE) {
1530 /*
1531 * global hstate attribute
1532 */
1533 if (!(obey_mempolicy &&
1534 init_nodemask_of_mempolicy(nodes_allowed))) {
1535 NODEMASK_FREE(nodes_allowed);
1536 nodes_allowed = &node_states[N_HIGH_MEMORY];
1537 }
1538 } else if (nodes_allowed) {
1539 /*
1540 * per node hstate attribute: adjust count to global,
1541 * but restrict alloc/free to the specified node.
1542 */
1543 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1544 init_nodemask_of_node(nodes_allowed, nid);
1545 } else
1546 nodes_allowed = &node_states[N_HIGH_MEMORY];
1547
1548 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1549
1550 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1551 NODEMASK_FREE(nodes_allowed);
1552
1553 return len;
1554out:
1555 NODEMASK_FREE(nodes_allowed);
1556 return err;
1557}
1558
1559static ssize_t nr_hugepages_show(struct kobject *kobj,
1560 struct kobj_attribute *attr, char *buf)
1561{
1562 return nr_hugepages_show_common(kobj, attr, buf);
1563}
1564
1565static ssize_t nr_hugepages_store(struct kobject *kobj,
1566 struct kobj_attribute *attr, const char *buf, size_t len)
1567{
1568 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1569}
1570HSTATE_ATTR(nr_hugepages);
1571
1572#ifdef CONFIG_NUMA
1573
1574/*
1575 * hstate attribute for optionally mempolicy-based constraint on persistent
1576 * huge page alloc/free.
1577 */
1578static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1579 struct kobj_attribute *attr, char *buf)
1580{
1581 return nr_hugepages_show_common(kobj, attr, buf);
1582}
1583
1584static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1585 struct kobj_attribute *attr, const char *buf, size_t len)
1586{
1587 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1588}
1589HSTATE_ATTR(nr_hugepages_mempolicy);
1590#endif
1591
1592
1593static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1594 struct kobj_attribute *attr, char *buf)
1595{
1596 struct hstate *h = kobj_to_hstate(kobj, NULL);
1597 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1598}
1599
1600static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1601 struct kobj_attribute *attr, const char *buf, size_t count)
1602{
1603 int err;
1604 unsigned long input;
1605 struct hstate *h = kobj_to_hstate(kobj, NULL);
1606
1607 if (h->order >= MAX_ORDER)
1608 return -EINVAL;
1609
1610 err = strict_strtoul(buf, 10, &input);
1611 if (err)
1612 return err;
1613
1614 spin_lock(&hugetlb_lock);
1615 h->nr_overcommit_huge_pages = input;
1616 spin_unlock(&hugetlb_lock);
1617
1618 return count;
1619}
1620HSTATE_ATTR(nr_overcommit_hugepages);
1621
1622static ssize_t free_hugepages_show(struct kobject *kobj,
1623 struct kobj_attribute *attr, char *buf)
1624{
1625 struct hstate *h;
1626 unsigned long free_huge_pages;
1627 int nid;
1628
1629 h = kobj_to_hstate(kobj, &nid);
1630 if (nid == NUMA_NO_NODE)
1631 free_huge_pages = h->free_huge_pages;
1632 else
1633 free_huge_pages = h->free_huge_pages_node[nid];
1634
1635 return sprintf(buf, "%lu\n", free_huge_pages);
1636}
1637HSTATE_ATTR_RO(free_hugepages);
1638
1639static ssize_t resv_hugepages_show(struct kobject *kobj,
1640 struct kobj_attribute *attr, char *buf)
1641{
1642 struct hstate *h = kobj_to_hstate(kobj, NULL);
1643 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1644}
1645HSTATE_ATTR_RO(resv_hugepages);
1646
1647static ssize_t surplus_hugepages_show(struct kobject *kobj,
1648 struct kobj_attribute *attr, char *buf)
1649{
1650 struct hstate *h;
1651 unsigned long surplus_huge_pages;
1652 int nid;
1653
1654 h = kobj_to_hstate(kobj, &nid);
1655 if (nid == NUMA_NO_NODE)
1656 surplus_huge_pages = h->surplus_huge_pages;
1657 else
1658 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1659
1660 return sprintf(buf, "%lu\n", surplus_huge_pages);
1661}
1662HSTATE_ATTR_RO(surplus_hugepages);
1663
1664static struct attribute *hstate_attrs[] = {
1665 &nr_hugepages_attr.attr,
1666 &nr_overcommit_hugepages_attr.attr,
1667 &free_hugepages_attr.attr,
1668 &resv_hugepages_attr.attr,
1669 &surplus_hugepages_attr.attr,
1670#ifdef CONFIG_NUMA
1671 &nr_hugepages_mempolicy_attr.attr,
1672#endif
1673 NULL,
1674};
1675
1676static struct attribute_group hstate_attr_group = {
1677 .attrs = hstate_attrs,
1678};
1679
1680static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1681 struct kobject **hstate_kobjs,
1682 struct attribute_group *hstate_attr_group)
1683{
1684 int retval;
1685 int hi = h - hstates;
1686
1687 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1688 if (!hstate_kobjs[hi])
1689 return -ENOMEM;
1690
1691 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1692 if (retval)
1693 kobject_put(hstate_kobjs[hi]);
1694
1695 return retval;
1696}
1697
1698static void __init hugetlb_sysfs_init(void)
1699{
1700 struct hstate *h;
1701 int err;
1702
1703 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1704 if (!hugepages_kobj)
1705 return;
1706
1707 for_each_hstate(h) {
1708 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1709 hstate_kobjs, &hstate_attr_group);
1710 if (err)
1711 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1712 h->name);
1713 }
1714}
1715
1716#ifdef CONFIG_NUMA
1717
1718/*
1719 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1720 * with node devices in node_devices[] using a parallel array. The array
1721 * index of a node device or _hstate == node id.
1722 * This is here to avoid any static dependency of the node device driver, in
1723 * the base kernel, on the hugetlb module.
1724 */
1725struct node_hstate {
1726 struct kobject *hugepages_kobj;
1727 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1728};
1729struct node_hstate node_hstates[MAX_NUMNODES];
1730
1731/*
1732 * A subset of global hstate attributes for node devices
1733 */
1734static struct attribute *per_node_hstate_attrs[] = {
1735 &nr_hugepages_attr.attr,
1736 &free_hugepages_attr.attr,
1737 &surplus_hugepages_attr.attr,
1738 NULL,
1739};
1740
1741static struct attribute_group per_node_hstate_attr_group = {
1742 .attrs = per_node_hstate_attrs,
1743};
1744
1745/*
1746 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1747 * Returns node id via non-NULL nidp.
1748 */
1749static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1750{
1751 int nid;
1752
1753 for (nid = 0; nid < nr_node_ids; nid++) {
1754 struct node_hstate *nhs = &node_hstates[nid];
1755 int i;
1756 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1757 if (nhs->hstate_kobjs[i] == kobj) {
1758 if (nidp)
1759 *nidp = nid;
1760 return &hstates[i];
1761 }
1762 }
1763
1764 BUG();
1765 return NULL;
1766}
1767
1768/*
1769 * Unregister hstate attributes from a single node device.
1770 * No-op if no hstate attributes attached.
1771 */
1772void hugetlb_unregister_node(struct node *node)
1773{
1774 struct hstate *h;
1775 struct node_hstate *nhs = &node_hstates[node->dev.id];
1776
1777 if (!nhs->hugepages_kobj)
1778 return; /* no hstate attributes */
1779
1780 for_each_hstate(h)
1781 if (nhs->hstate_kobjs[h - hstates]) {
1782 kobject_put(nhs->hstate_kobjs[h - hstates]);
1783 nhs->hstate_kobjs[h - hstates] = NULL;
1784 }
1785
1786 kobject_put(nhs->hugepages_kobj);
1787 nhs->hugepages_kobj = NULL;
1788}
1789
1790/*
1791 * hugetlb module exit: unregister hstate attributes from node devices
1792 * that have them.
1793 */
1794static void hugetlb_unregister_all_nodes(void)
1795{
1796 int nid;
1797
1798 /*
1799 * disable node device registrations.
1800 */
1801 register_hugetlbfs_with_node(NULL, NULL);
1802
1803 /*
1804 * remove hstate attributes from any nodes that have them.
1805 */
1806 for (nid = 0; nid < nr_node_ids; nid++)
1807 hugetlb_unregister_node(&node_devices[nid]);
1808}
1809
1810/*
1811 * Register hstate attributes for a single node device.
1812 * No-op if attributes already registered.
1813 */
1814void hugetlb_register_node(struct node *node)
1815{
1816 struct hstate *h;
1817 struct node_hstate *nhs = &node_hstates[node->dev.id];
1818 int err;
1819
1820 if (nhs->hugepages_kobj)
1821 return; /* already allocated */
1822
1823 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1824 &node->dev.kobj);
1825 if (!nhs->hugepages_kobj)
1826 return;
1827
1828 for_each_hstate(h) {
1829 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1830 nhs->hstate_kobjs,
1831 &per_node_hstate_attr_group);
1832 if (err) {
1833 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1834 " for node %d\n",
1835 h->name, node->dev.id);
1836 hugetlb_unregister_node(node);
1837 break;
1838 }
1839 }
1840}
1841
1842/*
1843 * hugetlb init time: register hstate attributes for all registered node
1844 * devices of nodes that have memory. All on-line nodes should have
1845 * registered their associated device by this time.
1846 */
1847static void hugetlb_register_all_nodes(void)
1848{
1849 int nid;
1850
1851 for_each_node_state(nid, N_HIGH_MEMORY) {
1852 struct node *node = &node_devices[nid];
1853 if (node->dev.id == nid)
1854 hugetlb_register_node(node);
1855 }
1856
1857 /*
1858 * Let the node device driver know we're here so it can
1859 * [un]register hstate attributes on node hotplug.
1860 */
1861 register_hugetlbfs_with_node(hugetlb_register_node,
1862 hugetlb_unregister_node);
1863}
1864#else /* !CONFIG_NUMA */
1865
1866static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1867{
1868 BUG();
1869 if (nidp)
1870 *nidp = -1;
1871 return NULL;
1872}
1873
1874static void hugetlb_unregister_all_nodes(void) { }
1875
1876static void hugetlb_register_all_nodes(void) { }
1877
1878#endif
1879
1880static void __exit hugetlb_exit(void)
1881{
1882 struct hstate *h;
1883
1884 hugetlb_unregister_all_nodes();
1885
1886 for_each_hstate(h) {
1887 kobject_put(hstate_kobjs[h - hstates]);
1888 }
1889
1890 kobject_put(hugepages_kobj);
1891}
1892module_exit(hugetlb_exit);
1893
1894static int __init hugetlb_init(void)
1895{
1896 /* Some platform decide whether they support huge pages at boot
1897 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1898 * there is no such support
1899 */
1900 if (HPAGE_SHIFT == 0)
1901 return 0;
1902
1903 if (!size_to_hstate(default_hstate_size)) {
1904 default_hstate_size = HPAGE_SIZE;
1905 if (!size_to_hstate(default_hstate_size))
1906 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1907 }
1908 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1909 if (default_hstate_max_huge_pages)
1910 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1911
1912 hugetlb_init_hstates();
1913
1914 gather_bootmem_prealloc();
1915
1916 report_hugepages();
1917
1918 hugetlb_sysfs_init();
1919
1920 hugetlb_register_all_nodes();
1921
1922 return 0;
1923}
1924module_init(hugetlb_init);
1925
1926/* Should be called on processing a hugepagesz=... option */
1927void __init hugetlb_add_hstate(unsigned order)
1928{
1929 struct hstate *h;
1930 unsigned long i;
1931
1932 if (size_to_hstate(PAGE_SIZE << order)) {
1933 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1934 return;
1935 }
1936 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1937 BUG_ON(order == 0);
1938 h = &hstates[max_hstate++];
1939 h->order = order;
1940 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1941 h->nr_huge_pages = 0;
1942 h->free_huge_pages = 0;
1943 for (i = 0; i < MAX_NUMNODES; ++i)
1944 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1945 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1946 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1947 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1948 huge_page_size(h)/1024);
1949
1950 parsed_hstate = h;
1951}
1952
1953static int __init hugetlb_nrpages_setup(char *s)
1954{
1955 unsigned long *mhp;
1956 static unsigned long *last_mhp;
1957
1958 /*
1959 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1960 * so this hugepages= parameter goes to the "default hstate".
1961 */
1962 if (!max_hstate)
1963 mhp = &default_hstate_max_huge_pages;
1964 else
1965 mhp = &parsed_hstate->max_huge_pages;
1966
1967 if (mhp == last_mhp) {
1968 printk(KERN_WARNING "hugepages= specified twice without "
1969 "interleaving hugepagesz=, ignoring\n");
1970 return 1;
1971 }
1972
1973 if (sscanf(s, "%lu", mhp) <= 0)
1974 *mhp = 0;
1975
1976 /*
1977 * Global state is always initialized later in hugetlb_init.
1978 * But we need to allocate >= MAX_ORDER hstates here early to still
1979 * use the bootmem allocator.
1980 */
1981 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1982 hugetlb_hstate_alloc_pages(parsed_hstate);
1983
1984 last_mhp = mhp;
1985
1986 return 1;
1987}
1988__setup("hugepages=", hugetlb_nrpages_setup);
1989
1990static int __init hugetlb_default_setup(char *s)
1991{
1992 default_hstate_size = memparse(s, &s);
1993 return 1;
1994}
1995__setup("default_hugepagesz=", hugetlb_default_setup);
1996
1997static unsigned int cpuset_mems_nr(unsigned int *array)
1998{
1999 int node;
2000 unsigned int nr = 0;
2001
2002 for_each_node_mask(node, cpuset_current_mems_allowed)
2003 nr += array[node];
2004
2005 return nr;
2006}
2007
2008#ifdef CONFIG_SYSCTL
2009static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2010 struct ctl_table *table, int write,
2011 void __user *buffer, size_t *length, loff_t *ppos)
2012{
2013 struct hstate *h = &default_hstate;
2014 unsigned long tmp;
2015 int ret;
2016
2017 tmp = h->max_huge_pages;
2018
2019 if (write && h->order >= MAX_ORDER)
2020 return -EINVAL;
2021
2022 table->data = &tmp;
2023 table->maxlen = sizeof(unsigned long);
2024 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2025 if (ret)
2026 goto out;
2027
2028 if (write) {
2029 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2030 GFP_KERNEL | __GFP_NORETRY);
2031 if (!(obey_mempolicy &&
2032 init_nodemask_of_mempolicy(nodes_allowed))) {
2033 NODEMASK_FREE(nodes_allowed);
2034 nodes_allowed = &node_states[N_HIGH_MEMORY];
2035 }
2036 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2037
2038 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2039 NODEMASK_FREE(nodes_allowed);
2040 }
2041out:
2042 return ret;
2043}
2044
2045int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2046 void __user *buffer, size_t *length, loff_t *ppos)
2047{
2048
2049 return hugetlb_sysctl_handler_common(false, table, write,
2050 buffer, length, ppos);
2051}
2052
2053#ifdef CONFIG_NUMA
2054int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2055 void __user *buffer, size_t *length, loff_t *ppos)
2056{
2057 return hugetlb_sysctl_handler_common(true, table, write,
2058 buffer, length, ppos);
2059}
2060#endif /* CONFIG_NUMA */
2061
2062int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2063 void __user *buffer,
2064 size_t *length, loff_t *ppos)
2065{
2066 proc_dointvec(table, write, buffer, length, ppos);
2067 if (hugepages_treat_as_movable)
2068 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2069 else
2070 htlb_alloc_mask = GFP_HIGHUSER;
2071 return 0;
2072}
2073
2074int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2075 void __user *buffer,
2076 size_t *length, loff_t *ppos)
2077{
2078 struct hstate *h = &default_hstate;
2079 unsigned long tmp;
2080 int ret;
2081
2082 tmp = h->nr_overcommit_huge_pages;
2083
2084 if (write && h->order >= MAX_ORDER)
2085 return -EINVAL;
2086
2087 table->data = &tmp;
2088 table->maxlen = sizeof(unsigned long);
2089 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2090 if (ret)
2091 goto out;
2092
2093 if (write) {
2094 spin_lock(&hugetlb_lock);
2095 h->nr_overcommit_huge_pages = tmp;
2096 spin_unlock(&hugetlb_lock);
2097 }
2098out:
2099 return ret;
2100}
2101
2102#endif /* CONFIG_SYSCTL */
2103
2104void hugetlb_report_meminfo(struct seq_file *m)
2105{
2106 struct hstate *h = &default_hstate;
2107 seq_printf(m,
2108 "HugePages_Total: %5lu\n"
2109 "HugePages_Free: %5lu\n"
2110 "HugePages_Rsvd: %5lu\n"
2111 "HugePages_Surp: %5lu\n"
2112 "Hugepagesize: %8lu kB\n",
2113 h->nr_huge_pages,
2114 h->free_huge_pages,
2115 h->resv_huge_pages,
2116 h->surplus_huge_pages,
2117 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2118}
2119
2120int hugetlb_report_node_meminfo(int nid, char *buf)
2121{
2122 struct hstate *h = &default_hstate;
2123 return sprintf(buf,
2124 "Node %d HugePages_Total: %5u\n"
2125 "Node %d HugePages_Free: %5u\n"
2126 "Node %d HugePages_Surp: %5u\n",
2127 nid, h->nr_huge_pages_node[nid],
2128 nid, h->free_huge_pages_node[nid],
2129 nid, h->surplus_huge_pages_node[nid]);
2130}
2131
2132/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2133unsigned long hugetlb_total_pages(void)
2134{
2135 struct hstate *h;
2136 unsigned long nr_total_pages = 0;
2137
2138 for_each_hstate(h)
2139 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2140 return nr_total_pages;
2141}
2142
2143static int hugetlb_acct_memory(struct hstate *h, long delta)
2144{
2145 int ret = -ENOMEM;
2146
2147 spin_lock(&hugetlb_lock);
2148 /*
2149 * When cpuset is configured, it breaks the strict hugetlb page
2150 * reservation as the accounting is done on a global variable. Such
2151 * reservation is completely rubbish in the presence of cpuset because
2152 * the reservation is not checked against page availability for the
2153 * current cpuset. Application can still potentially OOM'ed by kernel
2154 * with lack of free htlb page in cpuset that the task is in.
2155 * Attempt to enforce strict accounting with cpuset is almost
2156 * impossible (or too ugly) because cpuset is too fluid that
2157 * task or memory node can be dynamically moved between cpusets.
2158 *
2159 * The change of semantics for shared hugetlb mapping with cpuset is
2160 * undesirable. However, in order to preserve some of the semantics,
2161 * we fall back to check against current free page availability as
2162 * a best attempt and hopefully to minimize the impact of changing
2163 * semantics that cpuset has.
2164 */
2165 if (delta > 0) {
2166 if (gather_surplus_pages(h, delta) < 0)
2167 goto out;
2168
2169 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2170 return_unused_surplus_pages(h, delta);
2171 goto out;
2172 }
2173 }
2174
2175 ret = 0;
2176 if (delta < 0)
2177 return_unused_surplus_pages(h, (unsigned long) -delta);
2178
2179out:
2180 spin_unlock(&hugetlb_lock);
2181 return ret;
2182}
2183
2184static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2185{
2186 struct resv_map *reservations = vma_resv_map(vma);
2187
2188 /*
2189 * This new VMA should share its siblings reservation map if present.
2190 * The VMA will only ever have a valid reservation map pointer where
2191 * it is being copied for another still existing VMA. As that VMA
2192 * has a reference to the reservation map it cannot disappear until
2193 * after this open call completes. It is therefore safe to take a
2194 * new reference here without additional locking.
2195 */
2196 if (reservations)
2197 kref_get(&reservations->refs);
2198}
2199
2200static void resv_map_put(struct vm_area_struct *vma)
2201{
2202 struct resv_map *reservations = vma_resv_map(vma);
2203
2204 if (!reservations)
2205 return;
2206 kref_put(&reservations->refs, resv_map_release);
2207}
2208
2209static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2210{
2211 struct hstate *h = hstate_vma(vma);
2212 struct resv_map *reservations = vma_resv_map(vma);
2213 struct hugepage_subpool *spool = subpool_vma(vma);
2214 unsigned long reserve;
2215 unsigned long start;
2216 unsigned long end;
2217
2218 if (reservations) {
2219 start = vma_hugecache_offset(h, vma, vma->vm_start);
2220 end = vma_hugecache_offset(h, vma, vma->vm_end);
2221
2222 reserve = (end - start) -
2223 region_count(&reservations->regions, start, end);
2224
2225 resv_map_put(vma);
2226
2227 if (reserve) {
2228 hugetlb_acct_memory(h, -reserve);
2229 hugepage_subpool_put_pages(spool, reserve);
2230 }
2231 }
2232}
2233
2234/*
2235 * We cannot handle pagefaults against hugetlb pages at all. They cause
2236 * handle_mm_fault() to try to instantiate regular-sized pages in the
2237 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2238 * this far.
2239 */
2240static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2241{
2242 BUG();
2243 return 0;
2244}
2245
2246const struct vm_operations_struct hugetlb_vm_ops = {
2247 .fault = hugetlb_vm_op_fault,
2248 .open = hugetlb_vm_op_open,
2249 .close = hugetlb_vm_op_close,
2250};
2251
2252static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2253 int writable)
2254{
2255 pte_t entry;
2256
2257 if (writable) {
2258 entry =
2259 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2260 } else {
2261 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2262 }
2263 entry = pte_mkyoung(entry);
2264 entry = pte_mkhuge(entry);
2265
2266 return entry;
2267}
2268
2269static void set_huge_ptep_writable(struct vm_area_struct *vma,
2270 unsigned long address, pte_t *ptep)
2271{
2272 pte_t entry;
2273
2274 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2275 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2276 update_mmu_cache(vma, address, ptep);
2277}
2278
2279static int is_hugetlb_entry_migration(pte_t pte)
2280{
2281 swp_entry_t swp;
2282
2283 if (huge_pte_none(pte) || pte_present(pte))
2284 return 0;
2285 swp = pte_to_swp_entry(pte);
2286 if (non_swap_entry(swp) && is_migration_entry(swp))
2287 return 1;
2288 else
2289 return 0;
2290}
2291
2292static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2293{
2294 swp_entry_t swp;
2295
2296 if (huge_pte_none(pte) || pte_present(pte))
2297 return 0;
2298 swp = pte_to_swp_entry(pte);
2299 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2300 return 1;
2301 else
2302 return 0;
2303}
2304
2305int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2306 struct vm_area_struct *vma)
2307{
2308 pte_t *src_pte, *dst_pte, entry;
2309 struct page *ptepage;
2310 unsigned long addr;
2311 int cow;
2312 struct hstate *h = hstate_vma(vma);
2313 unsigned long sz = huge_page_size(h);
2314
2315 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2316
2317 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2318 src_pte = huge_pte_offset(src, addr);
2319 if (!src_pte)
2320 continue;
2321 dst_pte = huge_pte_alloc(dst, addr, sz);
2322 if (!dst_pte)
2323 goto nomem;
2324
2325 /* If the pagetables are shared don't copy or take references */
2326 if (dst_pte == src_pte)
2327 continue;
2328
2329 spin_lock(&dst->page_table_lock);
2330 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2331 entry = huge_ptep_get(src_pte);
2332 if (huge_pte_none(entry)) { /* skip none entry */
2333 ;
2334 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2335 is_hugetlb_entry_hwpoisoned(entry))) {
2336 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2337
2338 if (is_write_migration_entry(swp_entry) && cow) {
2339 /*
2340 * COW mappings require pages in both
2341 * parent and child to be set to read.
2342 */
2343 make_migration_entry_read(&swp_entry);
2344 entry = swp_entry_to_pte(swp_entry);
2345 set_huge_pte_at(src, addr, src_pte, entry);
2346 }
2347 set_huge_pte_at(dst, addr, dst_pte, entry);
2348 } else {
2349 if (cow)
2350 huge_ptep_set_wrprotect(src, addr, src_pte);
2351 entry = huge_ptep_get(src_pte);
2352 ptepage = pte_page(entry);
2353 get_page(ptepage);
2354 page_dup_rmap(ptepage);
2355 set_huge_pte_at(dst, addr, dst_pte, entry);
2356 }
2357 spin_unlock(&src->page_table_lock);
2358 spin_unlock(&dst->page_table_lock);
2359 }
2360 return 0;
2361
2362nomem:
2363 return -ENOMEM;
2364}
2365
2366void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2367 unsigned long end, struct page *ref_page)
2368{
2369 struct mm_struct *mm = vma->vm_mm;
2370 unsigned long address;
2371 pte_t *ptep;
2372 pte_t pte;
2373 struct page *page;
2374 struct page *tmp;
2375 struct hstate *h = hstate_vma(vma);
2376 unsigned long sz = huge_page_size(h);
2377
2378 /*
2379 * A page gathering list, protected by per file i_mmap_mutex. The
2380 * lock is used to avoid list corruption from multiple unmapping
2381 * of the same page since we are using page->lru.
2382 */
2383 LIST_HEAD(page_list);
2384
2385 WARN_ON(!is_vm_hugetlb_page(vma));
2386 BUG_ON(start & ~huge_page_mask(h));
2387 BUG_ON(end & ~huge_page_mask(h));
2388
2389 mmu_notifier_invalidate_range_start(mm, start, end);
2390 spin_lock(&mm->page_table_lock);
2391 for (address = start; address < end; address += sz) {
2392 ptep = huge_pte_offset(mm, address);
2393 if (!ptep)
2394 continue;
2395
2396 if (huge_pmd_unshare(mm, &address, ptep))
2397 continue;
2398
2399 pte = huge_ptep_get(ptep);
2400 if (huge_pte_none(pte))
2401 continue;
2402
2403 /*
2404 * Migrating hugepage or HWPoisoned hugepage is already
2405 * unmapped and its refcount is dropped
2406 */
2407 if (unlikely(!pte_present(pte)))
2408 continue;
2409
2410 page = pte_page(pte);
2411 /*
2412 * If a reference page is supplied, it is because a specific
2413 * page is being unmapped, not a range. Ensure the page we
2414 * are about to unmap is the actual page of interest.
2415 */
2416 if (ref_page) {
2417 if (page != ref_page)
2418 continue;
2419
2420 /*
2421 * Mark the VMA as having unmapped its page so that
2422 * future faults in this VMA will fail rather than
2423 * looking like data was lost
2424 */
2425 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2426 }
2427
2428 pte = huge_ptep_get_and_clear(mm, address, ptep);
2429 if (pte_dirty(pte))
2430 set_page_dirty(page);
2431 list_add(&page->lru, &page_list);
2432
2433 /* Bail out after unmapping reference page if supplied */
2434 if (ref_page)
2435 break;
2436 }
2437 flush_tlb_range(vma, start, end);
2438 spin_unlock(&mm->page_table_lock);
2439 mmu_notifier_invalidate_range_end(mm, start, end);
2440 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2441 page_remove_rmap(page);
2442 list_del(&page->lru);
2443 put_page(page);
2444 }
2445}
2446
2447void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2448 unsigned long end, struct page *ref_page)
2449{
2450 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2451 __unmap_hugepage_range(vma, start, end, ref_page);
2452 /*
2453 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2454 * test will fail on a vma being torn down, and not grab a page table
2455 * on its way out. We're lucky that the flag has such an appropriate
2456 * name, and can in fact be safely cleared here. We could clear it
2457 * before the __unmap_hugepage_range above, but all that's necessary
2458 * is to clear it before releasing the i_mmap_mutex below.
2459 *
2460 * This works because in the contexts this is called, the VMA is
2461 * going to be destroyed. It is not vunerable to madvise(DONTNEED)
2462 * because madvise is not supported on hugetlbfs. The same applies
2463 * for direct IO. unmap_hugepage_range() is only being called just
2464 * before free_pgtables() so clearing VM_MAYSHARE will not cause
2465 * surprises later.
2466 */
2467 vma->vm_flags &= ~VM_MAYSHARE;
2468 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2469}
2470
2471/*
2472 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2473 * mappping it owns the reserve page for. The intention is to unmap the page
2474 * from other VMAs and let the children be SIGKILLed if they are faulting the
2475 * same region.
2476 */
2477static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2478 struct page *page, unsigned long address)
2479{
2480 struct hstate *h = hstate_vma(vma);
2481 struct vm_area_struct *iter_vma;
2482 struct address_space *mapping;
2483 struct prio_tree_iter iter;
2484 pgoff_t pgoff;
2485
2486 /*
2487 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2488 * from page cache lookup which is in HPAGE_SIZE units.
2489 */
2490 address = address & huge_page_mask(h);
2491 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2492 vma->vm_pgoff;
2493 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2494
2495 /*
2496 * Take the mapping lock for the duration of the table walk. As
2497 * this mapping should be shared between all the VMAs,
2498 * __unmap_hugepage_range() is called as the lock is already held
2499 */
2500 mutex_lock(&mapping->i_mmap_mutex);
2501 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2502 /* Do not unmap the current VMA */
2503 if (iter_vma == vma)
2504 continue;
2505
2506 /*
2507 * Unmap the page from other VMAs without their own reserves.
2508 * They get marked to be SIGKILLed if they fault in these
2509 * areas. This is because a future no-page fault on this VMA
2510 * could insert a zeroed page instead of the data existing
2511 * from the time of fork. This would look like data corruption
2512 */
2513 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2514 __unmap_hugepage_range(iter_vma,
2515 address, address + huge_page_size(h),
2516 page);
2517 }
2518 mutex_unlock(&mapping->i_mmap_mutex);
2519
2520 return 1;
2521}
2522
2523/*
2524 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2525 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2526 * cannot race with other handlers or page migration.
2527 * Keep the pte_same checks anyway to make transition from the mutex easier.
2528 */
2529static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2530 unsigned long address, pte_t *ptep, pte_t pte,
2531 struct page *pagecache_page)
2532{
2533 struct hstate *h = hstate_vma(vma);
2534 struct page *old_page, *new_page;
2535 int avoidcopy;
2536 int outside_reserve = 0;
2537
2538 old_page = pte_page(pte);
2539
2540retry_avoidcopy:
2541 /* If no-one else is actually using this page, avoid the copy
2542 * and just make the page writable */
2543 avoidcopy = (page_mapcount(old_page) == 1);
2544 if (avoidcopy) {
2545 if (PageAnon(old_page))
2546 page_move_anon_rmap(old_page, vma, address);
2547 set_huge_ptep_writable(vma, address, ptep);
2548 return 0;
2549 }
2550
2551 /*
2552 * If the process that created a MAP_PRIVATE mapping is about to
2553 * perform a COW due to a shared page count, attempt to satisfy
2554 * the allocation without using the existing reserves. The pagecache
2555 * page is used to determine if the reserve at this address was
2556 * consumed or not. If reserves were used, a partial faulted mapping
2557 * at the time of fork() could consume its reserves on COW instead
2558 * of the full address range.
2559 */
2560 if (!(vma->vm_flags & VM_MAYSHARE) &&
2561 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2562 old_page != pagecache_page)
2563 outside_reserve = 1;
2564
2565 page_cache_get(old_page);
2566
2567 /* Drop page_table_lock as buddy allocator may be called */
2568 spin_unlock(&mm->page_table_lock);
2569 new_page = alloc_huge_page(vma, address, outside_reserve);
2570
2571 if (IS_ERR(new_page)) {
2572 page_cache_release(old_page);
2573
2574 /*
2575 * If a process owning a MAP_PRIVATE mapping fails to COW,
2576 * it is due to references held by a child and an insufficient
2577 * huge page pool. To guarantee the original mappers
2578 * reliability, unmap the page from child processes. The child
2579 * may get SIGKILLed if it later faults.
2580 */
2581 if (outside_reserve) {
2582 BUG_ON(huge_pte_none(pte));
2583 if (unmap_ref_private(mm, vma, old_page, address)) {
2584 BUG_ON(huge_pte_none(pte));
2585 spin_lock(&mm->page_table_lock);
2586 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2587 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2588 goto retry_avoidcopy;
2589 /*
2590 * race occurs while re-acquiring page_table_lock, and
2591 * our job is done.
2592 */
2593 return 0;
2594 }
2595 WARN_ON_ONCE(1);
2596 }
2597
2598 /* Caller expects lock to be held */
2599 spin_lock(&mm->page_table_lock);
2600 return -PTR_ERR(new_page);
2601 }
2602
2603 /*
2604 * When the original hugepage is shared one, it does not have
2605 * anon_vma prepared.
2606 */
2607 if (unlikely(anon_vma_prepare(vma))) {
2608 page_cache_release(new_page);
2609 page_cache_release(old_page);
2610 /* Caller expects lock to be held */
2611 spin_lock(&mm->page_table_lock);
2612 return VM_FAULT_OOM;
2613 }
2614
2615 copy_user_huge_page(new_page, old_page, address, vma,
2616 pages_per_huge_page(h));
2617 __SetPageUptodate(new_page);
2618
2619 /*
2620 * Retake the page_table_lock to check for racing updates
2621 * before the page tables are altered
2622 */
2623 spin_lock(&mm->page_table_lock);
2624 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2625 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2626 /* Break COW */
2627 mmu_notifier_invalidate_range_start(mm,
2628 address & huge_page_mask(h),
2629 (address & huge_page_mask(h)) + huge_page_size(h));
2630 huge_ptep_clear_flush(vma, address, ptep);
2631 set_huge_pte_at(mm, address, ptep,
2632 make_huge_pte(vma, new_page, 1));
2633 page_remove_rmap(old_page);
2634 hugepage_add_new_anon_rmap(new_page, vma, address);
2635 /* Make the old page be freed below */
2636 new_page = old_page;
2637 mmu_notifier_invalidate_range_end(mm,
2638 address & huge_page_mask(h),
2639 (address & huge_page_mask(h)) + huge_page_size(h));
2640 }
2641 page_cache_release(new_page);
2642 page_cache_release(old_page);
2643 return 0;
2644}
2645
2646/* Return the pagecache page at a given address within a VMA */
2647static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2648 struct vm_area_struct *vma, unsigned long address)
2649{
2650 struct address_space *mapping;
2651 pgoff_t idx;
2652
2653 mapping = vma->vm_file->f_mapping;
2654 idx = vma_hugecache_offset(h, vma, address);
2655
2656 return find_lock_page(mapping, idx);
2657}
2658
2659/*
2660 * Return whether there is a pagecache page to back given address within VMA.
2661 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2662 */
2663static bool hugetlbfs_pagecache_present(struct hstate *h,
2664 struct vm_area_struct *vma, unsigned long address)
2665{
2666 struct address_space *mapping;
2667 pgoff_t idx;
2668 struct page *page;
2669
2670 mapping = vma->vm_file->f_mapping;
2671 idx = vma_hugecache_offset(h, vma, address);
2672
2673 page = find_get_page(mapping, idx);
2674 if (page)
2675 put_page(page);
2676 return page != NULL;
2677}
2678
2679static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2680 unsigned long address, pte_t *ptep, unsigned int flags)
2681{
2682 struct hstate *h = hstate_vma(vma);
2683 int ret = VM_FAULT_SIGBUS;
2684 int anon_rmap = 0;
2685 pgoff_t idx;
2686 unsigned long size;
2687 struct page *page;
2688 struct address_space *mapping;
2689 pte_t new_pte;
2690
2691 /*
2692 * Currently, we are forced to kill the process in the event the
2693 * original mapper has unmapped pages from the child due to a failed
2694 * COW. Warn that such a situation has occurred as it may not be obvious
2695 */
2696 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2697 printk(KERN_WARNING
2698 "PID %d killed due to inadequate hugepage pool\n",
2699 current->pid);
2700 return ret;
2701 }
2702
2703 mapping = vma->vm_file->f_mapping;
2704 idx = vma_hugecache_offset(h, vma, address);
2705
2706 /*
2707 * Use page lock to guard against racing truncation
2708 * before we get page_table_lock.
2709 */
2710retry:
2711 page = find_lock_page(mapping, idx);
2712 if (!page) {
2713 size = i_size_read(mapping->host) >> huge_page_shift(h);
2714 if (idx >= size)
2715 goto out;
2716 page = alloc_huge_page(vma, address, 0);
2717 if (IS_ERR(page)) {
2718 ret = -PTR_ERR(page);
2719 goto out;
2720 }
2721 clear_huge_page(page, address, pages_per_huge_page(h));
2722 __SetPageUptodate(page);
2723
2724 if (vma->vm_flags & VM_MAYSHARE) {
2725 int err;
2726 struct inode *inode = mapping->host;
2727
2728 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2729 if (err) {
2730 put_page(page);
2731 if (err == -EEXIST)
2732 goto retry;
2733 goto out;
2734 }
2735
2736 spin_lock(&inode->i_lock);
2737 inode->i_blocks += blocks_per_huge_page(h);
2738 spin_unlock(&inode->i_lock);
2739 } else {
2740 lock_page(page);
2741 if (unlikely(anon_vma_prepare(vma))) {
2742 ret = VM_FAULT_OOM;
2743 goto backout_unlocked;
2744 }
2745 anon_rmap = 1;
2746 }
2747 } else {
2748 /*
2749 * If memory error occurs between mmap() and fault, some process
2750 * don't have hwpoisoned swap entry for errored virtual address.
2751 * So we need to block hugepage fault by PG_hwpoison bit check.
2752 */
2753 if (unlikely(PageHWPoison(page))) {
2754 ret = VM_FAULT_HWPOISON |
2755 VM_FAULT_SET_HINDEX(h - hstates);
2756 goto backout_unlocked;
2757 }
2758 }
2759
2760 /*
2761 * If we are going to COW a private mapping later, we examine the
2762 * pending reservations for this page now. This will ensure that
2763 * any allocations necessary to record that reservation occur outside
2764 * the spinlock.
2765 */
2766 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2767 if (vma_needs_reservation(h, vma, address) < 0) {
2768 ret = VM_FAULT_OOM;
2769 goto backout_unlocked;
2770 }
2771
2772 spin_lock(&mm->page_table_lock);
2773 size = i_size_read(mapping->host) >> huge_page_shift(h);
2774 if (idx >= size)
2775 goto backout;
2776
2777 ret = 0;
2778 if (!huge_pte_none(huge_ptep_get(ptep)))
2779 goto backout;
2780
2781 if (anon_rmap)
2782 hugepage_add_new_anon_rmap(page, vma, address);
2783 else
2784 page_dup_rmap(page);
2785 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2786 && (vma->vm_flags & VM_SHARED)));
2787 set_huge_pte_at(mm, address, ptep, new_pte);
2788
2789 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2790 /* Optimization, do the COW without a second fault */
2791 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2792 }
2793
2794 spin_unlock(&mm->page_table_lock);
2795 unlock_page(page);
2796out:
2797 return ret;
2798
2799backout:
2800 spin_unlock(&mm->page_table_lock);
2801backout_unlocked:
2802 unlock_page(page);
2803 put_page(page);
2804 goto out;
2805}
2806
2807int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2808 unsigned long address, unsigned int flags)
2809{
2810 pte_t *ptep;
2811 pte_t entry;
2812 int ret;
2813 struct page *page = NULL;
2814 struct page *pagecache_page = NULL;
2815 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2816 struct hstate *h = hstate_vma(vma);
2817 int need_wait_lock = 0;
2818
2819 address &= huge_page_mask(h);
2820
2821 ptep = huge_pte_offset(mm, address);
2822 if (ptep) {
2823 entry = huge_ptep_get(ptep);
2824 if (unlikely(is_hugetlb_entry_migration(entry))) {
2825 migration_entry_wait_huge(mm, ptep);
2826 return 0;
2827 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2828 return VM_FAULT_HWPOISON_LARGE |
2829 VM_FAULT_SET_HINDEX(h - hstates);
2830 }
2831
2832 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2833 if (!ptep)
2834 return VM_FAULT_OOM;
2835
2836 /*
2837 * Serialize hugepage allocation and instantiation, so that we don't
2838 * get spurious allocation failures if two CPUs race to instantiate
2839 * the same page in the page cache.
2840 */
2841 mutex_lock(&hugetlb_instantiation_mutex);
2842 entry = huge_ptep_get(ptep);
2843 if (huge_pte_none(entry)) {
2844 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2845 goto out_mutex;
2846 }
2847
2848 ret = 0;
2849
2850 /*
2851 * entry could be a migration/hwpoison entry at this point, so this
2852 * check prevents the kernel from going below assuming that we have
2853 * a active hugepage in pagecache. This goto expects the 2nd page fault,
2854 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
2855 * handle it.
2856 */
2857 if (!pte_present(entry))
2858 goto out_mutex;
2859
2860 /*
2861 * If we are going to COW the mapping later, we examine the pending
2862 * reservations for this page now. This will ensure that any
2863 * allocations necessary to record that reservation occur outside the
2864 * spinlock. For private mappings, we also lookup the pagecache
2865 * page now as it is used to determine if a reservation has been
2866 * consumed.
2867 */
2868 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2869 if (vma_needs_reservation(h, vma, address) < 0) {
2870 ret = VM_FAULT_OOM;
2871 goto out_mutex;
2872 }
2873
2874 if (!(vma->vm_flags & VM_MAYSHARE))
2875 pagecache_page = hugetlbfs_pagecache_page(h,
2876 vma, address);
2877 }
2878
2879 spin_lock(&mm->page_table_lock);
2880
2881 /* Check for a racing update before calling hugetlb_cow */
2882 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2883 goto out_page_table_lock;
2884
2885 /*
2886 * hugetlb_cow() requires page locks of pte_page(entry) and
2887 * pagecache_page, so here we need take the former one
2888 * when page != pagecache_page or !pagecache_page.
2889 */
2890 page = pte_page(entry);
2891 if (page != pagecache_page)
2892 if (!trylock_page(page)) {
2893 need_wait_lock = 1;
2894 goto out_page_table_lock;
2895 }
2896
2897 get_page(page);
2898
2899
2900 if (flags & FAULT_FLAG_WRITE) {
2901 if (!pte_write(entry)) {
2902 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2903 pagecache_page);
2904 goto out_put_page;
2905 }
2906 entry = pte_mkdirty(entry);
2907 }
2908 entry = pte_mkyoung(entry);
2909 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2910 flags & FAULT_FLAG_WRITE))
2911 update_mmu_cache(vma, address, ptep);
2912
2913out_put_page:
2914 if (page != pagecache_page)
2915 unlock_page(page);
2916 put_page(page);
2917out_page_table_lock:
2918 spin_unlock(&mm->page_table_lock);
2919
2920 if (pagecache_page) {
2921 unlock_page(pagecache_page);
2922 put_page(pagecache_page);
2923 }
2924 if (page != pagecache_page)
2925 unlock_page(page);
2926 put_page(page);
2927
2928out_mutex:
2929 mutex_unlock(&hugetlb_instantiation_mutex);
2930
2931 return ret;
2932}
2933
2934/* Can be overriden by architectures */
2935__attribute__((weak)) struct page *
2936follow_huge_pud(struct mm_struct *mm, unsigned long address,
2937 pud_t *pud, int write)
2938{
2939 BUG();
2940 return NULL;
2941}
2942
2943int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2944 struct page **pages, struct vm_area_struct **vmas,
2945 unsigned long *position, int *length, int i,
2946 unsigned int flags)
2947{
2948 unsigned long pfn_offset;
2949 unsigned long vaddr = *position;
2950 int remainder = *length;
2951 struct hstate *h = hstate_vma(vma);
2952
2953 spin_lock(&mm->page_table_lock);
2954 while (vaddr < vma->vm_end && remainder) {
2955 pte_t *pte;
2956 int absent;
2957 struct page *page;
2958
2959 /*
2960 * Some archs (sparc64, sh*) have multiple pte_ts to
2961 * each hugepage. We have to make sure we get the
2962 * first, for the page indexing below to work.
2963 */
2964 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2965 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2966
2967 /*
2968 * When coredumping, it suits get_dump_page if we just return
2969 * an error where there's an empty slot with no huge pagecache
2970 * to back it. This way, we avoid allocating a hugepage, and
2971 * the sparse dumpfile avoids allocating disk blocks, but its
2972 * huge holes still show up with zeroes where they need to be.
2973 */
2974 if (absent && (flags & FOLL_DUMP) &&
2975 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2976 remainder = 0;
2977 break;
2978 }
2979
2980 /*
2981 * We need call hugetlb_fault for both hugepages under migration
2982 * (in which case hugetlb_fault waits for the migration,) and
2983 * hwpoisoned hugepages (in which case we need to prevent the
2984 * caller from accessing to them.) In order to do this, we use
2985 * here is_swap_pte instead of is_hugetlb_entry_migration and
2986 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2987 * both cases, and because we can't follow correct pages
2988 * directly from any kind of swap entries.
2989 */
2990 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2991 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2992 int ret;
2993
2994 spin_unlock(&mm->page_table_lock);
2995 ret = hugetlb_fault(mm, vma, vaddr,
2996 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2997 spin_lock(&mm->page_table_lock);
2998 if (!(ret & VM_FAULT_ERROR))
2999 continue;
3000
3001 remainder = 0;
3002 break;
3003 }
3004
3005 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3006 page = pte_page(huge_ptep_get(pte));
3007same_page:
3008 if (pages) {
3009 pages[i] = mem_map_offset(page, pfn_offset);
3010 get_page(pages[i]);
3011 }
3012
3013 if (vmas)
3014 vmas[i] = vma;
3015
3016 vaddr += PAGE_SIZE;
3017 ++pfn_offset;
3018 --remainder;
3019 ++i;
3020 if (vaddr < vma->vm_end && remainder &&
3021 pfn_offset < pages_per_huge_page(h)) {
3022 /*
3023 * We use pfn_offset to avoid touching the pageframes
3024 * of this compound page.
3025 */
3026 goto same_page;
3027 }
3028 }
3029 spin_unlock(&mm->page_table_lock);
3030 *length = remainder;
3031 *position = vaddr;
3032
3033 return i ? i : -EFAULT;
3034}
3035
3036void hugetlb_change_protection(struct vm_area_struct *vma,
3037 unsigned long address, unsigned long end, pgprot_t newprot)
3038{
3039 struct mm_struct *mm = vma->vm_mm;
3040 unsigned long start = address;
3041 pte_t *ptep;
3042 pte_t pte;
3043 struct hstate *h = hstate_vma(vma);
3044
3045 BUG_ON(address >= end);
3046 flush_cache_range(vma, address, end);
3047
3048 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3049 spin_lock(&mm->page_table_lock);
3050 for (; address < end; address += huge_page_size(h)) {
3051 ptep = huge_pte_offset(mm, address);
3052 if (!ptep)
3053 continue;
3054 if (huge_pmd_unshare(mm, &address, ptep))
3055 continue;
3056 pte = huge_ptep_get(ptep);
3057 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
3058 continue;
3059 if (unlikely(is_hugetlb_entry_migration(pte))) {
3060 swp_entry_t entry = pte_to_swp_entry(pte);
3061
3062 if (is_write_migration_entry(entry)) {
3063 pte_t newpte;
3064
3065 make_migration_entry_read(&entry);
3066 newpte = swp_entry_to_pte(entry);
3067 set_huge_pte_at(mm, address, ptep, newpte);
3068 }
3069 continue;
3070 }
3071 if (!huge_pte_none(pte)) {
3072 pte = huge_ptep_get_and_clear(mm, address, ptep);
3073 pte = pte_mkhuge(pte_modify(pte, newprot));
3074 set_huge_pte_at(mm, address, ptep, pte);
3075 }
3076 }
3077 spin_unlock(&mm->page_table_lock);
3078 /*
3079 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3080 * may have cleared our pud entry and done put_page on the page table:
3081 * once we release i_mmap_mutex, another task can do the final put_page
3082 * and that page table be reused and filled with junk.
3083 */
3084 flush_tlb_range(vma, start, end);
3085 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3086}
3087
3088int hugetlb_reserve_pages(struct inode *inode,
3089 long from, long to,
3090 struct vm_area_struct *vma,
3091 vm_flags_t vm_flags)
3092{
3093 long ret, chg;
3094 struct hstate *h = hstate_inode(inode);
3095 struct hugepage_subpool *spool = subpool_inode(inode);
3096
3097 /*
3098 * Only apply hugepage reservation if asked. At fault time, an
3099 * attempt will be made for VM_NORESERVE to allocate a page
3100 * without using reserves
3101 */
3102 if (vm_flags & VM_NORESERVE)
3103 return 0;
3104
3105 /*
3106 * Shared mappings base their reservation on the number of pages that
3107 * are already allocated on behalf of the file. Private mappings need
3108 * to reserve the full area even if read-only as mprotect() may be
3109 * called to make the mapping read-write. Assume !vma is a shm mapping
3110 */
3111 if (!vma || vma->vm_flags & VM_MAYSHARE)
3112 chg = region_chg(&inode->i_mapping->private_list, from, to);
3113 else {
3114 struct resv_map *resv_map = resv_map_alloc();
3115 if (!resv_map)
3116 return -ENOMEM;
3117
3118 chg = to - from;
3119
3120 set_vma_resv_map(vma, resv_map);
3121 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3122 }
3123
3124 if (chg < 0) {
3125 ret = chg;
3126 goto out_err;
3127 }
3128
3129 /* There must be enough pages in the subpool for the mapping */
3130 if (hugepage_subpool_get_pages(spool, chg)) {
3131 ret = -ENOSPC;
3132 goto out_err;
3133 }
3134
3135 /*
3136 * Check enough hugepages are available for the reservation.
3137 * Hand the pages back to the subpool if there are not
3138 */
3139 ret = hugetlb_acct_memory(h, chg);
3140 if (ret < 0) {
3141 hugepage_subpool_put_pages(spool, chg);
3142 goto out_err;
3143 }
3144
3145 /*
3146 * Account for the reservations made. Shared mappings record regions
3147 * that have reservations as they are shared by multiple VMAs.
3148 * When the last VMA disappears, the region map says how much
3149 * the reservation was and the page cache tells how much of
3150 * the reservation was consumed. Private mappings are per-VMA and
3151 * only the consumed reservations are tracked. When the VMA
3152 * disappears, the original reservation is the VMA size and the
3153 * consumed reservations are stored in the map. Hence, nothing
3154 * else has to be done for private mappings here
3155 */
3156 if (!vma || vma->vm_flags & VM_MAYSHARE)
3157 region_add(&inode->i_mapping->private_list, from, to);
3158 return 0;
3159out_err:
3160 if (vma)
3161 resv_map_put(vma);
3162 return ret;
3163}
3164
3165void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3166{
3167 struct hstate *h = hstate_inode(inode);
3168 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3169 struct hugepage_subpool *spool = subpool_inode(inode);
3170
3171 spin_lock(&inode->i_lock);
3172 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3173 spin_unlock(&inode->i_lock);
3174
3175 hugepage_subpool_put_pages(spool, (chg - freed));
3176 hugetlb_acct_memory(h, -(chg - freed));
3177}
3178
3179#ifdef CONFIG_MEMORY_FAILURE
3180
3181/* Should be called in hugetlb_lock */
3182static int is_hugepage_on_freelist(struct page *hpage)
3183{
3184 struct page *page;
3185 struct page *tmp;
3186 struct hstate *h = page_hstate(hpage);
3187 int nid = page_to_nid(hpage);
3188
3189 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3190 if (page == hpage)
3191 return 1;
3192 return 0;
3193}
3194
3195/*
3196 * This function is called from memory failure code.
3197 * Assume the caller holds page lock of the head page.
3198 */
3199int dequeue_hwpoisoned_huge_page(struct page *hpage)
3200{
3201 struct hstate *h = page_hstate(hpage);
3202 int nid = page_to_nid(hpage);
3203 int ret = -EBUSY;
3204
3205 spin_lock(&hugetlb_lock);
3206 if (is_hugepage_on_freelist(hpage)) {
3207 list_del(&hpage->lru);
3208 set_page_refcounted(hpage);
3209 h->free_huge_pages--;
3210 h->free_huge_pages_node[nid]--;
3211 ret = 0;
3212 }
3213 spin_unlock(&hugetlb_lock);
3214 return ret;
3215}
3216#endif