lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * This file is derived from various .h and .c files from the zlib-1.0.4 |
| 3 | * distribution by Jean-loup Gailly and Mark Adler, with some additions |
| 4 | * by Paul Mackerras to aid in implementing Deflate compression and |
| 5 | * decompression for PPP packets. See zlib.h for conditions of |
| 6 | * distribution and use. |
| 7 | * |
| 8 | * Changes that have been made include: |
| 9 | * - added Z_PACKET_FLUSH (see zlib.h for details) |
| 10 | * - added inflateIncomp and deflateOutputPending |
| 11 | * - allow strm->next_out to be NULL, meaning discard the output |
| 12 | * |
| 13 | * $Id: zlib.c,v 1.2 2007-06-08 04:02:37 gerg Exp $ |
| 14 | */ |
| 15 | |
| 16 | /* |
| 17 | * ==FILEVERSION 971210== |
| 18 | * |
| 19 | * This marker is used by the Linux installation script to determine |
| 20 | * whether an up-to-date version of this file is already installed. |
| 21 | */ |
| 22 | |
| 23 | #define NO_DUMMY_DECL |
| 24 | #define NO_ZCFUNCS |
| 25 | #define MY_ZCALLOC |
| 26 | |
| 27 | #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL)) |
| 28 | #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */ |
| 29 | #endif |
| 30 | |
| 31 | |
| 32 | /* +++ zutil.h */ |
| 33 | /* zutil.h -- internal interface and configuration of the compression library |
| 34 | * Copyright (C) 1995-1996 Jean-loup Gailly. |
| 35 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 36 | */ |
| 37 | |
| 38 | /* WARNING: this file should *not* be used by applications. It is |
| 39 | part of the implementation of the compression library and is |
| 40 | subject to change. Applications should only use zlib.h. |
| 41 | */ |
| 42 | |
| 43 | /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */ |
| 44 | |
| 45 | #ifndef _Z_UTIL_H |
| 46 | #define _Z_UTIL_H |
| 47 | |
| 48 | #include "zlib.h" |
| 49 | |
| 50 | #if defined(KERNEL) || defined(_KERNEL) |
| 51 | /* Assume this is a *BSD or SVR4 kernel */ |
| 52 | #include <sys/types.h> |
| 53 | #include <sys/time.h> |
| 54 | #include <sys/systm.h> |
| 55 | #undef u |
| 56 | # define HAVE_MEMCPY |
| 57 | # define memcpy(d, s, n) bcopy((s), (d), (n)) |
| 58 | # define memset(d, v, n) bzero((d), (n)) |
| 59 | # define memcmp bcmp |
| 60 | |
| 61 | #else |
| 62 | #if defined(__KERNEL__) |
| 63 | /* Assume this is a Linux kernel */ |
| 64 | #include <linux/string.h> |
| 65 | #define HAVE_MEMCPY |
| 66 | |
| 67 | #else /* not kernel */ |
| 68 | |
| 69 | #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS) |
| 70 | # include <stddef.h> |
| 71 | # include <errno.h> |
| 72 | #else |
| 73 | extern int errno; |
| 74 | #endif |
| 75 | #ifdef STDC |
| 76 | # include <string.h> |
| 77 | # include <stdlib.h> |
| 78 | #endif |
| 79 | #endif /* __KERNEL__ */ |
| 80 | #endif /* _KERNEL || KERNEL */ |
| 81 | |
| 82 | #ifndef local |
| 83 | # define local static |
| 84 | #endif |
| 85 | /* compile with -Dlocal if your debugger can't find static symbols */ |
| 86 | |
| 87 | typedef unsigned char uch; |
| 88 | typedef uch FAR uchf; |
| 89 | typedef unsigned short ush; |
| 90 | typedef ush FAR ushf; |
| 91 | typedef unsigned long ulg; |
| 92 | |
| 93 | extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */ |
| 94 | /* (size given to avoid silly warnings with Visual C++) */ |
| 95 | |
| 96 | #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] |
| 97 | |
| 98 | #define ERR_RETURN(strm,err) \ |
| 99 | return (strm->msg = (char*)ERR_MSG(err), (err)) |
| 100 | /* To be used only when the state is known to be valid */ |
| 101 | |
| 102 | /* common constants */ |
| 103 | |
| 104 | #ifndef DEF_WBITS |
| 105 | # define DEF_WBITS MAX_WBITS |
| 106 | #endif |
| 107 | /* default windowBits for decompression. MAX_WBITS is for compression only */ |
| 108 | |
| 109 | #if MAX_MEM_LEVEL >= 8 |
| 110 | # define DEF_MEM_LEVEL 8 |
| 111 | #else |
| 112 | # define DEF_MEM_LEVEL MAX_MEM_LEVEL |
| 113 | #endif |
| 114 | /* default memLevel */ |
| 115 | |
| 116 | #define STORED_BLOCK 0 |
| 117 | #define STATIC_TREES 1 |
| 118 | #define DYN_TREES 2 |
| 119 | /* The three kinds of block type */ |
| 120 | |
| 121 | #define MIN_MATCH 3 |
| 122 | #define MAX_MATCH 258 |
| 123 | /* The minimum and maximum match lengths */ |
| 124 | |
| 125 | #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ |
| 126 | |
| 127 | /* target dependencies */ |
| 128 | |
| 129 | #ifdef MSDOS |
| 130 | # define OS_CODE 0x00 |
| 131 | # ifdef __TURBOC__ |
| 132 | # include <alloc.h> |
| 133 | # else /* MSC or DJGPP */ |
| 134 | # include <malloc.h> |
| 135 | # endif |
| 136 | #endif |
| 137 | |
| 138 | #ifdef OS2 |
| 139 | # define OS_CODE 0x06 |
| 140 | #endif |
| 141 | |
| 142 | #ifdef WIN32 /* Window 95 & Windows NT */ |
| 143 | # define OS_CODE 0x0b |
| 144 | #endif |
| 145 | |
| 146 | #if defined(VAXC) || defined(VMS) |
| 147 | # define OS_CODE 0x02 |
| 148 | # define FOPEN(name, mode) \ |
| 149 | fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") |
| 150 | #endif |
| 151 | |
| 152 | #ifdef AMIGA |
| 153 | # define OS_CODE 0x01 |
| 154 | #endif |
| 155 | |
| 156 | #if defined(ATARI) || defined(atarist) |
| 157 | # define OS_CODE 0x05 |
| 158 | #endif |
| 159 | |
| 160 | #ifdef MACOS |
| 161 | # define OS_CODE 0x07 |
| 162 | #endif |
| 163 | |
| 164 | #ifdef __50SERIES /* Prime/PRIMOS */ |
| 165 | # define OS_CODE 0x0F |
| 166 | #endif |
| 167 | |
| 168 | #ifdef TOPS20 |
| 169 | # define OS_CODE 0x0a |
| 170 | #endif |
| 171 | |
| 172 | #if defined(_BEOS_) || defined(RISCOS) |
| 173 | # define fdopen(fd,mode) NULL /* No fdopen() */ |
| 174 | #endif |
| 175 | |
| 176 | /* Common defaults */ |
| 177 | |
| 178 | #ifndef OS_CODE |
| 179 | # define OS_CODE 0x03 /* assume Unix */ |
| 180 | #endif |
| 181 | |
| 182 | #ifndef FOPEN |
| 183 | # define FOPEN(name, mode) fopen((name), (mode)) |
| 184 | #endif |
| 185 | |
| 186 | /* functions */ |
| 187 | |
| 188 | #ifdef HAVE_STRERROR |
| 189 | extern char *strerror OF((int)); |
| 190 | # define zstrerror(errnum) strerror(errnum) |
| 191 | #else |
| 192 | # define zstrerror(errnum) "" |
| 193 | #endif |
| 194 | |
| 195 | #if defined(pyr) |
| 196 | # define NO_MEMCPY |
| 197 | #endif |
| 198 | #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER) |
| 199 | /* Use our own functions for small and medium model with MSC <= 5.0. |
| 200 | * You may have to use the same strategy for Borland C (untested). |
| 201 | */ |
| 202 | # define NO_MEMCPY |
| 203 | #endif |
| 204 | #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) |
| 205 | # define HAVE_MEMCPY |
| 206 | #endif |
| 207 | #ifdef HAVE_MEMCPY |
| 208 | # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ |
| 209 | # define zmemcpy _fmemcpy |
| 210 | # define zmemcmp _fmemcmp |
| 211 | # define zmemzero(dest, len) _fmemset(dest, 0, len) |
| 212 | # else |
| 213 | # define zmemcpy memcpy |
| 214 | # define zmemcmp memcmp |
| 215 | # define zmemzero(dest, len) memset(dest, 0, len) |
| 216 | # endif |
| 217 | #else |
| 218 | extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len)); |
| 219 | extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len)); |
| 220 | extern void zmemzero OF((Bytef* dest, uInt len)); |
| 221 | #endif |
| 222 | |
| 223 | /* Diagnostic functions */ |
| 224 | #ifdef DEBUG_ZLIB |
| 225 | # include <stdio.h> |
| 226 | # ifndef verbose |
| 227 | # define verbose 0 |
| 228 | # endif |
| 229 | extern void z_error OF((char *m)); |
| 230 | # define Assert(cond,msg) {if(!(cond)) z_error(msg);} |
| 231 | # define Trace(x) fprintf x |
| 232 | # define Tracev(x) {if (verbose) fprintf x ;} |
| 233 | # define Tracevv(x) {if (verbose>1) fprintf x ;} |
| 234 | # define Tracec(c,x) {if (verbose && (c)) fprintf x ;} |
| 235 | # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;} |
| 236 | #else |
| 237 | # define Assert(cond,msg) |
| 238 | # define Trace(x) |
| 239 | # define Tracev(x) |
| 240 | # define Tracevv(x) |
| 241 | # define Tracec(c,x) |
| 242 | # define Tracecv(c,x) |
| 243 | #endif |
| 244 | |
| 245 | |
| 246 | typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len)); |
| 247 | |
| 248 | voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); |
| 249 | void zcfree OF((voidpf opaque, voidpf ptr)); |
| 250 | |
| 251 | #define ZALLOC(strm, items, size) \ |
| 252 | (*((strm)->zalloc))((strm)->opaque, (items), (size)) |
| 253 | #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) |
| 254 | #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} |
| 255 | |
| 256 | #endif /* _Z_UTIL_H */ |
| 257 | /* --- zutil.h */ |
| 258 | |
| 259 | /* +++ deflate.h */ |
| 260 | /* deflate.h -- internal compression state |
| 261 | * Copyright (C) 1995-1996 Jean-loup Gailly |
| 262 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 263 | */ |
| 264 | |
| 265 | /* WARNING: this file should *not* be used by applications. It is |
| 266 | part of the implementation of the compression library and is |
| 267 | subject to change. Applications should only use zlib.h. |
| 268 | */ |
| 269 | |
| 270 | /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */ |
| 271 | |
| 272 | #ifndef _DEFLATE_H |
| 273 | #define _DEFLATE_H |
| 274 | |
| 275 | /* #include "zutil.h" */ |
| 276 | |
| 277 | /* =========================================================================== |
| 278 | * Internal compression state. |
| 279 | */ |
| 280 | |
| 281 | #define LENGTH_CODES 29 |
| 282 | /* number of length codes, not counting the special END_BLOCK code */ |
| 283 | |
| 284 | #define LITERALS 256 |
| 285 | /* number of literal bytes 0..255 */ |
| 286 | |
| 287 | #define L_CODES (LITERALS+1+LENGTH_CODES) |
| 288 | /* number of Literal or Length codes, including the END_BLOCK code */ |
| 289 | |
| 290 | #define D_CODES 30 |
| 291 | /* number of distance codes */ |
| 292 | |
| 293 | #define BL_CODES 19 |
| 294 | /* number of codes used to transfer the bit lengths */ |
| 295 | |
| 296 | #define HEAP_SIZE (2*L_CODES+1) |
| 297 | /* maximum heap size */ |
| 298 | |
| 299 | #define MAX_BITS 15 |
| 300 | /* All codes must not exceed MAX_BITS bits */ |
| 301 | |
| 302 | #define INIT_STATE 42 |
| 303 | #define BUSY_STATE 113 |
| 304 | #define FINISH_STATE 666 |
| 305 | /* Stream status */ |
| 306 | |
| 307 | |
| 308 | /* Data structure describing a single value and its code string. */ |
| 309 | typedef struct ct_data_s { |
| 310 | union { |
| 311 | ush freq; /* frequency count */ |
| 312 | ush code; /* bit string */ |
| 313 | } fc; |
| 314 | union { |
| 315 | ush dad; /* father node in Huffman tree */ |
| 316 | ush len; /* length of bit string */ |
| 317 | } dl; |
| 318 | } FAR ct_data; |
| 319 | |
| 320 | #define Freq fc.freq |
| 321 | #define Code fc.code |
| 322 | #define Dad dl.dad |
| 323 | #define Len dl.len |
| 324 | |
| 325 | typedef struct static_tree_desc_s static_tree_desc; |
| 326 | |
| 327 | typedef struct tree_desc_s { |
| 328 | ct_data *dyn_tree; /* the dynamic tree */ |
| 329 | int max_code; /* largest code with non zero frequency */ |
| 330 | static_tree_desc *stat_desc; /* the corresponding static tree */ |
| 331 | } FAR tree_desc; |
| 332 | |
| 333 | typedef ush Pos; |
| 334 | typedef Pos FAR Posf; |
| 335 | typedef unsigned IPos; |
| 336 | |
| 337 | /* A Pos is an index in the character window. We use short instead of int to |
| 338 | * save space in the various tables. IPos is used only for parameter passing. |
| 339 | */ |
| 340 | |
| 341 | typedef struct deflate_state { |
| 342 | z_streamp strm; /* pointer back to this zlib stream */ |
| 343 | int status; /* as the name implies */ |
| 344 | Bytef *pending_buf; /* output still pending */ |
| 345 | ulg pending_buf_size; /* size of pending_buf */ |
| 346 | Bytef *pending_out; /* next pending byte to output to the stream */ |
| 347 | int pending; /* nb of bytes in the pending buffer */ |
| 348 | int noheader; /* suppress zlib header and adler32 */ |
| 349 | Byte data_type; /* UNKNOWN, BINARY or ASCII */ |
| 350 | Byte method; /* STORED (for zip only) or DEFLATED */ |
| 351 | int last_flush; /* value of flush param for previous deflate call */ |
| 352 | |
| 353 | /* used by deflate.c: */ |
| 354 | |
| 355 | uInt w_size; /* LZ77 window size (32K by default) */ |
| 356 | uInt w_bits; /* log2(w_size) (8..16) */ |
| 357 | uInt w_mask; /* w_size - 1 */ |
| 358 | |
| 359 | Bytef *window; |
| 360 | /* Sliding window. Input bytes are read into the second half of the window, |
| 361 | * and move to the first half later to keep a dictionary of at least wSize |
| 362 | * bytes. With this organization, matches are limited to a distance of |
| 363 | * wSize-MAX_MATCH bytes, but this ensures that IO is always |
| 364 | * performed with a length multiple of the block size. Also, it limits |
| 365 | * the window size to 64K, which is quite useful on MSDOS. |
| 366 | * To do: use the user input buffer as sliding window. |
| 367 | */ |
| 368 | |
| 369 | ulg window_size; |
| 370 | /* Actual size of window: 2*wSize, except when the user input buffer |
| 371 | * is directly used as sliding window. |
| 372 | */ |
| 373 | |
| 374 | Posf *prev; |
| 375 | /* Link to older string with same hash index. To limit the size of this |
| 376 | * array to 64K, this link is maintained only for the last 32K strings. |
| 377 | * An index in this array is thus a window index modulo 32K. |
| 378 | */ |
| 379 | |
| 380 | Posf *head; /* Heads of the hash chains or NIL. */ |
| 381 | |
| 382 | uInt ins_h; /* hash index of string to be inserted */ |
| 383 | uInt hash_size; /* number of elements in hash table */ |
| 384 | uInt hash_bits; /* log2(hash_size) */ |
| 385 | uInt hash_mask; /* hash_size-1 */ |
| 386 | |
| 387 | uInt hash_shift; |
| 388 | /* Number of bits by which ins_h must be shifted at each input |
| 389 | * step. It must be such that after MIN_MATCH steps, the oldest |
| 390 | * byte no longer takes part in the hash key, that is: |
| 391 | * hash_shift * MIN_MATCH >= hash_bits |
| 392 | */ |
| 393 | |
| 394 | long block_start; |
| 395 | /* Window position at the beginning of the current output block. Gets |
| 396 | * negative when the window is moved backwards. |
| 397 | */ |
| 398 | |
| 399 | uInt match_length; /* length of best match */ |
| 400 | IPos prev_match; /* previous match */ |
| 401 | int match_available; /* set if previous match exists */ |
| 402 | uInt strstart; /* start of string to insert */ |
| 403 | uInt match_start; /* start of matching string */ |
| 404 | uInt lookahead; /* number of valid bytes ahead in window */ |
| 405 | |
| 406 | uInt prev_length; |
| 407 | /* Length of the best match at previous step. Matches not greater than this |
| 408 | * are discarded. This is used in the lazy match evaluation. |
| 409 | */ |
| 410 | |
| 411 | uInt max_chain_length; |
| 412 | /* To speed up deflation, hash chains are never searched beyond this |
| 413 | * length. A higher limit improves compression ratio but degrades the |
| 414 | * speed. |
| 415 | */ |
| 416 | |
| 417 | uInt max_lazy_match; |
| 418 | /* Attempt to find a better match only when the current match is strictly |
| 419 | * smaller than this value. This mechanism is used only for compression |
| 420 | * levels >= 4. |
| 421 | */ |
| 422 | # define max_insert_length max_lazy_match |
| 423 | /* Insert new strings in the hash table only if the match length is not |
| 424 | * greater than this length. This saves time but degrades compression. |
| 425 | * max_insert_length is used only for compression levels <= 3. |
| 426 | */ |
| 427 | |
| 428 | int level; /* compression level (1..9) */ |
| 429 | int strategy; /* favor or force Huffman coding*/ |
| 430 | |
| 431 | uInt good_match; |
| 432 | /* Use a faster search when the previous match is longer than this */ |
| 433 | |
| 434 | int nice_match; /* Stop searching when current match exceeds this */ |
| 435 | |
| 436 | /* used by trees.c: */ |
| 437 | /* Didn't use ct_data typedef below to supress compiler warning */ |
| 438 | struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ |
| 439 | struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ |
| 440 | struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ |
| 441 | |
| 442 | struct tree_desc_s l_desc; /* desc. for literal tree */ |
| 443 | struct tree_desc_s d_desc; /* desc. for distance tree */ |
| 444 | struct tree_desc_s bl_desc; /* desc. for bit length tree */ |
| 445 | |
| 446 | ush bl_count[MAX_BITS+1]; |
| 447 | /* number of codes at each bit length for an optimal tree */ |
| 448 | |
| 449 | int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ |
| 450 | int heap_len; /* number of elements in the heap */ |
| 451 | int heap_max; /* element of largest frequency */ |
| 452 | /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. |
| 453 | * The same heap array is used to build all trees. |
| 454 | */ |
| 455 | |
| 456 | uch depth[2*L_CODES+1]; |
| 457 | /* Depth of each subtree used as tie breaker for trees of equal frequency |
| 458 | */ |
| 459 | |
| 460 | uchf *l_buf; /* buffer for literals or lengths */ |
| 461 | |
| 462 | uInt lit_bufsize; |
| 463 | /* Size of match buffer for literals/lengths. There are 4 reasons for |
| 464 | * limiting lit_bufsize to 64K: |
| 465 | * - frequencies can be kept in 16 bit counters |
| 466 | * - if compression is not successful for the first block, all input |
| 467 | * data is still in the window so we can still emit a stored block even |
| 468 | * when input comes from standard input. (This can also be done for |
| 469 | * all blocks if lit_bufsize is not greater than 32K.) |
| 470 | * - if compression is not successful for a file smaller than 64K, we can |
| 471 | * even emit a stored file instead of a stored block (saving 5 bytes). |
| 472 | * This is applicable only for zip (not gzip or zlib). |
| 473 | * - creating new Huffman trees less frequently may not provide fast |
| 474 | * adaptation to changes in the input data statistics. (Take for |
| 475 | * example a binary file with poorly compressible code followed by |
| 476 | * a highly compressible string table.) Smaller buffer sizes give |
| 477 | * fast adaptation but have of course the overhead of transmitting |
| 478 | * trees more frequently. |
| 479 | * - I can't count above 4 |
| 480 | */ |
| 481 | |
| 482 | uInt last_lit; /* running index in l_buf */ |
| 483 | |
| 484 | ushf *d_buf; |
| 485 | /* Buffer for distances. To simplify the code, d_buf and l_buf have |
| 486 | * the same number of elements. To use different lengths, an extra flag |
| 487 | * array would be necessary. |
| 488 | */ |
| 489 | |
| 490 | ulg opt_len; /* bit length of current block with optimal trees */ |
| 491 | ulg static_len; /* bit length of current block with static trees */ |
| 492 | ulg compressed_len; /* total bit length of compressed file */ |
| 493 | uInt matches; /* number of string matches in current block */ |
| 494 | int last_eob_len; /* bit length of EOB code for last block */ |
| 495 | |
| 496 | #ifdef DEBUG_ZLIB |
| 497 | ulg bits_sent; /* bit length of the compressed data */ |
| 498 | #endif |
| 499 | |
| 500 | ush bi_buf; |
| 501 | /* Output buffer. bits are inserted starting at the bottom (least |
| 502 | * significant bits). |
| 503 | */ |
| 504 | int bi_valid; |
| 505 | /* Number of valid bits in bi_buf. All bits above the last valid bit |
| 506 | * are always zero. |
| 507 | */ |
| 508 | |
| 509 | } FAR deflate_state; |
| 510 | |
| 511 | /* Output a byte on the stream. |
| 512 | * IN assertion: there is enough room in pending_buf. |
| 513 | */ |
| 514 | #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} |
| 515 | |
| 516 | |
| 517 | #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) |
| 518 | /* Minimum amount of lookahead, except at the end of the input file. |
| 519 | * See deflate.c for comments about the MIN_MATCH+1. |
| 520 | */ |
| 521 | |
| 522 | #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) |
| 523 | /* In order to simplify the code, particularly on 16 bit machines, match |
| 524 | * distances are limited to MAX_DIST instead of WSIZE. |
| 525 | */ |
| 526 | |
| 527 | /* in trees.c */ |
| 528 | void _tr_init OF((deflate_state *s)); |
| 529 | int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); |
| 530 | ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, |
| 531 | int eof)); |
| 532 | void _tr_align OF((deflate_state *s)); |
| 533 | void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, |
| 534 | int eof)); |
| 535 | void _tr_stored_type_only OF((deflate_state *)); |
| 536 | |
| 537 | #endif |
| 538 | /* --- deflate.h */ |
| 539 | |
| 540 | /* +++ deflate.c */ |
| 541 | /* deflate.c -- compress data using the deflation algorithm |
| 542 | * Copyright (C) 1995-1996 Jean-loup Gailly. |
| 543 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 544 | */ |
| 545 | |
| 546 | /* |
| 547 | * ALGORITHM |
| 548 | * |
| 549 | * The "deflation" process depends on being able to identify portions |
| 550 | * of the input text which are identical to earlier input (within a |
| 551 | * sliding window trailing behind the input currently being processed). |
| 552 | * |
| 553 | * The most straightforward technique turns out to be the fastest for |
| 554 | * most input files: try all possible matches and select the longest. |
| 555 | * The key feature of this algorithm is that insertions into the string |
| 556 | * dictionary are very simple and thus fast, and deletions are avoided |
| 557 | * completely. Insertions are performed at each input character, whereas |
| 558 | * string matches are performed only when the previous match ends. So it |
| 559 | * is preferable to spend more time in matches to allow very fast string |
| 560 | * insertions and avoid deletions. The matching algorithm for small |
| 561 | * strings is inspired from that of Rabin & Karp. A brute force approach |
| 562 | * is used to find longer strings when a small match has been found. |
| 563 | * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
| 564 | * (by Leonid Broukhis). |
| 565 | * A previous version of this file used a more sophisticated algorithm |
| 566 | * (by Fiala and Greene) which is guaranteed to run in linear amortized |
| 567 | * time, but has a larger average cost, uses more memory and is patented. |
| 568 | * However the F&G algorithm may be faster for some highly redundant |
| 569 | * files if the parameter max_chain_length (described below) is too large. |
| 570 | * |
| 571 | * ACKNOWLEDGEMENTS |
| 572 | * |
| 573 | * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
| 574 | * I found it in 'freeze' written by Leonid Broukhis. |
| 575 | * Thanks to many people for bug reports and testing. |
| 576 | * |
| 577 | * REFERENCES |
| 578 | * |
| 579 | * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
| 580 | * Available in ftp://ds.internic.net/rfc/rfc1951.txt |
| 581 | * |
| 582 | * A description of the Rabin and Karp algorithm is given in the book |
| 583 | * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
| 584 | * |
| 585 | * Fiala,E.R., and Greene,D.H. |
| 586 | * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
| 587 | * |
| 588 | */ |
| 589 | |
| 590 | /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */ |
| 591 | |
| 592 | /* #include "deflate.h" */ |
| 593 | |
| 594 | char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly "; |
| 595 | /* |
| 596 | If you use the zlib library in a product, an acknowledgment is welcome |
| 597 | in the documentation of your product. If for some reason you cannot |
| 598 | include such an acknowledgment, I would appreciate that you keep this |
| 599 | copyright string in the executable of your product. |
| 600 | */ |
| 601 | |
| 602 | /* =========================================================================== |
| 603 | * Function prototypes. |
| 604 | */ |
| 605 | typedef enum { |
| 606 | need_more, /* block not completed, need more input or more output */ |
| 607 | block_done, /* block flush performed */ |
| 608 | finish_started, /* finish started, need only more output at next deflate */ |
| 609 | finish_done /* finish done, accept no more input or output */ |
| 610 | } block_state; |
| 611 | |
| 612 | typedef block_state (*compress_func) OF((deflate_state *s, int flush)); |
| 613 | /* Compression function. Returns the block state after the call. */ |
| 614 | |
| 615 | local void fill_window OF((deflate_state *s)); |
| 616 | local block_state deflate_stored OF((deflate_state *s, int flush)); |
| 617 | local block_state deflate_fast OF((deflate_state *s, int flush)); |
| 618 | local block_state deflate_slow OF((deflate_state *s, int flush)); |
| 619 | local void lm_init OF((deflate_state *s)); |
| 620 | local void putShortMSB OF((deflate_state *s, uInt b)); |
| 621 | local void flush_pending OF((z_streamp strm)); |
| 622 | local int read_buf OF((z_streamp strm, charf *buf, unsigned size)); |
| 623 | #ifdef ASMV |
| 624 | void match_init OF((void)); /* asm code initialization */ |
| 625 | uInt longest_match OF((deflate_state *s, IPos cur_match)); |
| 626 | #else |
| 627 | local uInt longest_match OF((deflate_state *s, IPos cur_match)); |
| 628 | #endif |
| 629 | |
| 630 | #ifdef DEBUG_ZLIB |
| 631 | local void check_match OF((deflate_state *s, IPos start, IPos match, |
| 632 | int length)); |
| 633 | #endif |
| 634 | |
| 635 | /* =========================================================================== |
| 636 | * Local data |
| 637 | */ |
| 638 | |
| 639 | #define NIL 0 |
| 640 | /* Tail of hash chains */ |
| 641 | |
| 642 | #ifndef TOO_FAR |
| 643 | # define TOO_FAR 4096 |
| 644 | #endif |
| 645 | /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ |
| 646 | |
| 647 | #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) |
| 648 | /* Minimum amount of lookahead, except at the end of the input file. |
| 649 | * See deflate.c for comments about the MIN_MATCH+1. |
| 650 | */ |
| 651 | |
| 652 | /* Values for max_lazy_match, good_match and max_chain_length, depending on |
| 653 | * the desired pack level (0..9). The values given below have been tuned to |
| 654 | * exclude worst case performance for pathological files. Better values may be |
| 655 | * found for specific files. |
| 656 | */ |
| 657 | typedef struct config_s { |
| 658 | ush good_length; /* reduce lazy search above this match length */ |
| 659 | ush max_lazy; /* do not perform lazy search above this match length */ |
| 660 | ush nice_length; /* quit search above this match length */ |
| 661 | ush max_chain; |
| 662 | compress_func func; |
| 663 | } config; |
| 664 | |
| 665 | local config configuration_table[10] = { |
| 666 | /* good lazy nice chain */ |
| 667 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
| 668 | /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */ |
| 669 | /* 2 */ {4, 5, 16, 8, deflate_fast}, |
| 670 | /* 3 */ {4, 6, 32, 32, deflate_fast}, |
| 671 | |
| 672 | /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
| 673 | /* 5 */ {8, 16, 32, 32, deflate_slow}, |
| 674 | /* 6 */ {8, 16, 128, 128, deflate_slow}, |
| 675 | /* 7 */ {8, 32, 128, 256, deflate_slow}, |
| 676 | /* 8 */ {32, 128, 258, 1024, deflate_slow}, |
| 677 | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */ |
| 678 | |
| 679 | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
| 680 | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
| 681 | * meaning. |
| 682 | */ |
| 683 | |
| 684 | #define EQUAL 0 |
| 685 | /* result of memcmp for equal strings */ |
| 686 | |
| 687 | #ifndef NO_DUMMY_DECL |
| 688 | struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ |
| 689 | #endif |
| 690 | |
| 691 | /* =========================================================================== |
| 692 | * Update a hash value with the given input byte |
| 693 | * IN assertion: all calls to to UPDATE_HASH are made with consecutive |
| 694 | * input characters, so that a running hash key can be computed from the |
| 695 | * previous key instead of complete recalculation each time. |
| 696 | */ |
| 697 | #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) |
| 698 | |
| 699 | |
| 700 | /* =========================================================================== |
| 701 | * Insert string str in the dictionary and set match_head to the previous head |
| 702 | * of the hash chain (the most recent string with same hash key). Return |
| 703 | * the previous length of the hash chain. |
| 704 | * IN assertion: all calls to to INSERT_STRING are made with consecutive |
| 705 | * input characters and the first MIN_MATCH bytes of str are valid |
| 706 | * (except for the last MIN_MATCH-1 bytes of the input file). |
| 707 | */ |
| 708 | #define INSERT_STRING(s, str, match_head) \ |
| 709 | (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
| 710 | s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ |
| 711 | s->head[s->ins_h] = (Pos)(str)) |
| 712 | |
| 713 | /* =========================================================================== |
| 714 | * Initialize the hash table (avoiding 64K overflow for 16 bit systems). |
| 715 | * prev[] will be initialized on the fly. |
| 716 | */ |
| 717 | #define CLEAR_HASH(s) \ |
| 718 | s->head[s->hash_size-1] = NIL; \ |
| 719 | zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); |
| 720 | |
| 721 | /* ========================================================================= */ |
| 722 | int deflateInit_(strm, level, version, stream_size) |
| 723 | z_streamp strm; |
| 724 | int level; |
| 725 | const char *version; |
| 726 | int stream_size; |
| 727 | { |
| 728 | return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, |
| 729 | Z_DEFAULT_STRATEGY, version, stream_size); |
| 730 | /* To do: ignore strm->next_in if we use it as window */ |
| 731 | } |
| 732 | |
| 733 | /* ========================================================================= */ |
| 734 | int deflateInit2_(strm, level, method, windowBits, memLevel, strategy, |
| 735 | version, stream_size) |
| 736 | z_streamp strm; |
| 737 | int level; |
| 738 | int method; |
| 739 | int windowBits; |
| 740 | int memLevel; |
| 741 | int strategy; |
| 742 | const char *version; |
| 743 | int stream_size; |
| 744 | { |
| 745 | deflate_state *s; |
| 746 | int noheader = 0; |
| 747 | static char* my_version = ZLIB_VERSION; |
| 748 | |
| 749 | ushf *overlay; |
| 750 | /* We overlay pending_buf and d_buf+l_buf. This works since the average |
| 751 | * output size for (length,distance) codes is <= 24 bits. |
| 752 | */ |
| 753 | |
| 754 | if (version == Z_NULL || version[0] != my_version[0] || |
| 755 | stream_size != sizeof(z_stream)) { |
| 756 | return Z_VERSION_ERROR; |
| 757 | } |
| 758 | if (strm == Z_NULL) return Z_STREAM_ERROR; |
| 759 | |
| 760 | strm->msg = Z_NULL; |
| 761 | #ifndef NO_ZCFUNCS |
| 762 | if (strm->zalloc == Z_NULL) { |
| 763 | strm->zalloc = zcalloc; |
| 764 | strm->opaque = (voidpf)0; |
| 765 | } |
| 766 | if (strm->zfree == Z_NULL) strm->zfree = zcfree; |
| 767 | #endif |
| 768 | |
| 769 | if (level == Z_DEFAULT_COMPRESSION) level = 6; |
| 770 | |
| 771 | if (windowBits < 0) { /* undocumented feature: suppress zlib header */ |
| 772 | noheader = 1; |
| 773 | windowBits = -windowBits; |
| 774 | } |
| 775 | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || |
| 776 | windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || |
| 777 | strategy < 0 || strategy > Z_HUFFMAN_ONLY) { |
| 778 | return Z_STREAM_ERROR; |
| 779 | } |
| 780 | s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); |
| 781 | if (s == Z_NULL) return Z_MEM_ERROR; |
| 782 | strm->state = (struct internal_state FAR *)s; |
| 783 | s->strm = strm; |
| 784 | |
| 785 | s->noheader = noheader; |
| 786 | s->w_bits = windowBits; |
| 787 | s->w_size = 1 << s->w_bits; |
| 788 | s->w_mask = s->w_size - 1; |
| 789 | |
| 790 | s->hash_bits = memLevel + 7; |
| 791 | s->hash_size = 1 << s->hash_bits; |
| 792 | s->hash_mask = s->hash_size - 1; |
| 793 | s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); |
| 794 | |
| 795 | s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); |
| 796 | s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
| 797 | s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); |
| 798 | |
| 799 | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
| 800 | |
| 801 | overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); |
| 802 | s->pending_buf = (uchf *) overlay; |
| 803 | s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); |
| 804 | |
| 805 | if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || |
| 806 | s->pending_buf == Z_NULL) { |
| 807 | strm->msg = (char*)ERR_MSG(Z_MEM_ERROR); |
| 808 | deflateEnd (strm); |
| 809 | return Z_MEM_ERROR; |
| 810 | } |
| 811 | s->d_buf = overlay + s->lit_bufsize/sizeof(ush); |
| 812 | s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; |
| 813 | |
| 814 | s->level = level; |
| 815 | s->strategy = strategy; |
| 816 | s->method = (Byte)method; |
| 817 | |
| 818 | return deflateReset(strm); |
| 819 | } |
| 820 | |
| 821 | /* ========================================================================= */ |
| 822 | int deflateSetDictionary (strm, dictionary, dictLength) |
| 823 | z_streamp strm; |
| 824 | const Bytef *dictionary; |
| 825 | uInt dictLength; |
| 826 | { |
| 827 | deflate_state *s; |
| 828 | uInt length = dictLength; |
| 829 | uInt n; |
| 830 | IPos hash_head = 0; |
| 831 | |
| 832 | if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) |
| 833 | return Z_STREAM_ERROR; |
| 834 | |
| 835 | s = (deflate_state *) strm->state; |
| 836 | if (s->status != INIT_STATE) return Z_STREAM_ERROR; |
| 837 | |
| 838 | strm->adler = adler32(strm->adler, dictionary, dictLength); |
| 839 | |
| 840 | if (length < MIN_MATCH) return Z_OK; |
| 841 | if (length > MAX_DIST(s)) { |
| 842 | length = MAX_DIST(s); |
| 843 | #ifndef USE_DICT_HEAD |
| 844 | dictionary += dictLength - length; /* use the tail of the dictionary */ |
| 845 | #endif |
| 846 | } |
| 847 | zmemcpy((charf *)s->window, dictionary, length); |
| 848 | s->strstart = length; |
| 849 | s->block_start = (long)length; |
| 850 | |
| 851 | /* Insert all strings in the hash table (except for the last two bytes). |
| 852 | * s->lookahead stays null, so s->ins_h will be recomputed at the next |
| 853 | * call of fill_window. |
| 854 | */ |
| 855 | s->ins_h = s->window[0]; |
| 856 | UPDATE_HASH(s, s->ins_h, s->window[1]); |
| 857 | for (n = 0; n <= length - MIN_MATCH; n++) { |
| 858 | INSERT_STRING(s, n, hash_head); |
| 859 | } |
| 860 | if (hash_head) hash_head = 0; /* to make compiler happy */ |
| 861 | return Z_OK; |
| 862 | } |
| 863 | |
| 864 | /* ========================================================================= */ |
| 865 | int deflateReset (strm) |
| 866 | z_streamp strm; |
| 867 | { |
| 868 | deflate_state *s; |
| 869 | |
| 870 | if (strm == Z_NULL || strm->state == Z_NULL || |
| 871 | strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR; |
| 872 | |
| 873 | strm->total_in = strm->total_out = 0; |
| 874 | strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ |
| 875 | strm->data_type = Z_UNKNOWN; |
| 876 | |
| 877 | s = (deflate_state *)strm->state; |
| 878 | s->pending = 0; |
| 879 | s->pending_out = s->pending_buf; |
| 880 | |
| 881 | if (s->noheader < 0) { |
| 882 | s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ |
| 883 | } |
| 884 | s->status = s->noheader ? BUSY_STATE : INIT_STATE; |
| 885 | strm->adler = 1; |
| 886 | s->last_flush = Z_NO_FLUSH; |
| 887 | |
| 888 | _tr_init(s); |
| 889 | lm_init(s); |
| 890 | |
| 891 | return Z_OK; |
| 892 | } |
| 893 | |
| 894 | /* ========================================================================= */ |
| 895 | int deflateParams(strm, level, strategy) |
| 896 | z_streamp strm; |
| 897 | int level; |
| 898 | int strategy; |
| 899 | { |
| 900 | deflate_state *s; |
| 901 | compress_func func; |
| 902 | int err = Z_OK; |
| 903 | |
| 904 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
| 905 | s = (deflate_state *) strm->state; |
| 906 | |
| 907 | if (level == Z_DEFAULT_COMPRESSION) { |
| 908 | level = 6; |
| 909 | } |
| 910 | if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { |
| 911 | return Z_STREAM_ERROR; |
| 912 | } |
| 913 | func = configuration_table[s->level].func; |
| 914 | |
| 915 | if (func != configuration_table[level].func && strm->total_in != 0) { |
| 916 | /* Flush the last buffer: */ |
| 917 | err = deflate(strm, Z_PARTIAL_FLUSH); |
| 918 | } |
| 919 | if (s->level != level) { |
| 920 | s->level = level; |
| 921 | s->max_lazy_match = configuration_table[level].max_lazy; |
| 922 | s->good_match = configuration_table[level].good_length; |
| 923 | s->nice_match = configuration_table[level].nice_length; |
| 924 | s->max_chain_length = configuration_table[level].max_chain; |
| 925 | } |
| 926 | s->strategy = strategy; |
| 927 | return err; |
| 928 | } |
| 929 | |
| 930 | /* ========================================================================= |
| 931 | * Put a short in the pending buffer. The 16-bit value is put in MSB order. |
| 932 | * IN assertion: the stream state is correct and there is enough room in |
| 933 | * pending_buf. |
| 934 | */ |
| 935 | local void putShortMSB (s, b) |
| 936 | deflate_state *s; |
| 937 | uInt b; |
| 938 | { |
| 939 | put_byte(s, (Byte)(b >> 8)); |
| 940 | put_byte(s, (Byte)(b & 0xff)); |
| 941 | } |
| 942 | |
| 943 | /* ========================================================================= |
| 944 | * Flush as much pending output as possible. All deflate() output goes |
| 945 | * through this function so some applications may wish to modify it |
| 946 | * to avoid allocating a large strm->next_out buffer and copying into it. |
| 947 | * (See also read_buf()). |
| 948 | */ |
| 949 | local void flush_pending(strm) |
| 950 | z_streamp strm; |
| 951 | { |
| 952 | deflate_state *s = (deflate_state *) strm->state; |
| 953 | unsigned len = s->pending; |
| 954 | |
| 955 | if (len > strm->avail_out) len = strm->avail_out; |
| 956 | if (len == 0) return; |
| 957 | |
| 958 | if (strm->next_out != Z_NULL) { |
| 959 | zmemcpy(strm->next_out, s->pending_out, len); |
| 960 | strm->next_out += len; |
| 961 | } |
| 962 | s->pending_out += len; |
| 963 | strm->total_out += len; |
| 964 | strm->avail_out -= len; |
| 965 | s->pending -= len; |
| 966 | if (s->pending == 0) { |
| 967 | s->pending_out = s->pending_buf; |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | /* ========================================================================= */ |
| 972 | int deflate (strm, flush) |
| 973 | z_streamp strm; |
| 974 | int flush; |
| 975 | { |
| 976 | int old_flush; /* value of flush param for previous deflate call */ |
| 977 | deflate_state *s; |
| 978 | |
| 979 | if (strm == Z_NULL || strm->state == Z_NULL || |
| 980 | flush > Z_FINISH || flush < 0) { |
| 981 | return Z_STREAM_ERROR; |
| 982 | } |
| 983 | s = (deflate_state *) strm->state; |
| 984 | |
| 985 | if ((strm->next_in == Z_NULL && strm->avail_in != 0) || |
| 986 | (s->status == FINISH_STATE && flush != Z_FINISH)) { |
| 987 | ERR_RETURN(strm, Z_STREAM_ERROR); |
| 988 | } |
| 989 | if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); |
| 990 | |
| 991 | s->strm = strm; /* just in case */ |
| 992 | old_flush = s->last_flush; |
| 993 | s->last_flush = flush; |
| 994 | |
| 995 | /* Write the zlib header */ |
| 996 | if (s->status == INIT_STATE) { |
| 997 | |
| 998 | uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; |
| 999 | uInt level_flags = (s->level-1) >> 1; |
| 1000 | |
| 1001 | if (level_flags > 3) level_flags = 3; |
| 1002 | header |= (level_flags << 6); |
| 1003 | if (s->strstart != 0) header |= PRESET_DICT; |
| 1004 | header += 31 - (header % 31); |
| 1005 | |
| 1006 | s->status = BUSY_STATE; |
| 1007 | putShortMSB(s, header); |
| 1008 | |
| 1009 | /* Save the adler32 of the preset dictionary: */ |
| 1010 | if (s->strstart != 0) { |
| 1011 | putShortMSB(s, (uInt)(strm->adler >> 16)); |
| 1012 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
| 1013 | } |
| 1014 | strm->adler = 1L; |
| 1015 | } |
| 1016 | |
| 1017 | /* Flush as much pending output as possible */ |
| 1018 | if (s->pending != 0) { |
| 1019 | flush_pending(strm); |
| 1020 | if (strm->avail_out == 0) { |
| 1021 | /* Since avail_out is 0, deflate will be called again with |
| 1022 | * more output space, but possibly with both pending and |
| 1023 | * avail_in equal to zero. There won't be anything to do, |
| 1024 | * but this is not an error situation so make sure we |
| 1025 | * return OK instead of BUF_ERROR at next call of deflate: |
| 1026 | */ |
| 1027 | s->last_flush = -1; |
| 1028 | return Z_OK; |
| 1029 | } |
| 1030 | |
| 1031 | /* Make sure there is something to do and avoid duplicate consecutive |
| 1032 | * flushes. For repeated and useless calls with Z_FINISH, we keep |
| 1033 | * returning Z_STREAM_END instead of Z_BUFF_ERROR. |
| 1034 | */ |
| 1035 | } else if (strm->avail_in == 0 && flush <= old_flush && |
| 1036 | flush != Z_FINISH) { |
| 1037 | ERR_RETURN(strm, Z_BUF_ERROR); |
| 1038 | } |
| 1039 | |
| 1040 | /* User must not provide more input after the first FINISH: */ |
| 1041 | if (s->status == FINISH_STATE && strm->avail_in != 0) { |
| 1042 | ERR_RETURN(strm, Z_BUF_ERROR); |
| 1043 | } |
| 1044 | |
| 1045 | /* Start a new block or continue the current one. |
| 1046 | */ |
| 1047 | if (strm->avail_in != 0 || s->lookahead != 0 || |
| 1048 | (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
| 1049 | block_state bstate; |
| 1050 | |
| 1051 | bstate = (*(configuration_table[s->level].func))(s, flush); |
| 1052 | |
| 1053 | if (bstate == finish_started || bstate == finish_done) { |
| 1054 | s->status = FINISH_STATE; |
| 1055 | } |
| 1056 | if (bstate == need_more || bstate == finish_started) { |
| 1057 | if (strm->avail_out == 0) { |
| 1058 | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
| 1059 | } |
| 1060 | return Z_OK; |
| 1061 | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
| 1062 | * of deflate should use the same flush parameter to make sure |
| 1063 | * that the flush is complete. So we don't have to output an |
| 1064 | * empty block here, this will be done at next call. This also |
| 1065 | * ensures that for a very small output buffer, we emit at most |
| 1066 | * one empty block. |
| 1067 | */ |
| 1068 | } |
| 1069 | if (bstate == block_done) { |
| 1070 | if (flush == Z_PARTIAL_FLUSH) { |
| 1071 | _tr_align(s); |
| 1072 | } else if (flush == Z_PACKET_FLUSH) { |
| 1073 | /* Output just the 3-bit `stored' block type value, |
| 1074 | but not a zero length. */ |
| 1075 | _tr_stored_type_only(s); |
| 1076 | } else { /* FULL_FLUSH or SYNC_FLUSH */ |
| 1077 | _tr_stored_block(s, (char*)0, 0L, 0); |
| 1078 | /* For a full flush, this empty block will be recognized |
| 1079 | * as a special marker by inflate_sync(). |
| 1080 | */ |
| 1081 | if (flush == Z_FULL_FLUSH) { |
| 1082 | CLEAR_HASH(s); /* forget history */ |
| 1083 | } |
| 1084 | } |
| 1085 | flush_pending(strm); |
| 1086 | if (strm->avail_out == 0) { |
| 1087 | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
| 1088 | return Z_OK; |
| 1089 | } |
| 1090 | } |
| 1091 | } |
| 1092 | Assert(strm->avail_out > 0, "bug2"); |
| 1093 | |
| 1094 | if (flush != Z_FINISH) return Z_OK; |
| 1095 | if (s->noheader) return Z_STREAM_END; |
| 1096 | |
| 1097 | /* Write the zlib trailer (adler32) */ |
| 1098 | putShortMSB(s, (uInt)(strm->adler >> 16)); |
| 1099 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
| 1100 | flush_pending(strm); |
| 1101 | /* If avail_out is zero, the application will call deflate again |
| 1102 | * to flush the rest. |
| 1103 | */ |
| 1104 | s->noheader = -1; /* write the trailer only once! */ |
| 1105 | return s->pending != 0 ? Z_OK : Z_STREAM_END; |
| 1106 | } |
| 1107 | |
| 1108 | /* ========================================================================= */ |
| 1109 | int deflateEnd (strm) |
| 1110 | z_streamp strm; |
| 1111 | { |
| 1112 | int status; |
| 1113 | deflate_state *s; |
| 1114 | |
| 1115 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
| 1116 | s = (deflate_state *) strm->state; |
| 1117 | |
| 1118 | status = s->status; |
| 1119 | if (status != INIT_STATE && status != BUSY_STATE && |
| 1120 | status != FINISH_STATE) { |
| 1121 | return Z_STREAM_ERROR; |
| 1122 | } |
| 1123 | |
| 1124 | /* Deallocate in reverse order of allocations: */ |
| 1125 | TRY_FREE(strm, s->pending_buf); |
| 1126 | TRY_FREE(strm, s->head); |
| 1127 | TRY_FREE(strm, s->prev); |
| 1128 | TRY_FREE(strm, s->window); |
| 1129 | |
| 1130 | ZFREE(strm, s); |
| 1131 | strm->state = Z_NULL; |
| 1132 | |
| 1133 | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
| 1134 | } |
| 1135 | |
| 1136 | /* ========================================================================= |
| 1137 | * Copy the source state to the destination state. |
| 1138 | */ |
| 1139 | int deflateCopy (dest, source) |
| 1140 | z_streamp dest; |
| 1141 | z_streamp source; |
| 1142 | { |
| 1143 | deflate_state *ds; |
| 1144 | deflate_state *ss; |
| 1145 | ushf *overlay; |
| 1146 | |
| 1147 | if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) |
| 1148 | return Z_STREAM_ERROR; |
| 1149 | ss = (deflate_state *) source->state; |
| 1150 | |
| 1151 | zmemcpy(dest, source, sizeof(*dest)); |
| 1152 | |
| 1153 | ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); |
| 1154 | if (ds == Z_NULL) return Z_MEM_ERROR; |
| 1155 | dest->state = (struct internal_state FAR *) ds; |
| 1156 | zmemcpy(ds, ss, sizeof(*ds)); |
| 1157 | ds->strm = dest; |
| 1158 | |
| 1159 | ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); |
| 1160 | ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
| 1161 | ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); |
| 1162 | overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); |
| 1163 | ds->pending_buf = (uchf *) overlay; |
| 1164 | |
| 1165 | if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || |
| 1166 | ds->pending_buf == Z_NULL) { |
| 1167 | deflateEnd (dest); |
| 1168 | return Z_MEM_ERROR; |
| 1169 | } |
| 1170 | /* ??? following zmemcpy doesn't work for 16-bit MSDOS */ |
| 1171 | zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); |
| 1172 | zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos)); |
| 1173 | zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos)); |
| 1174 | zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); |
| 1175 | |
| 1176 | ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
| 1177 | ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); |
| 1178 | ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; |
| 1179 | |
| 1180 | ds->l_desc.dyn_tree = ds->dyn_ltree; |
| 1181 | ds->d_desc.dyn_tree = ds->dyn_dtree; |
| 1182 | ds->bl_desc.dyn_tree = ds->bl_tree; |
| 1183 | |
| 1184 | return Z_OK; |
| 1185 | } |
| 1186 | |
| 1187 | /* =========================================================================== |
| 1188 | * Return the number of bytes of output which are immediately available |
| 1189 | * for output from the decompressor. |
| 1190 | */ |
| 1191 | int deflateOutputPending (strm) |
| 1192 | z_streamp strm; |
| 1193 | { |
| 1194 | if (strm == Z_NULL || strm->state == Z_NULL) return 0; |
| 1195 | |
| 1196 | return ((deflate_state *)(strm->state))->pending; |
| 1197 | } |
| 1198 | |
| 1199 | /* =========================================================================== |
| 1200 | * Read a new buffer from the current input stream, update the adler32 |
| 1201 | * and total number of bytes read. All deflate() input goes through |
| 1202 | * this function so some applications may wish to modify it to avoid |
| 1203 | * allocating a large strm->next_in buffer and copying from it. |
| 1204 | * (See also flush_pending()). |
| 1205 | */ |
| 1206 | local int read_buf(strm, buf, size) |
| 1207 | z_streamp strm; |
| 1208 | charf *buf; |
| 1209 | unsigned size; |
| 1210 | { |
| 1211 | unsigned len = strm->avail_in; |
| 1212 | |
| 1213 | if (len > size) len = size; |
| 1214 | if (len == 0) return 0; |
| 1215 | |
| 1216 | strm->avail_in -= len; |
| 1217 | |
| 1218 | if (!((deflate_state *)(strm->state))->noheader) { |
| 1219 | strm->adler = adler32(strm->adler, strm->next_in, len); |
| 1220 | } |
| 1221 | zmemcpy(buf, strm->next_in, len); |
| 1222 | strm->next_in += len; |
| 1223 | strm->total_in += len; |
| 1224 | |
| 1225 | return (int)len; |
| 1226 | } |
| 1227 | |
| 1228 | /* =========================================================================== |
| 1229 | * Initialize the "longest match" routines for a new zlib stream |
| 1230 | */ |
| 1231 | local void lm_init (s) |
| 1232 | deflate_state *s; |
| 1233 | { |
| 1234 | s->window_size = (ulg)2L*s->w_size; |
| 1235 | |
| 1236 | CLEAR_HASH(s); |
| 1237 | |
| 1238 | /* Set the default configuration parameters: |
| 1239 | */ |
| 1240 | s->max_lazy_match = configuration_table[s->level].max_lazy; |
| 1241 | s->good_match = configuration_table[s->level].good_length; |
| 1242 | s->nice_match = configuration_table[s->level].nice_length; |
| 1243 | s->max_chain_length = configuration_table[s->level].max_chain; |
| 1244 | |
| 1245 | s->strstart = 0; |
| 1246 | s->block_start = 0L; |
| 1247 | s->lookahead = 0; |
| 1248 | s->match_length = s->prev_length = MIN_MATCH-1; |
| 1249 | s->match_available = 0; |
| 1250 | s->ins_h = 0; |
| 1251 | #ifdef ASMV |
| 1252 | match_init(); /* initialize the asm code */ |
| 1253 | #endif |
| 1254 | } |
| 1255 | |
| 1256 | /* =========================================================================== |
| 1257 | * Set match_start to the longest match starting at the given string and |
| 1258 | * return its length. Matches shorter or equal to prev_length are discarded, |
| 1259 | * in which case the result is equal to prev_length and match_start is |
| 1260 | * garbage. |
| 1261 | * IN assertions: cur_match is the head of the hash chain for the current |
| 1262 | * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 |
| 1263 | * OUT assertion: the match length is not greater than s->lookahead. |
| 1264 | */ |
| 1265 | #ifndef ASMV |
| 1266 | /* For 80x86 and 680x0, an optimized version will be provided in match.asm or |
| 1267 | * match.S. The code will be functionally equivalent. |
| 1268 | */ |
| 1269 | local uInt longest_match(s, cur_match) |
| 1270 | deflate_state *s; |
| 1271 | IPos cur_match; /* current match */ |
| 1272 | { |
| 1273 | unsigned chain_length = s->max_chain_length;/* max hash chain length */ |
| 1274 | register Bytef *scan = s->window + s->strstart; /* current string */ |
| 1275 | register Bytef *match; /* matched string */ |
| 1276 | register int len; /* length of current match */ |
| 1277 | int best_len = s->prev_length; /* best match length so far */ |
| 1278 | int nice_match = s->nice_match; /* stop if match long enough */ |
| 1279 | IPos limit = s->strstart > (IPos)MAX_DIST(s) ? |
| 1280 | s->strstart - (IPos)MAX_DIST(s) : NIL; |
| 1281 | /* Stop when cur_match becomes <= limit. To simplify the code, |
| 1282 | * we prevent matches with the string of window index 0. |
| 1283 | */ |
| 1284 | Posf *prev = s->prev; |
| 1285 | uInt wmask = s->w_mask; |
| 1286 | |
| 1287 | #ifdef UNALIGNED_OK |
| 1288 | /* Compare two bytes at a time. Note: this is not always beneficial. |
| 1289 | * Try with and without -DUNALIGNED_OK to check. |
| 1290 | */ |
| 1291 | register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; |
| 1292 | register ush scan_start = *(ushf*)scan; |
| 1293 | register ush scan_end = *(ushf*)(scan+best_len-1); |
| 1294 | #else |
| 1295 | register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
| 1296 | register Byte scan_end1 = scan[best_len-1]; |
| 1297 | register Byte scan_end = scan[best_len]; |
| 1298 | #endif |
| 1299 | |
| 1300 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
| 1301 | * It is easy to get rid of this optimization if necessary. |
| 1302 | */ |
| 1303 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
| 1304 | |
| 1305 | /* Do not waste too much time if we already have a good match: */ |
| 1306 | if (s->prev_length >= s->good_match) { |
| 1307 | chain_length >>= 2; |
| 1308 | } |
| 1309 | /* Do not look for matches beyond the end of the input. This is necessary |
| 1310 | * to make deflate deterministic. |
| 1311 | */ |
| 1312 | if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; |
| 1313 | |
| 1314 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); |
| 1315 | |
| 1316 | do { |
| 1317 | Assert(cur_match < s->strstart, "no future"); |
| 1318 | match = s->window + cur_match; |
| 1319 | |
| 1320 | /* Skip to next match if the match length cannot increase |
| 1321 | * or if the match length is less than 2: |
| 1322 | */ |
| 1323 | #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) |
| 1324 | /* This code assumes sizeof(unsigned short) == 2. Do not use |
| 1325 | * UNALIGNED_OK if your compiler uses a different size. |
| 1326 | */ |
| 1327 | if (*(ushf*)(match+best_len-1) != scan_end || |
| 1328 | *(ushf*)match != scan_start) continue; |
| 1329 | |
| 1330 | /* It is not necessary to compare scan[2] and match[2] since they are |
| 1331 | * always equal when the other bytes match, given that the hash keys |
| 1332 | * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at |
| 1333 | * strstart+3, +5, ... up to strstart+257. We check for insufficient |
| 1334 | * lookahead only every 4th comparison; the 128th check will be made |
| 1335 | * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is |
| 1336 | * necessary to put more guard bytes at the end of the window, or |
| 1337 | * to check more often for insufficient lookahead. |
| 1338 | */ |
| 1339 | Assert(scan[2] == match[2], "scan[2]?"); |
| 1340 | scan++, match++; |
| 1341 | do { |
| 1342 | } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| 1343 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| 1344 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| 1345 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| 1346 | scan < strend); |
| 1347 | /* The funny "do {}" generates better code on most compilers */ |
| 1348 | |
| 1349 | /* Here, scan <= window+strstart+257 */ |
| 1350 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
| 1351 | if (*scan == *match) scan++; |
| 1352 | |
| 1353 | len = (MAX_MATCH - 1) - (int)(strend-scan); |
| 1354 | scan = strend - (MAX_MATCH-1); |
| 1355 | |
| 1356 | #else /* UNALIGNED_OK */ |
| 1357 | |
| 1358 | if (match[best_len] != scan_end || |
| 1359 | match[best_len-1] != scan_end1 || |
| 1360 | *match != *scan || |
| 1361 | *++match != scan[1]) continue; |
| 1362 | |
| 1363 | /* The check at best_len-1 can be removed because it will be made |
| 1364 | * again later. (This heuristic is not always a win.) |
| 1365 | * It is not necessary to compare scan[2] and match[2] since they |
| 1366 | * are always equal when the other bytes match, given that |
| 1367 | * the hash keys are equal and that HASH_BITS >= 8. |
| 1368 | */ |
| 1369 | scan += 2, match++; |
| 1370 | Assert(*scan == *match, "match[2]?"); |
| 1371 | |
| 1372 | /* We check for insufficient lookahead only every 8th comparison; |
| 1373 | * the 256th check will be made at strstart+258. |
| 1374 | */ |
| 1375 | do { |
| 1376 | } while (*++scan == *++match && *++scan == *++match && |
| 1377 | *++scan == *++match && *++scan == *++match && |
| 1378 | *++scan == *++match && *++scan == *++match && |
| 1379 | *++scan == *++match && *++scan == *++match && |
| 1380 | scan < strend); |
| 1381 | |
| 1382 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
| 1383 | |
| 1384 | len = MAX_MATCH - (int)(strend - scan); |
| 1385 | scan = strend - MAX_MATCH; |
| 1386 | |
| 1387 | #endif /* UNALIGNED_OK */ |
| 1388 | |
| 1389 | if (len > best_len) { |
| 1390 | s->match_start = cur_match; |
| 1391 | best_len = len; |
| 1392 | if (len >= nice_match) break; |
| 1393 | #ifdef UNALIGNED_OK |
| 1394 | scan_end = *(ushf*)(scan+best_len-1); |
| 1395 | #else |
| 1396 | scan_end1 = scan[best_len-1]; |
| 1397 | scan_end = scan[best_len]; |
| 1398 | #endif |
| 1399 | } |
| 1400 | } while ((cur_match = prev[cur_match & wmask]) > limit |
| 1401 | && --chain_length != 0); |
| 1402 | |
| 1403 | if ((uInt)best_len <= s->lookahead) return best_len; |
| 1404 | return s->lookahead; |
| 1405 | } |
| 1406 | #endif /* ASMV */ |
| 1407 | |
| 1408 | #ifdef DEBUG_ZLIB |
| 1409 | /* =========================================================================== |
| 1410 | * Check that the match at match_start is indeed a match. |
| 1411 | */ |
| 1412 | local void check_match(s, start, match, length) |
| 1413 | deflate_state *s; |
| 1414 | IPos start, match; |
| 1415 | int length; |
| 1416 | { |
| 1417 | /* check that the match is indeed a match */ |
| 1418 | if (zmemcmp((charf *)s->window + match, |
| 1419 | (charf *)s->window + start, length) != EQUAL) { |
| 1420 | fprintf(stderr, " start %u, match %u, length %d\n", |
| 1421 | start, match, length); |
| 1422 | do { |
| 1423 | fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); |
| 1424 | } while (--length != 0); |
| 1425 | z_error("invalid match"); |
| 1426 | } |
| 1427 | if (z_verbose > 1) { |
| 1428 | fprintf(stderr,"\\[%d,%d]", start-match, length); |
| 1429 | do { putc(s->window[start++], stderr); } while (--length != 0); |
| 1430 | } |
| 1431 | } |
| 1432 | #else |
| 1433 | # define check_match(s, start, match, length) |
| 1434 | #endif |
| 1435 | |
| 1436 | /* =========================================================================== |
| 1437 | * Fill the window when the lookahead becomes insufficient. |
| 1438 | * Updates strstart and lookahead. |
| 1439 | * |
| 1440 | * IN assertion: lookahead < MIN_LOOKAHEAD |
| 1441 | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
| 1442 | * At least one byte has been read, or avail_in == 0; reads are |
| 1443 | * performed for at least two bytes (required for the zip translate_eol |
| 1444 | * option -- not supported here). |
| 1445 | */ |
| 1446 | local void fill_window(s) |
| 1447 | deflate_state *s; |
| 1448 | { |
| 1449 | register unsigned n, m; |
| 1450 | register Posf *p; |
| 1451 | unsigned more; /* Amount of free space at the end of the window. */ |
| 1452 | uInt wsize = s->w_size; |
| 1453 | |
| 1454 | do { |
| 1455 | more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); |
| 1456 | |
| 1457 | /* Deal with !@#$% 64K limit: */ |
| 1458 | if (more == 0 && s->strstart == 0 && s->lookahead == 0) { |
| 1459 | more = wsize; |
| 1460 | |
| 1461 | } else if (more == (unsigned)(-1)) { |
| 1462 | /* Very unlikely, but possible on 16 bit machine if strstart == 0 |
| 1463 | * and lookahead == 1 (input done one byte at time) |
| 1464 | */ |
| 1465 | more--; |
| 1466 | |
| 1467 | /* If the window is almost full and there is insufficient lookahead, |
| 1468 | * move the upper half to the lower one to make room in the upper half. |
| 1469 | */ |
| 1470 | } else if (s->strstart >= wsize+MAX_DIST(s)) { |
| 1471 | |
| 1472 | zmemcpy((charf *)s->window, (charf *)s->window+wsize, |
| 1473 | (unsigned)wsize); |
| 1474 | s->match_start -= wsize; |
| 1475 | s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
| 1476 | s->block_start -= (long) wsize; |
| 1477 | |
| 1478 | /* Slide the hash table (could be avoided with 32 bit values |
| 1479 | at the expense of memory usage). We slide even when level == 0 |
| 1480 | to keep the hash table consistent if we switch back to level > 0 |
| 1481 | later. (Using level 0 permanently is not an optimal usage of |
| 1482 | zlib, so we don't care about this pathological case.) |
| 1483 | */ |
| 1484 | n = s->hash_size; |
| 1485 | p = &s->head[n]; |
| 1486 | do { |
| 1487 | m = *--p; |
| 1488 | *p = (Pos)(m >= wsize ? m-wsize : NIL); |
| 1489 | } while (--n); |
| 1490 | |
| 1491 | n = wsize; |
| 1492 | p = &s->prev[n]; |
| 1493 | do { |
| 1494 | m = *--p; |
| 1495 | *p = (Pos)(m >= wsize ? m-wsize : NIL); |
| 1496 | /* If n is not on any hash chain, prev[n] is garbage but |
| 1497 | * its value will never be used. |
| 1498 | */ |
| 1499 | } while (--n); |
| 1500 | more += wsize; |
| 1501 | } |
| 1502 | if (s->strm->avail_in == 0) return; |
| 1503 | |
| 1504 | /* If there was no sliding: |
| 1505 | * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
| 1506 | * more == window_size - lookahead - strstart |
| 1507 | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
| 1508 | * => more >= window_size - 2*WSIZE + 2 |
| 1509 | * In the BIG_MEM or MMAP case (not yet supported), |
| 1510 | * window_size == input_size + MIN_LOOKAHEAD && |
| 1511 | * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
| 1512 | * Otherwise, window_size == 2*WSIZE so more >= 2. |
| 1513 | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
| 1514 | */ |
| 1515 | Assert(more >= 2, "more < 2"); |
| 1516 | |
| 1517 | n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead, |
| 1518 | more); |
| 1519 | s->lookahead += n; |
| 1520 | |
| 1521 | /* Initialize the hash value now that we have some input: */ |
| 1522 | if (s->lookahead >= MIN_MATCH) { |
| 1523 | s->ins_h = s->window[s->strstart]; |
| 1524 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
| 1525 | #if MIN_MATCH != 3 |
| 1526 | Call UPDATE_HASH() MIN_MATCH-3 more times |
| 1527 | #endif |
| 1528 | } |
| 1529 | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
| 1530 | * but this is not important since only literal bytes will be emitted. |
| 1531 | */ |
| 1532 | |
| 1533 | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
| 1534 | } |
| 1535 | |
| 1536 | /* =========================================================================== |
| 1537 | * Flush the current block, with given end-of-file flag. |
| 1538 | * IN assertion: strstart is set to the end of the current match. |
| 1539 | */ |
| 1540 | #define FLUSH_BLOCK_ONLY(s, eof) { \ |
| 1541 | _tr_flush_block(s, (s->block_start >= 0L ? \ |
| 1542 | (charf *)&s->window[(unsigned)s->block_start] : \ |
| 1543 | (charf *)Z_NULL), \ |
| 1544 | (ulg)((long)s->strstart - s->block_start), \ |
| 1545 | (eof)); \ |
| 1546 | s->block_start = s->strstart; \ |
| 1547 | flush_pending(s->strm); \ |
| 1548 | Tracev((stderr,"[FLUSH]")); \ |
| 1549 | } |
| 1550 | |
| 1551 | /* Same but force premature exit if necessary. */ |
| 1552 | #define FLUSH_BLOCK(s, eof) { \ |
| 1553 | FLUSH_BLOCK_ONLY(s, eof); \ |
| 1554 | if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ |
| 1555 | } |
| 1556 | |
| 1557 | /* =========================================================================== |
| 1558 | * Copy without compression as much as possible from the input stream, return |
| 1559 | * the current block state. |
| 1560 | * This function does not insert new strings in the dictionary since |
| 1561 | * uncompressible data is probably not useful. This function is used |
| 1562 | * only for the level=0 compression option. |
| 1563 | * NOTE: this function should be optimized to avoid extra copying from |
| 1564 | * window to pending_buf. |
| 1565 | */ |
| 1566 | local block_state deflate_stored(s, flush) |
| 1567 | deflate_state *s; |
| 1568 | int flush; |
| 1569 | { |
| 1570 | /* Stored blocks are limited to 0xffff bytes, pending_buf is limited |
| 1571 | * to pending_buf_size, and each stored block has a 5 byte header: |
| 1572 | */ |
| 1573 | ulg max_block_size = 0xffff; |
| 1574 | ulg max_start; |
| 1575 | |
| 1576 | if (max_block_size > s->pending_buf_size - 5) { |
| 1577 | max_block_size = s->pending_buf_size - 5; |
| 1578 | } |
| 1579 | |
| 1580 | /* Copy as much as possible from input to output: */ |
| 1581 | for (;;) { |
| 1582 | /* Fill the window as much as possible: */ |
| 1583 | if (s->lookahead <= 1) { |
| 1584 | |
| 1585 | Assert(s->strstart < s->w_size+MAX_DIST(s) || |
| 1586 | s->block_start >= (long)s->w_size, "slide too late"); |
| 1587 | |
| 1588 | fill_window(s); |
| 1589 | if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; |
| 1590 | |
| 1591 | if (s->lookahead == 0) break; /* flush the current block */ |
| 1592 | } |
| 1593 | Assert(s->block_start >= 0L, "block gone"); |
| 1594 | |
| 1595 | s->strstart += s->lookahead; |
| 1596 | s->lookahead = 0; |
| 1597 | |
| 1598 | /* Emit a stored block if pending_buf will be full: */ |
| 1599 | max_start = s->block_start + max_block_size; |
| 1600 | if (s->strstart == 0 || (ulg)s->strstart >= max_start) { |
| 1601 | /* strstart == 0 is possible when wraparound on 16-bit machine */ |
| 1602 | s->lookahead = (uInt)(s->strstart - max_start); |
| 1603 | s->strstart = (uInt)max_start; |
| 1604 | FLUSH_BLOCK(s, 0); |
| 1605 | } |
| 1606 | /* Flush if we may have to slide, otherwise block_start may become |
| 1607 | * negative and the data will be gone: |
| 1608 | */ |
| 1609 | if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { |
| 1610 | FLUSH_BLOCK(s, 0); |
| 1611 | } |
| 1612 | } |
| 1613 | FLUSH_BLOCK(s, flush == Z_FINISH); |
| 1614 | return flush == Z_FINISH ? finish_done : block_done; |
| 1615 | } |
| 1616 | |
| 1617 | /* =========================================================================== |
| 1618 | * Compress as much as possible from the input stream, return the current |
| 1619 | * block state. |
| 1620 | * This function does not perform lazy evaluation of matches and inserts |
| 1621 | * new strings in the dictionary only for unmatched strings or for short |
| 1622 | * matches. It is used only for the fast compression options. |
| 1623 | */ |
| 1624 | local block_state deflate_fast(s, flush) |
| 1625 | deflate_state *s; |
| 1626 | int flush; |
| 1627 | { |
| 1628 | IPos hash_head = NIL; /* head of the hash chain */ |
| 1629 | int bflush; /* set if current block must be flushed */ |
| 1630 | |
| 1631 | for (;;) { |
| 1632 | /* Make sure that we always have enough lookahead, except |
| 1633 | * at the end of the input file. We need MAX_MATCH bytes |
| 1634 | * for the next match, plus MIN_MATCH bytes to insert the |
| 1635 | * string following the next match. |
| 1636 | */ |
| 1637 | if (s->lookahead < MIN_LOOKAHEAD) { |
| 1638 | fill_window(s); |
| 1639 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
| 1640 | return need_more; |
| 1641 | } |
| 1642 | if (s->lookahead == 0) break; /* flush the current block */ |
| 1643 | } |
| 1644 | |
| 1645 | /* Insert the string window[strstart .. strstart+2] in the |
| 1646 | * dictionary, and set hash_head to the head of the hash chain: |
| 1647 | */ |
| 1648 | if (s->lookahead >= MIN_MATCH) { |
| 1649 | INSERT_STRING(s, s->strstart, hash_head); |
| 1650 | } |
| 1651 | |
| 1652 | /* Find the longest match, discarding those <= prev_length. |
| 1653 | * At this point we have always match_length < MIN_MATCH |
| 1654 | */ |
| 1655 | if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { |
| 1656 | /* To simplify the code, we prevent matches with the string |
| 1657 | * of window index 0 (in particular we have to avoid a match |
| 1658 | * of the string with itself at the start of the input file). |
| 1659 | */ |
| 1660 | if (s->strategy != Z_HUFFMAN_ONLY) { |
| 1661 | s->match_length = longest_match (s, hash_head); |
| 1662 | } |
| 1663 | /* longest_match() sets match_start */ |
| 1664 | } |
| 1665 | if (s->match_length >= MIN_MATCH) { |
| 1666 | check_match(s, s->strstart, s->match_start, s->match_length); |
| 1667 | |
| 1668 | bflush = _tr_tally(s, s->strstart - s->match_start, |
| 1669 | s->match_length - MIN_MATCH); |
| 1670 | |
| 1671 | s->lookahead -= s->match_length; |
| 1672 | |
| 1673 | /* Insert new strings in the hash table only if the match length |
| 1674 | * is not too large. This saves time but degrades compression. |
| 1675 | */ |
| 1676 | if (s->match_length <= s->max_insert_length && |
| 1677 | s->lookahead >= MIN_MATCH) { |
| 1678 | s->match_length--; /* string at strstart already in hash table */ |
| 1679 | do { |
| 1680 | s->strstart++; |
| 1681 | INSERT_STRING(s, s->strstart, hash_head); |
| 1682 | /* strstart never exceeds WSIZE-MAX_MATCH, so there are |
| 1683 | * always MIN_MATCH bytes ahead. |
| 1684 | */ |
| 1685 | } while (--s->match_length != 0); |
| 1686 | s->strstart++; |
| 1687 | } else { |
| 1688 | s->strstart += s->match_length; |
| 1689 | s->match_length = 0; |
| 1690 | s->ins_h = s->window[s->strstart]; |
| 1691 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
| 1692 | #if MIN_MATCH != 3 |
| 1693 | Call UPDATE_HASH() MIN_MATCH-3 more times |
| 1694 | #endif |
| 1695 | /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not |
| 1696 | * matter since it will be recomputed at next deflate call. |
| 1697 | */ |
| 1698 | } |
| 1699 | } else { |
| 1700 | /* No match, output a literal byte */ |
| 1701 | Tracevv((stderr,"%c", s->window[s->strstart])); |
| 1702 | bflush = _tr_tally (s, 0, s->window[s->strstart]); |
| 1703 | s->lookahead--; |
| 1704 | s->strstart++; |
| 1705 | } |
| 1706 | if (bflush) FLUSH_BLOCK(s, 0); |
| 1707 | } |
| 1708 | FLUSH_BLOCK(s, flush == Z_FINISH); |
| 1709 | return flush == Z_FINISH ? finish_done : block_done; |
| 1710 | } |
| 1711 | |
| 1712 | /* =========================================================================== |
| 1713 | * Same as above, but achieves better compression. We use a lazy |
| 1714 | * evaluation for matches: a match is finally adopted only if there is |
| 1715 | * no better match at the next window position. |
| 1716 | */ |
| 1717 | local block_state deflate_slow(s, flush) |
| 1718 | deflate_state *s; |
| 1719 | int flush; |
| 1720 | { |
| 1721 | IPos hash_head = NIL; /* head of hash chain */ |
| 1722 | int bflush; /* set if current block must be flushed */ |
| 1723 | |
| 1724 | /* Process the input block. */ |
| 1725 | for (;;) { |
| 1726 | /* Make sure that we always have enough lookahead, except |
| 1727 | * at the end of the input file. We need MAX_MATCH bytes |
| 1728 | * for the next match, plus MIN_MATCH bytes to insert the |
| 1729 | * string following the next match. |
| 1730 | */ |
| 1731 | if (s->lookahead < MIN_LOOKAHEAD) { |
| 1732 | fill_window(s); |
| 1733 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
| 1734 | return need_more; |
| 1735 | } |
| 1736 | if (s->lookahead == 0) break; /* flush the current block */ |
| 1737 | } |
| 1738 | |
| 1739 | /* Insert the string window[strstart .. strstart+2] in the |
| 1740 | * dictionary, and set hash_head to the head of the hash chain: |
| 1741 | */ |
| 1742 | if (s->lookahead >= MIN_MATCH) { |
| 1743 | INSERT_STRING(s, s->strstart, hash_head); |
| 1744 | } |
| 1745 | |
| 1746 | /* Find the longest match, discarding those <= prev_length. |
| 1747 | */ |
| 1748 | s->prev_length = s->match_length, s->prev_match = s->match_start; |
| 1749 | s->match_length = MIN_MATCH-1; |
| 1750 | |
| 1751 | if (hash_head != NIL && s->prev_length < s->max_lazy_match && |
| 1752 | s->strstart - hash_head <= MAX_DIST(s)) { |
| 1753 | /* To simplify the code, we prevent matches with the string |
| 1754 | * of window index 0 (in particular we have to avoid a match |
| 1755 | * of the string with itself at the start of the input file). |
| 1756 | */ |
| 1757 | if (s->strategy != Z_HUFFMAN_ONLY) { |
| 1758 | s->match_length = longest_match (s, hash_head); |
| 1759 | } |
| 1760 | /* longest_match() sets match_start */ |
| 1761 | |
| 1762 | if (s->match_length <= 5 && (s->strategy == Z_FILTERED || |
| 1763 | (s->match_length == MIN_MATCH && |
| 1764 | s->strstart - s->match_start > TOO_FAR))) { |
| 1765 | |
| 1766 | /* If prev_match is also MIN_MATCH, match_start is garbage |
| 1767 | * but we will ignore the current match anyway. |
| 1768 | */ |
| 1769 | s->match_length = MIN_MATCH-1; |
| 1770 | } |
| 1771 | } |
| 1772 | /* If there was a match at the previous step and the current |
| 1773 | * match is not better, output the previous match: |
| 1774 | */ |
| 1775 | if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { |
| 1776 | uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; |
| 1777 | /* Do not insert strings in hash table beyond this. */ |
| 1778 | |
| 1779 | check_match(s, s->strstart-1, s->prev_match, s->prev_length); |
| 1780 | |
| 1781 | bflush = _tr_tally(s, s->strstart -1 - s->prev_match, |
| 1782 | s->prev_length - MIN_MATCH); |
| 1783 | |
| 1784 | /* Insert in hash table all strings up to the end of the match. |
| 1785 | * strstart-1 and strstart are already inserted. If there is not |
| 1786 | * enough lookahead, the last two strings are not inserted in |
| 1787 | * the hash table. |
| 1788 | */ |
| 1789 | s->lookahead -= s->prev_length-1; |
| 1790 | s->prev_length -= 2; |
| 1791 | do { |
| 1792 | if (++s->strstart <= max_insert) { |
| 1793 | INSERT_STRING(s, s->strstart, hash_head); |
| 1794 | } |
| 1795 | } while (--s->prev_length != 0); |
| 1796 | s->match_available = 0; |
| 1797 | s->match_length = MIN_MATCH-1; |
| 1798 | s->strstart++; |
| 1799 | |
| 1800 | if (bflush) FLUSH_BLOCK(s, 0); |
| 1801 | |
| 1802 | } else if (s->match_available) { |
| 1803 | /* If there was no match at the previous position, output a |
| 1804 | * single literal. If there was a match but the current match |
| 1805 | * is longer, truncate the previous match to a single literal. |
| 1806 | */ |
| 1807 | Tracevv((stderr,"%c", s->window[s->strstart-1])); |
| 1808 | if (_tr_tally (s, 0, s->window[s->strstart-1])) { |
| 1809 | FLUSH_BLOCK_ONLY(s, 0); |
| 1810 | } |
| 1811 | s->strstart++; |
| 1812 | s->lookahead--; |
| 1813 | if (s->strm->avail_out == 0) return need_more; |
| 1814 | } else { |
| 1815 | /* There is no previous match to compare with, wait for |
| 1816 | * the next step to decide. |
| 1817 | */ |
| 1818 | s->match_available = 1; |
| 1819 | s->strstart++; |
| 1820 | s->lookahead--; |
| 1821 | } |
| 1822 | } |
| 1823 | Assert (flush != Z_NO_FLUSH, "no flush?"); |
| 1824 | if (s->match_available) { |
| 1825 | Tracevv((stderr,"%c", s->window[s->strstart-1])); |
| 1826 | _tr_tally (s, 0, s->window[s->strstart-1]); |
| 1827 | s->match_available = 0; |
| 1828 | } |
| 1829 | FLUSH_BLOCK(s, flush == Z_FINISH); |
| 1830 | return flush == Z_FINISH ? finish_done : block_done; |
| 1831 | } |
| 1832 | /* --- deflate.c */ |
| 1833 | |
| 1834 | /* +++ trees.c */ |
| 1835 | /* trees.c -- output deflated data using Huffman coding |
| 1836 | * Copyright (C) 1995-1996 Jean-loup Gailly |
| 1837 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 1838 | */ |
| 1839 | |
| 1840 | /* |
| 1841 | * ALGORITHM |
| 1842 | * |
| 1843 | * The "deflation" process uses several Huffman trees. The more |
| 1844 | * common source values are represented by shorter bit sequences. |
| 1845 | * |
| 1846 | * Each code tree is stored in a compressed form which is itself |
| 1847 | * a Huffman encoding of the lengths of all the code strings (in |
| 1848 | * ascending order by source values). The actual code strings are |
| 1849 | * reconstructed from the lengths in the inflate process, as described |
| 1850 | * in the deflate specification. |
| 1851 | * |
| 1852 | * REFERENCES |
| 1853 | * |
| 1854 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
| 1855 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
| 1856 | * |
| 1857 | * Storer, James A. |
| 1858 | * Data Compression: Methods and Theory, pp. 49-50. |
| 1859 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
| 1860 | * |
| 1861 | * Sedgewick, R. |
| 1862 | * Algorithms, p290. |
| 1863 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
| 1864 | */ |
| 1865 | |
| 1866 | /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */ |
| 1867 | |
| 1868 | /* #include "deflate.h" */ |
| 1869 | |
| 1870 | #ifdef DEBUG_ZLIB |
| 1871 | # include <ctype.h> |
| 1872 | #endif |
| 1873 | |
| 1874 | /* =========================================================================== |
| 1875 | * Constants |
| 1876 | */ |
| 1877 | |
| 1878 | #define MAX_BL_BITS 7 |
| 1879 | /* Bit length codes must not exceed MAX_BL_BITS bits */ |
| 1880 | |
| 1881 | #define END_BLOCK 256 |
| 1882 | /* end of block literal code */ |
| 1883 | |
| 1884 | #define REP_3_6 16 |
| 1885 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
| 1886 | |
| 1887 | #define REPZ_3_10 17 |
| 1888 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
| 1889 | |
| 1890 | #define REPZ_11_138 18 |
| 1891 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
| 1892 | |
| 1893 | local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ |
| 1894 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
| 1895 | |
| 1896 | local int extra_dbits[D_CODES] /* extra bits for each distance code */ |
| 1897 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
| 1898 | |
| 1899 | local int extra_blbits[BL_CODES]/* extra bits for each bit length code */ |
| 1900 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
| 1901 | |
| 1902 | local uch bl_order[BL_CODES] |
| 1903 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
| 1904 | /* The lengths of the bit length codes are sent in order of decreasing |
| 1905 | * probability, to avoid transmitting the lengths for unused bit length codes. |
| 1906 | */ |
| 1907 | |
| 1908 | #define Buf_size (8 * 2*sizeof(char)) |
| 1909 | /* Number of bits used within bi_buf. (bi_buf might be implemented on |
| 1910 | * more than 16 bits on some systems.) |
| 1911 | */ |
| 1912 | |
| 1913 | /* =========================================================================== |
| 1914 | * Local data. These are initialized only once. |
| 1915 | */ |
| 1916 | |
| 1917 | local ct_data static_ltree[L_CODES+2]; |
| 1918 | /* The static literal tree. Since the bit lengths are imposed, there is no |
| 1919 | * need for the L_CODES extra codes used during heap construction. However |
| 1920 | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
| 1921 | * below). |
| 1922 | */ |
| 1923 | |
| 1924 | local ct_data static_dtree[D_CODES]; |
| 1925 | /* The static distance tree. (Actually a trivial tree since all codes use |
| 1926 | * 5 bits.) |
| 1927 | */ |
| 1928 | |
| 1929 | local uch dist_code[512]; |
| 1930 | /* distance codes. The first 256 values correspond to the distances |
| 1931 | * 3 .. 258, the last 256 values correspond to the top 8 bits of |
| 1932 | * the 15 bit distances. |
| 1933 | */ |
| 1934 | |
| 1935 | local uch length_code[MAX_MATCH-MIN_MATCH+1]; |
| 1936 | /* length code for each normalized match length (0 == MIN_MATCH) */ |
| 1937 | |
| 1938 | local int base_length[LENGTH_CODES]; |
| 1939 | /* First normalized length for each code (0 = MIN_MATCH) */ |
| 1940 | |
| 1941 | local int base_dist[D_CODES]; |
| 1942 | /* First normalized distance for each code (0 = distance of 1) */ |
| 1943 | |
| 1944 | struct static_tree_desc_s { |
| 1945 | ct_data *static_tree; /* static tree or NULL */ |
| 1946 | intf *extra_bits; /* extra bits for each code or NULL */ |
| 1947 | int extra_base; /* base index for extra_bits */ |
| 1948 | int elems; /* max number of elements in the tree */ |
| 1949 | int max_length; /* max bit length for the codes */ |
| 1950 | }; |
| 1951 | |
| 1952 | local static_tree_desc static_l_desc = |
| 1953 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
| 1954 | |
| 1955 | local static_tree_desc static_d_desc = |
| 1956 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
| 1957 | |
| 1958 | local static_tree_desc static_bl_desc = |
| 1959 | {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
| 1960 | |
| 1961 | /* =========================================================================== |
| 1962 | * Local (static) routines in this file. |
| 1963 | */ |
| 1964 | |
| 1965 | local void tr_static_init OF((void)); |
| 1966 | local void init_block OF((deflate_state *s)); |
| 1967 | local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); |
| 1968 | local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); |
| 1969 | local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); |
| 1970 | local void build_tree OF((deflate_state *s, tree_desc *desc)); |
| 1971 | local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
| 1972 | local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
| 1973 | local int build_bl_tree OF((deflate_state *s)); |
| 1974 | local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, |
| 1975 | int blcodes)); |
| 1976 | local void compress_block OF((deflate_state *s, ct_data *ltree, |
| 1977 | ct_data *dtree)); |
| 1978 | local void set_data_type OF((deflate_state *s)); |
| 1979 | local unsigned bi_reverse OF((unsigned value, int length)); |
| 1980 | local void bi_windup OF((deflate_state *s)); |
| 1981 | local void bi_flush OF((deflate_state *s)); |
| 1982 | local void copy_block OF((deflate_state *s, charf *buf, unsigned len, |
| 1983 | int header)); |
| 1984 | |
| 1985 | #ifndef DEBUG_ZLIB |
| 1986 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
| 1987 | /* Send a code of the given tree. c and tree must not have side effects */ |
| 1988 | |
| 1989 | #else /* DEBUG_ZLIB */ |
| 1990 | # define send_code(s, c, tree) \ |
| 1991 | { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
| 1992 | send_bits(s, tree[c].Code, tree[c].Len); } |
| 1993 | #endif |
| 1994 | |
| 1995 | #define d_code(dist) \ |
| 1996 | ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) |
| 1997 | /* Mapping from a distance to a distance code. dist is the distance - 1 and |
| 1998 | * must not have side effects. dist_code[256] and dist_code[257] are never |
| 1999 | * used. |
| 2000 | */ |
| 2001 | |
| 2002 | /* =========================================================================== |
| 2003 | * Output a short LSB first on the stream. |
| 2004 | * IN assertion: there is enough room in pendingBuf. |
| 2005 | */ |
| 2006 | #define put_short(s, w) { \ |
| 2007 | put_byte(s, (uch)((w) & 0xff)); \ |
| 2008 | put_byte(s, (uch)((ush)(w) >> 8)); \ |
| 2009 | } |
| 2010 | |
| 2011 | /* =========================================================================== |
| 2012 | * Send a value on a given number of bits. |
| 2013 | * IN assertion: length <= 16 and value fits in length bits. |
| 2014 | */ |
| 2015 | #ifdef DEBUG_ZLIB |
| 2016 | local void send_bits OF((deflate_state *s, int value, int length)); |
| 2017 | |
| 2018 | local void send_bits(s, value, length) |
| 2019 | deflate_state *s; |
| 2020 | int value; /* value to send */ |
| 2021 | int length; /* number of bits */ |
| 2022 | { |
| 2023 | Tracevv((stderr," l %2d v %4x ", length, value)); |
| 2024 | Assert(length > 0 && length <= 15, "invalid length"); |
| 2025 | s->bits_sent += (ulg)length; |
| 2026 | |
| 2027 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and |
| 2028 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
| 2029 | * unused bits in value. |
| 2030 | */ |
| 2031 | if (s->bi_valid > (int)Buf_size - length) { |
| 2032 | s->bi_buf |= (value << s->bi_valid); |
| 2033 | put_short(s, s->bi_buf); |
| 2034 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
| 2035 | s->bi_valid += length - Buf_size; |
| 2036 | } else { |
| 2037 | s->bi_buf |= value << s->bi_valid; |
| 2038 | s->bi_valid += length; |
| 2039 | } |
| 2040 | } |
| 2041 | #else /* !DEBUG_ZLIB */ |
| 2042 | |
| 2043 | #define send_bits(s, value, length) \ |
| 2044 | { int len = length;\ |
| 2045 | if (s->bi_valid > (int)Buf_size - len) {\ |
| 2046 | int val = value;\ |
| 2047 | s->bi_buf |= (val << s->bi_valid);\ |
| 2048 | put_short(s, s->bi_buf);\ |
| 2049 | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
| 2050 | s->bi_valid += len - Buf_size;\ |
| 2051 | } else {\ |
| 2052 | s->bi_buf |= (value) << s->bi_valid;\ |
| 2053 | s->bi_valid += len;\ |
| 2054 | }\ |
| 2055 | } |
| 2056 | #endif /* DEBUG_ZLIB */ |
| 2057 | |
| 2058 | |
| 2059 | #define MAX(a,b) (a >= b ? a : b) |
| 2060 | /* the arguments must not have side effects */ |
| 2061 | |
| 2062 | /* =========================================================================== |
| 2063 | * Initialize the various 'constant' tables. In a multi-threaded environment, |
| 2064 | * this function may be called by two threads concurrently, but this is |
| 2065 | * harmless since both invocations do exactly the same thing. |
| 2066 | */ |
| 2067 | local void tr_static_init() |
| 2068 | { |
| 2069 | static int static_init_done = 0; |
| 2070 | int n; /* iterates over tree elements */ |
| 2071 | int bits; /* bit counter */ |
| 2072 | int length; /* length value */ |
| 2073 | int code; /* code value */ |
| 2074 | int dist; /* distance index */ |
| 2075 | ush bl_count[MAX_BITS+1]; |
| 2076 | /* number of codes at each bit length for an optimal tree */ |
| 2077 | |
| 2078 | if (static_init_done) return; |
| 2079 | |
| 2080 | /* Initialize the mapping length (0..255) -> length code (0..28) */ |
| 2081 | length = 0; |
| 2082 | for (code = 0; code < LENGTH_CODES-1; code++) { |
| 2083 | base_length[code] = length; |
| 2084 | for (n = 0; n < (1<<extra_lbits[code]); n++) { |
| 2085 | length_code[length++] = (uch)code; |
| 2086 | } |
| 2087 | } |
| 2088 | Assert (length == 256, "tr_static_init: length != 256"); |
| 2089 | /* Note that the length 255 (match length 258) can be represented |
| 2090 | * in two different ways: code 284 + 5 bits or code 285, so we |
| 2091 | * overwrite length_code[255] to use the best encoding: |
| 2092 | */ |
| 2093 | length_code[length-1] = (uch)code; |
| 2094 | |
| 2095 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
| 2096 | dist = 0; |
| 2097 | for (code = 0 ; code < 16; code++) { |
| 2098 | base_dist[code] = dist; |
| 2099 | for (n = 0; n < (1<<extra_dbits[code]); n++) { |
| 2100 | dist_code[dist++] = (uch)code; |
| 2101 | } |
| 2102 | } |
| 2103 | Assert (dist == 256, "tr_static_init: dist != 256"); |
| 2104 | dist >>= 7; /* from now on, all distances are divided by 128 */ |
| 2105 | for ( ; code < D_CODES; code++) { |
| 2106 | base_dist[code] = dist << 7; |
| 2107 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
| 2108 | dist_code[256 + dist++] = (uch)code; |
| 2109 | } |
| 2110 | } |
| 2111 | Assert (dist == 256, "tr_static_init: 256+dist != 512"); |
| 2112 | |
| 2113 | /* Construct the codes of the static literal tree */ |
| 2114 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
| 2115 | n = 0; |
| 2116 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
| 2117 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
| 2118 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
| 2119 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
| 2120 | /* Codes 286 and 287 do not exist, but we must include them in the |
| 2121 | * tree construction to get a canonical Huffman tree (longest code |
| 2122 | * all ones) |
| 2123 | */ |
| 2124 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
| 2125 | |
| 2126 | /* The static distance tree is trivial: */ |
| 2127 | for (n = 0; n < D_CODES; n++) { |
| 2128 | static_dtree[n].Len = 5; |
| 2129 | static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
| 2130 | } |
| 2131 | static_init_done = 1; |
| 2132 | } |
| 2133 | |
| 2134 | /* =========================================================================== |
| 2135 | * Initialize the tree data structures for a new zlib stream. |
| 2136 | */ |
| 2137 | void _tr_init(s) |
| 2138 | deflate_state *s; |
| 2139 | { |
| 2140 | tr_static_init(); |
| 2141 | |
| 2142 | s->compressed_len = 0L; |
| 2143 | |
| 2144 | s->l_desc.dyn_tree = s->dyn_ltree; |
| 2145 | s->l_desc.stat_desc = &static_l_desc; |
| 2146 | |
| 2147 | s->d_desc.dyn_tree = s->dyn_dtree; |
| 2148 | s->d_desc.stat_desc = &static_d_desc; |
| 2149 | |
| 2150 | s->bl_desc.dyn_tree = s->bl_tree; |
| 2151 | s->bl_desc.stat_desc = &static_bl_desc; |
| 2152 | |
| 2153 | s->bi_buf = 0; |
| 2154 | s->bi_valid = 0; |
| 2155 | s->last_eob_len = 8; /* enough lookahead for inflate */ |
| 2156 | #ifdef DEBUG_ZLIB |
| 2157 | s->bits_sent = 0L; |
| 2158 | #endif |
| 2159 | |
| 2160 | /* Initialize the first block of the first file: */ |
| 2161 | init_block(s); |
| 2162 | } |
| 2163 | |
| 2164 | /* =========================================================================== |
| 2165 | * Initialize a new block. |
| 2166 | */ |
| 2167 | local void init_block(s) |
| 2168 | deflate_state *s; |
| 2169 | { |
| 2170 | int n; /* iterates over tree elements */ |
| 2171 | |
| 2172 | /* Initialize the trees. */ |
| 2173 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
| 2174 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
| 2175 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
| 2176 | |
| 2177 | s->dyn_ltree[END_BLOCK].Freq = 1; |
| 2178 | s->opt_len = s->static_len = 0L; |
| 2179 | s->last_lit = s->matches = 0; |
| 2180 | } |
| 2181 | |
| 2182 | #define SMALLEST 1 |
| 2183 | /* Index within the heap array of least frequent node in the Huffman tree */ |
| 2184 | |
| 2185 | |
| 2186 | /* =========================================================================== |
| 2187 | * Remove the smallest element from the heap and recreate the heap with |
| 2188 | * one less element. Updates heap and heap_len. |
| 2189 | */ |
| 2190 | #define pqremove(s, tree, top) \ |
| 2191 | {\ |
| 2192 | top = s->heap[SMALLEST]; \ |
| 2193 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
| 2194 | pqdownheap(s, tree, SMALLEST); \ |
| 2195 | } |
| 2196 | |
| 2197 | /* =========================================================================== |
| 2198 | * Compares to subtrees, using the tree depth as tie breaker when |
| 2199 | * the subtrees have equal frequency. This minimizes the worst case length. |
| 2200 | */ |
| 2201 | #define smaller(tree, n, m, depth) \ |
| 2202 | (tree[n].Freq < tree[m].Freq || \ |
| 2203 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
| 2204 | |
| 2205 | /* =========================================================================== |
| 2206 | * Restore the heap property by moving down the tree starting at node k, |
| 2207 | * exchanging a node with the smallest of its two sons if necessary, stopping |
| 2208 | * when the heap property is re-established (each father smaller than its |
| 2209 | * two sons). |
| 2210 | */ |
| 2211 | local void pqdownheap(s, tree, k) |
| 2212 | deflate_state *s; |
| 2213 | ct_data *tree; /* the tree to restore */ |
| 2214 | int k; /* node to move down */ |
| 2215 | { |
| 2216 | int v = s->heap[k]; |
| 2217 | int j = k << 1; /* left son of k */ |
| 2218 | while (j <= s->heap_len) { |
| 2219 | /* Set j to the smallest of the two sons: */ |
| 2220 | if (j < s->heap_len && |
| 2221 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
| 2222 | j++; |
| 2223 | } |
| 2224 | /* Exit if v is smaller than both sons */ |
| 2225 | if (smaller(tree, v, s->heap[j], s->depth)) break; |
| 2226 | |
| 2227 | /* Exchange v with the smallest son */ |
| 2228 | s->heap[k] = s->heap[j]; k = j; |
| 2229 | |
| 2230 | /* And continue down the tree, setting j to the left son of k */ |
| 2231 | j <<= 1; |
| 2232 | } |
| 2233 | s->heap[k] = v; |
| 2234 | } |
| 2235 | |
| 2236 | /* =========================================================================== |
| 2237 | * Compute the optimal bit lengths for a tree and update the total bit length |
| 2238 | * for the current block. |
| 2239 | * IN assertion: the fields freq and dad are set, heap[heap_max] and |
| 2240 | * above are the tree nodes sorted by increasing frequency. |
| 2241 | * OUT assertions: the field len is set to the optimal bit length, the |
| 2242 | * array bl_count contains the frequencies for each bit length. |
| 2243 | * The length opt_len is updated; static_len is also updated if stree is |
| 2244 | * not null. |
| 2245 | */ |
| 2246 | local void gen_bitlen(s, desc) |
| 2247 | deflate_state *s; |
| 2248 | tree_desc *desc; /* the tree descriptor */ |
| 2249 | { |
| 2250 | ct_data *tree = desc->dyn_tree; |
| 2251 | int max_code = desc->max_code; |
| 2252 | ct_data *stree = desc->stat_desc->static_tree; |
| 2253 | intf *extra = desc->stat_desc->extra_bits; |
| 2254 | int base = desc->stat_desc->extra_base; |
| 2255 | int max_length = desc->stat_desc->max_length; |
| 2256 | int h; /* heap index */ |
| 2257 | int n, m; /* iterate over the tree elements */ |
| 2258 | int bits; /* bit length */ |
| 2259 | int xbits; /* extra bits */ |
| 2260 | ush f; /* frequency */ |
| 2261 | int overflow = 0; /* number of elements with bit length too large */ |
| 2262 | |
| 2263 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
| 2264 | |
| 2265 | /* In a first pass, compute the optimal bit lengths (which may |
| 2266 | * overflow in the case of the bit length tree). |
| 2267 | */ |
| 2268 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
| 2269 | |
| 2270 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
| 2271 | n = s->heap[h]; |
| 2272 | bits = tree[tree[n].Dad].Len + 1; |
| 2273 | if (bits > max_length) bits = max_length, overflow++; |
| 2274 | tree[n].Len = (ush)bits; |
| 2275 | /* We overwrite tree[n].Dad which is no longer needed */ |
| 2276 | |
| 2277 | if (n > max_code) continue; /* not a leaf node */ |
| 2278 | |
| 2279 | s->bl_count[bits]++; |
| 2280 | xbits = 0; |
| 2281 | if (n >= base) xbits = extra[n-base]; |
| 2282 | f = tree[n].Freq; |
| 2283 | s->opt_len += (ulg)f * (bits + xbits); |
| 2284 | if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); |
| 2285 | } |
| 2286 | if (overflow == 0) return; |
| 2287 | |
| 2288 | Trace((stderr,"\nbit length overflow\n")); |
| 2289 | /* This happens for example on obj2 and pic of the Calgary corpus */ |
| 2290 | |
| 2291 | /* Find the first bit length which could increase: */ |
| 2292 | do { |
| 2293 | bits = max_length-1; |
| 2294 | while (s->bl_count[bits] == 0) bits--; |
| 2295 | s->bl_count[bits]--; /* move one leaf down the tree */ |
| 2296 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
| 2297 | s->bl_count[max_length]--; |
| 2298 | /* The brother of the overflow item also moves one step up, |
| 2299 | * but this does not affect bl_count[max_length] |
| 2300 | */ |
| 2301 | overflow -= 2; |
| 2302 | } while (overflow > 0); |
| 2303 | |
| 2304 | /* Now recompute all bit lengths, scanning in increasing frequency. |
| 2305 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
| 2306 | * lengths instead of fixing only the wrong ones. This idea is taken |
| 2307 | * from 'ar' written by Haruhiko Okumura.) |
| 2308 | */ |
| 2309 | for (bits = max_length; bits != 0; bits--) { |
| 2310 | n = s->bl_count[bits]; |
| 2311 | while (n != 0) { |
| 2312 | m = s->heap[--h]; |
| 2313 | if (m > max_code) continue; |
| 2314 | if (tree[m].Len != (unsigned) bits) { |
| 2315 | Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); |
| 2316 | s->opt_len += ((long)bits - (long)tree[m].Len) |
| 2317 | *(long)tree[m].Freq; |
| 2318 | tree[m].Len = (ush)bits; |
| 2319 | } |
| 2320 | n--; |
| 2321 | } |
| 2322 | } |
| 2323 | } |
| 2324 | |
| 2325 | /* =========================================================================== |
| 2326 | * Generate the codes for a given tree and bit counts (which need not be |
| 2327 | * optimal). |
| 2328 | * IN assertion: the array bl_count contains the bit length statistics for |
| 2329 | * the given tree and the field len is set for all tree elements. |
| 2330 | * OUT assertion: the field code is set for all tree elements of non |
| 2331 | * zero code length. |
| 2332 | */ |
| 2333 | local void gen_codes (tree, max_code, bl_count) |
| 2334 | ct_data *tree; /* the tree to decorate */ |
| 2335 | int max_code; /* largest code with non zero frequency */ |
| 2336 | ushf *bl_count; /* number of codes at each bit length */ |
| 2337 | { |
| 2338 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
| 2339 | ush code = 0; /* running code value */ |
| 2340 | int bits; /* bit index */ |
| 2341 | int n; /* code index */ |
| 2342 | |
| 2343 | /* The distribution counts are first used to generate the code values |
| 2344 | * without bit reversal. |
| 2345 | */ |
| 2346 | for (bits = 1; bits <= MAX_BITS; bits++) { |
| 2347 | next_code[bits] = code = (code + bl_count[bits-1]) << 1; |
| 2348 | } |
| 2349 | /* Check that the bit counts in bl_count are consistent. The last code |
| 2350 | * must be all ones. |
| 2351 | */ |
| 2352 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
| 2353 | "inconsistent bit counts"); |
| 2354 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); |
| 2355 | |
| 2356 | for (n = 0; n <= max_code; n++) { |
| 2357 | int len = tree[n].Len; |
| 2358 | if (len == 0) continue; |
| 2359 | /* Now reverse the bits */ |
| 2360 | tree[n].Code = bi_reverse(next_code[len]++, len); |
| 2361 | |
| 2362 | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", |
| 2363 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
| 2364 | } |
| 2365 | } |
| 2366 | |
| 2367 | /* =========================================================================== |
| 2368 | * Construct one Huffman tree and assigns the code bit strings and lengths. |
| 2369 | * Update the total bit length for the current block. |
| 2370 | * IN assertion: the field freq is set for all tree elements. |
| 2371 | * OUT assertions: the fields len and code are set to the optimal bit length |
| 2372 | * and corresponding code. The length opt_len is updated; static_len is |
| 2373 | * also updated if stree is not null. The field max_code is set. |
| 2374 | */ |
| 2375 | local void build_tree(s, desc) |
| 2376 | deflate_state *s; |
| 2377 | tree_desc *desc; /* the tree descriptor */ |
| 2378 | { |
| 2379 | ct_data *tree = desc->dyn_tree; |
| 2380 | ct_data *stree = desc->stat_desc->static_tree; |
| 2381 | int elems = desc->stat_desc->elems; |
| 2382 | int n, m; /* iterate over heap elements */ |
| 2383 | int max_code = -1; /* largest code with non zero frequency */ |
| 2384 | int node; /* new node being created */ |
| 2385 | |
| 2386 | /* Construct the initial heap, with least frequent element in |
| 2387 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
| 2388 | * heap[0] is not used. |
| 2389 | */ |
| 2390 | s->heap_len = 0, s->heap_max = HEAP_SIZE; |
| 2391 | |
| 2392 | for (n = 0; n < elems; n++) { |
| 2393 | if (tree[n].Freq != 0) { |
| 2394 | s->heap[++(s->heap_len)] = max_code = n; |
| 2395 | s->depth[n] = 0; |
| 2396 | } else { |
| 2397 | tree[n].Len = 0; |
| 2398 | } |
| 2399 | } |
| 2400 | |
| 2401 | /* The pkzip format requires that at least one distance code exists, |
| 2402 | * and that at least one bit should be sent even if there is only one |
| 2403 | * possible code. So to avoid special checks later on we force at least |
| 2404 | * two codes of non zero frequency. |
| 2405 | */ |
| 2406 | while (s->heap_len < 2) { |
| 2407 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
| 2408 | tree[node].Freq = 1; |
| 2409 | s->depth[node] = 0; |
| 2410 | s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
| 2411 | /* node is 0 or 1 so it does not have extra bits */ |
| 2412 | } |
| 2413 | desc->max_code = max_code; |
| 2414 | |
| 2415 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
| 2416 | * establish sub-heaps of increasing lengths: |
| 2417 | */ |
| 2418 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
| 2419 | |
| 2420 | /* Construct the Huffman tree by repeatedly combining the least two |
| 2421 | * frequent nodes. |
| 2422 | */ |
| 2423 | node = elems; /* next internal node of the tree */ |
| 2424 | do { |
| 2425 | pqremove(s, tree, n); /* n = node of least frequency */ |
| 2426 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
| 2427 | |
| 2428 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
| 2429 | s->heap[--(s->heap_max)] = m; |
| 2430 | |
| 2431 | /* Create a new node father of n and m */ |
| 2432 | tree[node].Freq = tree[n].Freq + tree[m].Freq; |
| 2433 | s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1); |
| 2434 | tree[n].Dad = tree[m].Dad = (ush)node; |
| 2435 | #ifdef DUMP_BL_TREE |
| 2436 | if (tree == s->bl_tree) { |
| 2437 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", |
| 2438 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
| 2439 | } |
| 2440 | #endif |
| 2441 | /* and insert the new node in the heap */ |
| 2442 | s->heap[SMALLEST] = node++; |
| 2443 | pqdownheap(s, tree, SMALLEST); |
| 2444 | |
| 2445 | } while (s->heap_len >= 2); |
| 2446 | |
| 2447 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
| 2448 | |
| 2449 | /* At this point, the fields freq and dad are set. We can now |
| 2450 | * generate the bit lengths. |
| 2451 | */ |
| 2452 | gen_bitlen(s, (tree_desc *)desc); |
| 2453 | |
| 2454 | /* The field len is now set, we can generate the bit codes */ |
| 2455 | gen_codes ((ct_data *)tree, max_code, s->bl_count); |
| 2456 | } |
| 2457 | |
| 2458 | /* =========================================================================== |
| 2459 | * Scan a literal or distance tree to determine the frequencies of the codes |
| 2460 | * in the bit length tree. |
| 2461 | */ |
| 2462 | local void scan_tree (s, tree, max_code) |
| 2463 | deflate_state *s; |
| 2464 | ct_data *tree; /* the tree to be scanned */ |
| 2465 | int max_code; /* and its largest code of non zero frequency */ |
| 2466 | { |
| 2467 | int n; /* iterates over all tree elements */ |
| 2468 | int prevlen = -1; /* last emitted length */ |
| 2469 | int curlen; /* length of current code */ |
| 2470 | int nextlen = tree[0].Len; /* length of next code */ |
| 2471 | int count = 0; /* repeat count of the current code */ |
| 2472 | int max_count = 7; /* max repeat count */ |
| 2473 | int min_count = 4; /* min repeat count */ |
| 2474 | |
| 2475 | if (nextlen == 0) max_count = 138, min_count = 3; |
| 2476 | tree[max_code+1].Len = (ush)0xffff; /* guard */ |
| 2477 | |
| 2478 | for (n = 0; n <= max_code; n++) { |
| 2479 | curlen = nextlen; nextlen = tree[n+1].Len; |
| 2480 | if (++count < max_count && curlen == nextlen) { |
| 2481 | continue; |
| 2482 | } else if (count < min_count) { |
| 2483 | s->bl_tree[curlen].Freq += count; |
| 2484 | } else if (curlen != 0) { |
| 2485 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
| 2486 | s->bl_tree[REP_3_6].Freq++; |
| 2487 | } else if (count <= 10) { |
| 2488 | s->bl_tree[REPZ_3_10].Freq++; |
| 2489 | } else { |
| 2490 | s->bl_tree[REPZ_11_138].Freq++; |
| 2491 | } |
| 2492 | count = 0; prevlen = curlen; |
| 2493 | if (nextlen == 0) { |
| 2494 | max_count = 138, min_count = 3; |
| 2495 | } else if (curlen == nextlen) { |
| 2496 | max_count = 6, min_count = 3; |
| 2497 | } else { |
| 2498 | max_count = 7, min_count = 4; |
| 2499 | } |
| 2500 | } |
| 2501 | } |
| 2502 | |
| 2503 | /* =========================================================================== |
| 2504 | * Send a literal or distance tree in compressed form, using the codes in |
| 2505 | * bl_tree. |
| 2506 | */ |
| 2507 | local void send_tree (s, tree, max_code) |
| 2508 | deflate_state *s; |
| 2509 | ct_data *tree; /* the tree to be scanned */ |
| 2510 | int max_code; /* and its largest code of non zero frequency */ |
| 2511 | { |
| 2512 | int n; /* iterates over all tree elements */ |
| 2513 | int prevlen = -1; /* last emitted length */ |
| 2514 | int curlen; /* length of current code */ |
| 2515 | int nextlen = tree[0].Len; /* length of next code */ |
| 2516 | int count = 0; /* repeat count of the current code */ |
| 2517 | int max_count = 7; /* max repeat count */ |
| 2518 | int min_count = 4; /* min repeat count */ |
| 2519 | |
| 2520 | /* tree[max_code+1].Len = -1; */ /* guard already set */ |
| 2521 | if (nextlen == 0) max_count = 138, min_count = 3; |
| 2522 | |
| 2523 | for (n = 0; n <= max_code; n++) { |
| 2524 | curlen = nextlen; nextlen = tree[n+1].Len; |
| 2525 | if (++count < max_count && curlen == nextlen) { |
| 2526 | continue; |
| 2527 | } else if (count < min_count) { |
| 2528 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
| 2529 | |
| 2530 | } else if (curlen != 0) { |
| 2531 | if (curlen != prevlen) { |
| 2532 | send_code(s, curlen, s->bl_tree); count--; |
| 2533 | } |
| 2534 | Assert(count >= 3 && count <= 6, " 3_6?"); |
| 2535 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
| 2536 | |
| 2537 | } else if (count <= 10) { |
| 2538 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
| 2539 | |
| 2540 | } else { |
| 2541 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
| 2542 | } |
| 2543 | count = 0; prevlen = curlen; |
| 2544 | if (nextlen == 0) { |
| 2545 | max_count = 138, min_count = 3; |
| 2546 | } else if (curlen == nextlen) { |
| 2547 | max_count = 6, min_count = 3; |
| 2548 | } else { |
| 2549 | max_count = 7, min_count = 4; |
| 2550 | } |
| 2551 | } |
| 2552 | } |
| 2553 | |
| 2554 | /* =========================================================================== |
| 2555 | * Construct the Huffman tree for the bit lengths and return the index in |
| 2556 | * bl_order of the last bit length code to send. |
| 2557 | */ |
| 2558 | local int build_bl_tree(s) |
| 2559 | deflate_state *s; |
| 2560 | { |
| 2561 | int max_blindex; /* index of last bit length code of non zero freq */ |
| 2562 | |
| 2563 | /* Determine the bit length frequencies for literal and distance trees */ |
| 2564 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
| 2565 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
| 2566 | |
| 2567 | /* Build the bit length tree: */ |
| 2568 | build_tree(s, (tree_desc *)(&(s->bl_desc))); |
| 2569 | /* opt_len now includes the length of the tree representations, except |
| 2570 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
| 2571 | */ |
| 2572 | |
| 2573 | /* Determine the number of bit length codes to send. The pkzip format |
| 2574 | * requires that at least 4 bit length codes be sent. (appnote.txt says |
| 2575 | * 3 but the actual value used is 4.) |
| 2576 | */ |
| 2577 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
| 2578 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
| 2579 | } |
| 2580 | /* Update opt_len to include the bit length tree and counts */ |
| 2581 | s->opt_len += 3*(max_blindex+1) + 5+5+4; |
| 2582 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", |
| 2583 | s->opt_len, s->static_len)); |
| 2584 | |
| 2585 | return max_blindex; |
| 2586 | } |
| 2587 | |
| 2588 | /* =========================================================================== |
| 2589 | * Send the header for a block using dynamic Huffman trees: the counts, the |
| 2590 | * lengths of the bit length codes, the literal tree and the distance tree. |
| 2591 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
| 2592 | */ |
| 2593 | local void send_all_trees(s, lcodes, dcodes, blcodes) |
| 2594 | deflate_state *s; |
| 2595 | int lcodes, dcodes, blcodes; /* number of codes for each tree */ |
| 2596 | { |
| 2597 | int rank; /* index in bl_order */ |
| 2598 | |
| 2599 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
| 2600 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
| 2601 | "too many codes"); |
| 2602 | Tracev((stderr, "\nbl counts: ")); |
| 2603 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
| 2604 | send_bits(s, dcodes-1, 5); |
| 2605 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
| 2606 | for (rank = 0; rank < blcodes; rank++) { |
| 2607 | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); |
| 2608 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
| 2609 | } |
| 2610 | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); |
| 2611 | |
| 2612 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
| 2613 | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); |
| 2614 | |
| 2615 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
| 2616 | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); |
| 2617 | } |
| 2618 | |
| 2619 | /* =========================================================================== |
| 2620 | * Send a stored block |
| 2621 | */ |
| 2622 | void _tr_stored_block(s, buf, stored_len, eof) |
| 2623 | deflate_state *s; |
| 2624 | charf *buf; /* input block */ |
| 2625 | ulg stored_len; /* length of input block */ |
| 2626 | int eof; /* true if this is the last block for a file */ |
| 2627 | { |
| 2628 | send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ |
| 2629 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
| 2630 | s->compressed_len += (stored_len + 4) << 3; |
| 2631 | |
| 2632 | copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ |
| 2633 | } |
| 2634 | |
| 2635 | /* Send just the `stored block' type code without any length bytes or data. |
| 2636 | */ |
| 2637 | void _tr_stored_type_only(s) |
| 2638 | deflate_state *s; |
| 2639 | { |
| 2640 | send_bits(s, (STORED_BLOCK << 1), 3); |
| 2641 | bi_windup(s); |
| 2642 | s->compressed_len = (s->compressed_len + 3) & ~7L; |
| 2643 | } |
| 2644 | |
| 2645 | |
| 2646 | /* =========================================================================== |
| 2647 | * Send one empty static block to give enough lookahead for inflate. |
| 2648 | * This takes 10 bits, of which 7 may remain in the bit buffer. |
| 2649 | * The current inflate code requires 9 bits of lookahead. If the |
| 2650 | * last two codes for the previous block (real code plus EOB) were coded |
| 2651 | * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode |
| 2652 | * the last real code. In this case we send two empty static blocks instead |
| 2653 | * of one. (There are no problems if the previous block is stored or fixed.) |
| 2654 | * To simplify the code, we assume the worst case of last real code encoded |
| 2655 | * on one bit only. |
| 2656 | */ |
| 2657 | void _tr_align(s) |
| 2658 | deflate_state *s; |
| 2659 | { |
| 2660 | send_bits(s, STATIC_TREES<<1, 3); |
| 2661 | send_code(s, END_BLOCK, static_ltree); |
| 2662 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
| 2663 | bi_flush(s); |
| 2664 | /* Of the 10 bits for the empty block, we have already sent |
| 2665 | * (10 - bi_valid) bits. The lookahead for the last real code (before |
| 2666 | * the EOB of the previous block) was thus at least one plus the length |
| 2667 | * of the EOB plus what we have just sent of the empty static block. |
| 2668 | */ |
| 2669 | if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { |
| 2670 | send_bits(s, STATIC_TREES<<1, 3); |
| 2671 | send_code(s, END_BLOCK, static_ltree); |
| 2672 | s->compressed_len += 10L; |
| 2673 | bi_flush(s); |
| 2674 | } |
| 2675 | s->last_eob_len = 7; |
| 2676 | } |
| 2677 | |
| 2678 | /* =========================================================================== |
| 2679 | * Determine the best encoding for the current block: dynamic trees, static |
| 2680 | * trees or store, and output the encoded block to the zip file. This function |
| 2681 | * returns the total compressed length for the file so far. |
| 2682 | */ |
| 2683 | ulg _tr_flush_block(s, buf, stored_len, eof) |
| 2684 | deflate_state *s; |
| 2685 | charf *buf; /* input block, or NULL if too old */ |
| 2686 | ulg stored_len; /* length of input block */ |
| 2687 | int eof; /* true if this is the last block for a file */ |
| 2688 | { |
| 2689 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
| 2690 | int max_blindex = 0; /* index of last bit length code of non zero freq */ |
| 2691 | |
| 2692 | /* Build the Huffman trees unless a stored block is forced */ |
| 2693 | if (s->level > 0) { |
| 2694 | |
| 2695 | /* Check if the file is ascii or binary */ |
| 2696 | if (s->data_type == Z_UNKNOWN) set_data_type(s); |
| 2697 | |
| 2698 | /* Construct the literal and distance trees */ |
| 2699 | build_tree(s, (tree_desc *)(&(s->l_desc))); |
| 2700 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, |
| 2701 | s->static_len)); |
| 2702 | |
| 2703 | build_tree(s, (tree_desc *)(&(s->d_desc))); |
| 2704 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, |
| 2705 | s->static_len)); |
| 2706 | /* At this point, opt_len and static_len are the total bit lengths of |
| 2707 | * the compressed block data, excluding the tree representations. |
| 2708 | */ |
| 2709 | |
| 2710 | /* Build the bit length tree for the above two trees, and get the index |
| 2711 | * in bl_order of the last bit length code to send. |
| 2712 | */ |
| 2713 | max_blindex = build_bl_tree(s); |
| 2714 | |
| 2715 | /* Determine the best encoding. Compute first the block length in bytes*/ |
| 2716 | opt_lenb = (s->opt_len+3+7)>>3; |
| 2717 | static_lenb = (s->static_len+3+7)>>3; |
| 2718 | |
| 2719 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", |
| 2720 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
| 2721 | s->last_lit)); |
| 2722 | |
| 2723 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; |
| 2724 | |
| 2725 | } else { |
| 2726 | Assert(buf != (char*)0, "lost buf"); |
| 2727 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
| 2728 | } |
| 2729 | |
| 2730 | /* If compression failed and this is the first and last block, |
| 2731 | * and if the .zip file can be seeked (to rewrite the local header), |
| 2732 | * the whole file is transformed into a stored file: |
| 2733 | */ |
| 2734 | #ifdef STORED_FILE_OK |
| 2735 | # ifdef FORCE_STORED_FILE |
| 2736 | if (eof && s->compressed_len == 0L) { /* force stored file */ |
| 2737 | # else |
| 2738 | if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { |
| 2739 | # endif |
| 2740 | /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ |
| 2741 | if (buf == (charf*)0) error ("block vanished"); |
| 2742 | |
| 2743 | copy_block(s, buf, (unsigned)stored_len, 0); /* without header */ |
| 2744 | s->compressed_len = stored_len << 3; |
| 2745 | s->method = STORED; |
| 2746 | } else |
| 2747 | #endif /* STORED_FILE_OK */ |
| 2748 | |
| 2749 | #ifdef FORCE_STORED |
| 2750 | if (buf != (char*)0) { /* force stored block */ |
| 2751 | #else |
| 2752 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { |
| 2753 | /* 4: two words for the lengths */ |
| 2754 | #endif |
| 2755 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
| 2756 | * Otherwise we can't have processed more than WSIZE input bytes since |
| 2757 | * the last block flush, because compression would have been |
| 2758 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
| 2759 | * transform a block into a stored block. |
| 2760 | */ |
| 2761 | _tr_stored_block(s, buf, stored_len, eof); |
| 2762 | |
| 2763 | #ifdef FORCE_STATIC |
| 2764 | } else if (static_lenb >= 0) { /* force static trees */ |
| 2765 | #else |
| 2766 | } else if (static_lenb == opt_lenb) { |
| 2767 | #endif |
| 2768 | send_bits(s, (STATIC_TREES<<1)+eof, 3); |
| 2769 | compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); |
| 2770 | s->compressed_len += 3 + s->static_len; |
| 2771 | } else { |
| 2772 | send_bits(s, (DYN_TREES<<1)+eof, 3); |
| 2773 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
| 2774 | max_blindex+1); |
| 2775 | compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); |
| 2776 | s->compressed_len += 3 + s->opt_len; |
| 2777 | } |
| 2778 | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); |
| 2779 | init_block(s); |
| 2780 | |
| 2781 | if (eof) { |
| 2782 | bi_windup(s); |
| 2783 | s->compressed_len += 7; /* align on byte boundary */ |
| 2784 | } |
| 2785 | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, |
| 2786 | s->compressed_len-7*eof)); |
| 2787 | |
| 2788 | return s->compressed_len >> 3; |
| 2789 | } |
| 2790 | |
| 2791 | /* =========================================================================== |
| 2792 | * Save the match info and tally the frequency counts. Return true if |
| 2793 | * the current block must be flushed. |
| 2794 | */ |
| 2795 | int _tr_tally (s, dist, lc) |
| 2796 | deflate_state *s; |
| 2797 | unsigned dist; /* distance of matched string */ |
| 2798 | unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
| 2799 | { |
| 2800 | s->d_buf[s->last_lit] = (ush)dist; |
| 2801 | s->l_buf[s->last_lit++] = (uch)lc; |
| 2802 | if (dist == 0) { |
| 2803 | /* lc is the unmatched char */ |
| 2804 | s->dyn_ltree[lc].Freq++; |
| 2805 | } else { |
| 2806 | s->matches++; |
| 2807 | /* Here, lc is the match length - MIN_MATCH */ |
| 2808 | dist--; /* dist = match distance - 1 */ |
| 2809 | Assert((ush)dist < (ush)MAX_DIST(s) && |
| 2810 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
| 2811 | (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); |
| 2812 | |
| 2813 | s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; |
| 2814 | s->dyn_dtree[d_code(dist)].Freq++; |
| 2815 | } |
| 2816 | |
| 2817 | /* Try to guess if it is profitable to stop the current block here */ |
| 2818 | if (s->level > 2 && (s->last_lit & 0xfff) == 0) { |
| 2819 | /* Compute an upper bound for the compressed length */ |
| 2820 | ulg out_length = (ulg)s->last_lit*8L; |
| 2821 | ulg in_length = (ulg)((long)s->strstart - s->block_start); |
| 2822 | int dcode; |
| 2823 | for (dcode = 0; dcode < D_CODES; dcode++) { |
| 2824 | out_length += (ulg)s->dyn_dtree[dcode].Freq * |
| 2825 | (5L+extra_dbits[dcode]); |
| 2826 | } |
| 2827 | out_length >>= 3; |
| 2828 | Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", |
| 2829 | s->last_lit, in_length, out_length, |
| 2830 | 100L - out_length*100L/in_length)); |
| 2831 | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; |
| 2832 | } |
| 2833 | return (s->last_lit == s->lit_bufsize-1); |
| 2834 | /* We avoid equality with lit_bufsize because of wraparound at 64K |
| 2835 | * on 16 bit machines and because stored blocks are restricted to |
| 2836 | * 64K-1 bytes. |
| 2837 | */ |
| 2838 | } |
| 2839 | |
| 2840 | /* =========================================================================== |
| 2841 | * Send the block data compressed using the given Huffman trees |
| 2842 | */ |
| 2843 | local void compress_block(s, ltree, dtree) |
| 2844 | deflate_state *s; |
| 2845 | ct_data *ltree; /* literal tree */ |
| 2846 | ct_data *dtree; /* distance tree */ |
| 2847 | { |
| 2848 | unsigned dist; /* distance of matched string */ |
| 2849 | int lc; /* match length or unmatched char (if dist == 0) */ |
| 2850 | unsigned lx = 0; /* running index in l_buf */ |
| 2851 | unsigned code; /* the code to send */ |
| 2852 | int extra; /* number of extra bits to send */ |
| 2853 | |
| 2854 | if (s->last_lit != 0) do { |
| 2855 | dist = s->d_buf[lx]; |
| 2856 | lc = s->l_buf[lx++]; |
| 2857 | if (dist == 0) { |
| 2858 | send_code(s, lc, ltree); /* send a literal byte */ |
| 2859 | Tracecv(isgraph(lc), (stderr," '%c' ", lc)); |
| 2860 | } else { |
| 2861 | /* Here, lc is the match length - MIN_MATCH */ |
| 2862 | code = length_code[lc]; |
| 2863 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ |
| 2864 | extra = extra_lbits[code]; |
| 2865 | if (extra != 0) { |
| 2866 | lc -= base_length[code]; |
| 2867 | send_bits(s, lc, extra); /* send the extra length bits */ |
| 2868 | } |
| 2869 | dist--; /* dist is now the match distance - 1 */ |
| 2870 | code = d_code(dist); |
| 2871 | Assert (code < D_CODES, "bad d_code"); |
| 2872 | |
| 2873 | send_code(s, code, dtree); /* send the distance code */ |
| 2874 | extra = extra_dbits[code]; |
| 2875 | if (extra != 0) { |
| 2876 | dist -= base_dist[code]; |
| 2877 | send_bits(s, dist, extra); /* send the extra distance bits */ |
| 2878 | } |
| 2879 | } /* literal or match pair ? */ |
| 2880 | |
| 2881 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ |
| 2882 | Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); |
| 2883 | |
| 2884 | } while (lx < s->last_lit); |
| 2885 | |
| 2886 | send_code(s, END_BLOCK, ltree); |
| 2887 | s->last_eob_len = ltree[END_BLOCK].Len; |
| 2888 | } |
| 2889 | |
| 2890 | /* =========================================================================== |
| 2891 | * Set the data type to ASCII or BINARY, using a crude approximation: |
| 2892 | * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. |
| 2893 | * IN assertion: the fields freq of dyn_ltree are set and the total of all |
| 2894 | * frequencies does not exceed 64K (to fit in an int on 16 bit machines). |
| 2895 | */ |
| 2896 | local void set_data_type(s) |
| 2897 | deflate_state *s; |
| 2898 | { |
| 2899 | int n = 0; |
| 2900 | unsigned ascii_freq = 0; |
| 2901 | unsigned bin_freq = 0; |
| 2902 | while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; |
| 2903 | while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; |
| 2904 | while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; |
| 2905 | s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); |
| 2906 | } |
| 2907 | |
| 2908 | /* =========================================================================== |
| 2909 | * Reverse the first len bits of a code, using straightforward code (a faster |
| 2910 | * method would use a table) |
| 2911 | * IN assertion: 1 <= len <= 15 |
| 2912 | */ |
| 2913 | local unsigned bi_reverse(code, len) |
| 2914 | unsigned code; /* the value to invert */ |
| 2915 | int len; /* its bit length */ |
| 2916 | { |
| 2917 | register unsigned res = 0; |
| 2918 | do { |
| 2919 | res |= code & 1; |
| 2920 | code >>= 1, res <<= 1; |
| 2921 | } while (--len > 0); |
| 2922 | return res >> 1; |
| 2923 | } |
| 2924 | |
| 2925 | /* =========================================================================== |
| 2926 | * Flush the bit buffer, keeping at most 7 bits in it. |
| 2927 | */ |
| 2928 | local void bi_flush(s) |
| 2929 | deflate_state *s; |
| 2930 | { |
| 2931 | if (s->bi_valid == 16) { |
| 2932 | put_short(s, s->bi_buf); |
| 2933 | s->bi_buf = 0; |
| 2934 | s->bi_valid = 0; |
| 2935 | } else if (s->bi_valid >= 8) { |
| 2936 | put_byte(s, (Byte)s->bi_buf); |
| 2937 | s->bi_buf >>= 8; |
| 2938 | s->bi_valid -= 8; |
| 2939 | } |
| 2940 | } |
| 2941 | |
| 2942 | /* =========================================================================== |
| 2943 | * Flush the bit buffer and align the output on a byte boundary |
| 2944 | */ |
| 2945 | local void bi_windup(s) |
| 2946 | deflate_state *s; |
| 2947 | { |
| 2948 | if (s->bi_valid > 8) { |
| 2949 | put_short(s, s->bi_buf); |
| 2950 | } else if (s->bi_valid > 0) { |
| 2951 | put_byte(s, (Byte)s->bi_buf); |
| 2952 | } |
| 2953 | s->bi_buf = 0; |
| 2954 | s->bi_valid = 0; |
| 2955 | #ifdef DEBUG_ZLIB |
| 2956 | s->bits_sent = (s->bits_sent+7) & ~7; |
| 2957 | #endif |
| 2958 | } |
| 2959 | |
| 2960 | /* =========================================================================== |
| 2961 | * Copy a stored block, storing first the length and its |
| 2962 | * one's complement if requested. |
| 2963 | */ |
| 2964 | local void copy_block(s, buf, len, header) |
| 2965 | deflate_state *s; |
| 2966 | charf *buf; /* the input data */ |
| 2967 | unsigned len; /* its length */ |
| 2968 | int header; /* true if block header must be written */ |
| 2969 | { |
| 2970 | bi_windup(s); /* align on byte boundary */ |
| 2971 | s->last_eob_len = 8; /* enough lookahead for inflate */ |
| 2972 | |
| 2973 | if (header) { |
| 2974 | put_short(s, (ush)len); |
| 2975 | put_short(s, (ush)~len); |
| 2976 | #ifdef DEBUG_ZLIB |
| 2977 | s->bits_sent += 2*16; |
| 2978 | #endif |
| 2979 | } |
| 2980 | #ifdef DEBUG_ZLIB |
| 2981 | s->bits_sent += (ulg)len<<3; |
| 2982 | #endif |
| 2983 | /* bundle up the put_byte(s, *buf++) calls */ |
| 2984 | zmemcpy(&s->pending_buf[s->pending], buf, len); |
| 2985 | s->pending += len; |
| 2986 | } |
| 2987 | /* --- trees.c */ |
| 2988 | |
| 2989 | /* +++ inflate.c */ |
| 2990 | /* inflate.c -- zlib interface to inflate modules |
| 2991 | * Copyright (C) 1995-1996 Mark Adler |
| 2992 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 2993 | */ |
| 2994 | |
| 2995 | /* #include "zutil.h" */ |
| 2996 | |
| 2997 | /* +++ infblock.h */ |
| 2998 | /* infblock.h -- header to use infblock.c |
| 2999 | * Copyright (C) 1995-1996 Mark Adler |
| 3000 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 3001 | */ |
| 3002 | |
| 3003 | /* WARNING: this file should *not* be used by applications. It is |
| 3004 | part of the implementation of the compression library and is |
| 3005 | subject to change. Applications should only use zlib.h. |
| 3006 | */ |
| 3007 | |
| 3008 | struct inflate_blocks_state; |
| 3009 | typedef struct inflate_blocks_state FAR inflate_blocks_statef; |
| 3010 | |
| 3011 | extern inflate_blocks_statef * inflate_blocks_new OF(( |
| 3012 | z_streamp z, |
| 3013 | check_func c, /* check function */ |
| 3014 | uInt w)); /* window size */ |
| 3015 | |
| 3016 | extern int inflate_blocks OF(( |
| 3017 | inflate_blocks_statef *, |
| 3018 | z_streamp , |
| 3019 | int)); /* initial return code */ |
| 3020 | |
| 3021 | extern void inflate_blocks_reset OF(( |
| 3022 | inflate_blocks_statef *, |
| 3023 | z_streamp , |
| 3024 | uLongf *)); /* check value on output */ |
| 3025 | |
| 3026 | extern int inflate_blocks_free OF(( |
| 3027 | inflate_blocks_statef *, |
| 3028 | z_streamp , |
| 3029 | uLongf *)); /* check value on output */ |
| 3030 | |
| 3031 | extern void inflate_set_dictionary OF(( |
| 3032 | inflate_blocks_statef *s, |
| 3033 | const Bytef *d, /* dictionary */ |
| 3034 | uInt n)); /* dictionary length */ |
| 3035 | |
| 3036 | extern int inflate_addhistory OF(( |
| 3037 | inflate_blocks_statef *, |
| 3038 | z_streamp)); |
| 3039 | |
| 3040 | extern int inflate_packet_flush OF(( |
| 3041 | inflate_blocks_statef *)); |
| 3042 | /* --- infblock.h */ |
| 3043 | |
| 3044 | #ifndef NO_DUMMY_DECL |
| 3045 | struct inflate_blocks_state {int dummy;}; /* for buggy compilers */ |
| 3046 | #endif |
| 3047 | |
| 3048 | /* inflate private state */ |
| 3049 | struct internal_state { |
| 3050 | |
| 3051 | /* mode */ |
| 3052 | enum { |
| 3053 | METHOD, /* waiting for method byte */ |
| 3054 | FLAG, /* waiting for flag byte */ |
| 3055 | DICT4, /* four dictionary check bytes to go */ |
| 3056 | DICT3, /* three dictionary check bytes to go */ |
| 3057 | DICT2, /* two dictionary check bytes to go */ |
| 3058 | DICT1, /* one dictionary check byte to go */ |
| 3059 | DICT0, /* waiting for inflateSetDictionary */ |
| 3060 | BLOCKS, /* decompressing blocks */ |
| 3061 | CHECK4, /* four check bytes to go */ |
| 3062 | CHECK3, /* three check bytes to go */ |
| 3063 | CHECK2, /* two check bytes to go */ |
| 3064 | CHECK1, /* one check byte to go */ |
| 3065 | DONE, /* finished check, done */ |
| 3066 | BAD} /* got an error--stay here */ |
| 3067 | mode; /* current inflate mode */ |
| 3068 | |
| 3069 | /* mode dependent information */ |
| 3070 | union { |
| 3071 | uInt method; /* if FLAGS, method byte */ |
| 3072 | struct { |
| 3073 | uLong was; /* computed check value */ |
| 3074 | uLong need; /* stream check value */ |
| 3075 | } check; /* if CHECK, check values to compare */ |
| 3076 | uInt marker; /* if BAD, inflateSync's marker bytes count */ |
| 3077 | } sub; /* submode */ |
| 3078 | |
| 3079 | /* mode independent information */ |
| 3080 | int nowrap; /* flag for no wrapper */ |
| 3081 | uInt wbits; /* log2(window size) (8..15, defaults to 15) */ |
| 3082 | inflate_blocks_statef |
| 3083 | *blocks; /* current inflate_blocks state */ |
| 3084 | |
| 3085 | }; |
| 3086 | |
| 3087 | |
| 3088 | int inflateReset(z) |
| 3089 | z_streamp z; |
| 3090 | { |
| 3091 | uLong c; |
| 3092 | |
| 3093 | if (z == Z_NULL || z->state == Z_NULL) |
| 3094 | return Z_STREAM_ERROR; |
| 3095 | z->total_in = z->total_out = 0; |
| 3096 | z->msg = Z_NULL; |
| 3097 | z->state->mode = z->state->nowrap ? BLOCKS : METHOD; |
| 3098 | inflate_blocks_reset(z->state->blocks, z, &c); |
| 3099 | Trace((stderr, "inflate: reset\n")); |
| 3100 | return Z_OK; |
| 3101 | } |
| 3102 | |
| 3103 | |
| 3104 | int inflateEnd(z) |
| 3105 | z_streamp z; |
| 3106 | { |
| 3107 | uLong c; |
| 3108 | |
| 3109 | if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL) |
| 3110 | return Z_STREAM_ERROR; |
| 3111 | if (z->state->blocks != Z_NULL) |
| 3112 | inflate_blocks_free(z->state->blocks, z, &c); |
| 3113 | ZFREE(z, z->state); |
| 3114 | z->state = Z_NULL; |
| 3115 | Trace((stderr, "inflate: end\n")); |
| 3116 | return Z_OK; |
| 3117 | } |
| 3118 | |
| 3119 | |
| 3120 | int inflateInit2_(z, w, version, stream_size) |
| 3121 | z_streamp z; |
| 3122 | int w; |
| 3123 | const char *version; |
| 3124 | int stream_size; |
| 3125 | { |
| 3126 | if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || |
| 3127 | stream_size != sizeof(z_stream)) |
| 3128 | return Z_VERSION_ERROR; |
| 3129 | |
| 3130 | /* initialize state */ |
| 3131 | if (z == Z_NULL) |
| 3132 | return Z_STREAM_ERROR; |
| 3133 | z->msg = Z_NULL; |
| 3134 | #ifndef NO_ZCFUNCS |
| 3135 | if (z->zalloc == Z_NULL) |
| 3136 | { |
| 3137 | z->zalloc = zcalloc; |
| 3138 | z->opaque = (voidpf)0; |
| 3139 | } |
| 3140 | if (z->zfree == Z_NULL) z->zfree = zcfree; |
| 3141 | #endif |
| 3142 | if ((z->state = (struct internal_state FAR *) |
| 3143 | ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL) |
| 3144 | return Z_MEM_ERROR; |
| 3145 | z->state->blocks = Z_NULL; |
| 3146 | |
| 3147 | /* handle undocumented nowrap option (no zlib header or check) */ |
| 3148 | z->state->nowrap = 0; |
| 3149 | if (w < 0) |
| 3150 | { |
| 3151 | w = - w; |
| 3152 | z->state->nowrap = 1; |
| 3153 | } |
| 3154 | |
| 3155 | /* set window size */ |
| 3156 | if (w < 8 || w > 15) |
| 3157 | { |
| 3158 | inflateEnd(z); |
| 3159 | return Z_STREAM_ERROR; |
| 3160 | } |
| 3161 | z->state->wbits = (uInt)w; |
| 3162 | |
| 3163 | /* create inflate_blocks state */ |
| 3164 | if ((z->state->blocks = |
| 3165 | inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w)) |
| 3166 | == Z_NULL) |
| 3167 | { |
| 3168 | inflateEnd(z); |
| 3169 | return Z_MEM_ERROR; |
| 3170 | } |
| 3171 | Trace((stderr, "inflate: allocated\n")); |
| 3172 | |
| 3173 | /* reset state */ |
| 3174 | inflateReset(z); |
| 3175 | return Z_OK; |
| 3176 | } |
| 3177 | |
| 3178 | |
| 3179 | int inflateInit_(z, version, stream_size) |
| 3180 | z_streamp z; |
| 3181 | const char *version; |
| 3182 | int stream_size; |
| 3183 | { |
| 3184 | return inflateInit2_(z, DEF_WBITS, version, stream_size); |
| 3185 | } |
| 3186 | |
| 3187 | |
| 3188 | #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;} |
| 3189 | #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++) |
| 3190 | |
| 3191 | int inflate(z, f) |
| 3192 | z_streamp z; |
| 3193 | int f; |
| 3194 | { |
| 3195 | int r; |
| 3196 | uInt b; |
| 3197 | |
| 3198 | if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0) |
| 3199 | return Z_STREAM_ERROR; |
| 3200 | r = Z_BUF_ERROR; |
| 3201 | while (1) switch (z->state->mode) |
| 3202 | { |
| 3203 | case METHOD: |
| 3204 | NEEDBYTE |
| 3205 | if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED) |
| 3206 | { |
| 3207 | z->state->mode = BAD; |
| 3208 | z->msg = (char*)"unknown compression method"; |
| 3209 | z->state->sub.marker = 5; /* can't try inflateSync */ |
| 3210 | break; |
| 3211 | } |
| 3212 | if ((z->state->sub.method >> 4) + 8 > z->state->wbits) |
| 3213 | { |
| 3214 | z->state->mode = BAD; |
| 3215 | z->msg = (char*)"invalid window size"; |
| 3216 | z->state->sub.marker = 5; /* can't try inflateSync */ |
| 3217 | break; |
| 3218 | } |
| 3219 | z->state->mode = FLAG; |
| 3220 | case FLAG: |
| 3221 | NEEDBYTE |
| 3222 | b = NEXTBYTE; |
| 3223 | if (((z->state->sub.method << 8) + b) % 31) |
| 3224 | { |
| 3225 | z->state->mode = BAD; |
| 3226 | z->msg = (char*)"incorrect header check"; |
| 3227 | z->state->sub.marker = 5; /* can't try inflateSync */ |
| 3228 | break; |
| 3229 | } |
| 3230 | Trace((stderr, "inflate: zlib header ok\n")); |
| 3231 | if (!(b & PRESET_DICT)) |
| 3232 | { |
| 3233 | z->state->mode = BLOCKS; |
| 3234 | break; |
| 3235 | } |
| 3236 | z->state->mode = DICT4; |
| 3237 | case DICT4: |
| 3238 | NEEDBYTE |
| 3239 | z->state->sub.check.need = (uLong)NEXTBYTE << 24; |
| 3240 | z->state->mode = DICT3; |
| 3241 | case DICT3: |
| 3242 | NEEDBYTE |
| 3243 | z->state->sub.check.need += (uLong)NEXTBYTE << 16; |
| 3244 | z->state->mode = DICT2; |
| 3245 | case DICT2: |
| 3246 | NEEDBYTE |
| 3247 | z->state->sub.check.need += (uLong)NEXTBYTE << 8; |
| 3248 | z->state->mode = DICT1; |
| 3249 | case DICT1: |
| 3250 | NEEDBYTE |
| 3251 | z->state->sub.check.need += (uLong)NEXTBYTE; |
| 3252 | z->adler = z->state->sub.check.need; |
| 3253 | z->state->mode = DICT0; |
| 3254 | return Z_NEED_DICT; |
| 3255 | case DICT0: |
| 3256 | z->state->mode = BAD; |
| 3257 | z->msg = (char*)"need dictionary"; |
| 3258 | z->state->sub.marker = 0; /* can try inflateSync */ |
| 3259 | return Z_STREAM_ERROR; |
| 3260 | case BLOCKS: |
| 3261 | r = inflate_blocks(z->state->blocks, z, r); |
| 3262 | if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0) |
| 3263 | r = inflate_packet_flush(z->state->blocks); |
| 3264 | if (r == Z_DATA_ERROR) |
| 3265 | { |
| 3266 | z->state->mode = BAD; |
| 3267 | z->state->sub.marker = 0; /* can try inflateSync */ |
| 3268 | break; |
| 3269 | } |
| 3270 | if (r != Z_STREAM_END) |
| 3271 | return r; |
| 3272 | r = Z_OK; |
| 3273 | inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was); |
| 3274 | if (z->state->nowrap) |
| 3275 | { |
| 3276 | z->state->mode = DONE; |
| 3277 | break; |
| 3278 | } |
| 3279 | z->state->mode = CHECK4; |
| 3280 | case CHECK4: |
| 3281 | NEEDBYTE |
| 3282 | z->state->sub.check.need = (uLong)NEXTBYTE << 24; |
| 3283 | z->state->mode = CHECK3; |
| 3284 | case CHECK3: |
| 3285 | NEEDBYTE |
| 3286 | z->state->sub.check.need += (uLong)NEXTBYTE << 16; |
| 3287 | z->state->mode = CHECK2; |
| 3288 | case CHECK2: |
| 3289 | NEEDBYTE |
| 3290 | z->state->sub.check.need += (uLong)NEXTBYTE << 8; |
| 3291 | z->state->mode = CHECK1; |
| 3292 | case CHECK1: |
| 3293 | NEEDBYTE |
| 3294 | z->state->sub.check.need += (uLong)NEXTBYTE; |
| 3295 | |
| 3296 | if (z->state->sub.check.was != z->state->sub.check.need) |
| 3297 | { |
| 3298 | z->state->mode = BAD; |
| 3299 | z->msg = (char*)"incorrect data check"; |
| 3300 | z->state->sub.marker = 5; /* can't try inflateSync */ |
| 3301 | break; |
| 3302 | } |
| 3303 | Trace((stderr, "inflate: zlib check ok\n")); |
| 3304 | z->state->mode = DONE; |
| 3305 | case DONE: |
| 3306 | return Z_STREAM_END; |
| 3307 | case BAD: |
| 3308 | return Z_DATA_ERROR; |
| 3309 | default: |
| 3310 | return Z_STREAM_ERROR; |
| 3311 | } |
| 3312 | |
| 3313 | empty: |
| 3314 | if (f != Z_PACKET_FLUSH) |
| 3315 | return r; |
| 3316 | z->state->mode = BAD; |
| 3317 | z->msg = (char *)"need more for packet flush"; |
| 3318 | z->state->sub.marker = 0; /* can try inflateSync */ |
| 3319 | return Z_DATA_ERROR; |
| 3320 | } |
| 3321 | |
| 3322 | |
| 3323 | int inflateSetDictionary(z, dictionary, dictLength) |
| 3324 | z_streamp z; |
| 3325 | const Bytef *dictionary; |
| 3326 | uInt dictLength; |
| 3327 | { |
| 3328 | uInt length = dictLength; |
| 3329 | |
| 3330 | if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0) |
| 3331 | return Z_STREAM_ERROR; |
| 3332 | |
| 3333 | if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR; |
| 3334 | z->adler = 1L; |
| 3335 | |
| 3336 | if (length >= ((uInt)1<<z->state->wbits)) |
| 3337 | { |
| 3338 | length = (1<<z->state->wbits)-1; |
| 3339 | dictionary += dictLength - length; |
| 3340 | } |
| 3341 | inflate_set_dictionary(z->state->blocks, dictionary, length); |
| 3342 | z->state->mode = BLOCKS; |
| 3343 | return Z_OK; |
| 3344 | } |
| 3345 | |
| 3346 | /* |
| 3347 | * This subroutine adds the data at next_in/avail_in to the output history |
| 3348 | * without performing any output. The output buffer must be "caught up"; |
| 3349 | * i.e. no pending output (hence s->read equals s->write), and the state must |
| 3350 | * be BLOCKS (i.e. we should be willing to see the start of a series of |
| 3351 | * BLOCKS). On exit, the output will also be caught up, and the checksum |
| 3352 | * will have been updated if need be. |
| 3353 | */ |
| 3354 | |
| 3355 | int inflateIncomp(z) |
| 3356 | z_stream *z; |
| 3357 | { |
| 3358 | if (z->state->mode != BLOCKS) |
| 3359 | return Z_DATA_ERROR; |
| 3360 | return inflate_addhistory(z->state->blocks, z); |
| 3361 | } |
| 3362 | |
| 3363 | |
| 3364 | int inflateSync(z) |
| 3365 | z_streamp z; |
| 3366 | { |
| 3367 | uInt n; /* number of bytes to look at */ |
| 3368 | Bytef *p; /* pointer to bytes */ |
| 3369 | uInt m; /* number of marker bytes found in a row */ |
| 3370 | uLong r, w; /* temporaries to save total_in and total_out */ |
| 3371 | |
| 3372 | /* set up */ |
| 3373 | if (z == Z_NULL || z->state == Z_NULL) |
| 3374 | return Z_STREAM_ERROR; |
| 3375 | if (z->state->mode != BAD) |
| 3376 | { |
| 3377 | z->state->mode = BAD; |
| 3378 | z->state->sub.marker = 0; |
| 3379 | } |
| 3380 | if ((n = z->avail_in) == 0) |
| 3381 | return Z_BUF_ERROR; |
| 3382 | p = z->next_in; |
| 3383 | m = z->state->sub.marker; |
| 3384 | |
| 3385 | /* search */ |
| 3386 | while (n && m < 4) |
| 3387 | { |
| 3388 | if (*p == (Byte)(m < 2 ? 0 : 0xff)) |
| 3389 | m++; |
| 3390 | else if (*p) |
| 3391 | m = 0; |
| 3392 | else |
| 3393 | m = 4 - m; |
| 3394 | p++, n--; |
| 3395 | } |
| 3396 | |
| 3397 | /* restore */ |
| 3398 | z->total_in += p - z->next_in; |
| 3399 | z->next_in = p; |
| 3400 | z->avail_in = n; |
| 3401 | z->state->sub.marker = m; |
| 3402 | |
| 3403 | /* return no joy or set up to restart on a new block */ |
| 3404 | if (m != 4) |
| 3405 | return Z_DATA_ERROR; |
| 3406 | r = z->total_in; w = z->total_out; |
| 3407 | inflateReset(z); |
| 3408 | z->total_in = r; z->total_out = w; |
| 3409 | z->state->mode = BLOCKS; |
| 3410 | return Z_OK; |
| 3411 | } |
| 3412 | |
| 3413 | #undef NEEDBYTE |
| 3414 | #undef NEXTBYTE |
| 3415 | /* --- inflate.c */ |
| 3416 | |
| 3417 | /* +++ infblock.c */ |
| 3418 | /* infblock.c -- interpret and process block types to last block |
| 3419 | * Copyright (C) 1995-1996 Mark Adler |
| 3420 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 3421 | */ |
| 3422 | |
| 3423 | /* #include "zutil.h" */ |
| 3424 | /* #include "infblock.h" */ |
| 3425 | |
| 3426 | /* +++ inftrees.h */ |
| 3427 | /* inftrees.h -- header to use inftrees.c |
| 3428 | * Copyright (C) 1995-1996 Mark Adler |
| 3429 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 3430 | */ |
| 3431 | |
| 3432 | /* WARNING: this file should *not* be used by applications. It is |
| 3433 | part of the implementation of the compression library and is |
| 3434 | subject to change. Applications should only use zlib.h. |
| 3435 | */ |
| 3436 | |
| 3437 | /* Huffman code lookup table entry--this entry is four bytes for machines |
| 3438 | that have 16-bit pointers (e.g. PC's in the small or medium model). */ |
| 3439 | |
| 3440 | typedef struct inflate_huft_s FAR inflate_huft; |
| 3441 | |
| 3442 | struct inflate_huft_s { |
| 3443 | union { |
| 3444 | struct { |
| 3445 | Byte Exop; /* number of extra bits or operation */ |
| 3446 | Byte Bits; /* number of bits in this code or subcode */ |
| 3447 | } what; |
| 3448 | Bytef *pad; /* pad structure to a power of 2 (4 bytes for */ |
| 3449 | } word; /* 16-bit, 8 bytes for 32-bit machines) */ |
| 3450 | union { |
| 3451 | uInt Base; /* literal, length base, or distance base */ |
| 3452 | inflate_huft *Next; /* pointer to next level of table */ |
| 3453 | } more; |
| 3454 | }; |
| 3455 | |
| 3456 | #ifdef DEBUG_ZLIB |
| 3457 | extern uInt inflate_hufts; |
| 3458 | #endif |
| 3459 | |
| 3460 | extern int inflate_trees_bits OF(( |
| 3461 | uIntf *, /* 19 code lengths */ |
| 3462 | uIntf *, /* bits tree desired/actual depth */ |
| 3463 | inflate_huft * FAR *, /* bits tree result */ |
| 3464 | z_streamp )); /* for zalloc, zfree functions */ |
| 3465 | |
| 3466 | extern int inflate_trees_dynamic OF(( |
| 3467 | uInt, /* number of literal/length codes */ |
| 3468 | uInt, /* number of distance codes */ |
| 3469 | uIntf *, /* that many (total) code lengths */ |
| 3470 | uIntf *, /* literal desired/actual bit depth */ |
| 3471 | uIntf *, /* distance desired/actual bit depth */ |
| 3472 | inflate_huft * FAR *, /* literal/length tree result */ |
| 3473 | inflate_huft * FAR *, /* distance tree result */ |
| 3474 | z_streamp )); /* for zalloc, zfree functions */ |
| 3475 | |
| 3476 | extern int inflate_trees_fixed OF(( |
| 3477 | uIntf *, /* literal desired/actual bit depth */ |
| 3478 | uIntf *, /* distance desired/actual bit depth */ |
| 3479 | inflate_huft * FAR *, /* literal/length tree result */ |
| 3480 | inflate_huft * FAR *)); /* distance tree result */ |
| 3481 | |
| 3482 | extern int inflate_trees_free OF(( |
| 3483 | inflate_huft *, /* tables to free */ |
| 3484 | z_streamp )); /* for zfree function */ |
| 3485 | |
| 3486 | /* --- inftrees.h */ |
| 3487 | |
| 3488 | /* +++ infcodes.h */ |
| 3489 | /* infcodes.h -- header to use infcodes.c |
| 3490 | * Copyright (C) 1995-1996 Mark Adler |
| 3491 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 3492 | */ |
| 3493 | |
| 3494 | /* WARNING: this file should *not* be used by applications. It is |
| 3495 | part of the implementation of the compression library and is |
| 3496 | subject to change. Applications should only use zlib.h. |
| 3497 | */ |
| 3498 | |
| 3499 | struct inflate_codes_state; |
| 3500 | typedef struct inflate_codes_state FAR inflate_codes_statef; |
| 3501 | |
| 3502 | extern inflate_codes_statef *inflate_codes_new OF(( |
| 3503 | uInt, uInt, |
| 3504 | inflate_huft *, inflate_huft *, |
| 3505 | z_streamp )); |
| 3506 | |
| 3507 | extern int inflate_codes OF(( |
| 3508 | inflate_blocks_statef *, |
| 3509 | z_streamp , |
| 3510 | int)); |
| 3511 | |
| 3512 | extern void inflate_codes_free OF(( |
| 3513 | inflate_codes_statef *, |
| 3514 | z_streamp )); |
| 3515 | |
| 3516 | /* --- infcodes.h */ |
| 3517 | |
| 3518 | /* +++ infutil.h */ |
| 3519 | /* infutil.h -- types and macros common to blocks and codes |
| 3520 | * Copyright (C) 1995-1996 Mark Adler |
| 3521 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 3522 | */ |
| 3523 | |
| 3524 | /* WARNING: this file should *not* be used by applications. It is |
| 3525 | part of the implementation of the compression library and is |
| 3526 | subject to change. Applications should only use zlib.h. |
| 3527 | */ |
| 3528 | |
| 3529 | #ifndef _INFUTIL_H |
| 3530 | #define _INFUTIL_H |
| 3531 | |
| 3532 | typedef enum { |
| 3533 | TYPE, /* get type bits (3, including end bit) */ |
| 3534 | LENS, /* get lengths for stored */ |
| 3535 | STORED, /* processing stored block */ |
| 3536 | TABLE, /* get table lengths */ |
| 3537 | BTREE, /* get bit lengths tree for a dynamic block */ |
| 3538 | DTREE, /* get length, distance trees for a dynamic block */ |
| 3539 | CODES, /* processing fixed or dynamic block */ |
| 3540 | DRY, /* output remaining window bytes */ |
| 3541 | DONEB, /* finished last block, done */ |
| 3542 | BADB} /* got a data error--stuck here */ |
| 3543 | inflate_block_mode; |
| 3544 | |
| 3545 | /* inflate blocks semi-private state */ |
| 3546 | struct inflate_blocks_state { |
| 3547 | |
| 3548 | /* mode */ |
| 3549 | inflate_block_mode mode; /* current inflate_block mode */ |
| 3550 | |
| 3551 | /* mode dependent information */ |
| 3552 | union { |
| 3553 | uInt left; /* if STORED, bytes left to copy */ |
| 3554 | struct { |
| 3555 | uInt table; /* table lengths (14 bits) */ |
| 3556 | uInt index; /* index into blens (or border) */ |
| 3557 | uIntf *blens; /* bit lengths of codes */ |
| 3558 | uInt bb; /* bit length tree depth */ |
| 3559 | inflate_huft *tb; /* bit length decoding tree */ |
| 3560 | } trees; /* if DTREE, decoding info for trees */ |
| 3561 | struct { |
| 3562 | inflate_huft *tl; |
| 3563 | inflate_huft *td; /* trees to free */ |
| 3564 | inflate_codes_statef |
| 3565 | *codes; |
| 3566 | } decode; /* if CODES, current state */ |
| 3567 | } sub; /* submode */ |
| 3568 | uInt last; /* true if this block is the last block */ |
| 3569 | |
| 3570 | /* mode independent information */ |
| 3571 | uInt bitk; /* bits in bit buffer */ |
| 3572 | uLong bitb; /* bit buffer */ |
| 3573 | Bytef *window; /* sliding window */ |
| 3574 | Bytef *end; /* one byte after sliding window */ |
| 3575 | Bytef *read; /* window read pointer */ |
| 3576 | Bytef *write; /* window write pointer */ |
| 3577 | check_func checkfn; /* check function */ |
| 3578 | uLong check; /* check on output */ |
| 3579 | |
| 3580 | }; |
| 3581 | |
| 3582 | |
| 3583 | /* defines for inflate input/output */ |
| 3584 | /* update pointers and return */ |
| 3585 | #define UPDBITS {s->bitb=b;s->bitk=k;} |
| 3586 | #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;} |
| 3587 | #define UPDOUT {s->write=q;} |
| 3588 | #define UPDATE {UPDBITS UPDIN UPDOUT} |
| 3589 | #define LEAVE {UPDATE return inflate_flush(s,z,r);} |
| 3590 | /* get bytes and bits */ |
| 3591 | #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;} |
| 3592 | #define NEEDBYTE {if(n)r=Z_OK;else LEAVE} |
| 3593 | #define NEXTBYTE (n--,*p++) |
| 3594 | #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}} |
| 3595 | #define DUMPBITS(j) {b>>=(j);k-=(j);} |
| 3596 | /* output bytes */ |
| 3597 | #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q) |
| 3598 | #define LOADOUT {q=s->write;m=(uInt)WAVAIL;} |
| 3599 | #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}} |
| 3600 | #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT} |
| 3601 | #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;} |
| 3602 | #define OUTBYTE(a) {*q++=(Byte)(a);m--;} |
| 3603 | /* load local pointers */ |
| 3604 | #define LOAD {LOADIN LOADOUT} |
| 3605 | |
| 3606 | /* masks for lower bits (size given to avoid silly warnings with Visual C++) */ |
| 3607 | extern uInt inflate_mask[17]; |
| 3608 | |
| 3609 | /* copy as much as possible from the sliding window to the output area */ |
| 3610 | extern int inflate_flush OF(( |
| 3611 | inflate_blocks_statef *, |
| 3612 | z_streamp , |
| 3613 | int)); |
| 3614 | |
| 3615 | #ifndef NO_DUMMY_DECL |
| 3616 | struct internal_state {int dummy;}; /* for buggy compilers */ |
| 3617 | #endif |
| 3618 | |
| 3619 | #endif |
| 3620 | /* --- infutil.h */ |
| 3621 | |
| 3622 | #ifndef NO_DUMMY_DECL |
| 3623 | struct inflate_codes_state {int dummy;}; /* for buggy compilers */ |
| 3624 | #endif |
| 3625 | |
| 3626 | /* Table for deflate from PKZIP's appnote.txt. */ |
| 3627 | local const uInt border[] = { /* Order of the bit length code lengths */ |
| 3628 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
| 3629 | |
| 3630 | /* |
| 3631 | Notes beyond the 1.93a appnote.txt: |
| 3632 | |
| 3633 | 1. Distance pointers never point before the beginning of the output |
| 3634 | stream. |
| 3635 | 2. Distance pointers can point back across blocks, up to 32k away. |
| 3636 | 3. There is an implied maximum of 7 bits for the bit length table and |
| 3637 | 15 bits for the actual data. |
| 3638 | 4. If only one code exists, then it is encoded using one bit. (Zero |
| 3639 | would be more efficient, but perhaps a little confusing.) If two |
| 3640 | codes exist, they are coded using one bit each (0 and 1). |
| 3641 | 5. There is no way of sending zero distance codes--a dummy must be |
| 3642 | sent if there are none. (History: a pre 2.0 version of PKZIP would |
| 3643 | store blocks with no distance codes, but this was discovered to be |
| 3644 | too harsh a criterion.) Valid only for 1.93a. 2.04c does allow |
| 3645 | zero distance codes, which is sent as one code of zero bits in |
| 3646 | length. |
| 3647 | 6. There are up to 286 literal/length codes. Code 256 represents the |
| 3648 | end-of-block. Note however that the static length tree defines |
| 3649 | 288 codes just to fill out the Huffman codes. Codes 286 and 287 |
| 3650 | cannot be used though, since there is no length base or extra bits |
| 3651 | defined for them. Similarily, there are up to 30 distance codes. |
| 3652 | However, static trees define 32 codes (all 5 bits) to fill out the |
| 3653 | Huffman codes, but the last two had better not show up in the data. |
| 3654 | 7. Unzip can check dynamic Huffman blocks for complete code sets. |
| 3655 | The exception is that a single code would not be complete (see #4). |
| 3656 | 8. The five bits following the block type is really the number of |
| 3657 | literal codes sent minus 257. |
| 3658 | 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits |
| 3659 | (1+6+6). Therefore, to output three times the length, you output |
| 3660 | three codes (1+1+1), whereas to output four times the same length, |
| 3661 | you only need two codes (1+3). Hmm. |
| 3662 | 10. In the tree reconstruction algorithm, Code = Code + Increment |
| 3663 | only if BitLength(i) is not zero. (Pretty obvious.) |
| 3664 | 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) |
| 3665 | 12. Note: length code 284 can represent 227-258, but length code 285 |
| 3666 | really is 258. The last length deserves its own, short code |
| 3667 | since it gets used a lot in very redundant files. The length |
| 3668 | 258 is special since 258 - 3 (the min match length) is 255. |
| 3669 | 13. The literal/length and distance code bit lengths are read as a |
| 3670 | single stream of lengths. It is possible (and advantageous) for |
| 3671 | a repeat code (16, 17, or 18) to go across the boundary between |
| 3672 | the two sets of lengths. |
| 3673 | */ |
| 3674 | |
| 3675 | |
| 3676 | void inflate_blocks_reset(s, z, c) |
| 3677 | inflate_blocks_statef *s; |
| 3678 | z_streamp z; |
| 3679 | uLongf *c; |
| 3680 | { |
| 3681 | if (s->checkfn != Z_NULL) |
| 3682 | *c = s->check; |
| 3683 | if (s->mode == BTREE || s->mode == DTREE) |
| 3684 | ZFREE(z, s->sub.trees.blens); |
| 3685 | if (s->mode == CODES) |
| 3686 | { |
| 3687 | inflate_codes_free(s->sub.decode.codes, z); |
| 3688 | inflate_trees_free(s->sub.decode.td, z); |
| 3689 | inflate_trees_free(s->sub.decode.tl, z); |
| 3690 | } |
| 3691 | s->mode = TYPE; |
| 3692 | s->bitk = 0; |
| 3693 | s->bitb = 0; |
| 3694 | s->read = s->write = s->window; |
| 3695 | if (s->checkfn != Z_NULL) |
| 3696 | z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0); |
| 3697 | Trace((stderr, "inflate: blocks reset\n")); |
| 3698 | } |
| 3699 | |
| 3700 | |
| 3701 | inflate_blocks_statef *inflate_blocks_new(z, c, w) |
| 3702 | z_streamp z; |
| 3703 | check_func c; |
| 3704 | uInt w; |
| 3705 | { |
| 3706 | inflate_blocks_statef *s; |
| 3707 | |
| 3708 | if ((s = (inflate_blocks_statef *)ZALLOC |
| 3709 | (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL) |
| 3710 | return s; |
| 3711 | if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL) |
| 3712 | { |
| 3713 | ZFREE(z, s); |
| 3714 | return Z_NULL; |
| 3715 | } |
| 3716 | s->end = s->window + w; |
| 3717 | s->checkfn = c; |
| 3718 | s->mode = TYPE; |
| 3719 | Trace((stderr, "inflate: blocks allocated\n")); |
| 3720 | inflate_blocks_reset(s, z, &s->check); |
| 3721 | return s; |
| 3722 | } |
| 3723 | |
| 3724 | |
| 3725 | #ifdef DEBUG_ZLIB |
| 3726 | extern uInt inflate_hufts; |
| 3727 | #endif |
| 3728 | int inflate_blocks(s, z, r) |
| 3729 | inflate_blocks_statef *s; |
| 3730 | z_streamp z; |
| 3731 | int r; |
| 3732 | { |
| 3733 | uInt t; /* temporary storage */ |
| 3734 | uLong b; /* bit buffer */ |
| 3735 | uInt k; /* bits in bit buffer */ |
| 3736 | Bytef *p; /* input data pointer */ |
| 3737 | uInt n; /* bytes available there */ |
| 3738 | Bytef *q; /* output window write pointer */ |
| 3739 | uInt m; /* bytes to end of window or read pointer */ |
| 3740 | |
| 3741 | /* copy input/output information to locals (UPDATE macro restores) */ |
| 3742 | LOAD |
| 3743 | |
| 3744 | /* process input based on current state */ |
| 3745 | while (1) switch (s->mode) |
| 3746 | { |
| 3747 | case TYPE: |
| 3748 | NEEDBITS(3) |
| 3749 | t = (uInt)b & 7; |
| 3750 | s->last = t & 1; |
| 3751 | switch (t >> 1) |
| 3752 | { |
| 3753 | case 0: /* stored */ |
| 3754 | Trace((stderr, "inflate: stored block%s\n", |
| 3755 | s->last ? " (last)" : "")); |
| 3756 | DUMPBITS(3) |
| 3757 | t = k & 7; /* go to byte boundary */ |
| 3758 | DUMPBITS(t) |
| 3759 | s->mode = LENS; /* get length of stored block */ |
| 3760 | break; |
| 3761 | case 1: /* fixed */ |
| 3762 | Trace((stderr, "inflate: fixed codes block%s\n", |
| 3763 | s->last ? " (last)" : "")); |
| 3764 | { |
| 3765 | uInt bl, bd; |
| 3766 | inflate_huft *tl, *td; |
| 3767 | |
| 3768 | inflate_trees_fixed(&bl, &bd, &tl, &td); |
| 3769 | s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z); |
| 3770 | if (s->sub.decode.codes == Z_NULL) |
| 3771 | { |
| 3772 | r = Z_MEM_ERROR; |
| 3773 | LEAVE |
| 3774 | } |
| 3775 | s->sub.decode.tl = Z_NULL; /* don't try to free these */ |
| 3776 | s->sub.decode.td = Z_NULL; |
| 3777 | } |
| 3778 | DUMPBITS(3) |
| 3779 | s->mode = CODES; |
| 3780 | break; |
| 3781 | case 2: /* dynamic */ |
| 3782 | Trace((stderr, "inflate: dynamic codes block%s\n", |
| 3783 | s->last ? " (last)" : "")); |
| 3784 | DUMPBITS(3) |
| 3785 | s->mode = TABLE; |
| 3786 | break; |
| 3787 | case 3: /* illegal */ |
| 3788 | DUMPBITS(3) |
| 3789 | s->mode = BADB; |
| 3790 | z->msg = (char*)"invalid block type"; |
| 3791 | r = Z_DATA_ERROR; |
| 3792 | LEAVE |
| 3793 | } |
| 3794 | break; |
| 3795 | case LENS: |
| 3796 | NEEDBITS(32) |
| 3797 | if ((((~b) >> 16) & 0xffff) != (b & 0xffff)) |
| 3798 | { |
| 3799 | s->mode = BADB; |
| 3800 | z->msg = (char*)"invalid stored block lengths"; |
| 3801 | r = Z_DATA_ERROR; |
| 3802 | LEAVE |
| 3803 | } |
| 3804 | s->sub.left = (uInt)b & 0xffff; |
| 3805 | b = k = 0; /* dump bits */ |
| 3806 | Tracev((stderr, "inflate: stored length %u\n", s->sub.left)); |
| 3807 | s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE); |
| 3808 | break; |
| 3809 | case STORED: |
| 3810 | if (n == 0) |
| 3811 | LEAVE |
| 3812 | NEEDOUT |
| 3813 | t = s->sub.left; |
| 3814 | if (t > n) t = n; |
| 3815 | if (t > m) t = m; |
| 3816 | zmemcpy(q, p, t); |
| 3817 | p += t; n -= t; |
| 3818 | q += t; m -= t; |
| 3819 | if ((s->sub.left -= t) != 0) |
| 3820 | break; |
| 3821 | Tracev((stderr, "inflate: stored end, %lu total out\n", |
| 3822 | z->total_out + (q >= s->read ? q - s->read : |
| 3823 | (s->end - s->read) + (q - s->window)))); |
| 3824 | s->mode = s->last ? DRY : TYPE; |
| 3825 | break; |
| 3826 | case TABLE: |
| 3827 | NEEDBITS(14) |
| 3828 | s->sub.trees.table = t = (uInt)b & 0x3fff; |
| 3829 | #ifndef PKZIP_BUG_WORKAROUND |
| 3830 | if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) |
| 3831 | { |
| 3832 | s->mode = BADB; |
| 3833 | z->msg = (char*)"too many length or distance symbols"; |
| 3834 | r = Z_DATA_ERROR; |
| 3835 | LEAVE |
| 3836 | } |
| 3837 | #endif |
| 3838 | t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); |
| 3839 | if (t < 19) |
| 3840 | t = 19; |
| 3841 | if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL) |
| 3842 | { |
| 3843 | r = Z_MEM_ERROR; |
| 3844 | LEAVE |
| 3845 | } |
| 3846 | DUMPBITS(14) |
| 3847 | s->sub.trees.index = 0; |
| 3848 | Tracev((stderr, "inflate: table sizes ok\n")); |
| 3849 | s->mode = BTREE; |
| 3850 | case BTREE: |
| 3851 | while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) |
| 3852 | { |
| 3853 | NEEDBITS(3) |
| 3854 | s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7; |
| 3855 | DUMPBITS(3) |
| 3856 | } |
| 3857 | while (s->sub.trees.index < 19) |
| 3858 | s->sub.trees.blens[border[s->sub.trees.index++]] = 0; |
| 3859 | s->sub.trees.bb = 7; |
| 3860 | t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb, |
| 3861 | &s->sub.trees.tb, z); |
| 3862 | if (t != Z_OK) |
| 3863 | { |
| 3864 | r = t; |
| 3865 | if (r == Z_DATA_ERROR) { |
| 3866 | s->mode = BADB; |
| 3867 | ZFREE(z, s->sub.trees.blens); |
| 3868 | } |
| 3869 | LEAVE |
| 3870 | } |
| 3871 | s->sub.trees.index = 0; |
| 3872 | Tracev((stderr, "inflate: bits tree ok\n")); |
| 3873 | s->mode = DTREE; |
| 3874 | case DTREE: |
| 3875 | while (t = s->sub.trees.table, |
| 3876 | s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) |
| 3877 | { |
| 3878 | inflate_huft *h; |
| 3879 | uInt i, j, c; |
| 3880 | |
| 3881 | t = s->sub.trees.bb; |
| 3882 | NEEDBITS(t) |
| 3883 | h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]); |
| 3884 | t = h->word.what.Bits; |
| 3885 | c = h->more.Base; |
| 3886 | if (c < 16) |
| 3887 | { |
| 3888 | DUMPBITS(t) |
| 3889 | s->sub.trees.blens[s->sub.trees.index++] = c; |
| 3890 | } |
| 3891 | else /* c == 16..18 */ |
| 3892 | { |
| 3893 | i = c == 18 ? 7 : c - 14; |
| 3894 | j = c == 18 ? 11 : 3; |
| 3895 | NEEDBITS(t + i) |
| 3896 | DUMPBITS(t) |
| 3897 | j += (uInt)b & inflate_mask[i]; |
| 3898 | DUMPBITS(i) |
| 3899 | i = s->sub.trees.index; |
| 3900 | t = s->sub.trees.table; |
| 3901 | if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || |
| 3902 | (c == 16 && i < 1)) |
| 3903 | { |
| 3904 | inflate_trees_free(s->sub.trees.tb, z); |
| 3905 | ZFREE(z, s->sub.trees.blens); |
| 3906 | s->mode = BADB; |
| 3907 | z->msg = (char*)"invalid bit length repeat"; |
| 3908 | r = Z_DATA_ERROR; |
| 3909 | LEAVE |
| 3910 | } |
| 3911 | c = c == 16 ? s->sub.trees.blens[i - 1] : 0; |
| 3912 | do { |
| 3913 | s->sub.trees.blens[i++] = c; |
| 3914 | } while (--j); |
| 3915 | s->sub.trees.index = i; |
| 3916 | } |
| 3917 | } |
| 3918 | inflate_trees_free(s->sub.trees.tb, z); |
| 3919 | s->sub.trees.tb = Z_NULL; |
| 3920 | { |
| 3921 | uInt bl, bd; |
| 3922 | inflate_huft *tl, *td; |
| 3923 | inflate_codes_statef *c; |
| 3924 | |
| 3925 | bl = 9; /* must be <= 9 for lookahead assumptions */ |
| 3926 | bd = 6; /* must be <= 9 for lookahead assumptions */ |
| 3927 | t = s->sub.trees.table; |
| 3928 | #ifdef DEBUG_ZLIB |
| 3929 | inflate_hufts = 0; |
| 3930 | #endif |
| 3931 | t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), |
| 3932 | s->sub.trees.blens, &bl, &bd, &tl, &td, z); |
| 3933 | if (t != Z_OK) |
| 3934 | { |
| 3935 | if (t == (uInt)Z_DATA_ERROR) { |
| 3936 | s->mode = BADB; |
| 3937 | ZFREE(z, s->sub.trees.blens); |
| 3938 | } |
| 3939 | r = t; |
| 3940 | LEAVE |
| 3941 | } |
| 3942 | ZFREE(z, s->sub.trees.blens); |
| 3943 | Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n", |
| 3944 | inflate_hufts, sizeof(inflate_huft))); |
| 3945 | if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL) |
| 3946 | { |
| 3947 | inflate_trees_free(td, z); |
| 3948 | inflate_trees_free(tl, z); |
| 3949 | r = Z_MEM_ERROR; |
| 3950 | LEAVE |
| 3951 | } |
| 3952 | s->sub.decode.codes = c; |
| 3953 | s->sub.decode.tl = tl; |
| 3954 | s->sub.decode.td = td; |
| 3955 | } |
| 3956 | s->mode = CODES; |
| 3957 | case CODES: |
| 3958 | UPDATE |
| 3959 | if ((r = inflate_codes(s, z, r)) != Z_STREAM_END) |
| 3960 | return inflate_flush(s, z, r); |
| 3961 | r = Z_OK; |
| 3962 | inflate_codes_free(s->sub.decode.codes, z); |
| 3963 | inflate_trees_free(s->sub.decode.td, z); |
| 3964 | inflate_trees_free(s->sub.decode.tl, z); |
| 3965 | LOAD |
| 3966 | Tracev((stderr, "inflate: codes end, %lu total out\n", |
| 3967 | z->total_out + (q >= s->read ? q - s->read : |
| 3968 | (s->end - s->read) + (q - s->window)))); |
| 3969 | if (!s->last) |
| 3970 | { |
| 3971 | s->mode = TYPE; |
| 3972 | break; |
| 3973 | } |
| 3974 | if (k > 7) /* return unused byte, if any */ |
| 3975 | { |
| 3976 | Assert(k < 16, "inflate_codes grabbed too many bytes") |
| 3977 | k -= 8; |
| 3978 | n++; |
| 3979 | p--; /* can always return one */ |
| 3980 | } |
| 3981 | s->mode = DRY; |
| 3982 | case DRY: |
| 3983 | FLUSH |
| 3984 | if (s->read != s->write) |
| 3985 | LEAVE |
| 3986 | s->mode = DONEB; |
| 3987 | case DONEB: |
| 3988 | r = Z_STREAM_END; |
| 3989 | LEAVE |
| 3990 | case BADB: |
| 3991 | r = Z_DATA_ERROR; |
| 3992 | LEAVE |
| 3993 | default: |
| 3994 | r = Z_STREAM_ERROR; |
| 3995 | LEAVE |
| 3996 | } |
| 3997 | } |
| 3998 | |
| 3999 | |
| 4000 | int inflate_blocks_free(s, z, c) |
| 4001 | inflate_blocks_statef *s; |
| 4002 | z_streamp z; |
| 4003 | uLongf *c; |
| 4004 | { |
| 4005 | inflate_blocks_reset(s, z, c); |
| 4006 | ZFREE(z, s->window); |
| 4007 | ZFREE(z, s); |
| 4008 | Trace((stderr, "inflate: blocks freed\n")); |
| 4009 | return Z_OK; |
| 4010 | } |
| 4011 | |
| 4012 | |
| 4013 | void inflate_set_dictionary(s, d, n) |
| 4014 | inflate_blocks_statef *s; |
| 4015 | const Bytef *d; |
| 4016 | uInt n; |
| 4017 | { |
| 4018 | zmemcpy((charf *)s->window, d, n); |
| 4019 | s->read = s->write = s->window + n; |
| 4020 | } |
| 4021 | |
| 4022 | /* |
| 4023 | * This subroutine adds the data at next_in/avail_in to the output history |
| 4024 | * without performing any output. The output buffer must be "caught up"; |
| 4025 | * i.e. no pending output (hence s->read equals s->write), and the state must |
| 4026 | * be BLOCKS (i.e. we should be willing to see the start of a series of |
| 4027 | * BLOCKS). On exit, the output will also be caught up, and the checksum |
| 4028 | * will have been updated if need be. |
| 4029 | */ |
| 4030 | int inflate_addhistory(s, z) |
| 4031 | inflate_blocks_statef *s; |
| 4032 | z_stream *z; |
| 4033 | { |
| 4034 | uLong b; /* bit buffer */ /* NOT USED HERE */ |
| 4035 | uInt k; /* bits in bit buffer */ /* NOT USED HERE */ |
| 4036 | uInt t; /* temporary storage */ |
| 4037 | Bytef *p; /* input data pointer */ |
| 4038 | uInt n; /* bytes available there */ |
| 4039 | Bytef *q; /* output window write pointer */ |
| 4040 | uInt m; /* bytes to end of window or read pointer */ |
| 4041 | |
| 4042 | if (s->read != s->write) |
| 4043 | return Z_STREAM_ERROR; |
| 4044 | if (s->mode != TYPE) |
| 4045 | return Z_DATA_ERROR; |
| 4046 | |
| 4047 | /* we're ready to rock */ |
| 4048 | LOAD |
| 4049 | /* while there is input ready, copy to output buffer, moving |
| 4050 | * pointers as needed. |
| 4051 | */ |
| 4052 | while (n) { |
| 4053 | t = n; /* how many to do */ |
| 4054 | /* is there room until end of buffer? */ |
| 4055 | if (t > m) t = m; |
| 4056 | /* update check information */ |
| 4057 | if (s->checkfn != Z_NULL) |
| 4058 | s->check = (*s->checkfn)(s->check, q, t); |
| 4059 | zmemcpy(q, p, t); |
| 4060 | q += t; |
| 4061 | p += t; |
| 4062 | n -= t; |
| 4063 | z->total_out += t; |
| 4064 | s->read = q; /* drag read pointer forward */ |
| 4065 | /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */ |
| 4066 | if (q == s->end) { |
| 4067 | s->read = q = s->window; |
| 4068 | m = WAVAIL; |
| 4069 | } |
| 4070 | } |
| 4071 | UPDATE |
| 4072 | return Z_OK; |
| 4073 | } |
| 4074 | |
| 4075 | |
| 4076 | /* |
| 4077 | * At the end of a Deflate-compressed PPP packet, we expect to have seen |
| 4078 | * a `stored' block type value but not the (zero) length bytes. |
| 4079 | */ |
| 4080 | int inflate_packet_flush(s) |
| 4081 | inflate_blocks_statef *s; |
| 4082 | { |
| 4083 | if (s->mode != LENS) |
| 4084 | return Z_DATA_ERROR; |
| 4085 | s->mode = TYPE; |
| 4086 | return Z_OK; |
| 4087 | } |
| 4088 | /* --- infblock.c */ |
| 4089 | |
| 4090 | /* +++ inftrees.c */ |
| 4091 | /* inftrees.c -- generate Huffman trees for efficient decoding |
| 4092 | * Copyright (C) 1995-1996 Mark Adler |
| 4093 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 4094 | */ |
| 4095 | |
| 4096 | /* #include "zutil.h" */ |
| 4097 | /* #include "inftrees.h" */ |
| 4098 | |
| 4099 | char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler "; |
| 4100 | /* |
| 4101 | If you use the zlib library in a product, an acknowledgment is welcome |
| 4102 | in the documentation of your product. If for some reason you cannot |
| 4103 | include such an acknowledgment, I would appreciate that you keep this |
| 4104 | copyright string in the executable of your product. |
| 4105 | */ |
| 4106 | |
| 4107 | #ifndef NO_DUMMY_DECL |
| 4108 | struct internal_state {int dummy;}; /* for buggy compilers */ |
| 4109 | #endif |
| 4110 | |
| 4111 | /* simplify the use of the inflate_huft type with some defines */ |
| 4112 | #define base more.Base |
| 4113 | #define next more.Next |
| 4114 | #define exop word.what.Exop |
| 4115 | #define bits word.what.Bits |
| 4116 | |
| 4117 | |
| 4118 | local int huft_build OF(( |
| 4119 | uIntf *, /* code lengths in bits */ |
| 4120 | uInt, /* number of codes */ |
| 4121 | uInt, /* number of "simple" codes */ |
| 4122 | const uIntf *, /* list of base values for non-simple codes */ |
| 4123 | const uIntf *, /* list of extra bits for non-simple codes */ |
| 4124 | inflate_huft * FAR*,/* result: starting table */ |
| 4125 | uIntf *, /* maximum lookup bits (returns actual) */ |
| 4126 | z_streamp )); /* for zalloc function */ |
| 4127 | |
| 4128 | local voidpf falloc OF(( |
| 4129 | voidpf, /* opaque pointer (not used) */ |
| 4130 | uInt, /* number of items */ |
| 4131 | uInt)); /* size of item */ |
| 4132 | |
| 4133 | /* Tables for deflate from PKZIP's appnote.txt. */ |
| 4134 | local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */ |
| 4135 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
| 4136 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; |
| 4137 | /* see note #13 above about 258 */ |
| 4138 | local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */ |
| 4139 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
| 4140 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */ |
| 4141 | local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */ |
| 4142 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, |
| 4143 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, |
| 4144 | 8193, 12289, 16385, 24577}; |
| 4145 | local const uInt cpdext[30] = { /* Extra bits for distance codes */ |
| 4146 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, |
| 4147 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, |
| 4148 | 12, 12, 13, 13}; |
| 4149 | |
| 4150 | /* |
| 4151 | Huffman code decoding is performed using a multi-level table lookup. |
| 4152 | The fastest way to decode is to simply build a lookup table whose |
| 4153 | size is determined by the longest code. However, the time it takes |
| 4154 | to build this table can also be a factor if the data being decoded |
| 4155 | is not very long. The most common codes are necessarily the |
| 4156 | shortest codes, so those codes dominate the decoding time, and hence |
| 4157 | the speed. The idea is you can have a shorter table that decodes the |
| 4158 | shorter, more probable codes, and then point to subsidiary tables for |
| 4159 | the longer codes. The time it costs to decode the longer codes is |
| 4160 | then traded against the time it takes to make longer tables. |
| 4161 | |
| 4162 | This results of this trade are in the variables lbits and dbits |
| 4163 | below. lbits is the number of bits the first level table for literal/ |
| 4164 | length codes can decode in one step, and dbits is the same thing for |
| 4165 | the distance codes. Subsequent tables are also less than or equal to |
| 4166 | those sizes. These values may be adjusted either when all of the |
| 4167 | codes are shorter than that, in which case the longest code length in |
| 4168 | bits is used, or when the shortest code is *longer* than the requested |
| 4169 | table size, in which case the length of the shortest code in bits is |
| 4170 | used. |
| 4171 | |
| 4172 | There are two different values for the two tables, since they code a |
| 4173 | different number of possibilities each. The literal/length table |
| 4174 | codes 286 possible values, or in a flat code, a little over eight |
| 4175 | bits. The distance table codes 30 possible values, or a little less |
| 4176 | than five bits, flat. The optimum values for speed end up being |
| 4177 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. |
| 4178 | The optimum values may differ though from machine to machine, and |
| 4179 | possibly even between compilers. Your mileage may vary. |
| 4180 | */ |
| 4181 | |
| 4182 | |
| 4183 | /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ |
| 4184 | #define BMAX 15 /* maximum bit length of any code */ |
| 4185 | #define N_MAX 288 /* maximum number of codes in any set */ |
| 4186 | |
| 4187 | #ifdef DEBUG_ZLIB |
| 4188 | uInt inflate_hufts; |
| 4189 | #endif |
| 4190 | |
| 4191 | local int huft_build(b, n, s, d, e, t, m, zs) |
| 4192 | uIntf *b; /* code lengths in bits (all assumed <= BMAX) */ |
| 4193 | uInt n; /* number of codes (assumed <= N_MAX) */ |
| 4194 | uInt s; /* number of simple-valued codes (0..s-1) */ |
| 4195 | const uIntf *d; /* list of base values for non-simple codes */ |
| 4196 | const uIntf *e; /* list of extra bits for non-simple codes */ |
| 4197 | inflate_huft * FAR *t; /* result: starting table */ |
| 4198 | uIntf *m; /* maximum lookup bits, returns actual */ |
| 4199 | z_streamp zs; /* for zalloc function */ |
| 4200 | /* Given a list of code lengths and a maximum table size, make a set of |
| 4201 | tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR |
| 4202 | if the given code set is incomplete (the tables are still built in this |
| 4203 | case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of |
| 4204 | lengths), or Z_MEM_ERROR if not enough memory. */ |
| 4205 | { |
| 4206 | |
| 4207 | uInt a; /* counter for codes of length k */ |
| 4208 | uInt c[BMAX+1]; /* bit length count table */ |
| 4209 | uInt f; /* i repeats in table every f entries */ |
| 4210 | int g; /* maximum code length */ |
| 4211 | int h; /* table level */ |
| 4212 | register uInt i; /* counter, current code */ |
| 4213 | register uInt j; /* counter */ |
| 4214 | register int k; /* number of bits in current code */ |
| 4215 | int l; /* bits per table (returned in m) */ |
| 4216 | register uIntf *p; /* pointer into c[], b[], or v[] */ |
| 4217 | inflate_huft *q; /* points to current table */ |
| 4218 | struct inflate_huft_s r; /* table entry for structure assignment */ |
| 4219 | inflate_huft *u[BMAX]; /* table stack */ |
| 4220 | uInt v[N_MAX]; /* values in order of bit length */ |
| 4221 | register int w; /* bits before this table == (l * h) */ |
| 4222 | uInt x[BMAX+1]; /* bit offsets, then code stack */ |
| 4223 | uIntf *xp; /* pointer into x */ |
| 4224 | int y; /* number of dummy codes added */ |
| 4225 | uInt z; /* number of entries in current table */ |
| 4226 | |
| 4227 | |
| 4228 | /* Generate counts for each bit length */ |
| 4229 | p = c; |
| 4230 | #define C0 *p++ = 0; |
| 4231 | #define C2 C0 C0 C0 C0 |
| 4232 | #define C4 C2 C2 C2 C2 |
| 4233 | C4 /* clear c[]--assume BMAX+1 is 16 */ |
| 4234 | p = b; i = n; |
| 4235 | do { |
| 4236 | c[*p++]++; /* assume all entries <= BMAX */ |
| 4237 | } while (--i); |
| 4238 | if (c[0] == n) /* null input--all zero length codes */ |
| 4239 | { |
| 4240 | *t = (inflate_huft *)Z_NULL; |
| 4241 | *m = 0; |
| 4242 | return Z_OK; |
| 4243 | } |
| 4244 | |
| 4245 | |
| 4246 | /* Find minimum and maximum length, bound *m by those */ |
| 4247 | l = *m; |
| 4248 | for (j = 1; j <= BMAX; j++) |
| 4249 | if (c[j]) |
| 4250 | break; |
| 4251 | k = j; /* minimum code length */ |
| 4252 | if ((uInt)l < j) |
| 4253 | l = j; |
| 4254 | for (i = BMAX; i; i--) |
| 4255 | if (c[i]) |
| 4256 | break; |
| 4257 | g = i; /* maximum code length */ |
| 4258 | if ((uInt)l > i) |
| 4259 | l = i; |
| 4260 | *m = l; |
| 4261 | |
| 4262 | |
| 4263 | /* Adjust last length count to fill out codes, if needed */ |
| 4264 | for (y = 1 << j; j < i; j++, y <<= 1) |
| 4265 | if ((y -= c[j]) < 0) |
| 4266 | return Z_DATA_ERROR; |
| 4267 | if ((y -= c[i]) < 0) |
| 4268 | return Z_DATA_ERROR; |
| 4269 | c[i] += y; |
| 4270 | |
| 4271 | |
| 4272 | /* Generate starting offsets into the value table for each length */ |
| 4273 | x[1] = j = 0; |
| 4274 | p = c + 1; xp = x + 2; |
| 4275 | while (--i) { /* note that i == g from above */ |
| 4276 | *xp++ = (j += *p++); |
| 4277 | } |
| 4278 | |
| 4279 | |
| 4280 | /* Make a table of values in order of bit lengths */ |
| 4281 | p = b; i = 0; |
| 4282 | do { |
| 4283 | if ((j = *p++) != 0) |
| 4284 | v[x[j]++] = i; |
| 4285 | } while (++i < n); |
| 4286 | n = x[g]; /* set n to length of v */ |
| 4287 | |
| 4288 | |
| 4289 | /* Generate the Huffman codes and for each, make the table entries */ |
| 4290 | x[0] = i = 0; /* first Huffman code is zero */ |
| 4291 | p = v; /* grab values in bit order */ |
| 4292 | h = -1; /* no tables yet--level -1 */ |
| 4293 | w = -l; /* bits decoded == (l * h) */ |
| 4294 | u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ |
| 4295 | q = (inflate_huft *)Z_NULL; /* ditto */ |
| 4296 | z = 0; /* ditto */ |
| 4297 | |
| 4298 | /* go through the bit lengths (k already is bits in shortest code) */ |
| 4299 | for (; k <= g; k++) |
| 4300 | { |
| 4301 | a = c[k]; |
| 4302 | while (a--) |
| 4303 | { |
| 4304 | /* here i is the Huffman code of length k bits for value *p */ |
| 4305 | /* make tables up to required level */ |
| 4306 | while (k > w + l) |
| 4307 | { |
| 4308 | h++; |
| 4309 | w += l; /* previous table always l bits */ |
| 4310 | |
| 4311 | /* compute minimum size table less than or equal to l bits */ |
| 4312 | z = g - w; |
| 4313 | z = z > (uInt)l ? l : z; /* table size upper limit */ |
| 4314 | if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ |
| 4315 | { /* too few codes for k-w bit table */ |
| 4316 | f -= a + 1; /* deduct codes from patterns left */ |
| 4317 | xp = c + k; |
| 4318 | if (j < z) |
| 4319 | while (++j < z) /* try smaller tables up to z bits */ |
| 4320 | { |
| 4321 | if ((f <<= 1) <= *++xp) |
| 4322 | break; /* enough codes to use up j bits */ |
| 4323 | f -= *xp; /* else deduct codes from patterns */ |
| 4324 | } |
| 4325 | } |
| 4326 | z = 1 << j; /* table entries for j-bit table */ |
| 4327 | |
| 4328 | /* allocate and link in new table */ |
| 4329 | if ((q = (inflate_huft *)ZALLOC |
| 4330 | (zs,z + 1,sizeof(inflate_huft))) == Z_NULL) |
| 4331 | { |
| 4332 | if (h) |
| 4333 | inflate_trees_free(u[0], zs); |
| 4334 | return Z_MEM_ERROR; /* not enough memory */ |
| 4335 | } |
| 4336 | #ifdef DEBUG_ZLIB |
| 4337 | inflate_hufts += z + 1; |
| 4338 | #endif |
| 4339 | *t = q + 1; /* link to list for huft_free() */ |
| 4340 | *(t = &(q->next)) = Z_NULL; |
| 4341 | u[h] = ++q; /* table starts after link */ |
| 4342 | |
| 4343 | /* connect to last table, if there is one */ |
| 4344 | if (h) |
| 4345 | { |
| 4346 | x[h] = i; /* save pattern for backing up */ |
| 4347 | r.bits = (Byte)l; /* bits to dump before this table */ |
| 4348 | r.exop = (Byte)j; /* bits in this table */ |
| 4349 | r.next = q; /* pointer to this table */ |
| 4350 | j = i >> (w - l); /* (get around Turbo C bug) */ |
| 4351 | u[h-1][j] = r; /* connect to last table */ |
| 4352 | } |
| 4353 | } |
| 4354 | |
| 4355 | /* set up table entry in r */ |
| 4356 | r.bits = (Byte)(k - w); |
| 4357 | if (p >= v + n) |
| 4358 | r.exop = 128 + 64; /* out of values--invalid code */ |
| 4359 | else if (*p < s) |
| 4360 | { |
| 4361 | r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */ |
| 4362 | r.base = *p++; /* simple code is just the value */ |
| 4363 | } |
| 4364 | else |
| 4365 | { |
| 4366 | r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */ |
| 4367 | r.base = d[*p++ - s]; |
| 4368 | } |
| 4369 | |
| 4370 | /* fill code-like entries with r */ |
| 4371 | f = 1 << (k - w); |
| 4372 | for (j = i >> w; j < z; j += f) |
| 4373 | q[j] = r; |
| 4374 | |
| 4375 | /* backwards increment the k-bit code i */ |
| 4376 | for (j = 1 << (k - 1); i & j; j >>= 1) |
| 4377 | i ^= j; |
| 4378 | i ^= j; |
| 4379 | |
| 4380 | /* backup over finished tables */ |
| 4381 | while ((i & ((1 << w) - 1)) != x[h]) |
| 4382 | { |
| 4383 | h--; /* don't need to update q */ |
| 4384 | w -= l; |
| 4385 | } |
| 4386 | } |
| 4387 | } |
| 4388 | |
| 4389 | |
| 4390 | /* Return Z_BUF_ERROR if we were given an incomplete table */ |
| 4391 | return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; |
| 4392 | } |
| 4393 | |
| 4394 | |
| 4395 | int inflate_trees_bits(c, bb, tb, z) |
| 4396 | uIntf *c; /* 19 code lengths */ |
| 4397 | uIntf *bb; /* bits tree desired/actual depth */ |
| 4398 | inflate_huft * FAR *tb; /* bits tree result */ |
| 4399 | z_streamp z; /* for zfree function */ |
| 4400 | { |
| 4401 | int r; |
| 4402 | |
| 4403 | r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z); |
| 4404 | if (r == Z_DATA_ERROR) |
| 4405 | z->msg = (char*)"oversubscribed dynamic bit lengths tree"; |
| 4406 | else if (r == Z_BUF_ERROR || *bb == 0) |
| 4407 | { |
| 4408 | inflate_trees_free(*tb, z); |
| 4409 | z->msg = (char*)"incomplete dynamic bit lengths tree"; |
| 4410 | r = Z_DATA_ERROR; |
| 4411 | } |
| 4412 | return r; |
| 4413 | } |
| 4414 | |
| 4415 | |
| 4416 | int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z) |
| 4417 | uInt nl; /* number of literal/length codes */ |
| 4418 | uInt nd; /* number of distance codes */ |
| 4419 | uIntf *c; /* that many (total) code lengths */ |
| 4420 | uIntf *bl; /* literal desired/actual bit depth */ |
| 4421 | uIntf *bd; /* distance desired/actual bit depth */ |
| 4422 | inflate_huft * FAR *tl; /* literal/length tree result */ |
| 4423 | inflate_huft * FAR *td; /* distance tree result */ |
| 4424 | z_streamp z; /* for zfree function */ |
| 4425 | { |
| 4426 | int r; |
| 4427 | |
| 4428 | /* build literal/length tree */ |
| 4429 | r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z); |
| 4430 | if (r != Z_OK || *bl == 0) |
| 4431 | { |
| 4432 | if (r == Z_DATA_ERROR) |
| 4433 | z->msg = (char*)"oversubscribed literal/length tree"; |
| 4434 | else if (r != Z_MEM_ERROR) |
| 4435 | { |
| 4436 | inflate_trees_free(*tl, z); |
| 4437 | z->msg = (char*)"incomplete literal/length tree"; |
| 4438 | r = Z_DATA_ERROR; |
| 4439 | } |
| 4440 | return r; |
| 4441 | } |
| 4442 | |
| 4443 | /* build distance tree */ |
| 4444 | r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z); |
| 4445 | if (r != Z_OK || (*bd == 0 && nl > 257)) |
| 4446 | { |
| 4447 | if (r == Z_DATA_ERROR) |
| 4448 | z->msg = (char*)"oversubscribed distance tree"; |
| 4449 | else if (r == Z_BUF_ERROR) { |
| 4450 | #ifdef PKZIP_BUG_WORKAROUND |
| 4451 | r = Z_OK; |
| 4452 | } |
| 4453 | #else |
| 4454 | inflate_trees_free(*td, z); |
| 4455 | z->msg = (char*)"incomplete distance tree"; |
| 4456 | r = Z_DATA_ERROR; |
| 4457 | } |
| 4458 | else if (r != Z_MEM_ERROR) |
| 4459 | { |
| 4460 | z->msg = (char*)"empty distance tree with lengths"; |
| 4461 | r = Z_DATA_ERROR; |
| 4462 | } |
| 4463 | inflate_trees_free(*tl, z); |
| 4464 | return r; |
| 4465 | #endif |
| 4466 | } |
| 4467 | |
| 4468 | /* done */ |
| 4469 | return Z_OK; |
| 4470 | } |
| 4471 | |
| 4472 | |
| 4473 | /* build fixed tables only once--keep them here */ |
| 4474 | local int fixed_built = 0; |
| 4475 | #define FIXEDH 530 /* number of hufts used by fixed tables */ |
| 4476 | local inflate_huft fixed_mem[FIXEDH]; |
| 4477 | local uInt fixed_bl; |
| 4478 | local uInt fixed_bd; |
| 4479 | local inflate_huft *fixed_tl; |
| 4480 | local inflate_huft *fixed_td; |
| 4481 | |
| 4482 | |
| 4483 | local voidpf falloc(q, n, s) |
| 4484 | voidpf q; /* opaque pointer */ |
| 4485 | uInt n; /* number of items */ |
| 4486 | uInt s; /* size of item */ |
| 4487 | { |
| 4488 | Assert(s == sizeof(inflate_huft) && n <= *(intf *)q, |
| 4489 | "inflate_trees falloc overflow"); |
| 4490 | *(intf *)q -= n+s-s; /* s-s to avoid warning */ |
| 4491 | return (voidpf)(fixed_mem + *(intf *)q); |
| 4492 | } |
| 4493 | |
| 4494 | |
| 4495 | int inflate_trees_fixed(bl, bd, tl, td) |
| 4496 | uIntf *bl; /* literal desired/actual bit depth */ |
| 4497 | uIntf *bd; /* distance desired/actual bit depth */ |
| 4498 | inflate_huft * FAR *tl; /* literal/length tree result */ |
| 4499 | inflate_huft * FAR *td; /* distance tree result */ |
| 4500 | { |
| 4501 | /* build fixed tables if not already (multiple overlapped executions ok) */ |
| 4502 | if (!fixed_built) |
| 4503 | { |
| 4504 | int k; /* temporary variable */ |
| 4505 | unsigned c[288]; /* length list for huft_build */ |
| 4506 | z_stream z; /* for falloc function */ |
| 4507 | int f = FIXEDH; /* number of hufts left in fixed_mem */ |
| 4508 | |
| 4509 | /* set up fake z_stream for memory routines */ |
| 4510 | z.zalloc = falloc; |
| 4511 | z.zfree = Z_NULL; |
| 4512 | z.opaque = (voidpf)&f; |
| 4513 | |
| 4514 | /* literal table */ |
| 4515 | for (k = 0; k < 144; k++) |
| 4516 | c[k] = 8; |
| 4517 | for (; k < 256; k++) |
| 4518 | c[k] = 9; |
| 4519 | for (; k < 280; k++) |
| 4520 | c[k] = 7; |
| 4521 | for (; k < 288; k++) |
| 4522 | c[k] = 8; |
| 4523 | fixed_bl = 7; |
| 4524 | huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z); |
| 4525 | |
| 4526 | /* distance table */ |
| 4527 | for (k = 0; k < 30; k++) |
| 4528 | c[k] = 5; |
| 4529 | fixed_bd = 5; |
| 4530 | huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z); |
| 4531 | |
| 4532 | /* done */ |
| 4533 | Assert(f == 0, "invalid build of fixed tables"); |
| 4534 | fixed_built = 1; |
| 4535 | } |
| 4536 | *bl = fixed_bl; |
| 4537 | *bd = fixed_bd; |
| 4538 | *tl = fixed_tl; |
| 4539 | *td = fixed_td; |
| 4540 | return Z_OK; |
| 4541 | } |
| 4542 | |
| 4543 | |
| 4544 | int inflate_trees_free(t, z) |
| 4545 | inflate_huft *t; /* table to free */ |
| 4546 | z_streamp z; /* for zfree function */ |
| 4547 | /* Free the malloc'ed tables built by huft_build(), which makes a linked |
| 4548 | list of the tables it made, with the links in a dummy first entry of |
| 4549 | each table. */ |
| 4550 | { |
| 4551 | register inflate_huft *p, *q, *r; |
| 4552 | |
| 4553 | /* Reverse linked list */ |
| 4554 | p = Z_NULL; |
| 4555 | q = t; |
| 4556 | while (q != Z_NULL) |
| 4557 | { |
| 4558 | r = (q - 1)->next; |
| 4559 | (q - 1)->next = p; |
| 4560 | p = q; |
| 4561 | q = r; |
| 4562 | } |
| 4563 | /* Go through linked list, freeing from the malloced (t[-1]) address. */ |
| 4564 | while (p != Z_NULL) |
| 4565 | { |
| 4566 | q = (--p)->next; |
| 4567 | ZFREE(z,p); |
| 4568 | p = q; |
| 4569 | } |
| 4570 | return Z_OK; |
| 4571 | } |
| 4572 | /* --- inftrees.c */ |
| 4573 | |
| 4574 | /* +++ infcodes.c */ |
| 4575 | /* infcodes.c -- process literals and length/distance pairs |
| 4576 | * Copyright (C) 1995-1996 Mark Adler |
| 4577 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 4578 | */ |
| 4579 | |
| 4580 | /* #include "zutil.h" */ |
| 4581 | /* #include "inftrees.h" */ |
| 4582 | /* #include "infblock.h" */ |
| 4583 | /* #include "infcodes.h" */ |
| 4584 | /* #include "infutil.h" */ |
| 4585 | |
| 4586 | /* +++ inffast.h */ |
| 4587 | /* inffast.h -- header to use inffast.c |
| 4588 | * Copyright (C) 1995-1996 Mark Adler |
| 4589 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 4590 | */ |
| 4591 | |
| 4592 | /* WARNING: this file should *not* be used by applications. It is |
| 4593 | part of the implementation of the compression library and is |
| 4594 | subject to change. Applications should only use zlib.h. |
| 4595 | */ |
| 4596 | |
| 4597 | extern int inflate_fast OF(( |
| 4598 | uInt, |
| 4599 | uInt, |
| 4600 | inflate_huft *, |
| 4601 | inflate_huft *, |
| 4602 | inflate_blocks_statef *, |
| 4603 | z_streamp )); |
| 4604 | /* --- inffast.h */ |
| 4605 | |
| 4606 | /* simplify the use of the inflate_huft type with some defines */ |
| 4607 | #define base more.Base |
| 4608 | #define next more.Next |
| 4609 | #define exop word.what.Exop |
| 4610 | #define bits word.what.Bits |
| 4611 | |
| 4612 | /* inflate codes private state */ |
| 4613 | struct inflate_codes_state { |
| 4614 | |
| 4615 | /* mode */ |
| 4616 | enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */ |
| 4617 | START, /* x: set up for LEN */ |
| 4618 | LEN, /* i: get length/literal/eob next */ |
| 4619 | LENEXT, /* i: getting length extra (have base) */ |
| 4620 | DIST, /* i: get distance next */ |
| 4621 | DISTEXT, /* i: getting distance extra */ |
| 4622 | COPY, /* o: copying bytes in window, waiting for space */ |
| 4623 | LIT, /* o: got literal, waiting for output space */ |
| 4624 | WASH, /* o: got eob, possibly still output waiting */ |
| 4625 | END, /* x: got eob and all data flushed */ |
| 4626 | BADCODE} /* x: got error */ |
| 4627 | mode; /* current inflate_codes mode */ |
| 4628 | |
| 4629 | /* mode dependent information */ |
| 4630 | uInt len; |
| 4631 | union { |
| 4632 | struct { |
| 4633 | inflate_huft *tree; /* pointer into tree */ |
| 4634 | uInt need; /* bits needed */ |
| 4635 | } code; /* if LEN or DIST, where in tree */ |
| 4636 | uInt lit; /* if LIT, literal */ |
| 4637 | struct { |
| 4638 | uInt get; /* bits to get for extra */ |
| 4639 | uInt dist; /* distance back to copy from */ |
| 4640 | } copy; /* if EXT or COPY, where and how much */ |
| 4641 | } sub; /* submode */ |
| 4642 | |
| 4643 | /* mode independent information */ |
| 4644 | Byte lbits; /* ltree bits decoded per branch */ |
| 4645 | Byte dbits; /* dtree bits decoder per branch */ |
| 4646 | inflate_huft *ltree; /* literal/length/eob tree */ |
| 4647 | inflate_huft *dtree; /* distance tree */ |
| 4648 | |
| 4649 | }; |
| 4650 | |
| 4651 | |
| 4652 | inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z) |
| 4653 | uInt bl, bd; |
| 4654 | inflate_huft *tl; |
| 4655 | inflate_huft *td; /* need separate declaration for Borland C++ */ |
| 4656 | z_streamp z; |
| 4657 | { |
| 4658 | inflate_codes_statef *c; |
| 4659 | |
| 4660 | if ((c = (inflate_codes_statef *) |
| 4661 | ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL) |
| 4662 | { |
| 4663 | c->mode = START; |
| 4664 | c->lbits = (Byte)bl; |
| 4665 | c->dbits = (Byte)bd; |
| 4666 | c->ltree = tl; |
| 4667 | c->dtree = td; |
| 4668 | Tracev((stderr, "inflate: codes new\n")); |
| 4669 | } |
| 4670 | return c; |
| 4671 | } |
| 4672 | |
| 4673 | |
| 4674 | int inflate_codes(s, z, r) |
| 4675 | inflate_blocks_statef *s; |
| 4676 | z_streamp z; |
| 4677 | int r; |
| 4678 | { |
| 4679 | uInt j; /* temporary storage */ |
| 4680 | inflate_huft *t; /* temporary pointer */ |
| 4681 | uInt e; /* extra bits or operation */ |
| 4682 | uLong b; /* bit buffer */ |
| 4683 | uInt k; /* bits in bit buffer */ |
| 4684 | Bytef *p; /* input data pointer */ |
| 4685 | uInt n; /* bytes available there */ |
| 4686 | Bytef *q; /* output window write pointer */ |
| 4687 | uInt m; /* bytes to end of window or read pointer */ |
| 4688 | Bytef *f; /* pointer to copy strings from */ |
| 4689 | inflate_codes_statef *c = s->sub.decode.codes; /* codes state */ |
| 4690 | |
| 4691 | /* copy input/output information to locals (UPDATE macro restores) */ |
| 4692 | LOAD |
| 4693 | |
| 4694 | /* process input and output based on current state */ |
| 4695 | while (1) switch (c->mode) |
| 4696 | { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */ |
| 4697 | case START: /* x: set up for LEN */ |
| 4698 | #ifndef SLOW |
| 4699 | if (m >= 258 && n >= 10) |
| 4700 | { |
| 4701 | UPDATE |
| 4702 | r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z); |
| 4703 | LOAD |
| 4704 | if (r != Z_OK) |
| 4705 | { |
| 4706 | c->mode = r == Z_STREAM_END ? WASH : BADCODE; |
| 4707 | break; |
| 4708 | } |
| 4709 | } |
| 4710 | #endif /* !SLOW */ |
| 4711 | c->sub.code.need = c->lbits; |
| 4712 | c->sub.code.tree = c->ltree; |
| 4713 | c->mode = LEN; |
| 4714 | case LEN: /* i: get length/literal/eob next */ |
| 4715 | j = c->sub.code.need; |
| 4716 | NEEDBITS(j) |
| 4717 | t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); |
| 4718 | DUMPBITS(t->bits) |
| 4719 | e = (uInt)(t->exop); |
| 4720 | if (e == 0) /* literal */ |
| 4721 | { |
| 4722 | c->sub.lit = t->base; |
| 4723 | Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? |
| 4724 | "inflate: literal '%c'\n" : |
| 4725 | "inflate: literal 0x%02x\n", t->base)); |
| 4726 | c->mode = LIT; |
| 4727 | break; |
| 4728 | } |
| 4729 | if (e & 16) /* length */ |
| 4730 | { |
| 4731 | c->sub.copy.get = e & 15; |
| 4732 | c->len = t->base; |
| 4733 | c->mode = LENEXT; |
| 4734 | break; |
| 4735 | } |
| 4736 | if ((e & 64) == 0) /* next table */ |
| 4737 | { |
| 4738 | c->sub.code.need = e; |
| 4739 | c->sub.code.tree = t->next; |
| 4740 | break; |
| 4741 | } |
| 4742 | if (e & 32) /* end of block */ |
| 4743 | { |
| 4744 | Tracevv((stderr, "inflate: end of block\n")); |
| 4745 | c->mode = WASH; |
| 4746 | break; |
| 4747 | } |
| 4748 | c->mode = BADCODE; /* invalid code */ |
| 4749 | z->msg = (char*)"invalid literal/length code"; |
| 4750 | r = Z_DATA_ERROR; |
| 4751 | LEAVE |
| 4752 | case LENEXT: /* i: getting length extra (have base) */ |
| 4753 | j = c->sub.copy.get; |
| 4754 | NEEDBITS(j) |
| 4755 | c->len += (uInt)b & inflate_mask[j]; |
| 4756 | DUMPBITS(j) |
| 4757 | c->sub.code.need = c->dbits; |
| 4758 | c->sub.code.tree = c->dtree; |
| 4759 | Tracevv((stderr, "inflate: length %u\n", c->len)); |
| 4760 | c->mode = DIST; |
| 4761 | case DIST: /* i: get distance next */ |
| 4762 | j = c->sub.code.need; |
| 4763 | NEEDBITS(j) |
| 4764 | t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); |
| 4765 | DUMPBITS(t->bits) |
| 4766 | e = (uInt)(t->exop); |
| 4767 | if (e & 16) /* distance */ |
| 4768 | { |
| 4769 | c->sub.copy.get = e & 15; |
| 4770 | c->sub.copy.dist = t->base; |
| 4771 | c->mode = DISTEXT; |
| 4772 | break; |
| 4773 | } |
| 4774 | if ((e & 64) == 0) /* next table */ |
| 4775 | { |
| 4776 | c->sub.code.need = e; |
| 4777 | c->sub.code.tree = t->next; |
| 4778 | break; |
| 4779 | } |
| 4780 | c->mode = BADCODE; /* invalid code */ |
| 4781 | z->msg = (char*)"invalid distance code"; |
| 4782 | r = Z_DATA_ERROR; |
| 4783 | LEAVE |
| 4784 | case DISTEXT: /* i: getting distance extra */ |
| 4785 | j = c->sub.copy.get; |
| 4786 | NEEDBITS(j) |
| 4787 | c->sub.copy.dist += (uInt)b & inflate_mask[j]; |
| 4788 | DUMPBITS(j) |
| 4789 | Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist)); |
| 4790 | c->mode = COPY; |
| 4791 | case COPY: /* o: copying bytes in window, waiting for space */ |
| 4792 | #ifndef __TURBOC__ /* Turbo C bug for following expression */ |
| 4793 | f = (uInt)(q - s->window) < c->sub.copy.dist ? |
| 4794 | s->end - (c->sub.copy.dist - (q - s->window)) : |
| 4795 | q - c->sub.copy.dist; |
| 4796 | #else |
| 4797 | f = q - c->sub.copy.dist; |
| 4798 | if ((uInt)(q - s->window) < c->sub.copy.dist) |
| 4799 | f = s->end - (c->sub.copy.dist - (uInt)(q - s->window)); |
| 4800 | #endif |
| 4801 | while (c->len) |
| 4802 | { |
| 4803 | NEEDOUT |
| 4804 | OUTBYTE(*f++) |
| 4805 | if (f == s->end) |
| 4806 | f = s->window; |
| 4807 | c->len--; |
| 4808 | } |
| 4809 | c->mode = START; |
| 4810 | break; |
| 4811 | case LIT: /* o: got literal, waiting for output space */ |
| 4812 | NEEDOUT |
| 4813 | OUTBYTE(c->sub.lit) |
| 4814 | c->mode = START; |
| 4815 | break; |
| 4816 | case WASH: /* o: got eob, possibly more output */ |
| 4817 | FLUSH |
| 4818 | if (s->read != s->write) |
| 4819 | LEAVE |
| 4820 | c->mode = END; |
| 4821 | case END: |
| 4822 | r = Z_STREAM_END; |
| 4823 | LEAVE |
| 4824 | case BADCODE: /* x: got error */ |
| 4825 | r = Z_DATA_ERROR; |
| 4826 | LEAVE |
| 4827 | default: |
| 4828 | r = Z_STREAM_ERROR; |
| 4829 | LEAVE |
| 4830 | } |
| 4831 | } |
| 4832 | |
| 4833 | |
| 4834 | void inflate_codes_free(c, z) |
| 4835 | inflate_codes_statef *c; |
| 4836 | z_streamp z; |
| 4837 | { |
| 4838 | ZFREE(z, c); |
| 4839 | Tracev((stderr, "inflate: codes free\n")); |
| 4840 | } |
| 4841 | /* --- infcodes.c */ |
| 4842 | |
| 4843 | /* +++ infutil.c */ |
| 4844 | /* inflate_util.c -- data and routines common to blocks and codes |
| 4845 | * Copyright (C) 1995-1996 Mark Adler |
| 4846 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 4847 | */ |
| 4848 | |
| 4849 | /* #include "zutil.h" */ |
| 4850 | /* #include "infblock.h" */ |
| 4851 | /* #include "inftrees.h" */ |
| 4852 | /* #include "infcodes.h" */ |
| 4853 | /* #include "infutil.h" */ |
| 4854 | |
| 4855 | #ifndef NO_DUMMY_DECL |
| 4856 | struct inflate_codes_state {int dummy;}; /* for buggy compilers */ |
| 4857 | #endif |
| 4858 | |
| 4859 | /* And'ing with mask[n] masks the lower n bits */ |
| 4860 | uInt inflate_mask[17] = { |
| 4861 | 0x0000, |
| 4862 | 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, |
| 4863 | 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff |
| 4864 | }; |
| 4865 | |
| 4866 | |
| 4867 | /* copy as much as possible from the sliding window to the output area */ |
| 4868 | int inflate_flush(s, z, r) |
| 4869 | inflate_blocks_statef *s; |
| 4870 | z_streamp z; |
| 4871 | int r; |
| 4872 | { |
| 4873 | uInt n; |
| 4874 | Bytef *p; |
| 4875 | Bytef *q; |
| 4876 | |
| 4877 | /* local copies of source and destination pointers */ |
| 4878 | p = z->next_out; |
| 4879 | q = s->read; |
| 4880 | |
| 4881 | /* compute number of bytes to copy as far as end of window */ |
| 4882 | n = (uInt)((q <= s->write ? s->write : s->end) - q); |
| 4883 | if (n > z->avail_out) n = z->avail_out; |
| 4884 | if (n && r == Z_BUF_ERROR) r = Z_OK; |
| 4885 | |
| 4886 | /* update counters */ |
| 4887 | z->avail_out -= n; |
| 4888 | z->total_out += n; |
| 4889 | |
| 4890 | /* update check information */ |
| 4891 | if (s->checkfn != Z_NULL) |
| 4892 | z->adler = s->check = (*s->checkfn)(s->check, q, n); |
| 4893 | |
| 4894 | /* copy as far as end of window */ |
| 4895 | if (p != Z_NULL) { |
| 4896 | zmemcpy(p, q, n); |
| 4897 | p += n; |
| 4898 | } |
| 4899 | q += n; |
| 4900 | |
| 4901 | /* see if more to copy at beginning of window */ |
| 4902 | if (q == s->end) |
| 4903 | { |
| 4904 | /* wrap pointers */ |
| 4905 | q = s->window; |
| 4906 | if (s->write == s->end) |
| 4907 | s->write = s->window; |
| 4908 | |
| 4909 | /* compute bytes to copy */ |
| 4910 | n = (uInt)(s->write - q); |
| 4911 | if (n > z->avail_out) n = z->avail_out; |
| 4912 | if (n && r == Z_BUF_ERROR) r = Z_OK; |
| 4913 | |
| 4914 | /* update counters */ |
| 4915 | z->avail_out -= n; |
| 4916 | z->total_out += n; |
| 4917 | |
| 4918 | /* update check information */ |
| 4919 | if (s->checkfn != Z_NULL) |
| 4920 | z->adler = s->check = (*s->checkfn)(s->check, q, n); |
| 4921 | |
| 4922 | /* copy */ |
| 4923 | if (p != Z_NULL) { |
| 4924 | zmemcpy(p, q, n); |
| 4925 | p += n; |
| 4926 | } |
| 4927 | q += n; |
| 4928 | } |
| 4929 | |
| 4930 | /* update pointers */ |
| 4931 | z->next_out = p; |
| 4932 | s->read = q; |
| 4933 | |
| 4934 | /* done */ |
| 4935 | return r; |
| 4936 | } |
| 4937 | /* --- infutil.c */ |
| 4938 | |
| 4939 | /* +++ inffast.c */ |
| 4940 | /* inffast.c -- process literals and length/distance pairs fast |
| 4941 | * Copyright (C) 1995-1996 Mark Adler |
| 4942 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 4943 | */ |
| 4944 | |
| 4945 | /* #include "zutil.h" */ |
| 4946 | /* #include "inftrees.h" */ |
| 4947 | /* #include "infblock.h" */ |
| 4948 | /* #include "infcodes.h" */ |
| 4949 | /* #include "infutil.h" */ |
| 4950 | /* #include "inffast.h" */ |
| 4951 | |
| 4952 | #ifndef NO_DUMMY_DECL |
| 4953 | struct inflate_codes_state {int dummy;}; /* for buggy compilers */ |
| 4954 | #endif |
| 4955 | |
| 4956 | /* simplify the use of the inflate_huft type with some defines */ |
| 4957 | #define base more.Base |
| 4958 | #define next more.Next |
| 4959 | #define exop word.what.Exop |
| 4960 | #define bits word.what.Bits |
| 4961 | |
| 4962 | /* macros for bit input with no checking and for returning unused bytes */ |
| 4963 | #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}} |
| 4964 | #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;} |
| 4965 | |
| 4966 | /* Called with number of bytes left to write in window at least 258 |
| 4967 | (the maximum string length) and number of input bytes available |
| 4968 | at least ten. The ten bytes are six bytes for the longest length/ |
| 4969 | distance pair plus four bytes for overloading the bit buffer. */ |
| 4970 | |
| 4971 | int inflate_fast(bl, bd, tl, td, s, z) |
| 4972 | uInt bl, bd; |
| 4973 | inflate_huft *tl; |
| 4974 | inflate_huft *td; /* need separate declaration for Borland C++ */ |
| 4975 | inflate_blocks_statef *s; |
| 4976 | z_streamp z; |
| 4977 | { |
| 4978 | inflate_huft *t; /* temporary pointer */ |
| 4979 | uInt e; /* extra bits or operation */ |
| 4980 | uLong b; /* bit buffer */ |
| 4981 | uInt k; /* bits in bit buffer */ |
| 4982 | Bytef *p; /* input data pointer */ |
| 4983 | uInt n; /* bytes available there */ |
| 4984 | Bytef *q; /* output window write pointer */ |
| 4985 | uInt m; /* bytes to end of window or read pointer */ |
| 4986 | uInt ml; /* mask for literal/length tree */ |
| 4987 | uInt md; /* mask for distance tree */ |
| 4988 | uInt c; /* bytes to copy */ |
| 4989 | uInt d; /* distance back to copy from */ |
| 4990 | Bytef *r; /* copy source pointer */ |
| 4991 | |
| 4992 | /* load input, output, bit values */ |
| 4993 | LOAD |
| 4994 | |
| 4995 | /* initialize masks */ |
| 4996 | ml = inflate_mask[bl]; |
| 4997 | md = inflate_mask[bd]; |
| 4998 | |
| 4999 | /* do until not enough input or output space for fast loop */ |
| 5000 | do { /* assume called with m >= 258 && n >= 10 */ |
| 5001 | /* get literal/length code */ |
| 5002 | GRABBITS(20) /* max bits for literal/length code */ |
| 5003 | if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) |
| 5004 | { |
| 5005 | DUMPBITS(t->bits) |
| 5006 | Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? |
| 5007 | "inflate: * literal '%c'\n" : |
| 5008 | "inflate: * literal 0x%02x\n", t->base)); |
| 5009 | *q++ = (Byte)t->base; |
| 5010 | m--; |
| 5011 | continue; |
| 5012 | } |
| 5013 | do { |
| 5014 | DUMPBITS(t->bits) |
| 5015 | if (e & 16) |
| 5016 | { |
| 5017 | /* get extra bits for length */ |
| 5018 | e &= 15; |
| 5019 | c = t->base + ((uInt)b & inflate_mask[e]); |
| 5020 | DUMPBITS(e) |
| 5021 | Tracevv((stderr, "inflate: * length %u\n", c)); |
| 5022 | |
| 5023 | /* decode distance base of block to copy */ |
| 5024 | GRABBITS(15); /* max bits for distance code */ |
| 5025 | e = (t = td + ((uInt)b & md))->exop; |
| 5026 | do { |
| 5027 | DUMPBITS(t->bits) |
| 5028 | if (e & 16) |
| 5029 | { |
| 5030 | /* get extra bits to add to distance base */ |
| 5031 | e &= 15; |
| 5032 | GRABBITS(e) /* get extra bits (up to 13) */ |
| 5033 | d = t->base + ((uInt)b & inflate_mask[e]); |
| 5034 | DUMPBITS(e) |
| 5035 | Tracevv((stderr, "inflate: * distance %u\n", d)); |
| 5036 | |
| 5037 | /* do the copy */ |
| 5038 | m -= c; |
| 5039 | if ((uInt)(q - s->window) >= d) /* offset before dest */ |
| 5040 | { /* just copy */ |
| 5041 | r = q - d; |
| 5042 | *q++ = *r++; c--; /* minimum count is three, */ |
| 5043 | *q++ = *r++; c--; /* so unroll loop a little */ |
| 5044 | } |
| 5045 | else /* else offset after destination */ |
| 5046 | { |
| 5047 | e = d - (uInt)(q - s->window); /* bytes from offset to end */ |
| 5048 | r = s->end - e; /* pointer to offset */ |
| 5049 | if (c > e) /* if source crosses, */ |
| 5050 | { |
| 5051 | c -= e; /* copy to end of window */ |
| 5052 | do { |
| 5053 | *q++ = *r++; |
| 5054 | } while (--e); |
| 5055 | r = s->window; /* copy rest from start of window */ |
| 5056 | } |
| 5057 | } |
| 5058 | do { /* copy all or what's left */ |
| 5059 | *q++ = *r++; |
| 5060 | } while (--c); |
| 5061 | break; |
| 5062 | } |
| 5063 | else if ((e & 64) == 0) |
| 5064 | e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop; |
| 5065 | else |
| 5066 | { |
| 5067 | z->msg = (char*)"invalid distance code"; |
| 5068 | UNGRAB |
| 5069 | UPDATE |
| 5070 | return Z_DATA_ERROR; |
| 5071 | } |
| 5072 | } while (1); |
| 5073 | break; |
| 5074 | } |
| 5075 | if ((e & 64) == 0) |
| 5076 | { |
| 5077 | if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0) |
| 5078 | { |
| 5079 | DUMPBITS(t->bits) |
| 5080 | Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? |
| 5081 | "inflate: * literal '%c'\n" : |
| 5082 | "inflate: * literal 0x%02x\n", t->base)); |
| 5083 | *q++ = (Byte)t->base; |
| 5084 | m--; |
| 5085 | break; |
| 5086 | } |
| 5087 | } |
| 5088 | else if (e & 32) |
| 5089 | { |
| 5090 | Tracevv((stderr, "inflate: * end of block\n")); |
| 5091 | UNGRAB |
| 5092 | UPDATE |
| 5093 | return Z_STREAM_END; |
| 5094 | } |
| 5095 | else |
| 5096 | { |
| 5097 | z->msg = (char*)"invalid literal/length code"; |
| 5098 | UNGRAB |
| 5099 | UPDATE |
| 5100 | return Z_DATA_ERROR; |
| 5101 | } |
| 5102 | } while (1); |
| 5103 | } while (m >= 258 && n >= 10); |
| 5104 | |
| 5105 | /* not enough input or output--restore pointers and return */ |
| 5106 | UNGRAB |
| 5107 | UPDATE |
| 5108 | return Z_OK; |
| 5109 | } |
| 5110 | /* --- inffast.c */ |
| 5111 | |
| 5112 | /* +++ zutil.c */ |
| 5113 | /* zutil.c -- target dependent utility functions for the compression library |
| 5114 | * Copyright (C) 1995-1996 Jean-loup Gailly. |
| 5115 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 5116 | */ |
| 5117 | |
| 5118 | /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */ |
| 5119 | |
| 5120 | #ifdef DEBUG_ZLIB |
| 5121 | #include <stdio.h> |
| 5122 | #endif |
| 5123 | |
| 5124 | /* #include "zutil.h" */ |
| 5125 | |
| 5126 | #ifndef NO_DUMMY_DECL |
| 5127 | struct internal_state {int dummy;}; /* for buggy compilers */ |
| 5128 | #endif |
| 5129 | |
| 5130 | #ifndef STDC |
| 5131 | extern void exit OF((int)); |
| 5132 | #endif |
| 5133 | |
| 5134 | const char *z_errmsg[10] = { |
| 5135 | "need dictionary", /* Z_NEED_DICT 2 */ |
| 5136 | "stream end", /* Z_STREAM_END 1 */ |
| 5137 | "", /* Z_OK 0 */ |
| 5138 | "file error", /* Z_ERRNO (-1) */ |
| 5139 | "stream error", /* Z_STREAM_ERROR (-2) */ |
| 5140 | "data error", /* Z_DATA_ERROR (-3) */ |
| 5141 | "insufficient memory", /* Z_MEM_ERROR (-4) */ |
| 5142 | "buffer error", /* Z_BUF_ERROR (-5) */ |
| 5143 | "incompatible version",/* Z_VERSION_ERROR (-6) */ |
| 5144 | ""}; |
| 5145 | |
| 5146 | |
| 5147 | const char *zlibVersion() |
| 5148 | { |
| 5149 | return ZLIB_VERSION; |
| 5150 | } |
| 5151 | |
| 5152 | #ifdef DEBUG_ZLIB |
| 5153 | void z_error (m) |
| 5154 | char *m; |
| 5155 | { |
| 5156 | fprintf(stderr, "%s\n", m); |
| 5157 | exit(1); |
| 5158 | } |
| 5159 | #endif |
| 5160 | |
| 5161 | #ifndef HAVE_MEMCPY |
| 5162 | |
| 5163 | void zmemcpy(dest, source, len) |
| 5164 | Bytef* dest; |
| 5165 | Bytef* source; |
| 5166 | uInt len; |
| 5167 | { |
| 5168 | if (len == 0) return; |
| 5169 | do { |
| 5170 | *dest++ = *source++; /* ??? to be unrolled */ |
| 5171 | } while (--len != 0); |
| 5172 | } |
| 5173 | |
| 5174 | int zmemcmp(s1, s2, len) |
| 5175 | Bytef* s1; |
| 5176 | Bytef* s2; |
| 5177 | uInt len; |
| 5178 | { |
| 5179 | uInt j; |
| 5180 | |
| 5181 | for (j = 0; j < len; j++) { |
| 5182 | if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; |
| 5183 | } |
| 5184 | return 0; |
| 5185 | } |
| 5186 | |
| 5187 | void zmemzero(dest, len) |
| 5188 | Bytef* dest; |
| 5189 | uInt len; |
| 5190 | { |
| 5191 | if (len == 0) return; |
| 5192 | do { |
| 5193 | *dest++ = 0; /* ??? to be unrolled */ |
| 5194 | } while (--len != 0); |
| 5195 | } |
| 5196 | #endif |
| 5197 | |
| 5198 | #ifdef __TURBOC__ |
| 5199 | #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__) |
| 5200 | /* Small and medium model in Turbo C are for now limited to near allocation |
| 5201 | * with reduced MAX_WBITS and MAX_MEM_LEVEL |
| 5202 | */ |
| 5203 | # define MY_ZCALLOC |
| 5204 | |
| 5205 | /* Turbo C malloc() does not allow dynamic allocation of 64K bytes |
| 5206 | * and farmalloc(64K) returns a pointer with an offset of 8, so we |
| 5207 | * must fix the pointer. Warning: the pointer must be put back to its |
| 5208 | * original form in order to free it, use zcfree(). |
| 5209 | */ |
| 5210 | |
| 5211 | #define MAX_PTR 10 |
| 5212 | /* 10*64K = 640K */ |
| 5213 | |
| 5214 | local int next_ptr = 0; |
| 5215 | |
| 5216 | typedef struct ptr_table_s { |
| 5217 | voidpf org_ptr; |
| 5218 | voidpf new_ptr; |
| 5219 | } ptr_table; |
| 5220 | |
| 5221 | local ptr_table table[MAX_PTR]; |
| 5222 | /* This table is used to remember the original form of pointers |
| 5223 | * to large buffers (64K). Such pointers are normalized with a zero offset. |
| 5224 | * Since MSDOS is not a preemptive multitasking OS, this table is not |
| 5225 | * protected from concurrent access. This hack doesn't work anyway on |
| 5226 | * a protected system like OS/2. Use Microsoft C instead. |
| 5227 | */ |
| 5228 | |
| 5229 | voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) |
| 5230 | { |
| 5231 | voidpf buf = opaque; /* just to make some compilers happy */ |
| 5232 | ulg bsize = (ulg)items*size; |
| 5233 | |
| 5234 | /* If we allocate less than 65520 bytes, we assume that farmalloc |
| 5235 | * will return a usable pointer which doesn't have to be normalized. |
| 5236 | */ |
| 5237 | if (bsize < 65520L) { |
| 5238 | buf = farmalloc(bsize); |
| 5239 | if (*(ush*)&buf != 0) return buf; |
| 5240 | } else { |
| 5241 | buf = farmalloc(bsize + 16L); |
| 5242 | } |
| 5243 | if (buf == NULL || next_ptr >= MAX_PTR) return NULL; |
| 5244 | table[next_ptr].org_ptr = buf; |
| 5245 | |
| 5246 | /* Normalize the pointer to seg:0 */ |
| 5247 | *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; |
| 5248 | *(ush*)&buf = 0; |
| 5249 | table[next_ptr++].new_ptr = buf; |
| 5250 | return buf; |
| 5251 | } |
| 5252 | |
| 5253 | void zcfree (voidpf opaque, voidpf ptr) |
| 5254 | { |
| 5255 | int n; |
| 5256 | if (*(ush*)&ptr != 0) { /* object < 64K */ |
| 5257 | farfree(ptr); |
| 5258 | return; |
| 5259 | } |
| 5260 | /* Find the original pointer */ |
| 5261 | for (n = 0; n < next_ptr; n++) { |
| 5262 | if (ptr != table[n].new_ptr) continue; |
| 5263 | |
| 5264 | farfree(table[n].org_ptr); |
| 5265 | while (++n < next_ptr) { |
| 5266 | table[n-1] = table[n]; |
| 5267 | } |
| 5268 | next_ptr--; |
| 5269 | return; |
| 5270 | } |
| 5271 | ptr = opaque; /* just to make some compilers happy */ |
| 5272 | Assert(0, "zcfree: ptr not found"); |
| 5273 | } |
| 5274 | #endif |
| 5275 | #endif /* __TURBOC__ */ |
| 5276 | |
| 5277 | |
| 5278 | #if defined(M_I86) && !defined(__32BIT__) |
| 5279 | /* Microsoft C in 16-bit mode */ |
| 5280 | |
| 5281 | # define MY_ZCALLOC |
| 5282 | |
| 5283 | #if (!defined(_MSC_VER) || (_MSC_VER < 600)) |
| 5284 | # define _halloc halloc |
| 5285 | # define _hfree hfree |
| 5286 | #endif |
| 5287 | |
| 5288 | voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) |
| 5289 | { |
| 5290 | if (opaque) opaque = 0; /* to make compiler happy */ |
| 5291 | return _halloc((long)items, size); |
| 5292 | } |
| 5293 | |
| 5294 | void zcfree (voidpf opaque, voidpf ptr) |
| 5295 | { |
| 5296 | if (opaque) opaque = 0; /* to make compiler happy */ |
| 5297 | _hfree(ptr); |
| 5298 | } |
| 5299 | |
| 5300 | #endif /* MSC */ |
| 5301 | |
| 5302 | |
| 5303 | #ifndef MY_ZCALLOC /* Any system without a special alloc function */ |
| 5304 | |
| 5305 | #ifndef STDC |
| 5306 | extern voidp calloc OF((uInt items, uInt size)); |
| 5307 | extern void free OF((voidpf ptr)); |
| 5308 | #endif |
| 5309 | |
| 5310 | voidpf zcalloc (opaque, items, size) |
| 5311 | voidpf opaque; |
| 5312 | unsigned items; |
| 5313 | unsigned size; |
| 5314 | { |
| 5315 | if (opaque) items += size - size; /* make compiler happy */ |
| 5316 | return (voidpf)calloc(items, size); |
| 5317 | } |
| 5318 | |
| 5319 | void zcfree (opaque, ptr) |
| 5320 | voidpf opaque; |
| 5321 | voidpf ptr; |
| 5322 | { |
| 5323 | free(ptr); |
| 5324 | if (opaque) return; /* make compiler happy */ |
| 5325 | } |
| 5326 | |
| 5327 | #endif /* MY_ZCALLOC */ |
| 5328 | /* --- zutil.c */ |
| 5329 | |
| 5330 | /* +++ adler32.c */ |
| 5331 | /* adler32.c -- compute the Adler-32 checksum of a data stream |
| 5332 | * Copyright (C) 1995-1996 Mark Adler |
| 5333 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 5334 | */ |
| 5335 | |
| 5336 | /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */ |
| 5337 | |
| 5338 | /* #include "zlib.h" */ |
| 5339 | |
| 5340 | #define BASE 65521L /* largest prime smaller than 65536 */ |
| 5341 | #define NMAX 5552 |
| 5342 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
| 5343 | |
| 5344 | #define DO1(buf,i) {s1 += buf[i]; s2 += s1;} |
| 5345 | #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
| 5346 | #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
| 5347 | #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
| 5348 | #define DO16(buf) DO8(buf,0); DO8(buf,8); |
| 5349 | |
| 5350 | /* ========================================================================= */ |
| 5351 | uLong adler32(adler, buf, len) |
| 5352 | uLong adler; |
| 5353 | const Bytef *buf; |
| 5354 | uInt len; |
| 5355 | { |
| 5356 | unsigned long s1 = adler & 0xffff; |
| 5357 | unsigned long s2 = (adler >> 16) & 0xffff; |
| 5358 | int k; |
| 5359 | |
| 5360 | if (buf == Z_NULL) return 1L; |
| 5361 | |
| 5362 | while (len > 0) { |
| 5363 | k = len < NMAX ? len : NMAX; |
| 5364 | len -= k; |
| 5365 | while (k >= 16) { |
| 5366 | DO16(buf); |
| 5367 | buf += 16; |
| 5368 | k -= 16; |
| 5369 | } |
| 5370 | if (k != 0) do { |
| 5371 | s1 += *buf++; |
| 5372 | s2 += s1; |
| 5373 | } while (--k); |
| 5374 | s1 %= BASE; |
| 5375 | s2 %= BASE; |
| 5376 | } |
| 5377 | return (s2 << 16) | s1; |
| 5378 | } |
| 5379 | /* --- adler32.c */ |