blob: 23b724d97896887f3e3d75217a03711605a8a33d [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * This file is derived from various .h and .c files from the zlib-1.0.4
3 * distribution by Jean-loup Gailly and Mark Adler, with some additions
4 * by Paul Mackerras to aid in implementing Deflate compression and
5 * decompression for PPP packets. See zlib.h for conditions of
6 * distribution and use.
7 *
8 * Changes that have been made include:
9 * - added Z_PACKET_FLUSH (see zlib.h for details)
10 * - added inflateIncomp and deflateOutputPending
11 * - allow strm->next_out to be NULL, meaning discard the output
12 *
13 * $Id: zlib.c,v 1.2 2007-06-08 04:02:37 gerg Exp $
14 */
15
16/*
17 * ==FILEVERSION 971210==
18 *
19 * This marker is used by the Linux installation script to determine
20 * whether an up-to-date version of this file is already installed.
21 */
22
23#define NO_DUMMY_DECL
24#define NO_ZCFUNCS
25#define MY_ZCALLOC
26
27#if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
28#define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
29#endif
30
31
32/* +++ zutil.h */
33/* zutil.h -- internal interface and configuration of the compression library
34 * Copyright (C) 1995-1996 Jean-loup Gailly.
35 * For conditions of distribution and use, see copyright notice in zlib.h
36 */
37
38/* WARNING: this file should *not* be used by applications. It is
39 part of the implementation of the compression library and is
40 subject to change. Applications should only use zlib.h.
41 */
42
43/* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
44
45#ifndef _Z_UTIL_H
46#define _Z_UTIL_H
47
48#include "zlib.h"
49
50#if defined(KERNEL) || defined(_KERNEL)
51/* Assume this is a *BSD or SVR4 kernel */
52#include <sys/types.h>
53#include <sys/time.h>
54#include <sys/systm.h>
55#undef u
56# define HAVE_MEMCPY
57# define memcpy(d, s, n) bcopy((s), (d), (n))
58# define memset(d, v, n) bzero((d), (n))
59# define memcmp bcmp
60
61#else
62#if defined(__KERNEL__)
63/* Assume this is a Linux kernel */
64#include <linux/string.h>
65#define HAVE_MEMCPY
66
67#else /* not kernel */
68
69#if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
70# include <stddef.h>
71# include <errno.h>
72#else
73 extern int errno;
74#endif
75#ifdef STDC
76# include <string.h>
77# include <stdlib.h>
78#endif
79#endif /* __KERNEL__ */
80#endif /* _KERNEL || KERNEL */
81
82#ifndef local
83# define local static
84#endif
85/* compile with -Dlocal if your debugger can't find static symbols */
86
87typedef unsigned char uch;
88typedef uch FAR uchf;
89typedef unsigned short ush;
90typedef ush FAR ushf;
91typedef unsigned long ulg;
92
93extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
94/* (size given to avoid silly warnings with Visual C++) */
95
96#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
97
98#define ERR_RETURN(strm,err) \
99 return (strm->msg = (char*)ERR_MSG(err), (err))
100/* To be used only when the state is known to be valid */
101
102 /* common constants */
103
104#ifndef DEF_WBITS
105# define DEF_WBITS MAX_WBITS
106#endif
107/* default windowBits for decompression. MAX_WBITS is for compression only */
108
109#if MAX_MEM_LEVEL >= 8
110# define DEF_MEM_LEVEL 8
111#else
112# define DEF_MEM_LEVEL MAX_MEM_LEVEL
113#endif
114/* default memLevel */
115
116#define STORED_BLOCK 0
117#define STATIC_TREES 1
118#define DYN_TREES 2
119/* The three kinds of block type */
120
121#define MIN_MATCH 3
122#define MAX_MATCH 258
123/* The minimum and maximum match lengths */
124
125#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
126
127 /* target dependencies */
128
129#ifdef MSDOS
130# define OS_CODE 0x00
131# ifdef __TURBOC__
132# include <alloc.h>
133# else /* MSC or DJGPP */
134# include <malloc.h>
135# endif
136#endif
137
138#ifdef OS2
139# define OS_CODE 0x06
140#endif
141
142#ifdef WIN32 /* Window 95 & Windows NT */
143# define OS_CODE 0x0b
144#endif
145
146#if defined(VAXC) || defined(VMS)
147# define OS_CODE 0x02
148# define FOPEN(name, mode) \
149 fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
150#endif
151
152#ifdef AMIGA
153# define OS_CODE 0x01
154#endif
155
156#if defined(ATARI) || defined(atarist)
157# define OS_CODE 0x05
158#endif
159
160#ifdef MACOS
161# define OS_CODE 0x07
162#endif
163
164#ifdef __50SERIES /* Prime/PRIMOS */
165# define OS_CODE 0x0F
166#endif
167
168#ifdef TOPS20
169# define OS_CODE 0x0a
170#endif
171
172#if defined(_BEOS_) || defined(RISCOS)
173# define fdopen(fd,mode) NULL /* No fdopen() */
174#endif
175
176 /* Common defaults */
177
178#ifndef OS_CODE
179# define OS_CODE 0x03 /* assume Unix */
180#endif
181
182#ifndef FOPEN
183# define FOPEN(name, mode) fopen((name), (mode))
184#endif
185
186 /* functions */
187
188#ifdef HAVE_STRERROR
189 extern char *strerror OF((int));
190# define zstrerror(errnum) strerror(errnum)
191#else
192# define zstrerror(errnum) ""
193#endif
194
195#if defined(pyr)
196# define NO_MEMCPY
197#endif
198#if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
199 /* Use our own functions for small and medium model with MSC <= 5.0.
200 * You may have to use the same strategy for Borland C (untested).
201 */
202# define NO_MEMCPY
203#endif
204#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
205# define HAVE_MEMCPY
206#endif
207#ifdef HAVE_MEMCPY
208# ifdef SMALL_MEDIUM /* MSDOS small or medium model */
209# define zmemcpy _fmemcpy
210# define zmemcmp _fmemcmp
211# define zmemzero(dest, len) _fmemset(dest, 0, len)
212# else
213# define zmemcpy memcpy
214# define zmemcmp memcmp
215# define zmemzero(dest, len) memset(dest, 0, len)
216# endif
217#else
218 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
219 extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len));
220 extern void zmemzero OF((Bytef* dest, uInt len));
221#endif
222
223/* Diagnostic functions */
224#ifdef DEBUG_ZLIB
225# include <stdio.h>
226# ifndef verbose
227# define verbose 0
228# endif
229 extern void z_error OF((char *m));
230# define Assert(cond,msg) {if(!(cond)) z_error(msg);}
231# define Trace(x) fprintf x
232# define Tracev(x) {if (verbose) fprintf x ;}
233# define Tracevv(x) {if (verbose>1) fprintf x ;}
234# define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
235# define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
236#else
237# define Assert(cond,msg)
238# define Trace(x)
239# define Tracev(x)
240# define Tracevv(x)
241# define Tracec(c,x)
242# define Tracecv(c,x)
243#endif
244
245
246typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
247
248voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
249void zcfree OF((voidpf opaque, voidpf ptr));
250
251#define ZALLOC(strm, items, size) \
252 (*((strm)->zalloc))((strm)->opaque, (items), (size))
253#define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
254#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
255
256#endif /* _Z_UTIL_H */
257/* --- zutil.h */
258
259/* +++ deflate.h */
260/* deflate.h -- internal compression state
261 * Copyright (C) 1995-1996 Jean-loup Gailly
262 * For conditions of distribution and use, see copyright notice in zlib.h
263 */
264
265/* WARNING: this file should *not* be used by applications. It is
266 part of the implementation of the compression library and is
267 subject to change. Applications should only use zlib.h.
268 */
269
270/* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
271
272#ifndef _DEFLATE_H
273#define _DEFLATE_H
274
275/* #include "zutil.h" */
276
277/* ===========================================================================
278 * Internal compression state.
279 */
280
281#define LENGTH_CODES 29
282/* number of length codes, not counting the special END_BLOCK code */
283
284#define LITERALS 256
285/* number of literal bytes 0..255 */
286
287#define L_CODES (LITERALS+1+LENGTH_CODES)
288/* number of Literal or Length codes, including the END_BLOCK code */
289
290#define D_CODES 30
291/* number of distance codes */
292
293#define BL_CODES 19
294/* number of codes used to transfer the bit lengths */
295
296#define HEAP_SIZE (2*L_CODES+1)
297/* maximum heap size */
298
299#define MAX_BITS 15
300/* All codes must not exceed MAX_BITS bits */
301
302#define INIT_STATE 42
303#define BUSY_STATE 113
304#define FINISH_STATE 666
305/* Stream status */
306
307
308/* Data structure describing a single value and its code string. */
309typedef struct ct_data_s {
310 union {
311 ush freq; /* frequency count */
312 ush code; /* bit string */
313 } fc;
314 union {
315 ush dad; /* father node in Huffman tree */
316 ush len; /* length of bit string */
317 } dl;
318} FAR ct_data;
319
320#define Freq fc.freq
321#define Code fc.code
322#define Dad dl.dad
323#define Len dl.len
324
325typedef struct static_tree_desc_s static_tree_desc;
326
327typedef struct tree_desc_s {
328 ct_data *dyn_tree; /* the dynamic tree */
329 int max_code; /* largest code with non zero frequency */
330 static_tree_desc *stat_desc; /* the corresponding static tree */
331} FAR tree_desc;
332
333typedef ush Pos;
334typedef Pos FAR Posf;
335typedef unsigned IPos;
336
337/* A Pos is an index in the character window. We use short instead of int to
338 * save space in the various tables. IPos is used only for parameter passing.
339 */
340
341typedef struct deflate_state {
342 z_streamp strm; /* pointer back to this zlib stream */
343 int status; /* as the name implies */
344 Bytef *pending_buf; /* output still pending */
345 ulg pending_buf_size; /* size of pending_buf */
346 Bytef *pending_out; /* next pending byte to output to the stream */
347 int pending; /* nb of bytes in the pending buffer */
348 int noheader; /* suppress zlib header and adler32 */
349 Byte data_type; /* UNKNOWN, BINARY or ASCII */
350 Byte method; /* STORED (for zip only) or DEFLATED */
351 int last_flush; /* value of flush param for previous deflate call */
352
353 /* used by deflate.c: */
354
355 uInt w_size; /* LZ77 window size (32K by default) */
356 uInt w_bits; /* log2(w_size) (8..16) */
357 uInt w_mask; /* w_size - 1 */
358
359 Bytef *window;
360 /* Sliding window. Input bytes are read into the second half of the window,
361 * and move to the first half later to keep a dictionary of at least wSize
362 * bytes. With this organization, matches are limited to a distance of
363 * wSize-MAX_MATCH bytes, but this ensures that IO is always
364 * performed with a length multiple of the block size. Also, it limits
365 * the window size to 64K, which is quite useful on MSDOS.
366 * To do: use the user input buffer as sliding window.
367 */
368
369 ulg window_size;
370 /* Actual size of window: 2*wSize, except when the user input buffer
371 * is directly used as sliding window.
372 */
373
374 Posf *prev;
375 /* Link to older string with same hash index. To limit the size of this
376 * array to 64K, this link is maintained only for the last 32K strings.
377 * An index in this array is thus a window index modulo 32K.
378 */
379
380 Posf *head; /* Heads of the hash chains or NIL. */
381
382 uInt ins_h; /* hash index of string to be inserted */
383 uInt hash_size; /* number of elements in hash table */
384 uInt hash_bits; /* log2(hash_size) */
385 uInt hash_mask; /* hash_size-1 */
386
387 uInt hash_shift;
388 /* Number of bits by which ins_h must be shifted at each input
389 * step. It must be such that after MIN_MATCH steps, the oldest
390 * byte no longer takes part in the hash key, that is:
391 * hash_shift * MIN_MATCH >= hash_bits
392 */
393
394 long block_start;
395 /* Window position at the beginning of the current output block. Gets
396 * negative when the window is moved backwards.
397 */
398
399 uInt match_length; /* length of best match */
400 IPos prev_match; /* previous match */
401 int match_available; /* set if previous match exists */
402 uInt strstart; /* start of string to insert */
403 uInt match_start; /* start of matching string */
404 uInt lookahead; /* number of valid bytes ahead in window */
405
406 uInt prev_length;
407 /* Length of the best match at previous step. Matches not greater than this
408 * are discarded. This is used in the lazy match evaluation.
409 */
410
411 uInt max_chain_length;
412 /* To speed up deflation, hash chains are never searched beyond this
413 * length. A higher limit improves compression ratio but degrades the
414 * speed.
415 */
416
417 uInt max_lazy_match;
418 /* Attempt to find a better match only when the current match is strictly
419 * smaller than this value. This mechanism is used only for compression
420 * levels >= 4.
421 */
422# define max_insert_length max_lazy_match
423 /* Insert new strings in the hash table only if the match length is not
424 * greater than this length. This saves time but degrades compression.
425 * max_insert_length is used only for compression levels <= 3.
426 */
427
428 int level; /* compression level (1..9) */
429 int strategy; /* favor or force Huffman coding*/
430
431 uInt good_match;
432 /* Use a faster search when the previous match is longer than this */
433
434 int nice_match; /* Stop searching when current match exceeds this */
435
436 /* used by trees.c: */
437 /* Didn't use ct_data typedef below to supress compiler warning */
438 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
439 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
440 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
441
442 struct tree_desc_s l_desc; /* desc. for literal tree */
443 struct tree_desc_s d_desc; /* desc. for distance tree */
444 struct tree_desc_s bl_desc; /* desc. for bit length tree */
445
446 ush bl_count[MAX_BITS+1];
447 /* number of codes at each bit length for an optimal tree */
448
449 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
450 int heap_len; /* number of elements in the heap */
451 int heap_max; /* element of largest frequency */
452 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
453 * The same heap array is used to build all trees.
454 */
455
456 uch depth[2*L_CODES+1];
457 /* Depth of each subtree used as tie breaker for trees of equal frequency
458 */
459
460 uchf *l_buf; /* buffer for literals or lengths */
461
462 uInt lit_bufsize;
463 /* Size of match buffer for literals/lengths. There are 4 reasons for
464 * limiting lit_bufsize to 64K:
465 * - frequencies can be kept in 16 bit counters
466 * - if compression is not successful for the first block, all input
467 * data is still in the window so we can still emit a stored block even
468 * when input comes from standard input. (This can also be done for
469 * all blocks if lit_bufsize is not greater than 32K.)
470 * - if compression is not successful for a file smaller than 64K, we can
471 * even emit a stored file instead of a stored block (saving 5 bytes).
472 * This is applicable only for zip (not gzip or zlib).
473 * - creating new Huffman trees less frequently may not provide fast
474 * adaptation to changes in the input data statistics. (Take for
475 * example a binary file with poorly compressible code followed by
476 * a highly compressible string table.) Smaller buffer sizes give
477 * fast adaptation but have of course the overhead of transmitting
478 * trees more frequently.
479 * - I can't count above 4
480 */
481
482 uInt last_lit; /* running index in l_buf */
483
484 ushf *d_buf;
485 /* Buffer for distances. To simplify the code, d_buf and l_buf have
486 * the same number of elements. To use different lengths, an extra flag
487 * array would be necessary.
488 */
489
490 ulg opt_len; /* bit length of current block with optimal trees */
491 ulg static_len; /* bit length of current block with static trees */
492 ulg compressed_len; /* total bit length of compressed file */
493 uInt matches; /* number of string matches in current block */
494 int last_eob_len; /* bit length of EOB code for last block */
495
496#ifdef DEBUG_ZLIB
497 ulg bits_sent; /* bit length of the compressed data */
498#endif
499
500 ush bi_buf;
501 /* Output buffer. bits are inserted starting at the bottom (least
502 * significant bits).
503 */
504 int bi_valid;
505 /* Number of valid bits in bi_buf. All bits above the last valid bit
506 * are always zero.
507 */
508
509} FAR deflate_state;
510
511/* Output a byte on the stream.
512 * IN assertion: there is enough room in pending_buf.
513 */
514#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
515
516
517#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
518/* Minimum amount of lookahead, except at the end of the input file.
519 * See deflate.c for comments about the MIN_MATCH+1.
520 */
521
522#define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
523/* In order to simplify the code, particularly on 16 bit machines, match
524 * distances are limited to MAX_DIST instead of WSIZE.
525 */
526
527 /* in trees.c */
528void _tr_init OF((deflate_state *s));
529int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
530ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
531 int eof));
532void _tr_align OF((deflate_state *s));
533void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
534 int eof));
535void _tr_stored_type_only OF((deflate_state *));
536
537#endif
538/* --- deflate.h */
539
540/* +++ deflate.c */
541/* deflate.c -- compress data using the deflation algorithm
542 * Copyright (C) 1995-1996 Jean-loup Gailly.
543 * For conditions of distribution and use, see copyright notice in zlib.h
544 */
545
546/*
547 * ALGORITHM
548 *
549 * The "deflation" process depends on being able to identify portions
550 * of the input text which are identical to earlier input (within a
551 * sliding window trailing behind the input currently being processed).
552 *
553 * The most straightforward technique turns out to be the fastest for
554 * most input files: try all possible matches and select the longest.
555 * The key feature of this algorithm is that insertions into the string
556 * dictionary are very simple and thus fast, and deletions are avoided
557 * completely. Insertions are performed at each input character, whereas
558 * string matches are performed only when the previous match ends. So it
559 * is preferable to spend more time in matches to allow very fast string
560 * insertions and avoid deletions. The matching algorithm for small
561 * strings is inspired from that of Rabin & Karp. A brute force approach
562 * is used to find longer strings when a small match has been found.
563 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
564 * (by Leonid Broukhis).
565 * A previous version of this file used a more sophisticated algorithm
566 * (by Fiala and Greene) which is guaranteed to run in linear amortized
567 * time, but has a larger average cost, uses more memory and is patented.
568 * However the F&G algorithm may be faster for some highly redundant
569 * files if the parameter max_chain_length (described below) is too large.
570 *
571 * ACKNOWLEDGEMENTS
572 *
573 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
574 * I found it in 'freeze' written by Leonid Broukhis.
575 * Thanks to many people for bug reports and testing.
576 *
577 * REFERENCES
578 *
579 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
580 * Available in ftp://ds.internic.net/rfc/rfc1951.txt
581 *
582 * A description of the Rabin and Karp algorithm is given in the book
583 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
584 *
585 * Fiala,E.R., and Greene,D.H.
586 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
587 *
588 */
589
590/* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
591
592/* #include "deflate.h" */
593
594char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
595/*
596 If you use the zlib library in a product, an acknowledgment is welcome
597 in the documentation of your product. If for some reason you cannot
598 include such an acknowledgment, I would appreciate that you keep this
599 copyright string in the executable of your product.
600 */
601
602/* ===========================================================================
603 * Function prototypes.
604 */
605typedef enum {
606 need_more, /* block not completed, need more input or more output */
607 block_done, /* block flush performed */
608 finish_started, /* finish started, need only more output at next deflate */
609 finish_done /* finish done, accept no more input or output */
610} block_state;
611
612typedef block_state (*compress_func) OF((deflate_state *s, int flush));
613/* Compression function. Returns the block state after the call. */
614
615local void fill_window OF((deflate_state *s));
616local block_state deflate_stored OF((deflate_state *s, int flush));
617local block_state deflate_fast OF((deflate_state *s, int flush));
618local block_state deflate_slow OF((deflate_state *s, int flush));
619local void lm_init OF((deflate_state *s));
620local void putShortMSB OF((deflate_state *s, uInt b));
621local void flush_pending OF((z_streamp strm));
622local int read_buf OF((z_streamp strm, charf *buf, unsigned size));
623#ifdef ASMV
624 void match_init OF((void)); /* asm code initialization */
625 uInt longest_match OF((deflate_state *s, IPos cur_match));
626#else
627local uInt longest_match OF((deflate_state *s, IPos cur_match));
628#endif
629
630#ifdef DEBUG_ZLIB
631local void check_match OF((deflate_state *s, IPos start, IPos match,
632 int length));
633#endif
634
635/* ===========================================================================
636 * Local data
637 */
638
639#define NIL 0
640/* Tail of hash chains */
641
642#ifndef TOO_FAR
643# define TOO_FAR 4096
644#endif
645/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
646
647#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
648/* Minimum amount of lookahead, except at the end of the input file.
649 * See deflate.c for comments about the MIN_MATCH+1.
650 */
651
652/* Values for max_lazy_match, good_match and max_chain_length, depending on
653 * the desired pack level (0..9). The values given below have been tuned to
654 * exclude worst case performance for pathological files. Better values may be
655 * found for specific files.
656 */
657typedef struct config_s {
658 ush good_length; /* reduce lazy search above this match length */
659 ush max_lazy; /* do not perform lazy search above this match length */
660 ush nice_length; /* quit search above this match length */
661 ush max_chain;
662 compress_func func;
663} config;
664
665local config configuration_table[10] = {
666/* good lazy nice chain */
667/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
668/* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
669/* 2 */ {4, 5, 16, 8, deflate_fast},
670/* 3 */ {4, 6, 32, 32, deflate_fast},
671
672/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
673/* 5 */ {8, 16, 32, 32, deflate_slow},
674/* 6 */ {8, 16, 128, 128, deflate_slow},
675/* 7 */ {8, 32, 128, 256, deflate_slow},
676/* 8 */ {32, 128, 258, 1024, deflate_slow},
677/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
678
679/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
680 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
681 * meaning.
682 */
683
684#define EQUAL 0
685/* result of memcmp for equal strings */
686
687#ifndef NO_DUMMY_DECL
688struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
689#endif
690
691/* ===========================================================================
692 * Update a hash value with the given input byte
693 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
694 * input characters, so that a running hash key can be computed from the
695 * previous key instead of complete recalculation each time.
696 */
697#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
698
699
700/* ===========================================================================
701 * Insert string str in the dictionary and set match_head to the previous head
702 * of the hash chain (the most recent string with same hash key). Return
703 * the previous length of the hash chain.
704 * IN assertion: all calls to to INSERT_STRING are made with consecutive
705 * input characters and the first MIN_MATCH bytes of str are valid
706 * (except for the last MIN_MATCH-1 bytes of the input file).
707 */
708#define INSERT_STRING(s, str, match_head) \
709 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
710 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
711 s->head[s->ins_h] = (Pos)(str))
712
713/* ===========================================================================
714 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
715 * prev[] will be initialized on the fly.
716 */
717#define CLEAR_HASH(s) \
718 s->head[s->hash_size-1] = NIL; \
719 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
720
721/* ========================================================================= */
722int deflateInit_(strm, level, version, stream_size)
723 z_streamp strm;
724 int level;
725 const char *version;
726 int stream_size;
727{
728 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
729 Z_DEFAULT_STRATEGY, version, stream_size);
730 /* To do: ignore strm->next_in if we use it as window */
731}
732
733/* ========================================================================= */
734int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
735 version, stream_size)
736 z_streamp strm;
737 int level;
738 int method;
739 int windowBits;
740 int memLevel;
741 int strategy;
742 const char *version;
743 int stream_size;
744{
745 deflate_state *s;
746 int noheader = 0;
747 static char* my_version = ZLIB_VERSION;
748
749 ushf *overlay;
750 /* We overlay pending_buf and d_buf+l_buf. This works since the average
751 * output size for (length,distance) codes is <= 24 bits.
752 */
753
754 if (version == Z_NULL || version[0] != my_version[0] ||
755 stream_size != sizeof(z_stream)) {
756 return Z_VERSION_ERROR;
757 }
758 if (strm == Z_NULL) return Z_STREAM_ERROR;
759
760 strm->msg = Z_NULL;
761#ifndef NO_ZCFUNCS
762 if (strm->zalloc == Z_NULL) {
763 strm->zalloc = zcalloc;
764 strm->opaque = (voidpf)0;
765 }
766 if (strm->zfree == Z_NULL) strm->zfree = zcfree;
767#endif
768
769 if (level == Z_DEFAULT_COMPRESSION) level = 6;
770
771 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
772 noheader = 1;
773 windowBits = -windowBits;
774 }
775 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
776 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
777 strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
778 return Z_STREAM_ERROR;
779 }
780 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
781 if (s == Z_NULL) return Z_MEM_ERROR;
782 strm->state = (struct internal_state FAR *)s;
783 s->strm = strm;
784
785 s->noheader = noheader;
786 s->w_bits = windowBits;
787 s->w_size = 1 << s->w_bits;
788 s->w_mask = s->w_size - 1;
789
790 s->hash_bits = memLevel + 7;
791 s->hash_size = 1 << s->hash_bits;
792 s->hash_mask = s->hash_size - 1;
793 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
794
795 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
796 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
797 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
798
799 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
800
801 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
802 s->pending_buf = (uchf *) overlay;
803 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
804
805 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
806 s->pending_buf == Z_NULL) {
807 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
808 deflateEnd (strm);
809 return Z_MEM_ERROR;
810 }
811 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
812 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
813
814 s->level = level;
815 s->strategy = strategy;
816 s->method = (Byte)method;
817
818 return deflateReset(strm);
819}
820
821/* ========================================================================= */
822int deflateSetDictionary (strm, dictionary, dictLength)
823 z_streamp strm;
824 const Bytef *dictionary;
825 uInt dictLength;
826{
827 deflate_state *s;
828 uInt length = dictLength;
829 uInt n;
830 IPos hash_head = 0;
831
832 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
833 return Z_STREAM_ERROR;
834
835 s = (deflate_state *) strm->state;
836 if (s->status != INIT_STATE) return Z_STREAM_ERROR;
837
838 strm->adler = adler32(strm->adler, dictionary, dictLength);
839
840 if (length < MIN_MATCH) return Z_OK;
841 if (length > MAX_DIST(s)) {
842 length = MAX_DIST(s);
843#ifndef USE_DICT_HEAD
844 dictionary += dictLength - length; /* use the tail of the dictionary */
845#endif
846 }
847 zmemcpy((charf *)s->window, dictionary, length);
848 s->strstart = length;
849 s->block_start = (long)length;
850
851 /* Insert all strings in the hash table (except for the last two bytes).
852 * s->lookahead stays null, so s->ins_h will be recomputed at the next
853 * call of fill_window.
854 */
855 s->ins_h = s->window[0];
856 UPDATE_HASH(s, s->ins_h, s->window[1]);
857 for (n = 0; n <= length - MIN_MATCH; n++) {
858 INSERT_STRING(s, n, hash_head);
859 }
860 if (hash_head) hash_head = 0; /* to make compiler happy */
861 return Z_OK;
862}
863
864/* ========================================================================= */
865int deflateReset (strm)
866 z_streamp strm;
867{
868 deflate_state *s;
869
870 if (strm == Z_NULL || strm->state == Z_NULL ||
871 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
872
873 strm->total_in = strm->total_out = 0;
874 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
875 strm->data_type = Z_UNKNOWN;
876
877 s = (deflate_state *)strm->state;
878 s->pending = 0;
879 s->pending_out = s->pending_buf;
880
881 if (s->noheader < 0) {
882 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
883 }
884 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
885 strm->adler = 1;
886 s->last_flush = Z_NO_FLUSH;
887
888 _tr_init(s);
889 lm_init(s);
890
891 return Z_OK;
892}
893
894/* ========================================================================= */
895int deflateParams(strm, level, strategy)
896 z_streamp strm;
897 int level;
898 int strategy;
899{
900 deflate_state *s;
901 compress_func func;
902 int err = Z_OK;
903
904 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
905 s = (deflate_state *) strm->state;
906
907 if (level == Z_DEFAULT_COMPRESSION) {
908 level = 6;
909 }
910 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
911 return Z_STREAM_ERROR;
912 }
913 func = configuration_table[s->level].func;
914
915 if (func != configuration_table[level].func && strm->total_in != 0) {
916 /* Flush the last buffer: */
917 err = deflate(strm, Z_PARTIAL_FLUSH);
918 }
919 if (s->level != level) {
920 s->level = level;
921 s->max_lazy_match = configuration_table[level].max_lazy;
922 s->good_match = configuration_table[level].good_length;
923 s->nice_match = configuration_table[level].nice_length;
924 s->max_chain_length = configuration_table[level].max_chain;
925 }
926 s->strategy = strategy;
927 return err;
928}
929
930/* =========================================================================
931 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
932 * IN assertion: the stream state is correct and there is enough room in
933 * pending_buf.
934 */
935local void putShortMSB (s, b)
936 deflate_state *s;
937 uInt b;
938{
939 put_byte(s, (Byte)(b >> 8));
940 put_byte(s, (Byte)(b & 0xff));
941}
942
943/* =========================================================================
944 * Flush as much pending output as possible. All deflate() output goes
945 * through this function so some applications may wish to modify it
946 * to avoid allocating a large strm->next_out buffer and copying into it.
947 * (See also read_buf()).
948 */
949local void flush_pending(strm)
950 z_streamp strm;
951{
952 deflate_state *s = (deflate_state *) strm->state;
953 unsigned len = s->pending;
954
955 if (len > strm->avail_out) len = strm->avail_out;
956 if (len == 0) return;
957
958 if (strm->next_out != Z_NULL) {
959 zmemcpy(strm->next_out, s->pending_out, len);
960 strm->next_out += len;
961 }
962 s->pending_out += len;
963 strm->total_out += len;
964 strm->avail_out -= len;
965 s->pending -= len;
966 if (s->pending == 0) {
967 s->pending_out = s->pending_buf;
968 }
969}
970
971/* ========================================================================= */
972int deflate (strm, flush)
973 z_streamp strm;
974 int flush;
975{
976 int old_flush; /* value of flush param for previous deflate call */
977 deflate_state *s;
978
979 if (strm == Z_NULL || strm->state == Z_NULL ||
980 flush > Z_FINISH || flush < 0) {
981 return Z_STREAM_ERROR;
982 }
983 s = (deflate_state *) strm->state;
984
985 if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
986 (s->status == FINISH_STATE && flush != Z_FINISH)) {
987 ERR_RETURN(strm, Z_STREAM_ERROR);
988 }
989 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
990
991 s->strm = strm; /* just in case */
992 old_flush = s->last_flush;
993 s->last_flush = flush;
994
995 /* Write the zlib header */
996 if (s->status == INIT_STATE) {
997
998 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
999 uInt level_flags = (s->level-1) >> 1;
1000
1001 if (level_flags > 3) level_flags = 3;
1002 header |= (level_flags << 6);
1003 if (s->strstart != 0) header |= PRESET_DICT;
1004 header += 31 - (header % 31);
1005
1006 s->status = BUSY_STATE;
1007 putShortMSB(s, header);
1008
1009 /* Save the adler32 of the preset dictionary: */
1010 if (s->strstart != 0) {
1011 putShortMSB(s, (uInt)(strm->adler >> 16));
1012 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1013 }
1014 strm->adler = 1L;
1015 }
1016
1017 /* Flush as much pending output as possible */
1018 if (s->pending != 0) {
1019 flush_pending(strm);
1020 if (strm->avail_out == 0) {
1021 /* Since avail_out is 0, deflate will be called again with
1022 * more output space, but possibly with both pending and
1023 * avail_in equal to zero. There won't be anything to do,
1024 * but this is not an error situation so make sure we
1025 * return OK instead of BUF_ERROR at next call of deflate:
1026 */
1027 s->last_flush = -1;
1028 return Z_OK;
1029 }
1030
1031 /* Make sure there is something to do and avoid duplicate consecutive
1032 * flushes. For repeated and useless calls with Z_FINISH, we keep
1033 * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1034 */
1035 } else if (strm->avail_in == 0 && flush <= old_flush &&
1036 flush != Z_FINISH) {
1037 ERR_RETURN(strm, Z_BUF_ERROR);
1038 }
1039
1040 /* User must not provide more input after the first FINISH: */
1041 if (s->status == FINISH_STATE && strm->avail_in != 0) {
1042 ERR_RETURN(strm, Z_BUF_ERROR);
1043 }
1044
1045 /* Start a new block or continue the current one.
1046 */
1047 if (strm->avail_in != 0 || s->lookahead != 0 ||
1048 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1049 block_state bstate;
1050
1051 bstate = (*(configuration_table[s->level].func))(s, flush);
1052
1053 if (bstate == finish_started || bstate == finish_done) {
1054 s->status = FINISH_STATE;
1055 }
1056 if (bstate == need_more || bstate == finish_started) {
1057 if (strm->avail_out == 0) {
1058 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1059 }
1060 return Z_OK;
1061 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1062 * of deflate should use the same flush parameter to make sure
1063 * that the flush is complete. So we don't have to output an
1064 * empty block here, this will be done at next call. This also
1065 * ensures that for a very small output buffer, we emit at most
1066 * one empty block.
1067 */
1068 }
1069 if (bstate == block_done) {
1070 if (flush == Z_PARTIAL_FLUSH) {
1071 _tr_align(s);
1072 } else if (flush == Z_PACKET_FLUSH) {
1073 /* Output just the 3-bit `stored' block type value,
1074 but not a zero length. */
1075 _tr_stored_type_only(s);
1076 } else { /* FULL_FLUSH or SYNC_FLUSH */
1077 _tr_stored_block(s, (char*)0, 0L, 0);
1078 /* For a full flush, this empty block will be recognized
1079 * as a special marker by inflate_sync().
1080 */
1081 if (flush == Z_FULL_FLUSH) {
1082 CLEAR_HASH(s); /* forget history */
1083 }
1084 }
1085 flush_pending(strm);
1086 if (strm->avail_out == 0) {
1087 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1088 return Z_OK;
1089 }
1090 }
1091 }
1092 Assert(strm->avail_out > 0, "bug2");
1093
1094 if (flush != Z_FINISH) return Z_OK;
1095 if (s->noheader) return Z_STREAM_END;
1096
1097 /* Write the zlib trailer (adler32) */
1098 putShortMSB(s, (uInt)(strm->adler >> 16));
1099 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1100 flush_pending(strm);
1101 /* If avail_out is zero, the application will call deflate again
1102 * to flush the rest.
1103 */
1104 s->noheader = -1; /* write the trailer only once! */
1105 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1106}
1107
1108/* ========================================================================= */
1109int deflateEnd (strm)
1110 z_streamp strm;
1111{
1112 int status;
1113 deflate_state *s;
1114
1115 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1116 s = (deflate_state *) strm->state;
1117
1118 status = s->status;
1119 if (status != INIT_STATE && status != BUSY_STATE &&
1120 status != FINISH_STATE) {
1121 return Z_STREAM_ERROR;
1122 }
1123
1124 /* Deallocate in reverse order of allocations: */
1125 TRY_FREE(strm, s->pending_buf);
1126 TRY_FREE(strm, s->head);
1127 TRY_FREE(strm, s->prev);
1128 TRY_FREE(strm, s->window);
1129
1130 ZFREE(strm, s);
1131 strm->state = Z_NULL;
1132
1133 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1134}
1135
1136/* =========================================================================
1137 * Copy the source state to the destination state.
1138 */
1139int deflateCopy (dest, source)
1140 z_streamp dest;
1141 z_streamp source;
1142{
1143 deflate_state *ds;
1144 deflate_state *ss;
1145 ushf *overlay;
1146
1147 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1148 return Z_STREAM_ERROR;
1149 ss = (deflate_state *) source->state;
1150
1151 zmemcpy(dest, source, sizeof(*dest));
1152
1153 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1154 if (ds == Z_NULL) return Z_MEM_ERROR;
1155 dest->state = (struct internal_state FAR *) ds;
1156 zmemcpy(ds, ss, sizeof(*ds));
1157 ds->strm = dest;
1158
1159 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1160 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1161 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1162 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1163 ds->pending_buf = (uchf *) overlay;
1164
1165 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1166 ds->pending_buf == Z_NULL) {
1167 deflateEnd (dest);
1168 return Z_MEM_ERROR;
1169 }
1170 /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1171 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1172 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1173 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1174 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1175
1176 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1177 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1178 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1179
1180 ds->l_desc.dyn_tree = ds->dyn_ltree;
1181 ds->d_desc.dyn_tree = ds->dyn_dtree;
1182 ds->bl_desc.dyn_tree = ds->bl_tree;
1183
1184 return Z_OK;
1185}
1186
1187/* ===========================================================================
1188 * Return the number of bytes of output which are immediately available
1189 * for output from the decompressor.
1190 */
1191int deflateOutputPending (strm)
1192 z_streamp strm;
1193{
1194 if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1195
1196 return ((deflate_state *)(strm->state))->pending;
1197}
1198
1199/* ===========================================================================
1200 * Read a new buffer from the current input stream, update the adler32
1201 * and total number of bytes read. All deflate() input goes through
1202 * this function so some applications may wish to modify it to avoid
1203 * allocating a large strm->next_in buffer and copying from it.
1204 * (See also flush_pending()).
1205 */
1206local int read_buf(strm, buf, size)
1207 z_streamp strm;
1208 charf *buf;
1209 unsigned size;
1210{
1211 unsigned len = strm->avail_in;
1212
1213 if (len > size) len = size;
1214 if (len == 0) return 0;
1215
1216 strm->avail_in -= len;
1217
1218 if (!((deflate_state *)(strm->state))->noheader) {
1219 strm->adler = adler32(strm->adler, strm->next_in, len);
1220 }
1221 zmemcpy(buf, strm->next_in, len);
1222 strm->next_in += len;
1223 strm->total_in += len;
1224
1225 return (int)len;
1226}
1227
1228/* ===========================================================================
1229 * Initialize the "longest match" routines for a new zlib stream
1230 */
1231local void lm_init (s)
1232 deflate_state *s;
1233{
1234 s->window_size = (ulg)2L*s->w_size;
1235
1236 CLEAR_HASH(s);
1237
1238 /* Set the default configuration parameters:
1239 */
1240 s->max_lazy_match = configuration_table[s->level].max_lazy;
1241 s->good_match = configuration_table[s->level].good_length;
1242 s->nice_match = configuration_table[s->level].nice_length;
1243 s->max_chain_length = configuration_table[s->level].max_chain;
1244
1245 s->strstart = 0;
1246 s->block_start = 0L;
1247 s->lookahead = 0;
1248 s->match_length = s->prev_length = MIN_MATCH-1;
1249 s->match_available = 0;
1250 s->ins_h = 0;
1251#ifdef ASMV
1252 match_init(); /* initialize the asm code */
1253#endif
1254}
1255
1256/* ===========================================================================
1257 * Set match_start to the longest match starting at the given string and
1258 * return its length. Matches shorter or equal to prev_length are discarded,
1259 * in which case the result is equal to prev_length and match_start is
1260 * garbage.
1261 * IN assertions: cur_match is the head of the hash chain for the current
1262 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1263 * OUT assertion: the match length is not greater than s->lookahead.
1264 */
1265#ifndef ASMV
1266/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1267 * match.S. The code will be functionally equivalent.
1268 */
1269local uInt longest_match(s, cur_match)
1270 deflate_state *s;
1271 IPos cur_match; /* current match */
1272{
1273 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1274 register Bytef *scan = s->window + s->strstart; /* current string */
1275 register Bytef *match; /* matched string */
1276 register int len; /* length of current match */
1277 int best_len = s->prev_length; /* best match length so far */
1278 int nice_match = s->nice_match; /* stop if match long enough */
1279 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1280 s->strstart - (IPos)MAX_DIST(s) : NIL;
1281 /* Stop when cur_match becomes <= limit. To simplify the code,
1282 * we prevent matches with the string of window index 0.
1283 */
1284 Posf *prev = s->prev;
1285 uInt wmask = s->w_mask;
1286
1287#ifdef UNALIGNED_OK
1288 /* Compare two bytes at a time. Note: this is not always beneficial.
1289 * Try with and without -DUNALIGNED_OK to check.
1290 */
1291 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1292 register ush scan_start = *(ushf*)scan;
1293 register ush scan_end = *(ushf*)(scan+best_len-1);
1294#else
1295 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1296 register Byte scan_end1 = scan[best_len-1];
1297 register Byte scan_end = scan[best_len];
1298#endif
1299
1300 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1301 * It is easy to get rid of this optimization if necessary.
1302 */
1303 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1304
1305 /* Do not waste too much time if we already have a good match: */
1306 if (s->prev_length >= s->good_match) {
1307 chain_length >>= 2;
1308 }
1309 /* Do not look for matches beyond the end of the input. This is necessary
1310 * to make deflate deterministic.
1311 */
1312 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1313
1314 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1315
1316 do {
1317 Assert(cur_match < s->strstart, "no future");
1318 match = s->window + cur_match;
1319
1320 /* Skip to next match if the match length cannot increase
1321 * or if the match length is less than 2:
1322 */
1323#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1324 /* This code assumes sizeof(unsigned short) == 2. Do not use
1325 * UNALIGNED_OK if your compiler uses a different size.
1326 */
1327 if (*(ushf*)(match+best_len-1) != scan_end ||
1328 *(ushf*)match != scan_start) continue;
1329
1330 /* It is not necessary to compare scan[2] and match[2] since they are
1331 * always equal when the other bytes match, given that the hash keys
1332 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1333 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1334 * lookahead only every 4th comparison; the 128th check will be made
1335 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1336 * necessary to put more guard bytes at the end of the window, or
1337 * to check more often for insufficient lookahead.
1338 */
1339 Assert(scan[2] == match[2], "scan[2]?");
1340 scan++, match++;
1341 do {
1342 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1346 scan < strend);
1347 /* The funny "do {}" generates better code on most compilers */
1348
1349 /* Here, scan <= window+strstart+257 */
1350 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1351 if (*scan == *match) scan++;
1352
1353 len = (MAX_MATCH - 1) - (int)(strend-scan);
1354 scan = strend - (MAX_MATCH-1);
1355
1356#else /* UNALIGNED_OK */
1357
1358 if (match[best_len] != scan_end ||
1359 match[best_len-1] != scan_end1 ||
1360 *match != *scan ||
1361 *++match != scan[1]) continue;
1362
1363 /* The check at best_len-1 can be removed because it will be made
1364 * again later. (This heuristic is not always a win.)
1365 * It is not necessary to compare scan[2] and match[2] since they
1366 * are always equal when the other bytes match, given that
1367 * the hash keys are equal and that HASH_BITS >= 8.
1368 */
1369 scan += 2, match++;
1370 Assert(*scan == *match, "match[2]?");
1371
1372 /* We check for insufficient lookahead only every 8th comparison;
1373 * the 256th check will be made at strstart+258.
1374 */
1375 do {
1376 } while (*++scan == *++match && *++scan == *++match &&
1377 *++scan == *++match && *++scan == *++match &&
1378 *++scan == *++match && *++scan == *++match &&
1379 *++scan == *++match && *++scan == *++match &&
1380 scan < strend);
1381
1382 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1383
1384 len = MAX_MATCH - (int)(strend - scan);
1385 scan = strend - MAX_MATCH;
1386
1387#endif /* UNALIGNED_OK */
1388
1389 if (len > best_len) {
1390 s->match_start = cur_match;
1391 best_len = len;
1392 if (len >= nice_match) break;
1393#ifdef UNALIGNED_OK
1394 scan_end = *(ushf*)(scan+best_len-1);
1395#else
1396 scan_end1 = scan[best_len-1];
1397 scan_end = scan[best_len];
1398#endif
1399 }
1400 } while ((cur_match = prev[cur_match & wmask]) > limit
1401 && --chain_length != 0);
1402
1403 if ((uInt)best_len <= s->lookahead) return best_len;
1404 return s->lookahead;
1405}
1406#endif /* ASMV */
1407
1408#ifdef DEBUG_ZLIB
1409/* ===========================================================================
1410 * Check that the match at match_start is indeed a match.
1411 */
1412local void check_match(s, start, match, length)
1413 deflate_state *s;
1414 IPos start, match;
1415 int length;
1416{
1417 /* check that the match is indeed a match */
1418 if (zmemcmp((charf *)s->window + match,
1419 (charf *)s->window + start, length) != EQUAL) {
1420 fprintf(stderr, " start %u, match %u, length %d\n",
1421 start, match, length);
1422 do {
1423 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1424 } while (--length != 0);
1425 z_error("invalid match");
1426 }
1427 if (z_verbose > 1) {
1428 fprintf(stderr,"\\[%d,%d]", start-match, length);
1429 do { putc(s->window[start++], stderr); } while (--length != 0);
1430 }
1431}
1432#else
1433# define check_match(s, start, match, length)
1434#endif
1435
1436/* ===========================================================================
1437 * Fill the window when the lookahead becomes insufficient.
1438 * Updates strstart and lookahead.
1439 *
1440 * IN assertion: lookahead < MIN_LOOKAHEAD
1441 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1442 * At least one byte has been read, or avail_in == 0; reads are
1443 * performed for at least two bytes (required for the zip translate_eol
1444 * option -- not supported here).
1445 */
1446local void fill_window(s)
1447 deflate_state *s;
1448{
1449 register unsigned n, m;
1450 register Posf *p;
1451 unsigned more; /* Amount of free space at the end of the window. */
1452 uInt wsize = s->w_size;
1453
1454 do {
1455 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1456
1457 /* Deal with !@#$% 64K limit: */
1458 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1459 more = wsize;
1460
1461 } else if (more == (unsigned)(-1)) {
1462 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1463 * and lookahead == 1 (input done one byte at time)
1464 */
1465 more--;
1466
1467 /* If the window is almost full and there is insufficient lookahead,
1468 * move the upper half to the lower one to make room in the upper half.
1469 */
1470 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1471
1472 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1473 (unsigned)wsize);
1474 s->match_start -= wsize;
1475 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1476 s->block_start -= (long) wsize;
1477
1478 /* Slide the hash table (could be avoided with 32 bit values
1479 at the expense of memory usage). We slide even when level == 0
1480 to keep the hash table consistent if we switch back to level > 0
1481 later. (Using level 0 permanently is not an optimal usage of
1482 zlib, so we don't care about this pathological case.)
1483 */
1484 n = s->hash_size;
1485 p = &s->head[n];
1486 do {
1487 m = *--p;
1488 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1489 } while (--n);
1490
1491 n = wsize;
1492 p = &s->prev[n];
1493 do {
1494 m = *--p;
1495 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1496 /* If n is not on any hash chain, prev[n] is garbage but
1497 * its value will never be used.
1498 */
1499 } while (--n);
1500 more += wsize;
1501 }
1502 if (s->strm->avail_in == 0) return;
1503
1504 /* If there was no sliding:
1505 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1506 * more == window_size - lookahead - strstart
1507 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1508 * => more >= window_size - 2*WSIZE + 2
1509 * In the BIG_MEM or MMAP case (not yet supported),
1510 * window_size == input_size + MIN_LOOKAHEAD &&
1511 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1512 * Otherwise, window_size == 2*WSIZE so more >= 2.
1513 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1514 */
1515 Assert(more >= 2, "more < 2");
1516
1517 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1518 more);
1519 s->lookahead += n;
1520
1521 /* Initialize the hash value now that we have some input: */
1522 if (s->lookahead >= MIN_MATCH) {
1523 s->ins_h = s->window[s->strstart];
1524 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1525#if MIN_MATCH != 3
1526 Call UPDATE_HASH() MIN_MATCH-3 more times
1527#endif
1528 }
1529 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1530 * but this is not important since only literal bytes will be emitted.
1531 */
1532
1533 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1534}
1535
1536/* ===========================================================================
1537 * Flush the current block, with given end-of-file flag.
1538 * IN assertion: strstart is set to the end of the current match.
1539 */
1540#define FLUSH_BLOCK_ONLY(s, eof) { \
1541 _tr_flush_block(s, (s->block_start >= 0L ? \
1542 (charf *)&s->window[(unsigned)s->block_start] : \
1543 (charf *)Z_NULL), \
1544 (ulg)((long)s->strstart - s->block_start), \
1545 (eof)); \
1546 s->block_start = s->strstart; \
1547 flush_pending(s->strm); \
1548 Tracev((stderr,"[FLUSH]")); \
1549}
1550
1551/* Same but force premature exit if necessary. */
1552#define FLUSH_BLOCK(s, eof) { \
1553 FLUSH_BLOCK_ONLY(s, eof); \
1554 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1555}
1556
1557/* ===========================================================================
1558 * Copy without compression as much as possible from the input stream, return
1559 * the current block state.
1560 * This function does not insert new strings in the dictionary since
1561 * uncompressible data is probably not useful. This function is used
1562 * only for the level=0 compression option.
1563 * NOTE: this function should be optimized to avoid extra copying from
1564 * window to pending_buf.
1565 */
1566local block_state deflate_stored(s, flush)
1567 deflate_state *s;
1568 int flush;
1569{
1570 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1571 * to pending_buf_size, and each stored block has a 5 byte header:
1572 */
1573 ulg max_block_size = 0xffff;
1574 ulg max_start;
1575
1576 if (max_block_size > s->pending_buf_size - 5) {
1577 max_block_size = s->pending_buf_size - 5;
1578 }
1579
1580 /* Copy as much as possible from input to output: */
1581 for (;;) {
1582 /* Fill the window as much as possible: */
1583 if (s->lookahead <= 1) {
1584
1585 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1586 s->block_start >= (long)s->w_size, "slide too late");
1587
1588 fill_window(s);
1589 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1590
1591 if (s->lookahead == 0) break; /* flush the current block */
1592 }
1593 Assert(s->block_start >= 0L, "block gone");
1594
1595 s->strstart += s->lookahead;
1596 s->lookahead = 0;
1597
1598 /* Emit a stored block if pending_buf will be full: */
1599 max_start = s->block_start + max_block_size;
1600 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1601 /* strstart == 0 is possible when wraparound on 16-bit machine */
1602 s->lookahead = (uInt)(s->strstart - max_start);
1603 s->strstart = (uInt)max_start;
1604 FLUSH_BLOCK(s, 0);
1605 }
1606 /* Flush if we may have to slide, otherwise block_start may become
1607 * negative and the data will be gone:
1608 */
1609 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1610 FLUSH_BLOCK(s, 0);
1611 }
1612 }
1613 FLUSH_BLOCK(s, flush == Z_FINISH);
1614 return flush == Z_FINISH ? finish_done : block_done;
1615}
1616
1617/* ===========================================================================
1618 * Compress as much as possible from the input stream, return the current
1619 * block state.
1620 * This function does not perform lazy evaluation of matches and inserts
1621 * new strings in the dictionary only for unmatched strings or for short
1622 * matches. It is used only for the fast compression options.
1623 */
1624local block_state deflate_fast(s, flush)
1625 deflate_state *s;
1626 int flush;
1627{
1628 IPos hash_head = NIL; /* head of the hash chain */
1629 int bflush; /* set if current block must be flushed */
1630
1631 for (;;) {
1632 /* Make sure that we always have enough lookahead, except
1633 * at the end of the input file. We need MAX_MATCH bytes
1634 * for the next match, plus MIN_MATCH bytes to insert the
1635 * string following the next match.
1636 */
1637 if (s->lookahead < MIN_LOOKAHEAD) {
1638 fill_window(s);
1639 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1640 return need_more;
1641 }
1642 if (s->lookahead == 0) break; /* flush the current block */
1643 }
1644
1645 /* Insert the string window[strstart .. strstart+2] in the
1646 * dictionary, and set hash_head to the head of the hash chain:
1647 */
1648 if (s->lookahead >= MIN_MATCH) {
1649 INSERT_STRING(s, s->strstart, hash_head);
1650 }
1651
1652 /* Find the longest match, discarding those <= prev_length.
1653 * At this point we have always match_length < MIN_MATCH
1654 */
1655 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1656 /* To simplify the code, we prevent matches with the string
1657 * of window index 0 (in particular we have to avoid a match
1658 * of the string with itself at the start of the input file).
1659 */
1660 if (s->strategy != Z_HUFFMAN_ONLY) {
1661 s->match_length = longest_match (s, hash_head);
1662 }
1663 /* longest_match() sets match_start */
1664 }
1665 if (s->match_length >= MIN_MATCH) {
1666 check_match(s, s->strstart, s->match_start, s->match_length);
1667
1668 bflush = _tr_tally(s, s->strstart - s->match_start,
1669 s->match_length - MIN_MATCH);
1670
1671 s->lookahead -= s->match_length;
1672
1673 /* Insert new strings in the hash table only if the match length
1674 * is not too large. This saves time but degrades compression.
1675 */
1676 if (s->match_length <= s->max_insert_length &&
1677 s->lookahead >= MIN_MATCH) {
1678 s->match_length--; /* string at strstart already in hash table */
1679 do {
1680 s->strstart++;
1681 INSERT_STRING(s, s->strstart, hash_head);
1682 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1683 * always MIN_MATCH bytes ahead.
1684 */
1685 } while (--s->match_length != 0);
1686 s->strstart++;
1687 } else {
1688 s->strstart += s->match_length;
1689 s->match_length = 0;
1690 s->ins_h = s->window[s->strstart];
1691 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1692#if MIN_MATCH != 3
1693 Call UPDATE_HASH() MIN_MATCH-3 more times
1694#endif
1695 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1696 * matter since it will be recomputed at next deflate call.
1697 */
1698 }
1699 } else {
1700 /* No match, output a literal byte */
1701 Tracevv((stderr,"%c", s->window[s->strstart]));
1702 bflush = _tr_tally (s, 0, s->window[s->strstart]);
1703 s->lookahead--;
1704 s->strstart++;
1705 }
1706 if (bflush) FLUSH_BLOCK(s, 0);
1707 }
1708 FLUSH_BLOCK(s, flush == Z_FINISH);
1709 return flush == Z_FINISH ? finish_done : block_done;
1710}
1711
1712/* ===========================================================================
1713 * Same as above, but achieves better compression. We use a lazy
1714 * evaluation for matches: a match is finally adopted only if there is
1715 * no better match at the next window position.
1716 */
1717local block_state deflate_slow(s, flush)
1718 deflate_state *s;
1719 int flush;
1720{
1721 IPos hash_head = NIL; /* head of hash chain */
1722 int bflush; /* set if current block must be flushed */
1723
1724 /* Process the input block. */
1725 for (;;) {
1726 /* Make sure that we always have enough lookahead, except
1727 * at the end of the input file. We need MAX_MATCH bytes
1728 * for the next match, plus MIN_MATCH bytes to insert the
1729 * string following the next match.
1730 */
1731 if (s->lookahead < MIN_LOOKAHEAD) {
1732 fill_window(s);
1733 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1734 return need_more;
1735 }
1736 if (s->lookahead == 0) break; /* flush the current block */
1737 }
1738
1739 /* Insert the string window[strstart .. strstart+2] in the
1740 * dictionary, and set hash_head to the head of the hash chain:
1741 */
1742 if (s->lookahead >= MIN_MATCH) {
1743 INSERT_STRING(s, s->strstart, hash_head);
1744 }
1745
1746 /* Find the longest match, discarding those <= prev_length.
1747 */
1748 s->prev_length = s->match_length, s->prev_match = s->match_start;
1749 s->match_length = MIN_MATCH-1;
1750
1751 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1752 s->strstart - hash_head <= MAX_DIST(s)) {
1753 /* To simplify the code, we prevent matches with the string
1754 * of window index 0 (in particular we have to avoid a match
1755 * of the string with itself at the start of the input file).
1756 */
1757 if (s->strategy != Z_HUFFMAN_ONLY) {
1758 s->match_length = longest_match (s, hash_head);
1759 }
1760 /* longest_match() sets match_start */
1761
1762 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1763 (s->match_length == MIN_MATCH &&
1764 s->strstart - s->match_start > TOO_FAR))) {
1765
1766 /* If prev_match is also MIN_MATCH, match_start is garbage
1767 * but we will ignore the current match anyway.
1768 */
1769 s->match_length = MIN_MATCH-1;
1770 }
1771 }
1772 /* If there was a match at the previous step and the current
1773 * match is not better, output the previous match:
1774 */
1775 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1776 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1777 /* Do not insert strings in hash table beyond this. */
1778
1779 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1780
1781 bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1782 s->prev_length - MIN_MATCH);
1783
1784 /* Insert in hash table all strings up to the end of the match.
1785 * strstart-1 and strstart are already inserted. If there is not
1786 * enough lookahead, the last two strings are not inserted in
1787 * the hash table.
1788 */
1789 s->lookahead -= s->prev_length-1;
1790 s->prev_length -= 2;
1791 do {
1792 if (++s->strstart <= max_insert) {
1793 INSERT_STRING(s, s->strstart, hash_head);
1794 }
1795 } while (--s->prev_length != 0);
1796 s->match_available = 0;
1797 s->match_length = MIN_MATCH-1;
1798 s->strstart++;
1799
1800 if (bflush) FLUSH_BLOCK(s, 0);
1801
1802 } else if (s->match_available) {
1803 /* If there was no match at the previous position, output a
1804 * single literal. If there was a match but the current match
1805 * is longer, truncate the previous match to a single literal.
1806 */
1807 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1808 if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1809 FLUSH_BLOCK_ONLY(s, 0);
1810 }
1811 s->strstart++;
1812 s->lookahead--;
1813 if (s->strm->avail_out == 0) return need_more;
1814 } else {
1815 /* There is no previous match to compare with, wait for
1816 * the next step to decide.
1817 */
1818 s->match_available = 1;
1819 s->strstart++;
1820 s->lookahead--;
1821 }
1822 }
1823 Assert (flush != Z_NO_FLUSH, "no flush?");
1824 if (s->match_available) {
1825 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1826 _tr_tally (s, 0, s->window[s->strstart-1]);
1827 s->match_available = 0;
1828 }
1829 FLUSH_BLOCK(s, flush == Z_FINISH);
1830 return flush == Z_FINISH ? finish_done : block_done;
1831}
1832/* --- deflate.c */
1833
1834/* +++ trees.c */
1835/* trees.c -- output deflated data using Huffman coding
1836 * Copyright (C) 1995-1996 Jean-loup Gailly
1837 * For conditions of distribution and use, see copyright notice in zlib.h
1838 */
1839
1840/*
1841 * ALGORITHM
1842 *
1843 * The "deflation" process uses several Huffman trees. The more
1844 * common source values are represented by shorter bit sequences.
1845 *
1846 * Each code tree is stored in a compressed form which is itself
1847 * a Huffman encoding of the lengths of all the code strings (in
1848 * ascending order by source values). The actual code strings are
1849 * reconstructed from the lengths in the inflate process, as described
1850 * in the deflate specification.
1851 *
1852 * REFERENCES
1853 *
1854 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1855 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1856 *
1857 * Storer, James A.
1858 * Data Compression: Methods and Theory, pp. 49-50.
1859 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1860 *
1861 * Sedgewick, R.
1862 * Algorithms, p290.
1863 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1864 */
1865
1866/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1867
1868/* #include "deflate.h" */
1869
1870#ifdef DEBUG_ZLIB
1871# include <ctype.h>
1872#endif
1873
1874/* ===========================================================================
1875 * Constants
1876 */
1877
1878#define MAX_BL_BITS 7
1879/* Bit length codes must not exceed MAX_BL_BITS bits */
1880
1881#define END_BLOCK 256
1882/* end of block literal code */
1883
1884#define REP_3_6 16
1885/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1886
1887#define REPZ_3_10 17
1888/* repeat a zero length 3-10 times (3 bits of repeat count) */
1889
1890#define REPZ_11_138 18
1891/* repeat a zero length 11-138 times (7 bits of repeat count) */
1892
1893local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1894 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1895
1896local int extra_dbits[D_CODES] /* extra bits for each distance code */
1897 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1898
1899local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1900 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1901
1902local uch bl_order[BL_CODES]
1903 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1904/* The lengths of the bit length codes are sent in order of decreasing
1905 * probability, to avoid transmitting the lengths for unused bit length codes.
1906 */
1907
1908#define Buf_size (8 * 2*sizeof(char))
1909/* Number of bits used within bi_buf. (bi_buf might be implemented on
1910 * more than 16 bits on some systems.)
1911 */
1912
1913/* ===========================================================================
1914 * Local data. These are initialized only once.
1915 */
1916
1917local ct_data static_ltree[L_CODES+2];
1918/* The static literal tree. Since the bit lengths are imposed, there is no
1919 * need for the L_CODES extra codes used during heap construction. However
1920 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1921 * below).
1922 */
1923
1924local ct_data static_dtree[D_CODES];
1925/* The static distance tree. (Actually a trivial tree since all codes use
1926 * 5 bits.)
1927 */
1928
1929local uch dist_code[512];
1930/* distance codes. The first 256 values correspond to the distances
1931 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1932 * the 15 bit distances.
1933 */
1934
1935local uch length_code[MAX_MATCH-MIN_MATCH+1];
1936/* length code for each normalized match length (0 == MIN_MATCH) */
1937
1938local int base_length[LENGTH_CODES];
1939/* First normalized length for each code (0 = MIN_MATCH) */
1940
1941local int base_dist[D_CODES];
1942/* First normalized distance for each code (0 = distance of 1) */
1943
1944struct static_tree_desc_s {
1945 ct_data *static_tree; /* static tree or NULL */
1946 intf *extra_bits; /* extra bits for each code or NULL */
1947 int extra_base; /* base index for extra_bits */
1948 int elems; /* max number of elements in the tree */
1949 int max_length; /* max bit length for the codes */
1950};
1951
1952local static_tree_desc static_l_desc =
1953{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1954
1955local static_tree_desc static_d_desc =
1956{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1957
1958local static_tree_desc static_bl_desc =
1959{(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1960
1961/* ===========================================================================
1962 * Local (static) routines in this file.
1963 */
1964
1965local void tr_static_init OF((void));
1966local void init_block OF((deflate_state *s));
1967local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1968local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1969local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1970local void build_tree OF((deflate_state *s, tree_desc *desc));
1971local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1972local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1973local int build_bl_tree OF((deflate_state *s));
1974local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1975 int blcodes));
1976local void compress_block OF((deflate_state *s, ct_data *ltree,
1977 ct_data *dtree));
1978local void set_data_type OF((deflate_state *s));
1979local unsigned bi_reverse OF((unsigned value, int length));
1980local void bi_windup OF((deflate_state *s));
1981local void bi_flush OF((deflate_state *s));
1982local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1983 int header));
1984
1985#ifndef DEBUG_ZLIB
1986# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1987 /* Send a code of the given tree. c and tree must not have side effects */
1988
1989#else /* DEBUG_ZLIB */
1990# define send_code(s, c, tree) \
1991 { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1992 send_bits(s, tree[c].Code, tree[c].Len); }
1993#endif
1994
1995#define d_code(dist) \
1996 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1997/* Mapping from a distance to a distance code. dist is the distance - 1 and
1998 * must not have side effects. dist_code[256] and dist_code[257] are never
1999 * used.
2000 */
2001
2002/* ===========================================================================
2003 * Output a short LSB first on the stream.
2004 * IN assertion: there is enough room in pendingBuf.
2005 */
2006#define put_short(s, w) { \
2007 put_byte(s, (uch)((w) & 0xff)); \
2008 put_byte(s, (uch)((ush)(w) >> 8)); \
2009}
2010
2011/* ===========================================================================
2012 * Send a value on a given number of bits.
2013 * IN assertion: length <= 16 and value fits in length bits.
2014 */
2015#ifdef DEBUG_ZLIB
2016local void send_bits OF((deflate_state *s, int value, int length));
2017
2018local void send_bits(s, value, length)
2019 deflate_state *s;
2020 int value; /* value to send */
2021 int length; /* number of bits */
2022{
2023 Tracevv((stderr," l %2d v %4x ", length, value));
2024 Assert(length > 0 && length <= 15, "invalid length");
2025 s->bits_sent += (ulg)length;
2026
2027 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2028 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2029 * unused bits in value.
2030 */
2031 if (s->bi_valid > (int)Buf_size - length) {
2032 s->bi_buf |= (value << s->bi_valid);
2033 put_short(s, s->bi_buf);
2034 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2035 s->bi_valid += length - Buf_size;
2036 } else {
2037 s->bi_buf |= value << s->bi_valid;
2038 s->bi_valid += length;
2039 }
2040}
2041#else /* !DEBUG_ZLIB */
2042
2043#define send_bits(s, value, length) \
2044{ int len = length;\
2045 if (s->bi_valid > (int)Buf_size - len) {\
2046 int val = value;\
2047 s->bi_buf |= (val << s->bi_valid);\
2048 put_short(s, s->bi_buf);\
2049 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2050 s->bi_valid += len - Buf_size;\
2051 } else {\
2052 s->bi_buf |= (value) << s->bi_valid;\
2053 s->bi_valid += len;\
2054 }\
2055}
2056#endif /* DEBUG_ZLIB */
2057
2058
2059#define MAX(a,b) (a >= b ? a : b)
2060/* the arguments must not have side effects */
2061
2062/* ===========================================================================
2063 * Initialize the various 'constant' tables. In a multi-threaded environment,
2064 * this function may be called by two threads concurrently, but this is
2065 * harmless since both invocations do exactly the same thing.
2066 */
2067local void tr_static_init()
2068{
2069 static int static_init_done = 0;
2070 int n; /* iterates over tree elements */
2071 int bits; /* bit counter */
2072 int length; /* length value */
2073 int code; /* code value */
2074 int dist; /* distance index */
2075 ush bl_count[MAX_BITS+1];
2076 /* number of codes at each bit length for an optimal tree */
2077
2078 if (static_init_done) return;
2079
2080 /* Initialize the mapping length (0..255) -> length code (0..28) */
2081 length = 0;
2082 for (code = 0; code < LENGTH_CODES-1; code++) {
2083 base_length[code] = length;
2084 for (n = 0; n < (1<<extra_lbits[code]); n++) {
2085 length_code[length++] = (uch)code;
2086 }
2087 }
2088 Assert (length == 256, "tr_static_init: length != 256");
2089 /* Note that the length 255 (match length 258) can be represented
2090 * in two different ways: code 284 + 5 bits or code 285, so we
2091 * overwrite length_code[255] to use the best encoding:
2092 */
2093 length_code[length-1] = (uch)code;
2094
2095 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2096 dist = 0;
2097 for (code = 0 ; code < 16; code++) {
2098 base_dist[code] = dist;
2099 for (n = 0; n < (1<<extra_dbits[code]); n++) {
2100 dist_code[dist++] = (uch)code;
2101 }
2102 }
2103 Assert (dist == 256, "tr_static_init: dist != 256");
2104 dist >>= 7; /* from now on, all distances are divided by 128 */
2105 for ( ; code < D_CODES; code++) {
2106 base_dist[code] = dist << 7;
2107 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2108 dist_code[256 + dist++] = (uch)code;
2109 }
2110 }
2111 Assert (dist == 256, "tr_static_init: 256+dist != 512");
2112
2113 /* Construct the codes of the static literal tree */
2114 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2115 n = 0;
2116 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2117 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2118 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2119 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2120 /* Codes 286 and 287 do not exist, but we must include them in the
2121 * tree construction to get a canonical Huffman tree (longest code
2122 * all ones)
2123 */
2124 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2125
2126 /* The static distance tree is trivial: */
2127 for (n = 0; n < D_CODES; n++) {
2128 static_dtree[n].Len = 5;
2129 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2130 }
2131 static_init_done = 1;
2132}
2133
2134/* ===========================================================================
2135 * Initialize the tree data structures for a new zlib stream.
2136 */
2137void _tr_init(s)
2138 deflate_state *s;
2139{
2140 tr_static_init();
2141
2142 s->compressed_len = 0L;
2143
2144 s->l_desc.dyn_tree = s->dyn_ltree;
2145 s->l_desc.stat_desc = &static_l_desc;
2146
2147 s->d_desc.dyn_tree = s->dyn_dtree;
2148 s->d_desc.stat_desc = &static_d_desc;
2149
2150 s->bl_desc.dyn_tree = s->bl_tree;
2151 s->bl_desc.stat_desc = &static_bl_desc;
2152
2153 s->bi_buf = 0;
2154 s->bi_valid = 0;
2155 s->last_eob_len = 8; /* enough lookahead for inflate */
2156#ifdef DEBUG_ZLIB
2157 s->bits_sent = 0L;
2158#endif
2159
2160 /* Initialize the first block of the first file: */
2161 init_block(s);
2162}
2163
2164/* ===========================================================================
2165 * Initialize a new block.
2166 */
2167local void init_block(s)
2168 deflate_state *s;
2169{
2170 int n; /* iterates over tree elements */
2171
2172 /* Initialize the trees. */
2173 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2174 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2175 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2176
2177 s->dyn_ltree[END_BLOCK].Freq = 1;
2178 s->opt_len = s->static_len = 0L;
2179 s->last_lit = s->matches = 0;
2180}
2181
2182#define SMALLEST 1
2183/* Index within the heap array of least frequent node in the Huffman tree */
2184
2185
2186/* ===========================================================================
2187 * Remove the smallest element from the heap and recreate the heap with
2188 * one less element. Updates heap and heap_len.
2189 */
2190#define pqremove(s, tree, top) \
2191{\
2192 top = s->heap[SMALLEST]; \
2193 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2194 pqdownheap(s, tree, SMALLEST); \
2195}
2196
2197/* ===========================================================================
2198 * Compares to subtrees, using the tree depth as tie breaker when
2199 * the subtrees have equal frequency. This minimizes the worst case length.
2200 */
2201#define smaller(tree, n, m, depth) \
2202 (tree[n].Freq < tree[m].Freq || \
2203 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2204
2205/* ===========================================================================
2206 * Restore the heap property by moving down the tree starting at node k,
2207 * exchanging a node with the smallest of its two sons if necessary, stopping
2208 * when the heap property is re-established (each father smaller than its
2209 * two sons).
2210 */
2211local void pqdownheap(s, tree, k)
2212 deflate_state *s;
2213 ct_data *tree; /* the tree to restore */
2214 int k; /* node to move down */
2215{
2216 int v = s->heap[k];
2217 int j = k << 1; /* left son of k */
2218 while (j <= s->heap_len) {
2219 /* Set j to the smallest of the two sons: */
2220 if (j < s->heap_len &&
2221 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2222 j++;
2223 }
2224 /* Exit if v is smaller than both sons */
2225 if (smaller(tree, v, s->heap[j], s->depth)) break;
2226
2227 /* Exchange v with the smallest son */
2228 s->heap[k] = s->heap[j]; k = j;
2229
2230 /* And continue down the tree, setting j to the left son of k */
2231 j <<= 1;
2232 }
2233 s->heap[k] = v;
2234}
2235
2236/* ===========================================================================
2237 * Compute the optimal bit lengths for a tree and update the total bit length
2238 * for the current block.
2239 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2240 * above are the tree nodes sorted by increasing frequency.
2241 * OUT assertions: the field len is set to the optimal bit length, the
2242 * array bl_count contains the frequencies for each bit length.
2243 * The length opt_len is updated; static_len is also updated if stree is
2244 * not null.
2245 */
2246local void gen_bitlen(s, desc)
2247 deflate_state *s;
2248 tree_desc *desc; /* the tree descriptor */
2249{
2250 ct_data *tree = desc->dyn_tree;
2251 int max_code = desc->max_code;
2252 ct_data *stree = desc->stat_desc->static_tree;
2253 intf *extra = desc->stat_desc->extra_bits;
2254 int base = desc->stat_desc->extra_base;
2255 int max_length = desc->stat_desc->max_length;
2256 int h; /* heap index */
2257 int n, m; /* iterate over the tree elements */
2258 int bits; /* bit length */
2259 int xbits; /* extra bits */
2260 ush f; /* frequency */
2261 int overflow = 0; /* number of elements with bit length too large */
2262
2263 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2264
2265 /* In a first pass, compute the optimal bit lengths (which may
2266 * overflow in the case of the bit length tree).
2267 */
2268 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2269
2270 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2271 n = s->heap[h];
2272 bits = tree[tree[n].Dad].Len + 1;
2273 if (bits > max_length) bits = max_length, overflow++;
2274 tree[n].Len = (ush)bits;
2275 /* We overwrite tree[n].Dad which is no longer needed */
2276
2277 if (n > max_code) continue; /* not a leaf node */
2278
2279 s->bl_count[bits]++;
2280 xbits = 0;
2281 if (n >= base) xbits = extra[n-base];
2282 f = tree[n].Freq;
2283 s->opt_len += (ulg)f * (bits + xbits);
2284 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2285 }
2286 if (overflow == 0) return;
2287
2288 Trace((stderr,"\nbit length overflow\n"));
2289 /* This happens for example on obj2 and pic of the Calgary corpus */
2290
2291 /* Find the first bit length which could increase: */
2292 do {
2293 bits = max_length-1;
2294 while (s->bl_count[bits] == 0) bits--;
2295 s->bl_count[bits]--; /* move one leaf down the tree */
2296 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2297 s->bl_count[max_length]--;
2298 /* The brother of the overflow item also moves one step up,
2299 * but this does not affect bl_count[max_length]
2300 */
2301 overflow -= 2;
2302 } while (overflow > 0);
2303
2304 /* Now recompute all bit lengths, scanning in increasing frequency.
2305 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2306 * lengths instead of fixing only the wrong ones. This idea is taken
2307 * from 'ar' written by Haruhiko Okumura.)
2308 */
2309 for (bits = max_length; bits != 0; bits--) {
2310 n = s->bl_count[bits];
2311 while (n != 0) {
2312 m = s->heap[--h];
2313 if (m > max_code) continue;
2314 if (tree[m].Len != (unsigned) bits) {
2315 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2316 s->opt_len += ((long)bits - (long)tree[m].Len)
2317 *(long)tree[m].Freq;
2318 tree[m].Len = (ush)bits;
2319 }
2320 n--;
2321 }
2322 }
2323}
2324
2325/* ===========================================================================
2326 * Generate the codes for a given tree and bit counts (which need not be
2327 * optimal).
2328 * IN assertion: the array bl_count contains the bit length statistics for
2329 * the given tree and the field len is set for all tree elements.
2330 * OUT assertion: the field code is set for all tree elements of non
2331 * zero code length.
2332 */
2333local void gen_codes (tree, max_code, bl_count)
2334 ct_data *tree; /* the tree to decorate */
2335 int max_code; /* largest code with non zero frequency */
2336 ushf *bl_count; /* number of codes at each bit length */
2337{
2338 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2339 ush code = 0; /* running code value */
2340 int bits; /* bit index */
2341 int n; /* code index */
2342
2343 /* The distribution counts are first used to generate the code values
2344 * without bit reversal.
2345 */
2346 for (bits = 1; bits <= MAX_BITS; bits++) {
2347 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2348 }
2349 /* Check that the bit counts in bl_count are consistent. The last code
2350 * must be all ones.
2351 */
2352 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2353 "inconsistent bit counts");
2354 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2355
2356 for (n = 0; n <= max_code; n++) {
2357 int len = tree[n].Len;
2358 if (len == 0) continue;
2359 /* Now reverse the bits */
2360 tree[n].Code = bi_reverse(next_code[len]++, len);
2361
2362 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2363 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2364 }
2365}
2366
2367/* ===========================================================================
2368 * Construct one Huffman tree and assigns the code bit strings and lengths.
2369 * Update the total bit length for the current block.
2370 * IN assertion: the field freq is set for all tree elements.
2371 * OUT assertions: the fields len and code are set to the optimal bit length
2372 * and corresponding code. The length opt_len is updated; static_len is
2373 * also updated if stree is not null. The field max_code is set.
2374 */
2375local void build_tree(s, desc)
2376 deflate_state *s;
2377 tree_desc *desc; /* the tree descriptor */
2378{
2379 ct_data *tree = desc->dyn_tree;
2380 ct_data *stree = desc->stat_desc->static_tree;
2381 int elems = desc->stat_desc->elems;
2382 int n, m; /* iterate over heap elements */
2383 int max_code = -1; /* largest code with non zero frequency */
2384 int node; /* new node being created */
2385
2386 /* Construct the initial heap, with least frequent element in
2387 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2388 * heap[0] is not used.
2389 */
2390 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2391
2392 for (n = 0; n < elems; n++) {
2393 if (tree[n].Freq != 0) {
2394 s->heap[++(s->heap_len)] = max_code = n;
2395 s->depth[n] = 0;
2396 } else {
2397 tree[n].Len = 0;
2398 }
2399 }
2400
2401 /* The pkzip format requires that at least one distance code exists,
2402 * and that at least one bit should be sent even if there is only one
2403 * possible code. So to avoid special checks later on we force at least
2404 * two codes of non zero frequency.
2405 */
2406 while (s->heap_len < 2) {
2407 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2408 tree[node].Freq = 1;
2409 s->depth[node] = 0;
2410 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2411 /* node is 0 or 1 so it does not have extra bits */
2412 }
2413 desc->max_code = max_code;
2414
2415 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2416 * establish sub-heaps of increasing lengths:
2417 */
2418 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2419
2420 /* Construct the Huffman tree by repeatedly combining the least two
2421 * frequent nodes.
2422 */
2423 node = elems; /* next internal node of the tree */
2424 do {
2425 pqremove(s, tree, n); /* n = node of least frequency */
2426 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2427
2428 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2429 s->heap[--(s->heap_max)] = m;
2430
2431 /* Create a new node father of n and m */
2432 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2433 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2434 tree[n].Dad = tree[m].Dad = (ush)node;
2435#ifdef DUMP_BL_TREE
2436 if (tree == s->bl_tree) {
2437 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2438 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2439 }
2440#endif
2441 /* and insert the new node in the heap */
2442 s->heap[SMALLEST] = node++;
2443 pqdownheap(s, tree, SMALLEST);
2444
2445 } while (s->heap_len >= 2);
2446
2447 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2448
2449 /* At this point, the fields freq and dad are set. We can now
2450 * generate the bit lengths.
2451 */
2452 gen_bitlen(s, (tree_desc *)desc);
2453
2454 /* The field len is now set, we can generate the bit codes */
2455 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2456}
2457
2458/* ===========================================================================
2459 * Scan a literal or distance tree to determine the frequencies of the codes
2460 * in the bit length tree.
2461 */
2462local void scan_tree (s, tree, max_code)
2463 deflate_state *s;
2464 ct_data *tree; /* the tree to be scanned */
2465 int max_code; /* and its largest code of non zero frequency */
2466{
2467 int n; /* iterates over all tree elements */
2468 int prevlen = -1; /* last emitted length */
2469 int curlen; /* length of current code */
2470 int nextlen = tree[0].Len; /* length of next code */
2471 int count = 0; /* repeat count of the current code */
2472 int max_count = 7; /* max repeat count */
2473 int min_count = 4; /* min repeat count */
2474
2475 if (nextlen == 0) max_count = 138, min_count = 3;
2476 tree[max_code+1].Len = (ush)0xffff; /* guard */
2477
2478 for (n = 0; n <= max_code; n++) {
2479 curlen = nextlen; nextlen = tree[n+1].Len;
2480 if (++count < max_count && curlen == nextlen) {
2481 continue;
2482 } else if (count < min_count) {
2483 s->bl_tree[curlen].Freq += count;
2484 } else if (curlen != 0) {
2485 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2486 s->bl_tree[REP_3_6].Freq++;
2487 } else if (count <= 10) {
2488 s->bl_tree[REPZ_3_10].Freq++;
2489 } else {
2490 s->bl_tree[REPZ_11_138].Freq++;
2491 }
2492 count = 0; prevlen = curlen;
2493 if (nextlen == 0) {
2494 max_count = 138, min_count = 3;
2495 } else if (curlen == nextlen) {
2496 max_count = 6, min_count = 3;
2497 } else {
2498 max_count = 7, min_count = 4;
2499 }
2500 }
2501}
2502
2503/* ===========================================================================
2504 * Send a literal or distance tree in compressed form, using the codes in
2505 * bl_tree.
2506 */
2507local void send_tree (s, tree, max_code)
2508 deflate_state *s;
2509 ct_data *tree; /* the tree to be scanned */
2510 int max_code; /* and its largest code of non zero frequency */
2511{
2512 int n; /* iterates over all tree elements */
2513 int prevlen = -1; /* last emitted length */
2514 int curlen; /* length of current code */
2515 int nextlen = tree[0].Len; /* length of next code */
2516 int count = 0; /* repeat count of the current code */
2517 int max_count = 7; /* max repeat count */
2518 int min_count = 4; /* min repeat count */
2519
2520 /* tree[max_code+1].Len = -1; */ /* guard already set */
2521 if (nextlen == 0) max_count = 138, min_count = 3;
2522
2523 for (n = 0; n <= max_code; n++) {
2524 curlen = nextlen; nextlen = tree[n+1].Len;
2525 if (++count < max_count && curlen == nextlen) {
2526 continue;
2527 } else if (count < min_count) {
2528 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2529
2530 } else if (curlen != 0) {
2531 if (curlen != prevlen) {
2532 send_code(s, curlen, s->bl_tree); count--;
2533 }
2534 Assert(count >= 3 && count <= 6, " 3_6?");
2535 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2536
2537 } else if (count <= 10) {
2538 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2539
2540 } else {
2541 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2542 }
2543 count = 0; prevlen = curlen;
2544 if (nextlen == 0) {
2545 max_count = 138, min_count = 3;
2546 } else if (curlen == nextlen) {
2547 max_count = 6, min_count = 3;
2548 } else {
2549 max_count = 7, min_count = 4;
2550 }
2551 }
2552}
2553
2554/* ===========================================================================
2555 * Construct the Huffman tree for the bit lengths and return the index in
2556 * bl_order of the last bit length code to send.
2557 */
2558local int build_bl_tree(s)
2559 deflate_state *s;
2560{
2561 int max_blindex; /* index of last bit length code of non zero freq */
2562
2563 /* Determine the bit length frequencies for literal and distance trees */
2564 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2565 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2566
2567 /* Build the bit length tree: */
2568 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2569 /* opt_len now includes the length of the tree representations, except
2570 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2571 */
2572
2573 /* Determine the number of bit length codes to send. The pkzip format
2574 * requires that at least 4 bit length codes be sent. (appnote.txt says
2575 * 3 but the actual value used is 4.)
2576 */
2577 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2578 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2579 }
2580 /* Update opt_len to include the bit length tree and counts */
2581 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2582 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2583 s->opt_len, s->static_len));
2584
2585 return max_blindex;
2586}
2587
2588/* ===========================================================================
2589 * Send the header for a block using dynamic Huffman trees: the counts, the
2590 * lengths of the bit length codes, the literal tree and the distance tree.
2591 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2592 */
2593local void send_all_trees(s, lcodes, dcodes, blcodes)
2594 deflate_state *s;
2595 int lcodes, dcodes, blcodes; /* number of codes for each tree */
2596{
2597 int rank; /* index in bl_order */
2598
2599 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2600 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2601 "too many codes");
2602 Tracev((stderr, "\nbl counts: "));
2603 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2604 send_bits(s, dcodes-1, 5);
2605 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2606 for (rank = 0; rank < blcodes; rank++) {
2607 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2608 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2609 }
2610 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2611
2612 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2613 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2614
2615 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2616 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2617}
2618
2619/* ===========================================================================
2620 * Send a stored block
2621 */
2622void _tr_stored_block(s, buf, stored_len, eof)
2623 deflate_state *s;
2624 charf *buf; /* input block */
2625 ulg stored_len; /* length of input block */
2626 int eof; /* true if this is the last block for a file */
2627{
2628 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2629 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2630 s->compressed_len += (stored_len + 4) << 3;
2631
2632 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2633}
2634
2635/* Send just the `stored block' type code without any length bytes or data.
2636 */
2637void _tr_stored_type_only(s)
2638 deflate_state *s;
2639{
2640 send_bits(s, (STORED_BLOCK << 1), 3);
2641 bi_windup(s);
2642 s->compressed_len = (s->compressed_len + 3) & ~7L;
2643}
2644
2645
2646/* ===========================================================================
2647 * Send one empty static block to give enough lookahead for inflate.
2648 * This takes 10 bits, of which 7 may remain in the bit buffer.
2649 * The current inflate code requires 9 bits of lookahead. If the
2650 * last two codes for the previous block (real code plus EOB) were coded
2651 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2652 * the last real code. In this case we send two empty static blocks instead
2653 * of one. (There are no problems if the previous block is stored or fixed.)
2654 * To simplify the code, we assume the worst case of last real code encoded
2655 * on one bit only.
2656 */
2657void _tr_align(s)
2658 deflate_state *s;
2659{
2660 send_bits(s, STATIC_TREES<<1, 3);
2661 send_code(s, END_BLOCK, static_ltree);
2662 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2663 bi_flush(s);
2664 /* Of the 10 bits for the empty block, we have already sent
2665 * (10 - bi_valid) bits. The lookahead for the last real code (before
2666 * the EOB of the previous block) was thus at least one plus the length
2667 * of the EOB plus what we have just sent of the empty static block.
2668 */
2669 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2670 send_bits(s, STATIC_TREES<<1, 3);
2671 send_code(s, END_BLOCK, static_ltree);
2672 s->compressed_len += 10L;
2673 bi_flush(s);
2674 }
2675 s->last_eob_len = 7;
2676}
2677
2678/* ===========================================================================
2679 * Determine the best encoding for the current block: dynamic trees, static
2680 * trees or store, and output the encoded block to the zip file. This function
2681 * returns the total compressed length for the file so far.
2682 */
2683ulg _tr_flush_block(s, buf, stored_len, eof)
2684 deflate_state *s;
2685 charf *buf; /* input block, or NULL if too old */
2686 ulg stored_len; /* length of input block */
2687 int eof; /* true if this is the last block for a file */
2688{
2689 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2690 int max_blindex = 0; /* index of last bit length code of non zero freq */
2691
2692 /* Build the Huffman trees unless a stored block is forced */
2693 if (s->level > 0) {
2694
2695 /* Check if the file is ascii or binary */
2696 if (s->data_type == Z_UNKNOWN) set_data_type(s);
2697
2698 /* Construct the literal and distance trees */
2699 build_tree(s, (tree_desc *)(&(s->l_desc)));
2700 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2701 s->static_len));
2702
2703 build_tree(s, (tree_desc *)(&(s->d_desc)));
2704 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2705 s->static_len));
2706 /* At this point, opt_len and static_len are the total bit lengths of
2707 * the compressed block data, excluding the tree representations.
2708 */
2709
2710 /* Build the bit length tree for the above two trees, and get the index
2711 * in bl_order of the last bit length code to send.
2712 */
2713 max_blindex = build_bl_tree(s);
2714
2715 /* Determine the best encoding. Compute first the block length in bytes*/
2716 opt_lenb = (s->opt_len+3+7)>>3;
2717 static_lenb = (s->static_len+3+7)>>3;
2718
2719 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2720 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2721 s->last_lit));
2722
2723 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2724
2725 } else {
2726 Assert(buf != (char*)0, "lost buf");
2727 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2728 }
2729
2730 /* If compression failed and this is the first and last block,
2731 * and if the .zip file can be seeked (to rewrite the local header),
2732 * the whole file is transformed into a stored file:
2733 */
2734#ifdef STORED_FILE_OK
2735# ifdef FORCE_STORED_FILE
2736 if (eof && s->compressed_len == 0L) { /* force stored file */
2737# else
2738 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2739# endif
2740 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2741 if (buf == (charf*)0) error ("block vanished");
2742
2743 copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2744 s->compressed_len = stored_len << 3;
2745 s->method = STORED;
2746 } else
2747#endif /* STORED_FILE_OK */
2748
2749#ifdef FORCE_STORED
2750 if (buf != (char*)0) { /* force stored block */
2751#else
2752 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2753 /* 4: two words for the lengths */
2754#endif
2755 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2756 * Otherwise we can't have processed more than WSIZE input bytes since
2757 * the last block flush, because compression would have been
2758 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2759 * transform a block into a stored block.
2760 */
2761 _tr_stored_block(s, buf, stored_len, eof);
2762
2763#ifdef FORCE_STATIC
2764 } else if (static_lenb >= 0) { /* force static trees */
2765#else
2766 } else if (static_lenb == opt_lenb) {
2767#endif
2768 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2769 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2770 s->compressed_len += 3 + s->static_len;
2771 } else {
2772 send_bits(s, (DYN_TREES<<1)+eof, 3);
2773 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2774 max_blindex+1);
2775 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2776 s->compressed_len += 3 + s->opt_len;
2777 }
2778 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2779 init_block(s);
2780
2781 if (eof) {
2782 bi_windup(s);
2783 s->compressed_len += 7; /* align on byte boundary */
2784 }
2785 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2786 s->compressed_len-7*eof));
2787
2788 return s->compressed_len >> 3;
2789}
2790
2791/* ===========================================================================
2792 * Save the match info and tally the frequency counts. Return true if
2793 * the current block must be flushed.
2794 */
2795int _tr_tally (s, dist, lc)
2796 deflate_state *s;
2797 unsigned dist; /* distance of matched string */
2798 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2799{
2800 s->d_buf[s->last_lit] = (ush)dist;
2801 s->l_buf[s->last_lit++] = (uch)lc;
2802 if (dist == 0) {
2803 /* lc is the unmatched char */
2804 s->dyn_ltree[lc].Freq++;
2805 } else {
2806 s->matches++;
2807 /* Here, lc is the match length - MIN_MATCH */
2808 dist--; /* dist = match distance - 1 */
2809 Assert((ush)dist < (ush)MAX_DIST(s) &&
2810 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2811 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
2812
2813 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2814 s->dyn_dtree[d_code(dist)].Freq++;
2815 }
2816
2817 /* Try to guess if it is profitable to stop the current block here */
2818 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2819 /* Compute an upper bound for the compressed length */
2820 ulg out_length = (ulg)s->last_lit*8L;
2821 ulg in_length = (ulg)((long)s->strstart - s->block_start);
2822 int dcode;
2823 for (dcode = 0; dcode < D_CODES; dcode++) {
2824 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2825 (5L+extra_dbits[dcode]);
2826 }
2827 out_length >>= 3;
2828 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2829 s->last_lit, in_length, out_length,
2830 100L - out_length*100L/in_length));
2831 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2832 }
2833 return (s->last_lit == s->lit_bufsize-1);
2834 /* We avoid equality with lit_bufsize because of wraparound at 64K
2835 * on 16 bit machines and because stored blocks are restricted to
2836 * 64K-1 bytes.
2837 */
2838}
2839
2840/* ===========================================================================
2841 * Send the block data compressed using the given Huffman trees
2842 */
2843local void compress_block(s, ltree, dtree)
2844 deflate_state *s;
2845 ct_data *ltree; /* literal tree */
2846 ct_data *dtree; /* distance tree */
2847{
2848 unsigned dist; /* distance of matched string */
2849 int lc; /* match length or unmatched char (if dist == 0) */
2850 unsigned lx = 0; /* running index in l_buf */
2851 unsigned code; /* the code to send */
2852 int extra; /* number of extra bits to send */
2853
2854 if (s->last_lit != 0) do {
2855 dist = s->d_buf[lx];
2856 lc = s->l_buf[lx++];
2857 if (dist == 0) {
2858 send_code(s, lc, ltree); /* send a literal byte */
2859 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2860 } else {
2861 /* Here, lc is the match length - MIN_MATCH */
2862 code = length_code[lc];
2863 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2864 extra = extra_lbits[code];
2865 if (extra != 0) {
2866 lc -= base_length[code];
2867 send_bits(s, lc, extra); /* send the extra length bits */
2868 }
2869 dist--; /* dist is now the match distance - 1 */
2870 code = d_code(dist);
2871 Assert (code < D_CODES, "bad d_code");
2872
2873 send_code(s, code, dtree); /* send the distance code */
2874 extra = extra_dbits[code];
2875 if (extra != 0) {
2876 dist -= base_dist[code];
2877 send_bits(s, dist, extra); /* send the extra distance bits */
2878 }
2879 } /* literal or match pair ? */
2880
2881 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2882 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2883
2884 } while (lx < s->last_lit);
2885
2886 send_code(s, END_BLOCK, ltree);
2887 s->last_eob_len = ltree[END_BLOCK].Len;
2888}
2889
2890/* ===========================================================================
2891 * Set the data type to ASCII or BINARY, using a crude approximation:
2892 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2893 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2894 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2895 */
2896local void set_data_type(s)
2897 deflate_state *s;
2898{
2899 int n = 0;
2900 unsigned ascii_freq = 0;
2901 unsigned bin_freq = 0;
2902 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2903 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2904 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2905 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2906}
2907
2908/* ===========================================================================
2909 * Reverse the first len bits of a code, using straightforward code (a faster
2910 * method would use a table)
2911 * IN assertion: 1 <= len <= 15
2912 */
2913local unsigned bi_reverse(code, len)
2914 unsigned code; /* the value to invert */
2915 int len; /* its bit length */
2916{
2917 register unsigned res = 0;
2918 do {
2919 res |= code & 1;
2920 code >>= 1, res <<= 1;
2921 } while (--len > 0);
2922 return res >> 1;
2923}
2924
2925/* ===========================================================================
2926 * Flush the bit buffer, keeping at most 7 bits in it.
2927 */
2928local void bi_flush(s)
2929 deflate_state *s;
2930{
2931 if (s->bi_valid == 16) {
2932 put_short(s, s->bi_buf);
2933 s->bi_buf = 0;
2934 s->bi_valid = 0;
2935 } else if (s->bi_valid >= 8) {
2936 put_byte(s, (Byte)s->bi_buf);
2937 s->bi_buf >>= 8;
2938 s->bi_valid -= 8;
2939 }
2940}
2941
2942/* ===========================================================================
2943 * Flush the bit buffer and align the output on a byte boundary
2944 */
2945local void bi_windup(s)
2946 deflate_state *s;
2947{
2948 if (s->bi_valid > 8) {
2949 put_short(s, s->bi_buf);
2950 } else if (s->bi_valid > 0) {
2951 put_byte(s, (Byte)s->bi_buf);
2952 }
2953 s->bi_buf = 0;
2954 s->bi_valid = 0;
2955#ifdef DEBUG_ZLIB
2956 s->bits_sent = (s->bits_sent+7) & ~7;
2957#endif
2958}
2959
2960/* ===========================================================================
2961 * Copy a stored block, storing first the length and its
2962 * one's complement if requested.
2963 */
2964local void copy_block(s, buf, len, header)
2965 deflate_state *s;
2966 charf *buf; /* the input data */
2967 unsigned len; /* its length */
2968 int header; /* true if block header must be written */
2969{
2970 bi_windup(s); /* align on byte boundary */
2971 s->last_eob_len = 8; /* enough lookahead for inflate */
2972
2973 if (header) {
2974 put_short(s, (ush)len);
2975 put_short(s, (ush)~len);
2976#ifdef DEBUG_ZLIB
2977 s->bits_sent += 2*16;
2978#endif
2979 }
2980#ifdef DEBUG_ZLIB
2981 s->bits_sent += (ulg)len<<3;
2982#endif
2983 /* bundle up the put_byte(s, *buf++) calls */
2984 zmemcpy(&s->pending_buf[s->pending], buf, len);
2985 s->pending += len;
2986}
2987/* --- trees.c */
2988
2989/* +++ inflate.c */
2990/* inflate.c -- zlib interface to inflate modules
2991 * Copyright (C) 1995-1996 Mark Adler
2992 * For conditions of distribution and use, see copyright notice in zlib.h
2993 */
2994
2995/* #include "zutil.h" */
2996
2997/* +++ infblock.h */
2998/* infblock.h -- header to use infblock.c
2999 * Copyright (C) 1995-1996 Mark Adler
3000 * For conditions of distribution and use, see copyright notice in zlib.h
3001 */
3002
3003/* WARNING: this file should *not* be used by applications. It is
3004 part of the implementation of the compression library and is
3005 subject to change. Applications should only use zlib.h.
3006 */
3007
3008struct inflate_blocks_state;
3009typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3010
3011extern inflate_blocks_statef * inflate_blocks_new OF((
3012 z_streamp z,
3013 check_func c, /* check function */
3014 uInt w)); /* window size */
3015
3016extern int inflate_blocks OF((
3017 inflate_blocks_statef *,
3018 z_streamp ,
3019 int)); /* initial return code */
3020
3021extern void inflate_blocks_reset OF((
3022 inflate_blocks_statef *,
3023 z_streamp ,
3024 uLongf *)); /* check value on output */
3025
3026extern int inflate_blocks_free OF((
3027 inflate_blocks_statef *,
3028 z_streamp ,
3029 uLongf *)); /* check value on output */
3030
3031extern void inflate_set_dictionary OF((
3032 inflate_blocks_statef *s,
3033 const Bytef *d, /* dictionary */
3034 uInt n)); /* dictionary length */
3035
3036extern int inflate_addhistory OF((
3037 inflate_blocks_statef *,
3038 z_streamp));
3039
3040extern int inflate_packet_flush OF((
3041 inflate_blocks_statef *));
3042/* --- infblock.h */
3043
3044#ifndef NO_DUMMY_DECL
3045struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3046#endif
3047
3048/* inflate private state */
3049struct internal_state {
3050
3051 /* mode */
3052 enum {
3053 METHOD, /* waiting for method byte */
3054 FLAG, /* waiting for flag byte */
3055 DICT4, /* four dictionary check bytes to go */
3056 DICT3, /* three dictionary check bytes to go */
3057 DICT2, /* two dictionary check bytes to go */
3058 DICT1, /* one dictionary check byte to go */
3059 DICT0, /* waiting for inflateSetDictionary */
3060 BLOCKS, /* decompressing blocks */
3061 CHECK4, /* four check bytes to go */
3062 CHECK3, /* three check bytes to go */
3063 CHECK2, /* two check bytes to go */
3064 CHECK1, /* one check byte to go */
3065 DONE, /* finished check, done */
3066 BAD} /* got an error--stay here */
3067 mode; /* current inflate mode */
3068
3069 /* mode dependent information */
3070 union {
3071 uInt method; /* if FLAGS, method byte */
3072 struct {
3073 uLong was; /* computed check value */
3074 uLong need; /* stream check value */
3075 } check; /* if CHECK, check values to compare */
3076 uInt marker; /* if BAD, inflateSync's marker bytes count */
3077 } sub; /* submode */
3078
3079 /* mode independent information */
3080 int nowrap; /* flag for no wrapper */
3081 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3082 inflate_blocks_statef
3083 *blocks; /* current inflate_blocks state */
3084
3085};
3086
3087
3088int inflateReset(z)
3089z_streamp z;
3090{
3091 uLong c;
3092
3093 if (z == Z_NULL || z->state == Z_NULL)
3094 return Z_STREAM_ERROR;
3095 z->total_in = z->total_out = 0;
3096 z->msg = Z_NULL;
3097 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3098 inflate_blocks_reset(z->state->blocks, z, &c);
3099 Trace((stderr, "inflate: reset\n"));
3100 return Z_OK;
3101}
3102
3103
3104int inflateEnd(z)
3105z_streamp z;
3106{
3107 uLong c;
3108
3109 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3110 return Z_STREAM_ERROR;
3111 if (z->state->blocks != Z_NULL)
3112 inflate_blocks_free(z->state->blocks, z, &c);
3113 ZFREE(z, z->state);
3114 z->state = Z_NULL;
3115 Trace((stderr, "inflate: end\n"));
3116 return Z_OK;
3117}
3118
3119
3120int inflateInit2_(z, w, version, stream_size)
3121z_streamp z;
3122int w;
3123const char *version;
3124int stream_size;
3125{
3126 if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3127 stream_size != sizeof(z_stream))
3128 return Z_VERSION_ERROR;
3129
3130 /* initialize state */
3131 if (z == Z_NULL)
3132 return Z_STREAM_ERROR;
3133 z->msg = Z_NULL;
3134#ifndef NO_ZCFUNCS
3135 if (z->zalloc == Z_NULL)
3136 {
3137 z->zalloc = zcalloc;
3138 z->opaque = (voidpf)0;
3139 }
3140 if (z->zfree == Z_NULL) z->zfree = zcfree;
3141#endif
3142 if ((z->state = (struct internal_state FAR *)
3143 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3144 return Z_MEM_ERROR;
3145 z->state->blocks = Z_NULL;
3146
3147 /* handle undocumented nowrap option (no zlib header or check) */
3148 z->state->nowrap = 0;
3149 if (w < 0)
3150 {
3151 w = - w;
3152 z->state->nowrap = 1;
3153 }
3154
3155 /* set window size */
3156 if (w < 8 || w > 15)
3157 {
3158 inflateEnd(z);
3159 return Z_STREAM_ERROR;
3160 }
3161 z->state->wbits = (uInt)w;
3162
3163 /* create inflate_blocks state */
3164 if ((z->state->blocks =
3165 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3166 == Z_NULL)
3167 {
3168 inflateEnd(z);
3169 return Z_MEM_ERROR;
3170 }
3171 Trace((stderr, "inflate: allocated\n"));
3172
3173 /* reset state */
3174 inflateReset(z);
3175 return Z_OK;
3176}
3177
3178
3179int inflateInit_(z, version, stream_size)
3180z_streamp z;
3181const char *version;
3182int stream_size;
3183{
3184 return inflateInit2_(z, DEF_WBITS, version, stream_size);
3185}
3186
3187
3188#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3189#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3190
3191int inflate(z, f)
3192z_streamp z;
3193int f;
3194{
3195 int r;
3196 uInt b;
3197
3198 if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3199 return Z_STREAM_ERROR;
3200 r = Z_BUF_ERROR;
3201 while (1) switch (z->state->mode)
3202 {
3203 case METHOD:
3204 NEEDBYTE
3205 if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3206 {
3207 z->state->mode = BAD;
3208 z->msg = (char*)"unknown compression method";
3209 z->state->sub.marker = 5; /* can't try inflateSync */
3210 break;
3211 }
3212 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3213 {
3214 z->state->mode = BAD;
3215 z->msg = (char*)"invalid window size";
3216 z->state->sub.marker = 5; /* can't try inflateSync */
3217 break;
3218 }
3219 z->state->mode = FLAG;
3220 case FLAG:
3221 NEEDBYTE
3222 b = NEXTBYTE;
3223 if (((z->state->sub.method << 8) + b) % 31)
3224 {
3225 z->state->mode = BAD;
3226 z->msg = (char*)"incorrect header check";
3227 z->state->sub.marker = 5; /* can't try inflateSync */
3228 break;
3229 }
3230 Trace((stderr, "inflate: zlib header ok\n"));
3231 if (!(b & PRESET_DICT))
3232 {
3233 z->state->mode = BLOCKS;
3234 break;
3235 }
3236 z->state->mode = DICT4;
3237 case DICT4:
3238 NEEDBYTE
3239 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3240 z->state->mode = DICT3;
3241 case DICT3:
3242 NEEDBYTE
3243 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3244 z->state->mode = DICT2;
3245 case DICT2:
3246 NEEDBYTE
3247 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3248 z->state->mode = DICT1;
3249 case DICT1:
3250 NEEDBYTE
3251 z->state->sub.check.need += (uLong)NEXTBYTE;
3252 z->adler = z->state->sub.check.need;
3253 z->state->mode = DICT0;
3254 return Z_NEED_DICT;
3255 case DICT0:
3256 z->state->mode = BAD;
3257 z->msg = (char*)"need dictionary";
3258 z->state->sub.marker = 0; /* can try inflateSync */
3259 return Z_STREAM_ERROR;
3260 case BLOCKS:
3261 r = inflate_blocks(z->state->blocks, z, r);
3262 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3263 r = inflate_packet_flush(z->state->blocks);
3264 if (r == Z_DATA_ERROR)
3265 {
3266 z->state->mode = BAD;
3267 z->state->sub.marker = 0; /* can try inflateSync */
3268 break;
3269 }
3270 if (r != Z_STREAM_END)
3271 return r;
3272 r = Z_OK;
3273 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3274 if (z->state->nowrap)
3275 {
3276 z->state->mode = DONE;
3277 break;
3278 }
3279 z->state->mode = CHECK4;
3280 case CHECK4:
3281 NEEDBYTE
3282 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3283 z->state->mode = CHECK3;
3284 case CHECK3:
3285 NEEDBYTE
3286 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3287 z->state->mode = CHECK2;
3288 case CHECK2:
3289 NEEDBYTE
3290 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3291 z->state->mode = CHECK1;
3292 case CHECK1:
3293 NEEDBYTE
3294 z->state->sub.check.need += (uLong)NEXTBYTE;
3295
3296 if (z->state->sub.check.was != z->state->sub.check.need)
3297 {
3298 z->state->mode = BAD;
3299 z->msg = (char*)"incorrect data check";
3300 z->state->sub.marker = 5; /* can't try inflateSync */
3301 break;
3302 }
3303 Trace((stderr, "inflate: zlib check ok\n"));
3304 z->state->mode = DONE;
3305 case DONE:
3306 return Z_STREAM_END;
3307 case BAD:
3308 return Z_DATA_ERROR;
3309 default:
3310 return Z_STREAM_ERROR;
3311 }
3312
3313 empty:
3314 if (f != Z_PACKET_FLUSH)
3315 return r;
3316 z->state->mode = BAD;
3317 z->msg = (char *)"need more for packet flush";
3318 z->state->sub.marker = 0; /* can try inflateSync */
3319 return Z_DATA_ERROR;
3320}
3321
3322
3323int inflateSetDictionary(z, dictionary, dictLength)
3324z_streamp z;
3325const Bytef *dictionary;
3326uInt dictLength;
3327{
3328 uInt length = dictLength;
3329
3330 if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3331 return Z_STREAM_ERROR;
3332
3333 if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3334 z->adler = 1L;
3335
3336 if (length >= ((uInt)1<<z->state->wbits))
3337 {
3338 length = (1<<z->state->wbits)-1;
3339 dictionary += dictLength - length;
3340 }
3341 inflate_set_dictionary(z->state->blocks, dictionary, length);
3342 z->state->mode = BLOCKS;
3343 return Z_OK;
3344}
3345
3346/*
3347 * This subroutine adds the data at next_in/avail_in to the output history
3348 * without performing any output. The output buffer must be "caught up";
3349 * i.e. no pending output (hence s->read equals s->write), and the state must
3350 * be BLOCKS (i.e. we should be willing to see the start of a series of
3351 * BLOCKS). On exit, the output will also be caught up, and the checksum
3352 * will have been updated if need be.
3353 */
3354
3355int inflateIncomp(z)
3356z_stream *z;
3357{
3358 if (z->state->mode != BLOCKS)
3359 return Z_DATA_ERROR;
3360 return inflate_addhistory(z->state->blocks, z);
3361}
3362
3363
3364int inflateSync(z)
3365z_streamp z;
3366{
3367 uInt n; /* number of bytes to look at */
3368 Bytef *p; /* pointer to bytes */
3369 uInt m; /* number of marker bytes found in a row */
3370 uLong r, w; /* temporaries to save total_in and total_out */
3371
3372 /* set up */
3373 if (z == Z_NULL || z->state == Z_NULL)
3374 return Z_STREAM_ERROR;
3375 if (z->state->mode != BAD)
3376 {
3377 z->state->mode = BAD;
3378 z->state->sub.marker = 0;
3379 }
3380 if ((n = z->avail_in) == 0)
3381 return Z_BUF_ERROR;
3382 p = z->next_in;
3383 m = z->state->sub.marker;
3384
3385 /* search */
3386 while (n && m < 4)
3387 {
3388 if (*p == (Byte)(m < 2 ? 0 : 0xff))
3389 m++;
3390 else if (*p)
3391 m = 0;
3392 else
3393 m = 4 - m;
3394 p++, n--;
3395 }
3396
3397 /* restore */
3398 z->total_in += p - z->next_in;
3399 z->next_in = p;
3400 z->avail_in = n;
3401 z->state->sub.marker = m;
3402
3403 /* return no joy or set up to restart on a new block */
3404 if (m != 4)
3405 return Z_DATA_ERROR;
3406 r = z->total_in; w = z->total_out;
3407 inflateReset(z);
3408 z->total_in = r; z->total_out = w;
3409 z->state->mode = BLOCKS;
3410 return Z_OK;
3411}
3412
3413#undef NEEDBYTE
3414#undef NEXTBYTE
3415/* --- inflate.c */
3416
3417/* +++ infblock.c */
3418/* infblock.c -- interpret and process block types to last block
3419 * Copyright (C) 1995-1996 Mark Adler
3420 * For conditions of distribution and use, see copyright notice in zlib.h
3421 */
3422
3423/* #include "zutil.h" */
3424/* #include "infblock.h" */
3425
3426/* +++ inftrees.h */
3427/* inftrees.h -- header to use inftrees.c
3428 * Copyright (C) 1995-1996 Mark Adler
3429 * For conditions of distribution and use, see copyright notice in zlib.h
3430 */
3431
3432/* WARNING: this file should *not* be used by applications. It is
3433 part of the implementation of the compression library and is
3434 subject to change. Applications should only use zlib.h.
3435 */
3436
3437/* Huffman code lookup table entry--this entry is four bytes for machines
3438 that have 16-bit pointers (e.g. PC's in the small or medium model). */
3439
3440typedef struct inflate_huft_s FAR inflate_huft;
3441
3442struct inflate_huft_s {
3443 union {
3444 struct {
3445 Byte Exop; /* number of extra bits or operation */
3446 Byte Bits; /* number of bits in this code or subcode */
3447 } what;
3448 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
3449 } word; /* 16-bit, 8 bytes for 32-bit machines) */
3450 union {
3451 uInt Base; /* literal, length base, or distance base */
3452 inflate_huft *Next; /* pointer to next level of table */
3453 } more;
3454};
3455
3456#ifdef DEBUG_ZLIB
3457 extern uInt inflate_hufts;
3458#endif
3459
3460extern int inflate_trees_bits OF((
3461 uIntf *, /* 19 code lengths */
3462 uIntf *, /* bits tree desired/actual depth */
3463 inflate_huft * FAR *, /* bits tree result */
3464 z_streamp )); /* for zalloc, zfree functions */
3465
3466extern int inflate_trees_dynamic OF((
3467 uInt, /* number of literal/length codes */
3468 uInt, /* number of distance codes */
3469 uIntf *, /* that many (total) code lengths */
3470 uIntf *, /* literal desired/actual bit depth */
3471 uIntf *, /* distance desired/actual bit depth */
3472 inflate_huft * FAR *, /* literal/length tree result */
3473 inflate_huft * FAR *, /* distance tree result */
3474 z_streamp )); /* for zalloc, zfree functions */
3475
3476extern int inflate_trees_fixed OF((
3477 uIntf *, /* literal desired/actual bit depth */
3478 uIntf *, /* distance desired/actual bit depth */
3479 inflate_huft * FAR *, /* literal/length tree result */
3480 inflate_huft * FAR *)); /* distance tree result */
3481
3482extern int inflate_trees_free OF((
3483 inflate_huft *, /* tables to free */
3484 z_streamp )); /* for zfree function */
3485
3486/* --- inftrees.h */
3487
3488/* +++ infcodes.h */
3489/* infcodes.h -- header to use infcodes.c
3490 * Copyright (C) 1995-1996 Mark Adler
3491 * For conditions of distribution and use, see copyright notice in zlib.h
3492 */
3493
3494/* WARNING: this file should *not* be used by applications. It is
3495 part of the implementation of the compression library and is
3496 subject to change. Applications should only use zlib.h.
3497 */
3498
3499struct inflate_codes_state;
3500typedef struct inflate_codes_state FAR inflate_codes_statef;
3501
3502extern inflate_codes_statef *inflate_codes_new OF((
3503 uInt, uInt,
3504 inflate_huft *, inflate_huft *,
3505 z_streamp ));
3506
3507extern int inflate_codes OF((
3508 inflate_blocks_statef *,
3509 z_streamp ,
3510 int));
3511
3512extern void inflate_codes_free OF((
3513 inflate_codes_statef *,
3514 z_streamp ));
3515
3516/* --- infcodes.h */
3517
3518/* +++ infutil.h */
3519/* infutil.h -- types and macros common to blocks and codes
3520 * Copyright (C) 1995-1996 Mark Adler
3521 * For conditions of distribution and use, see copyright notice in zlib.h
3522 */
3523
3524/* WARNING: this file should *not* be used by applications. It is
3525 part of the implementation of the compression library and is
3526 subject to change. Applications should only use zlib.h.
3527 */
3528
3529#ifndef _INFUTIL_H
3530#define _INFUTIL_H
3531
3532typedef enum {
3533 TYPE, /* get type bits (3, including end bit) */
3534 LENS, /* get lengths for stored */
3535 STORED, /* processing stored block */
3536 TABLE, /* get table lengths */
3537 BTREE, /* get bit lengths tree for a dynamic block */
3538 DTREE, /* get length, distance trees for a dynamic block */
3539 CODES, /* processing fixed or dynamic block */
3540 DRY, /* output remaining window bytes */
3541 DONEB, /* finished last block, done */
3542 BADB} /* got a data error--stuck here */
3543inflate_block_mode;
3544
3545/* inflate blocks semi-private state */
3546struct inflate_blocks_state {
3547
3548 /* mode */
3549 inflate_block_mode mode; /* current inflate_block mode */
3550
3551 /* mode dependent information */
3552 union {
3553 uInt left; /* if STORED, bytes left to copy */
3554 struct {
3555 uInt table; /* table lengths (14 bits) */
3556 uInt index; /* index into blens (or border) */
3557 uIntf *blens; /* bit lengths of codes */
3558 uInt bb; /* bit length tree depth */
3559 inflate_huft *tb; /* bit length decoding tree */
3560 } trees; /* if DTREE, decoding info for trees */
3561 struct {
3562 inflate_huft *tl;
3563 inflate_huft *td; /* trees to free */
3564 inflate_codes_statef
3565 *codes;
3566 } decode; /* if CODES, current state */
3567 } sub; /* submode */
3568 uInt last; /* true if this block is the last block */
3569
3570 /* mode independent information */
3571 uInt bitk; /* bits in bit buffer */
3572 uLong bitb; /* bit buffer */
3573 Bytef *window; /* sliding window */
3574 Bytef *end; /* one byte after sliding window */
3575 Bytef *read; /* window read pointer */
3576 Bytef *write; /* window write pointer */
3577 check_func checkfn; /* check function */
3578 uLong check; /* check on output */
3579
3580};
3581
3582
3583/* defines for inflate input/output */
3584/* update pointers and return */
3585#define UPDBITS {s->bitb=b;s->bitk=k;}
3586#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3587#define UPDOUT {s->write=q;}
3588#define UPDATE {UPDBITS UPDIN UPDOUT}
3589#define LEAVE {UPDATE return inflate_flush(s,z,r);}
3590/* get bytes and bits */
3591#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3592#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3593#define NEXTBYTE (n--,*p++)
3594#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3595#define DUMPBITS(j) {b>>=(j);k-=(j);}
3596/* output bytes */
3597#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3598#define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3599#define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3600#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3601#define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3602#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3603/* load local pointers */
3604#define LOAD {LOADIN LOADOUT}
3605
3606/* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3607extern uInt inflate_mask[17];
3608
3609/* copy as much as possible from the sliding window to the output area */
3610extern int inflate_flush OF((
3611 inflate_blocks_statef *,
3612 z_streamp ,
3613 int));
3614
3615#ifndef NO_DUMMY_DECL
3616struct internal_state {int dummy;}; /* for buggy compilers */
3617#endif
3618
3619#endif
3620/* --- infutil.h */
3621
3622#ifndef NO_DUMMY_DECL
3623struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3624#endif
3625
3626/* Table for deflate from PKZIP's appnote.txt. */
3627local const uInt border[] = { /* Order of the bit length code lengths */
3628 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3629
3630/*
3631 Notes beyond the 1.93a appnote.txt:
3632
3633 1. Distance pointers never point before the beginning of the output
3634 stream.
3635 2. Distance pointers can point back across blocks, up to 32k away.
3636 3. There is an implied maximum of 7 bits for the bit length table and
3637 15 bits for the actual data.
3638 4. If only one code exists, then it is encoded using one bit. (Zero
3639 would be more efficient, but perhaps a little confusing.) If two
3640 codes exist, they are coded using one bit each (0 and 1).
3641 5. There is no way of sending zero distance codes--a dummy must be
3642 sent if there are none. (History: a pre 2.0 version of PKZIP would
3643 store blocks with no distance codes, but this was discovered to be
3644 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3645 zero distance codes, which is sent as one code of zero bits in
3646 length.
3647 6. There are up to 286 literal/length codes. Code 256 represents the
3648 end-of-block. Note however that the static length tree defines
3649 288 codes just to fill out the Huffman codes. Codes 286 and 287
3650 cannot be used though, since there is no length base or extra bits
3651 defined for them. Similarily, there are up to 30 distance codes.
3652 However, static trees define 32 codes (all 5 bits) to fill out the
3653 Huffman codes, but the last two had better not show up in the data.
3654 7. Unzip can check dynamic Huffman blocks for complete code sets.
3655 The exception is that a single code would not be complete (see #4).
3656 8. The five bits following the block type is really the number of
3657 literal codes sent minus 257.
3658 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3659 (1+6+6). Therefore, to output three times the length, you output
3660 three codes (1+1+1), whereas to output four times the same length,
3661 you only need two codes (1+3). Hmm.
3662 10. In the tree reconstruction algorithm, Code = Code + Increment
3663 only if BitLength(i) is not zero. (Pretty obvious.)
3664 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3665 12. Note: length code 284 can represent 227-258, but length code 285
3666 really is 258. The last length deserves its own, short code
3667 since it gets used a lot in very redundant files. The length
3668 258 is special since 258 - 3 (the min match length) is 255.
3669 13. The literal/length and distance code bit lengths are read as a
3670 single stream of lengths. It is possible (and advantageous) for
3671 a repeat code (16, 17, or 18) to go across the boundary between
3672 the two sets of lengths.
3673 */
3674
3675
3676void inflate_blocks_reset(s, z, c)
3677inflate_blocks_statef *s;
3678z_streamp z;
3679uLongf *c;
3680{
3681 if (s->checkfn != Z_NULL)
3682 *c = s->check;
3683 if (s->mode == BTREE || s->mode == DTREE)
3684 ZFREE(z, s->sub.trees.blens);
3685 if (s->mode == CODES)
3686 {
3687 inflate_codes_free(s->sub.decode.codes, z);
3688 inflate_trees_free(s->sub.decode.td, z);
3689 inflate_trees_free(s->sub.decode.tl, z);
3690 }
3691 s->mode = TYPE;
3692 s->bitk = 0;
3693 s->bitb = 0;
3694 s->read = s->write = s->window;
3695 if (s->checkfn != Z_NULL)
3696 z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3697 Trace((stderr, "inflate: blocks reset\n"));
3698}
3699
3700
3701inflate_blocks_statef *inflate_blocks_new(z, c, w)
3702z_streamp z;
3703check_func c;
3704uInt w;
3705{
3706 inflate_blocks_statef *s;
3707
3708 if ((s = (inflate_blocks_statef *)ZALLOC
3709 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3710 return s;
3711 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3712 {
3713 ZFREE(z, s);
3714 return Z_NULL;
3715 }
3716 s->end = s->window + w;
3717 s->checkfn = c;
3718 s->mode = TYPE;
3719 Trace((stderr, "inflate: blocks allocated\n"));
3720 inflate_blocks_reset(s, z, &s->check);
3721 return s;
3722}
3723
3724
3725#ifdef DEBUG_ZLIB
3726 extern uInt inflate_hufts;
3727#endif
3728int inflate_blocks(s, z, r)
3729inflate_blocks_statef *s;
3730z_streamp z;
3731int r;
3732{
3733 uInt t; /* temporary storage */
3734 uLong b; /* bit buffer */
3735 uInt k; /* bits in bit buffer */
3736 Bytef *p; /* input data pointer */
3737 uInt n; /* bytes available there */
3738 Bytef *q; /* output window write pointer */
3739 uInt m; /* bytes to end of window or read pointer */
3740
3741 /* copy input/output information to locals (UPDATE macro restores) */
3742 LOAD
3743
3744 /* process input based on current state */
3745 while (1) switch (s->mode)
3746 {
3747 case TYPE:
3748 NEEDBITS(3)
3749 t = (uInt)b & 7;
3750 s->last = t & 1;
3751 switch (t >> 1)
3752 {
3753 case 0: /* stored */
3754 Trace((stderr, "inflate: stored block%s\n",
3755 s->last ? " (last)" : ""));
3756 DUMPBITS(3)
3757 t = k & 7; /* go to byte boundary */
3758 DUMPBITS(t)
3759 s->mode = LENS; /* get length of stored block */
3760 break;
3761 case 1: /* fixed */
3762 Trace((stderr, "inflate: fixed codes block%s\n",
3763 s->last ? " (last)" : ""));
3764 {
3765 uInt bl, bd;
3766 inflate_huft *tl, *td;
3767
3768 inflate_trees_fixed(&bl, &bd, &tl, &td);
3769 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3770 if (s->sub.decode.codes == Z_NULL)
3771 {
3772 r = Z_MEM_ERROR;
3773 LEAVE
3774 }
3775 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3776 s->sub.decode.td = Z_NULL;
3777 }
3778 DUMPBITS(3)
3779 s->mode = CODES;
3780 break;
3781 case 2: /* dynamic */
3782 Trace((stderr, "inflate: dynamic codes block%s\n",
3783 s->last ? " (last)" : ""));
3784 DUMPBITS(3)
3785 s->mode = TABLE;
3786 break;
3787 case 3: /* illegal */
3788 DUMPBITS(3)
3789 s->mode = BADB;
3790 z->msg = (char*)"invalid block type";
3791 r = Z_DATA_ERROR;
3792 LEAVE
3793 }
3794 break;
3795 case LENS:
3796 NEEDBITS(32)
3797 if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3798 {
3799 s->mode = BADB;
3800 z->msg = (char*)"invalid stored block lengths";
3801 r = Z_DATA_ERROR;
3802 LEAVE
3803 }
3804 s->sub.left = (uInt)b & 0xffff;
3805 b = k = 0; /* dump bits */
3806 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3807 s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3808 break;
3809 case STORED:
3810 if (n == 0)
3811 LEAVE
3812 NEEDOUT
3813 t = s->sub.left;
3814 if (t > n) t = n;
3815 if (t > m) t = m;
3816 zmemcpy(q, p, t);
3817 p += t; n -= t;
3818 q += t; m -= t;
3819 if ((s->sub.left -= t) != 0)
3820 break;
3821 Tracev((stderr, "inflate: stored end, %lu total out\n",
3822 z->total_out + (q >= s->read ? q - s->read :
3823 (s->end - s->read) + (q - s->window))));
3824 s->mode = s->last ? DRY : TYPE;
3825 break;
3826 case TABLE:
3827 NEEDBITS(14)
3828 s->sub.trees.table = t = (uInt)b & 0x3fff;
3829#ifndef PKZIP_BUG_WORKAROUND
3830 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3831 {
3832 s->mode = BADB;
3833 z->msg = (char*)"too many length or distance symbols";
3834 r = Z_DATA_ERROR;
3835 LEAVE
3836 }
3837#endif
3838 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3839 if (t < 19)
3840 t = 19;
3841 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3842 {
3843 r = Z_MEM_ERROR;
3844 LEAVE
3845 }
3846 DUMPBITS(14)
3847 s->sub.trees.index = 0;
3848 Tracev((stderr, "inflate: table sizes ok\n"));
3849 s->mode = BTREE;
3850 case BTREE:
3851 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3852 {
3853 NEEDBITS(3)
3854 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3855 DUMPBITS(3)
3856 }
3857 while (s->sub.trees.index < 19)
3858 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3859 s->sub.trees.bb = 7;
3860 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3861 &s->sub.trees.tb, z);
3862 if (t != Z_OK)
3863 {
3864 r = t;
3865 if (r == Z_DATA_ERROR) {
3866 s->mode = BADB;
3867 ZFREE(z, s->sub.trees.blens);
3868 }
3869 LEAVE
3870 }
3871 s->sub.trees.index = 0;
3872 Tracev((stderr, "inflate: bits tree ok\n"));
3873 s->mode = DTREE;
3874 case DTREE:
3875 while (t = s->sub.trees.table,
3876 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3877 {
3878 inflate_huft *h;
3879 uInt i, j, c;
3880
3881 t = s->sub.trees.bb;
3882 NEEDBITS(t)
3883 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3884 t = h->word.what.Bits;
3885 c = h->more.Base;
3886 if (c < 16)
3887 {
3888 DUMPBITS(t)
3889 s->sub.trees.blens[s->sub.trees.index++] = c;
3890 }
3891 else /* c == 16..18 */
3892 {
3893 i = c == 18 ? 7 : c - 14;
3894 j = c == 18 ? 11 : 3;
3895 NEEDBITS(t + i)
3896 DUMPBITS(t)
3897 j += (uInt)b & inflate_mask[i];
3898 DUMPBITS(i)
3899 i = s->sub.trees.index;
3900 t = s->sub.trees.table;
3901 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3902 (c == 16 && i < 1))
3903 {
3904 inflate_trees_free(s->sub.trees.tb, z);
3905 ZFREE(z, s->sub.trees.blens);
3906 s->mode = BADB;
3907 z->msg = (char*)"invalid bit length repeat";
3908 r = Z_DATA_ERROR;
3909 LEAVE
3910 }
3911 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3912 do {
3913 s->sub.trees.blens[i++] = c;
3914 } while (--j);
3915 s->sub.trees.index = i;
3916 }
3917 }
3918 inflate_trees_free(s->sub.trees.tb, z);
3919 s->sub.trees.tb = Z_NULL;
3920 {
3921 uInt bl, bd;
3922 inflate_huft *tl, *td;
3923 inflate_codes_statef *c;
3924
3925 bl = 9; /* must be <= 9 for lookahead assumptions */
3926 bd = 6; /* must be <= 9 for lookahead assumptions */
3927 t = s->sub.trees.table;
3928#ifdef DEBUG_ZLIB
3929 inflate_hufts = 0;
3930#endif
3931 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3932 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3933 if (t != Z_OK)
3934 {
3935 if (t == (uInt)Z_DATA_ERROR) {
3936 s->mode = BADB;
3937 ZFREE(z, s->sub.trees.blens);
3938 }
3939 r = t;
3940 LEAVE
3941 }
3942 ZFREE(z, s->sub.trees.blens);
3943 Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n",
3944 inflate_hufts, sizeof(inflate_huft)));
3945 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3946 {
3947 inflate_trees_free(td, z);
3948 inflate_trees_free(tl, z);
3949 r = Z_MEM_ERROR;
3950 LEAVE
3951 }
3952 s->sub.decode.codes = c;
3953 s->sub.decode.tl = tl;
3954 s->sub.decode.td = td;
3955 }
3956 s->mode = CODES;
3957 case CODES:
3958 UPDATE
3959 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3960 return inflate_flush(s, z, r);
3961 r = Z_OK;
3962 inflate_codes_free(s->sub.decode.codes, z);
3963 inflate_trees_free(s->sub.decode.td, z);
3964 inflate_trees_free(s->sub.decode.tl, z);
3965 LOAD
3966 Tracev((stderr, "inflate: codes end, %lu total out\n",
3967 z->total_out + (q >= s->read ? q - s->read :
3968 (s->end - s->read) + (q - s->window))));
3969 if (!s->last)
3970 {
3971 s->mode = TYPE;
3972 break;
3973 }
3974 if (k > 7) /* return unused byte, if any */
3975 {
3976 Assert(k < 16, "inflate_codes grabbed too many bytes")
3977 k -= 8;
3978 n++;
3979 p--; /* can always return one */
3980 }
3981 s->mode = DRY;
3982 case DRY:
3983 FLUSH
3984 if (s->read != s->write)
3985 LEAVE
3986 s->mode = DONEB;
3987 case DONEB:
3988 r = Z_STREAM_END;
3989 LEAVE
3990 case BADB:
3991 r = Z_DATA_ERROR;
3992 LEAVE
3993 default:
3994 r = Z_STREAM_ERROR;
3995 LEAVE
3996 }
3997}
3998
3999
4000int inflate_blocks_free(s, z, c)
4001inflate_blocks_statef *s;
4002z_streamp z;
4003uLongf *c;
4004{
4005 inflate_blocks_reset(s, z, c);
4006 ZFREE(z, s->window);
4007 ZFREE(z, s);
4008 Trace((stderr, "inflate: blocks freed\n"));
4009 return Z_OK;
4010}
4011
4012
4013void inflate_set_dictionary(s, d, n)
4014inflate_blocks_statef *s;
4015const Bytef *d;
4016uInt n;
4017{
4018 zmemcpy((charf *)s->window, d, n);
4019 s->read = s->write = s->window + n;
4020}
4021
4022/*
4023 * This subroutine adds the data at next_in/avail_in to the output history
4024 * without performing any output. The output buffer must be "caught up";
4025 * i.e. no pending output (hence s->read equals s->write), and the state must
4026 * be BLOCKS (i.e. we should be willing to see the start of a series of
4027 * BLOCKS). On exit, the output will also be caught up, and the checksum
4028 * will have been updated if need be.
4029 */
4030int inflate_addhistory(s, z)
4031inflate_blocks_statef *s;
4032z_stream *z;
4033{
4034 uLong b; /* bit buffer */ /* NOT USED HERE */
4035 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4036 uInt t; /* temporary storage */
4037 Bytef *p; /* input data pointer */
4038 uInt n; /* bytes available there */
4039 Bytef *q; /* output window write pointer */
4040 uInt m; /* bytes to end of window or read pointer */
4041
4042 if (s->read != s->write)
4043 return Z_STREAM_ERROR;
4044 if (s->mode != TYPE)
4045 return Z_DATA_ERROR;
4046
4047 /* we're ready to rock */
4048 LOAD
4049 /* while there is input ready, copy to output buffer, moving
4050 * pointers as needed.
4051 */
4052 while (n) {
4053 t = n; /* how many to do */
4054 /* is there room until end of buffer? */
4055 if (t > m) t = m;
4056 /* update check information */
4057 if (s->checkfn != Z_NULL)
4058 s->check = (*s->checkfn)(s->check, q, t);
4059 zmemcpy(q, p, t);
4060 q += t;
4061 p += t;
4062 n -= t;
4063 z->total_out += t;
4064 s->read = q; /* drag read pointer forward */
4065/* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4066 if (q == s->end) {
4067 s->read = q = s->window;
4068 m = WAVAIL;
4069 }
4070 }
4071 UPDATE
4072 return Z_OK;
4073}
4074
4075
4076/*
4077 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4078 * a `stored' block type value but not the (zero) length bytes.
4079 */
4080int inflate_packet_flush(s)
4081 inflate_blocks_statef *s;
4082{
4083 if (s->mode != LENS)
4084 return Z_DATA_ERROR;
4085 s->mode = TYPE;
4086 return Z_OK;
4087}
4088/* --- infblock.c */
4089
4090/* +++ inftrees.c */
4091/* inftrees.c -- generate Huffman trees for efficient decoding
4092 * Copyright (C) 1995-1996 Mark Adler
4093 * For conditions of distribution and use, see copyright notice in zlib.h
4094 */
4095
4096/* #include "zutil.h" */
4097/* #include "inftrees.h" */
4098
4099char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4100/*
4101 If you use the zlib library in a product, an acknowledgment is welcome
4102 in the documentation of your product. If for some reason you cannot
4103 include such an acknowledgment, I would appreciate that you keep this
4104 copyright string in the executable of your product.
4105 */
4106
4107#ifndef NO_DUMMY_DECL
4108struct internal_state {int dummy;}; /* for buggy compilers */
4109#endif
4110
4111/* simplify the use of the inflate_huft type with some defines */
4112#define base more.Base
4113#define next more.Next
4114#define exop word.what.Exop
4115#define bits word.what.Bits
4116
4117
4118local int huft_build OF((
4119 uIntf *, /* code lengths in bits */
4120 uInt, /* number of codes */
4121 uInt, /* number of "simple" codes */
4122 const uIntf *, /* list of base values for non-simple codes */
4123 const uIntf *, /* list of extra bits for non-simple codes */
4124 inflate_huft * FAR*,/* result: starting table */
4125 uIntf *, /* maximum lookup bits (returns actual) */
4126 z_streamp )); /* for zalloc function */
4127
4128local voidpf falloc OF((
4129 voidpf, /* opaque pointer (not used) */
4130 uInt, /* number of items */
4131 uInt)); /* size of item */
4132
4133/* Tables for deflate from PKZIP's appnote.txt. */
4134local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4135 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4136 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4137 /* see note #13 above about 258 */
4138local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4139 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4140 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4141local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4142 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4143 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4144 8193, 12289, 16385, 24577};
4145local const uInt cpdext[30] = { /* Extra bits for distance codes */
4146 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4147 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4148 12, 12, 13, 13};
4149
4150/*
4151 Huffman code decoding is performed using a multi-level table lookup.
4152 The fastest way to decode is to simply build a lookup table whose
4153 size is determined by the longest code. However, the time it takes
4154 to build this table can also be a factor if the data being decoded
4155 is not very long. The most common codes are necessarily the
4156 shortest codes, so those codes dominate the decoding time, and hence
4157 the speed. The idea is you can have a shorter table that decodes the
4158 shorter, more probable codes, and then point to subsidiary tables for
4159 the longer codes. The time it costs to decode the longer codes is
4160 then traded against the time it takes to make longer tables.
4161
4162 This results of this trade are in the variables lbits and dbits
4163 below. lbits is the number of bits the first level table for literal/
4164 length codes can decode in one step, and dbits is the same thing for
4165 the distance codes. Subsequent tables are also less than or equal to
4166 those sizes. These values may be adjusted either when all of the
4167 codes are shorter than that, in which case the longest code length in
4168 bits is used, or when the shortest code is *longer* than the requested
4169 table size, in which case the length of the shortest code in bits is
4170 used.
4171
4172 There are two different values for the two tables, since they code a
4173 different number of possibilities each. The literal/length table
4174 codes 286 possible values, or in a flat code, a little over eight
4175 bits. The distance table codes 30 possible values, or a little less
4176 than five bits, flat. The optimum values for speed end up being
4177 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4178 The optimum values may differ though from machine to machine, and
4179 possibly even between compilers. Your mileage may vary.
4180 */
4181
4182
4183/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4184#define BMAX 15 /* maximum bit length of any code */
4185#define N_MAX 288 /* maximum number of codes in any set */
4186
4187#ifdef DEBUG_ZLIB
4188 uInt inflate_hufts;
4189#endif
4190
4191local int huft_build(b, n, s, d, e, t, m, zs)
4192uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
4193uInt n; /* number of codes (assumed <= N_MAX) */
4194uInt s; /* number of simple-valued codes (0..s-1) */
4195const uIntf *d; /* list of base values for non-simple codes */
4196const uIntf *e; /* list of extra bits for non-simple codes */
4197inflate_huft * FAR *t; /* result: starting table */
4198uIntf *m; /* maximum lookup bits, returns actual */
4199z_streamp zs; /* for zalloc function */
4200/* Given a list of code lengths and a maximum table size, make a set of
4201 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4202 if the given code set is incomplete (the tables are still built in this
4203 case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4204 lengths), or Z_MEM_ERROR if not enough memory. */
4205{
4206
4207 uInt a; /* counter for codes of length k */
4208 uInt c[BMAX+1]; /* bit length count table */
4209 uInt f; /* i repeats in table every f entries */
4210 int g; /* maximum code length */
4211 int h; /* table level */
4212 register uInt i; /* counter, current code */
4213 register uInt j; /* counter */
4214 register int k; /* number of bits in current code */
4215 int l; /* bits per table (returned in m) */
4216 register uIntf *p; /* pointer into c[], b[], or v[] */
4217 inflate_huft *q; /* points to current table */
4218 struct inflate_huft_s r; /* table entry for structure assignment */
4219 inflate_huft *u[BMAX]; /* table stack */
4220 uInt v[N_MAX]; /* values in order of bit length */
4221 register int w; /* bits before this table == (l * h) */
4222 uInt x[BMAX+1]; /* bit offsets, then code stack */
4223 uIntf *xp; /* pointer into x */
4224 int y; /* number of dummy codes added */
4225 uInt z; /* number of entries in current table */
4226
4227
4228 /* Generate counts for each bit length */
4229 p = c;
4230#define C0 *p++ = 0;
4231#define C2 C0 C0 C0 C0
4232#define C4 C2 C2 C2 C2
4233 C4 /* clear c[]--assume BMAX+1 is 16 */
4234 p = b; i = n;
4235 do {
4236 c[*p++]++; /* assume all entries <= BMAX */
4237 } while (--i);
4238 if (c[0] == n) /* null input--all zero length codes */
4239 {
4240 *t = (inflate_huft *)Z_NULL;
4241 *m = 0;
4242 return Z_OK;
4243 }
4244
4245
4246 /* Find minimum and maximum length, bound *m by those */
4247 l = *m;
4248 for (j = 1; j <= BMAX; j++)
4249 if (c[j])
4250 break;
4251 k = j; /* minimum code length */
4252 if ((uInt)l < j)
4253 l = j;
4254 for (i = BMAX; i; i--)
4255 if (c[i])
4256 break;
4257 g = i; /* maximum code length */
4258 if ((uInt)l > i)
4259 l = i;
4260 *m = l;
4261
4262
4263 /* Adjust last length count to fill out codes, if needed */
4264 for (y = 1 << j; j < i; j++, y <<= 1)
4265 if ((y -= c[j]) < 0)
4266 return Z_DATA_ERROR;
4267 if ((y -= c[i]) < 0)
4268 return Z_DATA_ERROR;
4269 c[i] += y;
4270
4271
4272 /* Generate starting offsets into the value table for each length */
4273 x[1] = j = 0;
4274 p = c + 1; xp = x + 2;
4275 while (--i) { /* note that i == g from above */
4276 *xp++ = (j += *p++);
4277 }
4278
4279
4280 /* Make a table of values in order of bit lengths */
4281 p = b; i = 0;
4282 do {
4283 if ((j = *p++) != 0)
4284 v[x[j]++] = i;
4285 } while (++i < n);
4286 n = x[g]; /* set n to length of v */
4287
4288
4289 /* Generate the Huffman codes and for each, make the table entries */
4290 x[0] = i = 0; /* first Huffman code is zero */
4291 p = v; /* grab values in bit order */
4292 h = -1; /* no tables yet--level -1 */
4293 w = -l; /* bits decoded == (l * h) */
4294 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4295 q = (inflate_huft *)Z_NULL; /* ditto */
4296 z = 0; /* ditto */
4297
4298 /* go through the bit lengths (k already is bits in shortest code) */
4299 for (; k <= g; k++)
4300 {
4301 a = c[k];
4302 while (a--)
4303 {
4304 /* here i is the Huffman code of length k bits for value *p */
4305 /* make tables up to required level */
4306 while (k > w + l)
4307 {
4308 h++;
4309 w += l; /* previous table always l bits */
4310
4311 /* compute minimum size table less than or equal to l bits */
4312 z = g - w;
4313 z = z > (uInt)l ? l : z; /* table size upper limit */
4314 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4315 { /* too few codes for k-w bit table */
4316 f -= a + 1; /* deduct codes from patterns left */
4317 xp = c + k;
4318 if (j < z)
4319 while (++j < z) /* try smaller tables up to z bits */
4320 {
4321 if ((f <<= 1) <= *++xp)
4322 break; /* enough codes to use up j bits */
4323 f -= *xp; /* else deduct codes from patterns */
4324 }
4325 }
4326 z = 1 << j; /* table entries for j-bit table */
4327
4328 /* allocate and link in new table */
4329 if ((q = (inflate_huft *)ZALLOC
4330 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4331 {
4332 if (h)
4333 inflate_trees_free(u[0], zs);
4334 return Z_MEM_ERROR; /* not enough memory */
4335 }
4336#ifdef DEBUG_ZLIB
4337 inflate_hufts += z + 1;
4338#endif
4339 *t = q + 1; /* link to list for huft_free() */
4340 *(t = &(q->next)) = Z_NULL;
4341 u[h] = ++q; /* table starts after link */
4342
4343 /* connect to last table, if there is one */
4344 if (h)
4345 {
4346 x[h] = i; /* save pattern for backing up */
4347 r.bits = (Byte)l; /* bits to dump before this table */
4348 r.exop = (Byte)j; /* bits in this table */
4349 r.next = q; /* pointer to this table */
4350 j = i >> (w - l); /* (get around Turbo C bug) */
4351 u[h-1][j] = r; /* connect to last table */
4352 }
4353 }
4354
4355 /* set up table entry in r */
4356 r.bits = (Byte)(k - w);
4357 if (p >= v + n)
4358 r.exop = 128 + 64; /* out of values--invalid code */
4359 else if (*p < s)
4360 {
4361 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4362 r.base = *p++; /* simple code is just the value */
4363 }
4364 else
4365 {
4366 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4367 r.base = d[*p++ - s];
4368 }
4369
4370 /* fill code-like entries with r */
4371 f = 1 << (k - w);
4372 for (j = i >> w; j < z; j += f)
4373 q[j] = r;
4374
4375 /* backwards increment the k-bit code i */
4376 for (j = 1 << (k - 1); i & j; j >>= 1)
4377 i ^= j;
4378 i ^= j;
4379
4380 /* backup over finished tables */
4381 while ((i & ((1 << w) - 1)) != x[h])
4382 {
4383 h--; /* don't need to update q */
4384 w -= l;
4385 }
4386 }
4387 }
4388
4389
4390 /* Return Z_BUF_ERROR if we were given an incomplete table */
4391 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4392}
4393
4394
4395int inflate_trees_bits(c, bb, tb, z)
4396uIntf *c; /* 19 code lengths */
4397uIntf *bb; /* bits tree desired/actual depth */
4398inflate_huft * FAR *tb; /* bits tree result */
4399z_streamp z; /* for zfree function */
4400{
4401 int r;
4402
4403 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4404 if (r == Z_DATA_ERROR)
4405 z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4406 else if (r == Z_BUF_ERROR || *bb == 0)
4407 {
4408 inflate_trees_free(*tb, z);
4409 z->msg = (char*)"incomplete dynamic bit lengths tree";
4410 r = Z_DATA_ERROR;
4411 }
4412 return r;
4413}
4414
4415
4416int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4417uInt nl; /* number of literal/length codes */
4418uInt nd; /* number of distance codes */
4419uIntf *c; /* that many (total) code lengths */
4420uIntf *bl; /* literal desired/actual bit depth */
4421uIntf *bd; /* distance desired/actual bit depth */
4422inflate_huft * FAR *tl; /* literal/length tree result */
4423inflate_huft * FAR *td; /* distance tree result */
4424z_streamp z; /* for zfree function */
4425{
4426 int r;
4427
4428 /* build literal/length tree */
4429 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4430 if (r != Z_OK || *bl == 0)
4431 {
4432 if (r == Z_DATA_ERROR)
4433 z->msg = (char*)"oversubscribed literal/length tree";
4434 else if (r != Z_MEM_ERROR)
4435 {
4436 inflate_trees_free(*tl, z);
4437 z->msg = (char*)"incomplete literal/length tree";
4438 r = Z_DATA_ERROR;
4439 }
4440 return r;
4441 }
4442
4443 /* build distance tree */
4444 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4445 if (r != Z_OK || (*bd == 0 && nl > 257))
4446 {
4447 if (r == Z_DATA_ERROR)
4448 z->msg = (char*)"oversubscribed distance tree";
4449 else if (r == Z_BUF_ERROR) {
4450#ifdef PKZIP_BUG_WORKAROUND
4451 r = Z_OK;
4452 }
4453#else
4454 inflate_trees_free(*td, z);
4455 z->msg = (char*)"incomplete distance tree";
4456 r = Z_DATA_ERROR;
4457 }
4458 else if (r != Z_MEM_ERROR)
4459 {
4460 z->msg = (char*)"empty distance tree with lengths";
4461 r = Z_DATA_ERROR;
4462 }
4463 inflate_trees_free(*tl, z);
4464 return r;
4465#endif
4466 }
4467
4468 /* done */
4469 return Z_OK;
4470}
4471
4472
4473/* build fixed tables only once--keep them here */
4474local int fixed_built = 0;
4475#define FIXEDH 530 /* number of hufts used by fixed tables */
4476local inflate_huft fixed_mem[FIXEDH];
4477local uInt fixed_bl;
4478local uInt fixed_bd;
4479local inflate_huft *fixed_tl;
4480local inflate_huft *fixed_td;
4481
4482
4483local voidpf falloc(q, n, s)
4484voidpf q; /* opaque pointer */
4485uInt n; /* number of items */
4486uInt s; /* size of item */
4487{
4488 Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4489 "inflate_trees falloc overflow");
4490 *(intf *)q -= n+s-s; /* s-s to avoid warning */
4491 return (voidpf)(fixed_mem + *(intf *)q);
4492}
4493
4494
4495int inflate_trees_fixed(bl, bd, tl, td)
4496uIntf *bl; /* literal desired/actual bit depth */
4497uIntf *bd; /* distance desired/actual bit depth */
4498inflate_huft * FAR *tl; /* literal/length tree result */
4499inflate_huft * FAR *td; /* distance tree result */
4500{
4501 /* build fixed tables if not already (multiple overlapped executions ok) */
4502 if (!fixed_built)
4503 {
4504 int k; /* temporary variable */
4505 unsigned c[288]; /* length list for huft_build */
4506 z_stream z; /* for falloc function */
4507 int f = FIXEDH; /* number of hufts left in fixed_mem */
4508
4509 /* set up fake z_stream for memory routines */
4510 z.zalloc = falloc;
4511 z.zfree = Z_NULL;
4512 z.opaque = (voidpf)&f;
4513
4514 /* literal table */
4515 for (k = 0; k < 144; k++)
4516 c[k] = 8;
4517 for (; k < 256; k++)
4518 c[k] = 9;
4519 for (; k < 280; k++)
4520 c[k] = 7;
4521 for (; k < 288; k++)
4522 c[k] = 8;
4523 fixed_bl = 7;
4524 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4525
4526 /* distance table */
4527 for (k = 0; k < 30; k++)
4528 c[k] = 5;
4529 fixed_bd = 5;
4530 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4531
4532 /* done */
4533 Assert(f == 0, "invalid build of fixed tables");
4534 fixed_built = 1;
4535 }
4536 *bl = fixed_bl;
4537 *bd = fixed_bd;
4538 *tl = fixed_tl;
4539 *td = fixed_td;
4540 return Z_OK;
4541}
4542
4543
4544int inflate_trees_free(t, z)
4545inflate_huft *t; /* table to free */
4546z_streamp z; /* for zfree function */
4547/* Free the malloc'ed tables built by huft_build(), which makes a linked
4548 list of the tables it made, with the links in a dummy first entry of
4549 each table. */
4550{
4551 register inflate_huft *p, *q, *r;
4552
4553 /* Reverse linked list */
4554 p = Z_NULL;
4555 q = t;
4556 while (q != Z_NULL)
4557 {
4558 r = (q - 1)->next;
4559 (q - 1)->next = p;
4560 p = q;
4561 q = r;
4562 }
4563 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4564 while (p != Z_NULL)
4565 {
4566 q = (--p)->next;
4567 ZFREE(z,p);
4568 p = q;
4569 }
4570 return Z_OK;
4571}
4572/* --- inftrees.c */
4573
4574/* +++ infcodes.c */
4575/* infcodes.c -- process literals and length/distance pairs
4576 * Copyright (C) 1995-1996 Mark Adler
4577 * For conditions of distribution and use, see copyright notice in zlib.h
4578 */
4579
4580/* #include "zutil.h" */
4581/* #include "inftrees.h" */
4582/* #include "infblock.h" */
4583/* #include "infcodes.h" */
4584/* #include "infutil.h" */
4585
4586/* +++ inffast.h */
4587/* inffast.h -- header to use inffast.c
4588 * Copyright (C) 1995-1996 Mark Adler
4589 * For conditions of distribution and use, see copyright notice in zlib.h
4590 */
4591
4592/* WARNING: this file should *not* be used by applications. It is
4593 part of the implementation of the compression library and is
4594 subject to change. Applications should only use zlib.h.
4595 */
4596
4597extern int inflate_fast OF((
4598 uInt,
4599 uInt,
4600 inflate_huft *,
4601 inflate_huft *,
4602 inflate_blocks_statef *,
4603 z_streamp ));
4604/* --- inffast.h */
4605
4606/* simplify the use of the inflate_huft type with some defines */
4607#define base more.Base
4608#define next more.Next
4609#define exop word.what.Exop
4610#define bits word.what.Bits
4611
4612/* inflate codes private state */
4613struct inflate_codes_state {
4614
4615 /* mode */
4616 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4617 START, /* x: set up for LEN */
4618 LEN, /* i: get length/literal/eob next */
4619 LENEXT, /* i: getting length extra (have base) */
4620 DIST, /* i: get distance next */
4621 DISTEXT, /* i: getting distance extra */
4622 COPY, /* o: copying bytes in window, waiting for space */
4623 LIT, /* o: got literal, waiting for output space */
4624 WASH, /* o: got eob, possibly still output waiting */
4625 END, /* x: got eob and all data flushed */
4626 BADCODE} /* x: got error */
4627 mode; /* current inflate_codes mode */
4628
4629 /* mode dependent information */
4630 uInt len;
4631 union {
4632 struct {
4633 inflate_huft *tree; /* pointer into tree */
4634 uInt need; /* bits needed */
4635 } code; /* if LEN or DIST, where in tree */
4636 uInt lit; /* if LIT, literal */
4637 struct {
4638 uInt get; /* bits to get for extra */
4639 uInt dist; /* distance back to copy from */
4640 } copy; /* if EXT or COPY, where and how much */
4641 } sub; /* submode */
4642
4643 /* mode independent information */
4644 Byte lbits; /* ltree bits decoded per branch */
4645 Byte dbits; /* dtree bits decoder per branch */
4646 inflate_huft *ltree; /* literal/length/eob tree */
4647 inflate_huft *dtree; /* distance tree */
4648
4649};
4650
4651
4652inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4653uInt bl, bd;
4654inflate_huft *tl;
4655inflate_huft *td; /* need separate declaration for Borland C++ */
4656z_streamp z;
4657{
4658 inflate_codes_statef *c;
4659
4660 if ((c = (inflate_codes_statef *)
4661 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4662 {
4663 c->mode = START;
4664 c->lbits = (Byte)bl;
4665 c->dbits = (Byte)bd;
4666 c->ltree = tl;
4667 c->dtree = td;
4668 Tracev((stderr, "inflate: codes new\n"));
4669 }
4670 return c;
4671}
4672
4673
4674int inflate_codes(s, z, r)
4675inflate_blocks_statef *s;
4676z_streamp z;
4677int r;
4678{
4679 uInt j; /* temporary storage */
4680 inflate_huft *t; /* temporary pointer */
4681 uInt e; /* extra bits or operation */
4682 uLong b; /* bit buffer */
4683 uInt k; /* bits in bit buffer */
4684 Bytef *p; /* input data pointer */
4685 uInt n; /* bytes available there */
4686 Bytef *q; /* output window write pointer */
4687 uInt m; /* bytes to end of window or read pointer */
4688 Bytef *f; /* pointer to copy strings from */
4689 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4690
4691 /* copy input/output information to locals (UPDATE macro restores) */
4692 LOAD
4693
4694 /* process input and output based on current state */
4695 while (1) switch (c->mode)
4696 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4697 case START: /* x: set up for LEN */
4698#ifndef SLOW
4699 if (m >= 258 && n >= 10)
4700 {
4701 UPDATE
4702 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4703 LOAD
4704 if (r != Z_OK)
4705 {
4706 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4707 break;
4708 }
4709 }
4710#endif /* !SLOW */
4711 c->sub.code.need = c->lbits;
4712 c->sub.code.tree = c->ltree;
4713 c->mode = LEN;
4714 case LEN: /* i: get length/literal/eob next */
4715 j = c->sub.code.need;
4716 NEEDBITS(j)
4717 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4718 DUMPBITS(t->bits)
4719 e = (uInt)(t->exop);
4720 if (e == 0) /* literal */
4721 {
4722 c->sub.lit = t->base;
4723 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4724 "inflate: literal '%c'\n" :
4725 "inflate: literal 0x%02x\n", t->base));
4726 c->mode = LIT;
4727 break;
4728 }
4729 if (e & 16) /* length */
4730 {
4731 c->sub.copy.get = e & 15;
4732 c->len = t->base;
4733 c->mode = LENEXT;
4734 break;
4735 }
4736 if ((e & 64) == 0) /* next table */
4737 {
4738 c->sub.code.need = e;
4739 c->sub.code.tree = t->next;
4740 break;
4741 }
4742 if (e & 32) /* end of block */
4743 {
4744 Tracevv((stderr, "inflate: end of block\n"));
4745 c->mode = WASH;
4746 break;
4747 }
4748 c->mode = BADCODE; /* invalid code */
4749 z->msg = (char*)"invalid literal/length code";
4750 r = Z_DATA_ERROR;
4751 LEAVE
4752 case LENEXT: /* i: getting length extra (have base) */
4753 j = c->sub.copy.get;
4754 NEEDBITS(j)
4755 c->len += (uInt)b & inflate_mask[j];
4756 DUMPBITS(j)
4757 c->sub.code.need = c->dbits;
4758 c->sub.code.tree = c->dtree;
4759 Tracevv((stderr, "inflate: length %u\n", c->len));
4760 c->mode = DIST;
4761 case DIST: /* i: get distance next */
4762 j = c->sub.code.need;
4763 NEEDBITS(j)
4764 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4765 DUMPBITS(t->bits)
4766 e = (uInt)(t->exop);
4767 if (e & 16) /* distance */
4768 {
4769 c->sub.copy.get = e & 15;
4770 c->sub.copy.dist = t->base;
4771 c->mode = DISTEXT;
4772 break;
4773 }
4774 if ((e & 64) == 0) /* next table */
4775 {
4776 c->sub.code.need = e;
4777 c->sub.code.tree = t->next;
4778 break;
4779 }
4780 c->mode = BADCODE; /* invalid code */
4781 z->msg = (char*)"invalid distance code";
4782 r = Z_DATA_ERROR;
4783 LEAVE
4784 case DISTEXT: /* i: getting distance extra */
4785 j = c->sub.copy.get;
4786 NEEDBITS(j)
4787 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4788 DUMPBITS(j)
4789 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4790 c->mode = COPY;
4791 case COPY: /* o: copying bytes in window, waiting for space */
4792#ifndef __TURBOC__ /* Turbo C bug for following expression */
4793 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4794 s->end - (c->sub.copy.dist - (q - s->window)) :
4795 q - c->sub.copy.dist;
4796#else
4797 f = q - c->sub.copy.dist;
4798 if ((uInt)(q - s->window) < c->sub.copy.dist)
4799 f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4800#endif
4801 while (c->len)
4802 {
4803 NEEDOUT
4804 OUTBYTE(*f++)
4805 if (f == s->end)
4806 f = s->window;
4807 c->len--;
4808 }
4809 c->mode = START;
4810 break;
4811 case LIT: /* o: got literal, waiting for output space */
4812 NEEDOUT
4813 OUTBYTE(c->sub.lit)
4814 c->mode = START;
4815 break;
4816 case WASH: /* o: got eob, possibly more output */
4817 FLUSH
4818 if (s->read != s->write)
4819 LEAVE
4820 c->mode = END;
4821 case END:
4822 r = Z_STREAM_END;
4823 LEAVE
4824 case BADCODE: /* x: got error */
4825 r = Z_DATA_ERROR;
4826 LEAVE
4827 default:
4828 r = Z_STREAM_ERROR;
4829 LEAVE
4830 }
4831}
4832
4833
4834void inflate_codes_free(c, z)
4835inflate_codes_statef *c;
4836z_streamp z;
4837{
4838 ZFREE(z, c);
4839 Tracev((stderr, "inflate: codes free\n"));
4840}
4841/* --- infcodes.c */
4842
4843/* +++ infutil.c */
4844/* inflate_util.c -- data and routines common to blocks and codes
4845 * Copyright (C) 1995-1996 Mark Adler
4846 * For conditions of distribution and use, see copyright notice in zlib.h
4847 */
4848
4849/* #include "zutil.h" */
4850/* #include "infblock.h" */
4851/* #include "inftrees.h" */
4852/* #include "infcodes.h" */
4853/* #include "infutil.h" */
4854
4855#ifndef NO_DUMMY_DECL
4856struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4857#endif
4858
4859/* And'ing with mask[n] masks the lower n bits */
4860uInt inflate_mask[17] = {
4861 0x0000,
4862 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4863 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4864};
4865
4866
4867/* copy as much as possible from the sliding window to the output area */
4868int inflate_flush(s, z, r)
4869inflate_blocks_statef *s;
4870z_streamp z;
4871int r;
4872{
4873 uInt n;
4874 Bytef *p;
4875 Bytef *q;
4876
4877 /* local copies of source and destination pointers */
4878 p = z->next_out;
4879 q = s->read;
4880
4881 /* compute number of bytes to copy as far as end of window */
4882 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4883 if (n > z->avail_out) n = z->avail_out;
4884 if (n && r == Z_BUF_ERROR) r = Z_OK;
4885
4886 /* update counters */
4887 z->avail_out -= n;
4888 z->total_out += n;
4889
4890 /* update check information */
4891 if (s->checkfn != Z_NULL)
4892 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4893
4894 /* copy as far as end of window */
4895 if (p != Z_NULL) {
4896 zmemcpy(p, q, n);
4897 p += n;
4898 }
4899 q += n;
4900
4901 /* see if more to copy at beginning of window */
4902 if (q == s->end)
4903 {
4904 /* wrap pointers */
4905 q = s->window;
4906 if (s->write == s->end)
4907 s->write = s->window;
4908
4909 /* compute bytes to copy */
4910 n = (uInt)(s->write - q);
4911 if (n > z->avail_out) n = z->avail_out;
4912 if (n && r == Z_BUF_ERROR) r = Z_OK;
4913
4914 /* update counters */
4915 z->avail_out -= n;
4916 z->total_out += n;
4917
4918 /* update check information */
4919 if (s->checkfn != Z_NULL)
4920 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4921
4922 /* copy */
4923 if (p != Z_NULL) {
4924 zmemcpy(p, q, n);
4925 p += n;
4926 }
4927 q += n;
4928 }
4929
4930 /* update pointers */
4931 z->next_out = p;
4932 s->read = q;
4933
4934 /* done */
4935 return r;
4936}
4937/* --- infutil.c */
4938
4939/* +++ inffast.c */
4940/* inffast.c -- process literals and length/distance pairs fast
4941 * Copyright (C) 1995-1996 Mark Adler
4942 * For conditions of distribution and use, see copyright notice in zlib.h
4943 */
4944
4945/* #include "zutil.h" */
4946/* #include "inftrees.h" */
4947/* #include "infblock.h" */
4948/* #include "infcodes.h" */
4949/* #include "infutil.h" */
4950/* #include "inffast.h" */
4951
4952#ifndef NO_DUMMY_DECL
4953struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4954#endif
4955
4956/* simplify the use of the inflate_huft type with some defines */
4957#define base more.Base
4958#define next more.Next
4959#define exop word.what.Exop
4960#define bits word.what.Bits
4961
4962/* macros for bit input with no checking and for returning unused bytes */
4963#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4964#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4965
4966/* Called with number of bytes left to write in window at least 258
4967 (the maximum string length) and number of input bytes available
4968 at least ten. The ten bytes are six bytes for the longest length/
4969 distance pair plus four bytes for overloading the bit buffer. */
4970
4971int inflate_fast(bl, bd, tl, td, s, z)
4972uInt bl, bd;
4973inflate_huft *tl;
4974inflate_huft *td; /* need separate declaration for Borland C++ */
4975inflate_blocks_statef *s;
4976z_streamp z;
4977{
4978 inflate_huft *t; /* temporary pointer */
4979 uInt e; /* extra bits or operation */
4980 uLong b; /* bit buffer */
4981 uInt k; /* bits in bit buffer */
4982 Bytef *p; /* input data pointer */
4983 uInt n; /* bytes available there */
4984 Bytef *q; /* output window write pointer */
4985 uInt m; /* bytes to end of window or read pointer */
4986 uInt ml; /* mask for literal/length tree */
4987 uInt md; /* mask for distance tree */
4988 uInt c; /* bytes to copy */
4989 uInt d; /* distance back to copy from */
4990 Bytef *r; /* copy source pointer */
4991
4992 /* load input, output, bit values */
4993 LOAD
4994
4995 /* initialize masks */
4996 ml = inflate_mask[bl];
4997 md = inflate_mask[bd];
4998
4999 /* do until not enough input or output space for fast loop */
5000 do { /* assume called with m >= 258 && n >= 10 */
5001 /* get literal/length code */
5002 GRABBITS(20) /* max bits for literal/length code */
5003 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5004 {
5005 DUMPBITS(t->bits)
5006 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5007 "inflate: * literal '%c'\n" :
5008 "inflate: * literal 0x%02x\n", t->base));
5009 *q++ = (Byte)t->base;
5010 m--;
5011 continue;
5012 }
5013 do {
5014 DUMPBITS(t->bits)
5015 if (e & 16)
5016 {
5017 /* get extra bits for length */
5018 e &= 15;
5019 c = t->base + ((uInt)b & inflate_mask[e]);
5020 DUMPBITS(e)
5021 Tracevv((stderr, "inflate: * length %u\n", c));
5022
5023 /* decode distance base of block to copy */
5024 GRABBITS(15); /* max bits for distance code */
5025 e = (t = td + ((uInt)b & md))->exop;
5026 do {
5027 DUMPBITS(t->bits)
5028 if (e & 16)
5029 {
5030 /* get extra bits to add to distance base */
5031 e &= 15;
5032 GRABBITS(e) /* get extra bits (up to 13) */
5033 d = t->base + ((uInt)b & inflate_mask[e]);
5034 DUMPBITS(e)
5035 Tracevv((stderr, "inflate: * distance %u\n", d));
5036
5037 /* do the copy */
5038 m -= c;
5039 if ((uInt)(q - s->window) >= d) /* offset before dest */
5040 { /* just copy */
5041 r = q - d;
5042 *q++ = *r++; c--; /* minimum count is three, */
5043 *q++ = *r++; c--; /* so unroll loop a little */
5044 }
5045 else /* else offset after destination */
5046 {
5047 e = d - (uInt)(q - s->window); /* bytes from offset to end */
5048 r = s->end - e; /* pointer to offset */
5049 if (c > e) /* if source crosses, */
5050 {
5051 c -= e; /* copy to end of window */
5052 do {
5053 *q++ = *r++;
5054 } while (--e);
5055 r = s->window; /* copy rest from start of window */
5056 }
5057 }
5058 do { /* copy all or what's left */
5059 *q++ = *r++;
5060 } while (--c);
5061 break;
5062 }
5063 else if ((e & 64) == 0)
5064 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5065 else
5066 {
5067 z->msg = (char*)"invalid distance code";
5068 UNGRAB
5069 UPDATE
5070 return Z_DATA_ERROR;
5071 }
5072 } while (1);
5073 break;
5074 }
5075 if ((e & 64) == 0)
5076 {
5077 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5078 {
5079 DUMPBITS(t->bits)
5080 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5081 "inflate: * literal '%c'\n" :
5082 "inflate: * literal 0x%02x\n", t->base));
5083 *q++ = (Byte)t->base;
5084 m--;
5085 break;
5086 }
5087 }
5088 else if (e & 32)
5089 {
5090 Tracevv((stderr, "inflate: * end of block\n"));
5091 UNGRAB
5092 UPDATE
5093 return Z_STREAM_END;
5094 }
5095 else
5096 {
5097 z->msg = (char*)"invalid literal/length code";
5098 UNGRAB
5099 UPDATE
5100 return Z_DATA_ERROR;
5101 }
5102 } while (1);
5103 } while (m >= 258 && n >= 10);
5104
5105 /* not enough input or output--restore pointers and return */
5106 UNGRAB
5107 UPDATE
5108 return Z_OK;
5109}
5110/* --- inffast.c */
5111
5112/* +++ zutil.c */
5113/* zutil.c -- target dependent utility functions for the compression library
5114 * Copyright (C) 1995-1996 Jean-loup Gailly.
5115 * For conditions of distribution and use, see copyright notice in zlib.h
5116 */
5117
5118/* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5119
5120#ifdef DEBUG_ZLIB
5121#include <stdio.h>
5122#endif
5123
5124/* #include "zutil.h" */
5125
5126#ifndef NO_DUMMY_DECL
5127struct internal_state {int dummy;}; /* for buggy compilers */
5128#endif
5129
5130#ifndef STDC
5131extern void exit OF((int));
5132#endif
5133
5134const char *z_errmsg[10] = {
5135"need dictionary", /* Z_NEED_DICT 2 */
5136"stream end", /* Z_STREAM_END 1 */
5137"", /* Z_OK 0 */
5138"file error", /* Z_ERRNO (-1) */
5139"stream error", /* Z_STREAM_ERROR (-2) */
5140"data error", /* Z_DATA_ERROR (-3) */
5141"insufficient memory", /* Z_MEM_ERROR (-4) */
5142"buffer error", /* Z_BUF_ERROR (-5) */
5143"incompatible version",/* Z_VERSION_ERROR (-6) */
5144""};
5145
5146
5147const char *zlibVersion()
5148{
5149 return ZLIB_VERSION;
5150}
5151
5152#ifdef DEBUG_ZLIB
5153void z_error (m)
5154 char *m;
5155{
5156 fprintf(stderr, "%s\n", m);
5157 exit(1);
5158}
5159#endif
5160
5161#ifndef HAVE_MEMCPY
5162
5163void zmemcpy(dest, source, len)
5164 Bytef* dest;
5165 Bytef* source;
5166 uInt len;
5167{
5168 if (len == 0) return;
5169 do {
5170 *dest++ = *source++; /* ??? to be unrolled */
5171 } while (--len != 0);
5172}
5173
5174int zmemcmp(s1, s2, len)
5175 Bytef* s1;
5176 Bytef* s2;
5177 uInt len;
5178{
5179 uInt j;
5180
5181 for (j = 0; j < len; j++) {
5182 if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5183 }
5184 return 0;
5185}
5186
5187void zmemzero(dest, len)
5188 Bytef* dest;
5189 uInt len;
5190{
5191 if (len == 0) return;
5192 do {
5193 *dest++ = 0; /* ??? to be unrolled */
5194 } while (--len != 0);
5195}
5196#endif
5197
5198#ifdef __TURBOC__
5199#if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5200/* Small and medium model in Turbo C are for now limited to near allocation
5201 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5202 */
5203# define MY_ZCALLOC
5204
5205/* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5206 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5207 * must fix the pointer. Warning: the pointer must be put back to its
5208 * original form in order to free it, use zcfree().
5209 */
5210
5211#define MAX_PTR 10
5212/* 10*64K = 640K */
5213
5214local int next_ptr = 0;
5215
5216typedef struct ptr_table_s {
5217 voidpf org_ptr;
5218 voidpf new_ptr;
5219} ptr_table;
5220
5221local ptr_table table[MAX_PTR];
5222/* This table is used to remember the original form of pointers
5223 * to large buffers (64K). Such pointers are normalized with a zero offset.
5224 * Since MSDOS is not a preemptive multitasking OS, this table is not
5225 * protected from concurrent access. This hack doesn't work anyway on
5226 * a protected system like OS/2. Use Microsoft C instead.
5227 */
5228
5229voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5230{
5231 voidpf buf = opaque; /* just to make some compilers happy */
5232 ulg bsize = (ulg)items*size;
5233
5234 /* If we allocate less than 65520 bytes, we assume that farmalloc
5235 * will return a usable pointer which doesn't have to be normalized.
5236 */
5237 if (bsize < 65520L) {
5238 buf = farmalloc(bsize);
5239 if (*(ush*)&buf != 0) return buf;
5240 } else {
5241 buf = farmalloc(bsize + 16L);
5242 }
5243 if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5244 table[next_ptr].org_ptr = buf;
5245
5246 /* Normalize the pointer to seg:0 */
5247 *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5248 *(ush*)&buf = 0;
5249 table[next_ptr++].new_ptr = buf;
5250 return buf;
5251}
5252
5253void zcfree (voidpf opaque, voidpf ptr)
5254{
5255 int n;
5256 if (*(ush*)&ptr != 0) { /* object < 64K */
5257 farfree(ptr);
5258 return;
5259 }
5260 /* Find the original pointer */
5261 for (n = 0; n < next_ptr; n++) {
5262 if (ptr != table[n].new_ptr) continue;
5263
5264 farfree(table[n].org_ptr);
5265 while (++n < next_ptr) {
5266 table[n-1] = table[n];
5267 }
5268 next_ptr--;
5269 return;
5270 }
5271 ptr = opaque; /* just to make some compilers happy */
5272 Assert(0, "zcfree: ptr not found");
5273}
5274#endif
5275#endif /* __TURBOC__ */
5276
5277
5278#if defined(M_I86) && !defined(__32BIT__)
5279/* Microsoft C in 16-bit mode */
5280
5281# define MY_ZCALLOC
5282
5283#if (!defined(_MSC_VER) || (_MSC_VER < 600))
5284# define _halloc halloc
5285# define _hfree hfree
5286#endif
5287
5288voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5289{
5290 if (opaque) opaque = 0; /* to make compiler happy */
5291 return _halloc((long)items, size);
5292}
5293
5294void zcfree (voidpf opaque, voidpf ptr)
5295{
5296 if (opaque) opaque = 0; /* to make compiler happy */
5297 _hfree(ptr);
5298}
5299
5300#endif /* MSC */
5301
5302
5303#ifndef MY_ZCALLOC /* Any system without a special alloc function */
5304
5305#ifndef STDC
5306extern voidp calloc OF((uInt items, uInt size));
5307extern void free OF((voidpf ptr));
5308#endif
5309
5310voidpf zcalloc (opaque, items, size)
5311 voidpf opaque;
5312 unsigned items;
5313 unsigned size;
5314{
5315 if (opaque) items += size - size; /* make compiler happy */
5316 return (voidpf)calloc(items, size);
5317}
5318
5319void zcfree (opaque, ptr)
5320 voidpf opaque;
5321 voidpf ptr;
5322{
5323 free(ptr);
5324 if (opaque) return; /* make compiler happy */
5325}
5326
5327#endif /* MY_ZCALLOC */
5328/* --- zutil.c */
5329
5330/* +++ adler32.c */
5331/* adler32.c -- compute the Adler-32 checksum of a data stream
5332 * Copyright (C) 1995-1996 Mark Adler
5333 * For conditions of distribution and use, see copyright notice in zlib.h
5334 */
5335
5336/* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5337
5338/* #include "zlib.h" */
5339
5340#define BASE 65521L /* largest prime smaller than 65536 */
5341#define NMAX 5552
5342/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5343
5344#define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5345#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5346#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5347#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5348#define DO16(buf) DO8(buf,0); DO8(buf,8);
5349
5350/* ========================================================================= */
5351uLong adler32(adler, buf, len)
5352 uLong adler;
5353 const Bytef *buf;
5354 uInt len;
5355{
5356 unsigned long s1 = adler & 0xffff;
5357 unsigned long s2 = (adler >> 16) & 0xffff;
5358 int k;
5359
5360 if (buf == Z_NULL) return 1L;
5361
5362 while (len > 0) {
5363 k = len < NMAX ? len : NMAX;
5364 len -= k;
5365 while (k >= 16) {
5366 DO16(buf);
5367 buf += 16;
5368 k -= 16;
5369 }
5370 if (k != 0) do {
5371 s1 += *buf++;
5372 s2 += s1;
5373 } while (--k);
5374 s1 %= BASE;
5375 s2 %= BASE;
5376 }
5377 return (s2 << 16) | s1;
5378}
5379/* --- adler32.c */