blob: 45df5838ec3e2d73cd2e3052fe3d6a6b51848c33 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/* Optimized version of the standard memset() function.
2 This file is part of the GNU C Library.
3 Copyright (C) 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Dan Pop for Itanium <Dan.Pop@cern.ch>.
5 Rewritten for McKinley by Sverre Jarp, HP Labs/CERN <Sverre.Jarp@cern.ch>
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
21
22/* Return: dest
23
24 Inputs:
25 in0: dest
26 in1: value
27 in2: count
28
29 The algorithm is fairly straightforward: set byte by byte until we
30 we get to a 16B-aligned address, then loop on 128 B chunks using an
31 early store as prefetching, then loop on 32B chucks, then clear remaining
32 words, finally clear remaining bytes.
33 Since a stf.spill f0 can store 16B in one go, we use this instruction
34 to get peak speed when value = 0. */
35
36#include "sysdep.h"
37#undef ret
38
39#define dest in0
40#define value in1
41#define cnt in2
42
43#define tmp r31
44#define save_lc r30
45#define ptr0 r29
46#define ptr1 r28
47#define ptr2 r27
48#define ptr3 r26
49#define ptr9 r24
50#define loopcnt r23
51#define linecnt r22
52#define bytecnt r21
53
54#define fvalue f6
55
56/* This routine uses only scratch predicate registers (p6 - p15) */
57#define p_scr p6 /* default register for same-cycle branches */
58#define p_nz p7
59#define p_zr p8
60#define p_unalgn p9
61#define p_y p11
62#define p_n p12
63#define p_yy p13
64#define p_nn p14
65
66#define movi0 mov
67
68#define MIN1 15
69#define MIN1P1HALF 8
70#define LINE_SIZE 128
71#define LSIZE_SH 7 /* shift amount */
72#define PREF_AHEAD 8
73
74#define USE_FLP
75#if defined(USE_INT)
76#define store st8
77#define myval value
78#elif defined(USE_FLP)
79#define store stf8
80#define myval fvalue
81#endif
82
83.align 64
84ENTRY(memset)
85{ .mmi
86 .prologue
87 alloc tmp = ar.pfs, 3, 0, 0, 0
88 lfetch.nt1 [dest]
89 .save ar.lc, save_lc
90 movi0 save_lc = ar.lc
91} { .mmi
92 .body
93 mov ret0 = dest /* return value */
94 cmp.ne p_nz, p_zr = value, r0 /* use stf.spill if value is zero */
95 cmp.eq p_scr, p0 = cnt, r0
96;; }
97{ .mmi
98 and ptr2 = -(MIN1+1), dest /* aligned address */
99 and tmp = MIN1, dest /* prepare to check for alignment */
100 tbit.nz p_y, p_n = dest, 0 /* Do we have an odd address? (M_B_U) */
101} { .mib
102 mov ptr1 = dest
103 mux1 value = value, @brcst /* create 8 identical bytes in word */
104(p_scr) br.ret.dpnt.many rp /* return immediately if count = 0 */
105;; }
106{ .mib
107 cmp.ne p_unalgn, p0 = tmp, r0
108} { .mib /* NB: # of bytes to move is 1 higher */
109 sub bytecnt = (MIN1+1), tmp /* than loopcnt */
110 cmp.gt p_scr, p0 = 16, cnt /* is it a minimalistic task? */
111(p_scr) br.cond.dptk.many .move_bytes_unaligned /* go move just a few (M_B_U) */
112;; }
113{ .mmi
114(p_unalgn) add ptr1 = (MIN1+1), ptr2 /* after alignment */
115(p_unalgn) add ptr2 = MIN1P1HALF, ptr2 /* after alignment */
116(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3 /* should we do a st8 ? */
117;; }
118{ .mib
119(p_y) add cnt = -8, cnt
120(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2 /* should we do a st4 ? */
121} { .mib
122(p_y) st8 [ptr2] = value, -4
123(p_n) add ptr2 = 4, ptr2
124;; }
125{ .mib
126(p_yy) add cnt = -4, cnt
127(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1 /* should we do a st2 ? */
128} { .mib
129(p_yy) st4 [ptr2] = value, -2
130(p_nn) add ptr2 = 2, ptr2
131;; }
132{ .mmi
133 mov tmp = LINE_SIZE+1 /* for compare */
134(p_y) add cnt = -2, cnt
135(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0 /* should we do a st1 ? */
136} { .mmi
137 setf.sig fvalue=value /* transfer value to FLP side */
138(p_y) st2 [ptr2] = value, -1
139(p_n) add ptr2 = 1, ptr2
140;; }
141
142{ .mmi
143(p_yy) st1 [ptr2] = value
144 cmp.gt p_scr, p0 = tmp, cnt /* is it a minimalistic task? */
145} { .mbb
146(p_yy) add cnt = -1, cnt
147(p_scr) br.cond.dpnt.many .fraction_of_line /* go move just a few */
148;; }
149
150{ .mib
151 nop.m 0
152 shr.u linecnt = cnt, LSIZE_SH
153(p_zr) br.cond.dptk.many .l1b /* Jump to use stf.spill */
154;; }
155
156#ifndef GAS_ALIGN_BREAKS_UNWIND_INFO
157 .align 32 /* -------- L1A: store ahead into cache lines; fill later */
158#endif
159{ .mmi
160 and tmp = -(LINE_SIZE), cnt /* compute end of range */
161 mov ptr9 = ptr1 /* used for prefetching */
162 and cnt = (LINE_SIZE-1), cnt /* remainder */
163} { .mmi
164 mov loopcnt = PREF_AHEAD-1 /* default prefetch loop */
165 cmp.gt p_scr, p0 = PREF_AHEAD, linecnt /* check against actual value */
166;; }
167{ .mmi
168(p_scr) add loopcnt = -1, linecnt /* start of stores */
169 add ptr2 = 8, ptr1 /* (beyond prefetch stores) */
170 add ptr1 = tmp, ptr1 /* first address beyond total */
171;; } /* range */
172{ .mmi
173 add tmp = -1, linecnt /* next loop count */
174 movi0 ar.lc = loopcnt
175;; }
176.pref_l1a:
177{ .mib
178 store [ptr9] = myval, 128 /* Do stores one cache line apart */
179 nop.i 0
180 br.cloop.dptk.few .pref_l1a
181;; }
182{ .mmi
183 add ptr0 = 16, ptr2 /* Two stores in parallel */
184 movi0 ar.lc = tmp
185;; }
186.l1ax:
187 { .mmi
188 store [ptr2] = myval, 8
189 store [ptr0] = myval, 8
190 ;; }
191 { .mmi
192 store [ptr2] = myval, 24
193 store [ptr0] = myval, 24
194 ;; }
195 { .mmi
196 store [ptr2] = myval, 8
197 store [ptr0] = myval, 8
198 ;; }
199 { .mmi
200 store [ptr2] = myval, 24
201 store [ptr0] = myval, 24
202 ;; }
203 { .mmi
204 store [ptr2] = myval, 8
205 store [ptr0] = myval, 8
206 ;; }
207 { .mmi
208 store [ptr2] = myval, 24
209 store [ptr0] = myval, 24
210 ;; }
211 { .mmi
212 store [ptr2] = myval, 8
213 store [ptr0] = myval, 32
214 cmp.lt p_scr, p0 = ptr9, ptr1 /* do we need more prefetching? */
215 ;; }
216{ .mmb
217 store [ptr2] = myval, 24
218(p_scr) store [ptr9] = myval, 128
219 br.cloop.dptk.few .l1ax
220;; }
221{ .mbb
222 cmp.le p_scr, p0 = 8, cnt /* just a few bytes left ? */
223(p_scr) br.cond.dpnt.many .fraction_of_line /* Branch no. 2 */
224 br.cond.dpnt.many .move_bytes_from_alignment /* Branch no. 3 */
225;; }
226
227#ifdef GAS_ALIGN_BREAKS_UNWIND_INFO
228 { nop 0 }
229#else
230 .align 32
231#endif
232.l1b: /* ------------------ L1B: store ahead into cache lines; fill later */
233{ .mmi
234 and tmp = -(LINE_SIZE), cnt /* compute end of range */
235 mov ptr9 = ptr1 /* used for prefetching */
236 and cnt = (LINE_SIZE-1), cnt /* remainder */
237} { .mmi
238 mov loopcnt = PREF_AHEAD-1 /* default prefetch loop */
239 cmp.gt p_scr, p0 = PREF_AHEAD, linecnt /* check against actual value */
240;; }
241{ .mmi
242(p_scr) add loopcnt = -1, linecnt
243 add ptr2 = 16, ptr1 /* start of stores (beyond prefetch stores) */
244 add ptr1 = tmp, ptr1 /* first address beyond total range */
245;; }
246{ .mmi
247 add tmp = -1, linecnt /* next loop count */
248 movi0 ar.lc = loopcnt
249;; }
250.pref_l1b:
251{ .mib
252 stf.spill [ptr9] = f0, 128 /* Do stores one cache line apart */
253 nop.i 0
254 br.cloop.dptk.few .pref_l1b
255;; }
256{ .mmi
257 add ptr0 = 16, ptr2 /* Two stores in parallel */
258 movi0 ar.lc = tmp
259;; }
260.l1bx:
261 { .mmi
262 stf.spill [ptr2] = f0, 32
263 stf.spill [ptr0] = f0, 32
264 ;; }
265 { .mmi
266 stf.spill [ptr2] = f0, 32
267 stf.spill [ptr0] = f0, 32
268 ;; }
269 { .mmi
270 stf.spill [ptr2] = f0, 32
271 stf.spill [ptr0] = f0, 64
272 cmp.lt p_scr, p0 = ptr9, ptr1 /* do we need more prefetching? */
273 ;; }
274{ .mmb
275 stf.spill [ptr2] = f0, 32
276(p_scr) stf.spill [ptr9] = f0, 128
277 br.cloop.dptk.few .l1bx
278;; }
279{ .mib
280 cmp.gt p_scr, p0 = 8, cnt /* just a few bytes left ? */
281(p_scr) br.cond.dpnt.many .move_bytes_from_alignment
282;; }
283
284.fraction_of_line:
285{ .mib
286 add ptr2 = 16, ptr1
287 shr.u loopcnt = cnt, 5 /* loopcnt = cnt / 32 */
288;; }
289{ .mib
290 cmp.eq p_scr, p0 = loopcnt, r0
291 add loopcnt = -1, loopcnt
292(p_scr) br.cond.dpnt.many store_words
293;; }
294{ .mib
295 and cnt = 0x1f, cnt /* compute the remaining cnt */
296 movi0 ar.lc = loopcnt
297;; }
298#ifndef GAS_ALIGN_BREAKS_UNWIND_INFO
299 .align 32
300#endif
301.l2: /* ---------------------------- L2A: store 32B in 2 cycles */
302{ .mmb
303 store [ptr1] = myval, 8
304 store [ptr2] = myval, 8
305;; } { .mmb
306 store [ptr1] = myval, 24
307 store [ptr2] = myval, 24
308 br.cloop.dptk.many .l2
309;; }
310store_words:
311{ .mib
312 cmp.gt p_scr, p0 = 8, cnt /* just a few bytes left ? */
313(p_scr) br.cond.dpnt.many .move_bytes_from_alignment /* Branch */
314;; }
315
316{ .mmi
317 store [ptr1] = myval, 8 /* store */
318 cmp.le p_y, p_n = 16, cnt /* */
319 add cnt = -8, cnt /* subtract */
320;; }
321{ .mmi
322(p_y) store [ptr1] = myval, 8 /* store */
323(p_y) cmp.le.unc p_yy, p_nn = 16, cnt /* */
324(p_y) add cnt = -8, cnt /* subtract */
325;; }
326{ .mmi /* store */
327(p_yy) store [ptr1] = myval, 8 /* */
328(p_yy) add cnt = -8, cnt /* subtract */
329;; }
330
331.move_bytes_from_alignment:
332{ .mib
333 cmp.eq p_scr, p0 = cnt, r0
334 tbit.nz.unc p_y, p0 = cnt, 2 /* should we terminate with a st4 ? */
335(p_scr) br.cond.dpnt.few .restore_and_exit
336;; }
337{ .mib
338(p_y) st4 [ptr1] = value, 4
339 tbit.nz.unc p_yy, p0 = cnt, 1 /* should we terminate with a st2 ? */
340;; }
341{ .mib
342(p_yy) st2 [ptr1] = value, 2
343 tbit.nz.unc p_y, p0 = cnt, 0
344;; }
345
346{ .mib
347(p_y) st1 [ptr1] = value
348;; }
349.restore_and_exit:
350{ .mib
351 nop.m 0
352 movi0 ar.lc = save_lc
353 br.ret.sptk.many rp
354;; }
355
356.move_bytes_unaligned:
357{ .mmi
358 .pred.rel "mutex",p_y, p_n
359 .pred.rel "mutex",p_yy, p_nn
360(p_n) cmp.le p_yy, p_nn = 4, cnt
361(p_y) cmp.le p_yy, p_nn = 5, cnt
362(p_n) add ptr2 = 2, ptr1
363} { .mmi
364(p_y) add ptr2 = 3, ptr1
365(p_y) st1 [ptr1] = value, 1 /* fill 1 (odd-aligned) byte */
366(p_y) add cnt = -1, cnt /* [15, 14 (or less) left] */
367;; }
368{ .mmi
369(p_yy) cmp.le.unc p_y, p0 = 8, cnt
370 add ptr3 = ptr1, cnt /* prepare last store */
371 movi0 ar.lc = save_lc
372} { .mmi
373(p_yy) st2 [ptr1] = value, 4 /* fill 2 (aligned) bytes */
374(p_yy) st2 [ptr2] = value, 4 /* fill 2 (aligned) bytes */
375(p_yy) add cnt = -4, cnt /* [11, 10 (o less) left] */
376;; }
377{ .mmi
378(p_y) cmp.le.unc p_yy, p0 = 8, cnt
379 add ptr3 = -1, ptr3 /* last store */
380 tbit.nz p_scr, p0 = cnt, 1 /* will there be a st2 at the end ? */
381} { .mmi
382(p_y) st2 [ptr1] = value, 4 /* fill 2 (aligned) bytes */
383(p_y) st2 [ptr2] = value, 4 /* fill 2 (aligned) bytes */
384(p_y) add cnt = -4, cnt /* [7, 6 (or less) left] */
385;; }
386{ .mmi
387(p_yy) st2 [ptr1] = value, 4 /* fill 2 (aligned) bytes */
388(p_yy) st2 [ptr2] = value, 4 /* fill 2 (aligned) bytes */
389 /* [3, 2 (or less) left] */
390 tbit.nz p_y, p0 = cnt, 0 /* will there be a st1 at the end ? */
391} { .mmi
392(p_yy) add cnt = -4, cnt
393;; }
394{ .mmb
395(p_scr) st2 [ptr1] = value /* fill 2 (aligned) bytes */
396(p_y) st1 [ptr3] = value /* fill last byte (using ptr3) */
397 br.ret.sptk.many rp
398;; }
399END(memset)
400libc_hidden_def (memset)