lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * FreeSec: libcrypt for NetBSD |
| 3 | * |
| 4 | * Copyright (c) 1994 David Burren |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet |
| 8 | * this file should now *only* export crypt(), in order to make |
| 9 | * binaries of libcrypt exportable from the USA |
| 10 | * |
| 11 | * Adapted for FreeBSD-4.0 by Mark R V Murray |
| 12 | * this file should now *only* export crypt_des(), in order to make |
| 13 | * a module that can be optionally included in libcrypt. |
| 14 | * |
| 15 | * Redistribution and use in source and binary forms, with or without |
| 16 | * modification, are permitted provided that the following conditions |
| 17 | * are met: |
| 18 | * 1. Redistributions of source code must retain the above copyright |
| 19 | * notice, this list of conditions and the following disclaimer. |
| 20 | * 2. Redistributions in binary form must reproduce the above copyright |
| 21 | * notice, this list of conditions and the following disclaimer in the |
| 22 | * documentation and/or other materials provided with the distribution. |
| 23 | * 3. Neither the name of the author nor the names of other contributors |
| 24 | * may be used to endorse or promote products derived from this software |
| 25 | * without specific prior written permission. |
| 26 | * |
| 27 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 28 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 29 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 30 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 31 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 32 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 33 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 34 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 35 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 36 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 37 | * SUCH DAMAGE. |
| 38 | * |
| 39 | * This is an original implementation of the DES and the crypt(3) interfaces |
| 40 | * by David Burren <davidb@werj.com.au>. |
| 41 | * |
| 42 | * An excellent reference on the underlying algorithm (and related |
| 43 | * algorithms) is: |
| 44 | * |
| 45 | * B. Schneier, Applied Cryptography: protocols, algorithms, |
| 46 | * and source code in C, John Wiley & Sons, 1994. |
| 47 | * |
| 48 | * Note that in that book's description of DES the lookups for the initial, |
| 49 | * pbox, and final permutations are inverted (this has been brought to the |
| 50 | * attention of the author). A list of errata for this book has been |
| 51 | * posted to the sci.crypt newsgroup by the author and is available for FTP. |
| 52 | * |
| 53 | * ARCHITECTURE ASSUMPTIONS: |
| 54 | * It is assumed that the 8-byte arrays passed by reference can be |
| 55 | * addressed as arrays of u_int32_t's (ie. the CPU is not picky about |
| 56 | * alignment). |
| 57 | */ |
| 58 | |
| 59 | #define __FORCE_GLIBC |
| 60 | #include <sys/cdefs.h> |
| 61 | #include <sys/types.h> |
| 62 | #include <sys/param.h> |
| 63 | #include <netinet/in.h> |
| 64 | #include <pwd.h> |
| 65 | #include <string.h> |
| 66 | #include <crypt.h> |
| 67 | #include "libcrypt.h" |
| 68 | |
| 69 | /* Re-entrantify me -- all this junk needs to be in |
| 70 | * struct crypt_data to make this really reentrant... */ |
| 71 | static u_char inv_key_perm[64]; |
| 72 | static u_char inv_comp_perm[56]; |
| 73 | static u_char un_pbox[32]; |
| 74 | static u_int32_t en_keysl[16], en_keysr[16]; |
| 75 | static u_int32_t de_keysl[16], de_keysr[16]; |
| 76 | static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; |
| 77 | static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; |
| 78 | static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; |
| 79 | static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; |
| 80 | static u_int32_t saltbits; |
| 81 | static u_int32_t old_salt; |
| 82 | static u_int32_t old_rawkey0, old_rawkey1; |
| 83 | |
| 84 | |
| 85 | /* Static stuff that stays resident and doesn't change after |
| 86 | * being initialized, and therefore doesn't need to be made |
| 87 | * reentrant. */ |
| 88 | static u_char init_perm[64], final_perm[64]; |
| 89 | static u_char m_sbox[4][4096]; |
| 90 | static u_int32_t psbox[4][256]; |
| 91 | |
| 92 | |
| 93 | |
| 94 | |
| 95 | /* A pile of data */ |
| 96 | static const u_char ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
| 97 | |
| 98 | static const u_char IP[64] = { |
| 99 | 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, |
| 100 | 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, |
| 101 | 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, |
| 102 | 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 |
| 103 | }; |
| 104 | |
| 105 | static const u_char key_perm[56] = { |
| 106 | 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, |
| 107 | 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, |
| 108 | 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, |
| 109 | 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 |
| 110 | }; |
| 111 | |
| 112 | static const u_char key_shifts[16] = { |
| 113 | 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 |
| 114 | }; |
| 115 | |
| 116 | static const u_char comp_perm[48] = { |
| 117 | 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, |
| 118 | 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, |
| 119 | 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, |
| 120 | 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 |
| 121 | }; |
| 122 | |
| 123 | /* |
| 124 | * No E box is used, as it's replaced by some ANDs, shifts, and ORs. |
| 125 | */ |
| 126 | |
| 127 | static const u_char sbox[8][64] = { |
| 128 | { |
| 129 | 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, |
| 130 | 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, |
| 131 | 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, |
| 132 | 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 |
| 133 | }, |
| 134 | { |
| 135 | 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, |
| 136 | 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, |
| 137 | 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, |
| 138 | 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 |
| 139 | }, |
| 140 | { |
| 141 | 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, |
| 142 | 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, |
| 143 | 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, |
| 144 | 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 |
| 145 | }, |
| 146 | { |
| 147 | 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, |
| 148 | 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, |
| 149 | 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, |
| 150 | 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 |
| 151 | }, |
| 152 | { |
| 153 | 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, |
| 154 | 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, |
| 155 | 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, |
| 156 | 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 |
| 157 | }, |
| 158 | { |
| 159 | 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, |
| 160 | 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, |
| 161 | 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, |
| 162 | 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 |
| 163 | }, |
| 164 | { |
| 165 | 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, |
| 166 | 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, |
| 167 | 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, |
| 168 | 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 |
| 169 | }, |
| 170 | { |
| 171 | 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, |
| 172 | 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, |
| 173 | 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, |
| 174 | 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 |
| 175 | } |
| 176 | }; |
| 177 | |
| 178 | static const u_char pbox[32] = { |
| 179 | 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, |
| 180 | 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 |
| 181 | }; |
| 182 | |
| 183 | static const u_int32_t bits32[32] = |
| 184 | { |
| 185 | 0x80000000, 0x40000000, 0x20000000, 0x10000000, |
| 186 | 0x08000000, 0x04000000, 0x02000000, 0x01000000, |
| 187 | 0x00800000, 0x00400000, 0x00200000, 0x00100000, |
| 188 | 0x00080000, 0x00040000, 0x00020000, 0x00010000, |
| 189 | 0x00008000, 0x00004000, 0x00002000, 0x00001000, |
| 190 | 0x00000800, 0x00000400, 0x00000200, 0x00000100, |
| 191 | 0x00000080, 0x00000040, 0x00000020, 0x00000010, |
| 192 | 0x00000008, 0x00000004, 0x00000002, 0x00000001 |
| 193 | }; |
| 194 | |
| 195 | static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; |
| 196 | |
| 197 | |
| 198 | static int |
| 199 | ascii_to_bin(char ch) |
| 200 | { |
| 201 | if (ch > 'z') |
| 202 | return(0); |
| 203 | if (ch >= 'a') |
| 204 | return(ch - 'a' + 38); |
| 205 | if (ch > 'Z') |
| 206 | return(0); |
| 207 | if (ch >= 'A') |
| 208 | return(ch - 'A' + 12); |
| 209 | if (ch > '9') |
| 210 | return(0); |
| 211 | if (ch >= '.') |
| 212 | return(ch - '.'); |
| 213 | return(0); |
| 214 | } |
| 215 | |
| 216 | static void |
| 217 | des_init(void) |
| 218 | { |
| 219 | static int des_initialised = 0; |
| 220 | |
| 221 | int i, j, b, k, inbit, obit; |
| 222 | u_int32_t *p, *il, *ir, *fl, *fr; |
| 223 | const u_int32_t *bits28, *bits24; |
| 224 | u_char u_sbox[8][64]; |
| 225 | |
| 226 | if (des_initialised==1) |
| 227 | return; |
| 228 | |
| 229 | old_rawkey0 = old_rawkey1 = 0L; |
| 230 | saltbits = 0L; |
| 231 | old_salt = 0L; |
| 232 | bits24 = (bits28 = bits32 + 4) + 4; |
| 233 | |
| 234 | /* |
| 235 | * Invert the S-boxes, reordering the input bits. |
| 236 | */ |
| 237 | for (i = 0; i < 8; i++) |
| 238 | for (j = 0; j < 64; j++) { |
| 239 | b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); |
| 240 | u_sbox[i][j] = sbox[i][b]; |
| 241 | } |
| 242 | |
| 243 | /* |
| 244 | * Convert the inverted S-boxes into 4 arrays of 8 bits. |
| 245 | * Each will handle 12 bits of the S-box input. |
| 246 | */ |
| 247 | for (b = 0; b < 4; b++) |
| 248 | for (i = 0; i < 64; i++) |
| 249 | for (j = 0; j < 64; j++) |
| 250 | m_sbox[b][(i << 6) | j] = |
| 251 | (u_char)((u_sbox[(b << 1)][i] << 4) | |
| 252 | u_sbox[(b << 1) + 1][j]); |
| 253 | |
| 254 | /* |
| 255 | * Set up the initial & final permutations into a useful form, and |
| 256 | * initialise the inverted key permutation. |
| 257 | */ |
| 258 | for (i = 0; i < 64; i++) { |
| 259 | init_perm[final_perm[i] = IP[i] - 1] = (u_char)i; |
| 260 | inv_key_perm[i] = 255; |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * Invert the key permutation and initialise the inverted key |
| 265 | * compression permutation. |
| 266 | */ |
| 267 | for (i = 0; i < 56; i++) { |
| 268 | inv_key_perm[key_perm[i] - 1] = (u_char)i; |
| 269 | inv_comp_perm[i] = 255; |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * Invert the key compression permutation. |
| 274 | */ |
| 275 | for (i = 0; i < 48; i++) { |
| 276 | inv_comp_perm[comp_perm[i] - 1] = (u_char)i; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * Set up the OR-mask arrays for the initial and final permutations, |
| 281 | * and for the key initial and compression permutations. |
| 282 | */ |
| 283 | for (k = 0; k < 8; k++) { |
| 284 | for (i = 0; i < 256; i++) { |
| 285 | *(il = &ip_maskl[k][i]) = 0L; |
| 286 | *(ir = &ip_maskr[k][i]) = 0L; |
| 287 | *(fl = &fp_maskl[k][i]) = 0L; |
| 288 | *(fr = &fp_maskr[k][i]) = 0L; |
| 289 | for (j = 0; j < 8; j++) { |
| 290 | inbit = 8 * k + j; |
| 291 | if (i & bits8[j]) { |
| 292 | if ((obit = init_perm[inbit]) < 32) |
| 293 | *il |= bits32[obit]; |
| 294 | else |
| 295 | *ir |= bits32[obit-32]; |
| 296 | if ((obit = final_perm[inbit]) < 32) |
| 297 | *fl |= bits32[obit]; |
| 298 | else |
| 299 | *fr |= bits32[obit - 32]; |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | for (i = 0; i < 128; i++) { |
| 304 | *(il = &key_perm_maskl[k][i]) = 0L; |
| 305 | *(ir = &key_perm_maskr[k][i]) = 0L; |
| 306 | for (j = 0; j < 7; j++) { |
| 307 | inbit = 8 * k + j; |
| 308 | if (i & bits8[j + 1]) { |
| 309 | if ((obit = inv_key_perm[inbit]) == 255) |
| 310 | continue; |
| 311 | if (obit < 28) |
| 312 | *il |= bits28[obit]; |
| 313 | else |
| 314 | *ir |= bits28[obit - 28]; |
| 315 | } |
| 316 | } |
| 317 | *(il = &comp_maskl[k][i]) = 0L; |
| 318 | *(ir = &comp_maskr[k][i]) = 0L; |
| 319 | for (j = 0; j < 7; j++) { |
| 320 | inbit = 7 * k + j; |
| 321 | if (i & bits8[j + 1]) { |
| 322 | if ((obit=inv_comp_perm[inbit]) == 255) |
| 323 | continue; |
| 324 | if (obit < 24) |
| 325 | *il |= bits24[obit]; |
| 326 | else |
| 327 | *ir |= bits24[obit - 24]; |
| 328 | } |
| 329 | } |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * Invert the P-box permutation, and convert into OR-masks for |
| 335 | * handling the output of the S-box arrays setup above. |
| 336 | */ |
| 337 | for (i = 0; i < 32; i++) |
| 338 | un_pbox[pbox[i] - 1] = (u_char)i; |
| 339 | |
| 340 | for (b = 0; b < 4; b++) |
| 341 | for (i = 0; i < 256; i++) { |
| 342 | *(p = &psbox[b][i]) = 0L; |
| 343 | for (j = 0; j < 8; j++) { |
| 344 | if (i & bits8[j]) |
| 345 | *p |= bits32[un_pbox[8 * b + j]]; |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | des_initialised = 1; |
| 350 | } |
| 351 | |
| 352 | |
| 353 | static void |
| 354 | setup_salt(u_int32_t salt) |
| 355 | { |
| 356 | u_int32_t obit, saltbit; |
| 357 | int i; |
| 358 | |
| 359 | if (salt == old_salt) |
| 360 | return; |
| 361 | old_salt = salt; |
| 362 | |
| 363 | saltbits = 0L; |
| 364 | saltbit = 1; |
| 365 | obit = 0x800000; |
| 366 | for (i = 0; i < 24; i++) { |
| 367 | if (salt & saltbit) |
| 368 | saltbits |= obit; |
| 369 | saltbit <<= 1; |
| 370 | obit >>= 1; |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | |
| 375 | static void |
| 376 | des_setkey(const char *key) |
| 377 | { |
| 378 | u_int32_t k0, k1, rawkey0, rawkey1; |
| 379 | int shifts, round; |
| 380 | |
| 381 | des_init(); |
| 382 | |
| 383 | rawkey0 = ntohl(*(const u_int32_t *) key); |
| 384 | rawkey1 = ntohl(*(const u_int32_t *) (key + 4)); |
| 385 | |
| 386 | if ((rawkey0 | rawkey1) |
| 387 | && rawkey0 == old_rawkey0 |
| 388 | && rawkey1 == old_rawkey1) { |
| 389 | /* |
| 390 | * Already setup for this key. |
| 391 | * This optimisation fails on a zero key (which is weak and |
| 392 | * has bad parity anyway) in order to simplify the starting |
| 393 | * conditions. |
| 394 | */ |
| 395 | return; |
| 396 | } |
| 397 | old_rawkey0 = rawkey0; |
| 398 | old_rawkey1 = rawkey1; |
| 399 | |
| 400 | /* |
| 401 | * Do key permutation and split into two 28-bit subkeys. |
| 402 | */ |
| 403 | k0 = key_perm_maskl[0][rawkey0 >> 25] |
| 404 | | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] |
| 405 | | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] |
| 406 | | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] |
| 407 | | key_perm_maskl[4][rawkey1 >> 25] |
| 408 | | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] |
| 409 | | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] |
| 410 | | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; |
| 411 | k1 = key_perm_maskr[0][rawkey0 >> 25] |
| 412 | | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] |
| 413 | | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] |
| 414 | | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] |
| 415 | | key_perm_maskr[4][rawkey1 >> 25] |
| 416 | | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] |
| 417 | | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] |
| 418 | | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; |
| 419 | /* |
| 420 | * Rotate subkeys and do compression permutation. |
| 421 | */ |
| 422 | shifts = 0; |
| 423 | for (round = 0; round < 16; round++) { |
| 424 | u_int32_t t0, t1; |
| 425 | |
| 426 | shifts += key_shifts[round]; |
| 427 | |
| 428 | t0 = (k0 << shifts) | (k0 >> (28 - shifts)); |
| 429 | t1 = (k1 << shifts) | (k1 >> (28 - shifts)); |
| 430 | |
| 431 | de_keysl[15 - round] = |
| 432 | en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] |
| 433 | | comp_maskl[1][(t0 >> 14) & 0x7f] |
| 434 | | comp_maskl[2][(t0 >> 7) & 0x7f] |
| 435 | | comp_maskl[3][t0 & 0x7f] |
| 436 | | comp_maskl[4][(t1 >> 21) & 0x7f] |
| 437 | | comp_maskl[5][(t1 >> 14) & 0x7f] |
| 438 | | comp_maskl[6][(t1 >> 7) & 0x7f] |
| 439 | | comp_maskl[7][t1 & 0x7f]; |
| 440 | |
| 441 | de_keysr[15 - round] = |
| 442 | en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] |
| 443 | | comp_maskr[1][(t0 >> 14) & 0x7f] |
| 444 | | comp_maskr[2][(t0 >> 7) & 0x7f] |
| 445 | | comp_maskr[3][t0 & 0x7f] |
| 446 | | comp_maskr[4][(t1 >> 21) & 0x7f] |
| 447 | | comp_maskr[5][(t1 >> 14) & 0x7f] |
| 448 | | comp_maskr[6][(t1 >> 7) & 0x7f] |
| 449 | | comp_maskr[7][t1 & 0x7f]; |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | |
| 454 | static int |
| 455 | do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count) |
| 456 | { |
| 457 | /* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */ |
| 458 | u_int32_t l, r, *kl, *kr, *kl1, *kr1; |
| 459 | u_int32_t f, r48l, r48r; |
| 460 | int round; |
| 461 | |
| 462 | if (count == 0) { |
| 463 | return 1; |
| 464 | } |
| 465 | if (count > 0) { |
| 466 | /* Encrypting */ |
| 467 | kl1 = en_keysl; |
| 468 | kr1 = en_keysr; |
| 469 | } else { |
| 470 | /* Decrypting */ |
| 471 | count = -count; |
| 472 | kl1 = de_keysl; |
| 473 | kr1 = de_keysr; |
| 474 | } |
| 475 | |
| 476 | /* Do initial permutation (IP). */ |
| 477 | l = ip_maskl[0][l_in >> 24] |
| 478 | | ip_maskl[1][(l_in >> 16) & 0xff] |
| 479 | | ip_maskl[2][(l_in >> 8) & 0xff] |
| 480 | | ip_maskl[3][l_in & 0xff] |
| 481 | | ip_maskl[4][r_in >> 24] |
| 482 | | ip_maskl[5][(r_in >> 16) & 0xff] |
| 483 | | ip_maskl[6][(r_in >> 8) & 0xff] |
| 484 | | ip_maskl[7][r_in & 0xff]; |
| 485 | r = ip_maskr[0][l_in >> 24] |
| 486 | | ip_maskr[1][(l_in >> 16) & 0xff] |
| 487 | | ip_maskr[2][(l_in >> 8) & 0xff] |
| 488 | | ip_maskr[3][l_in & 0xff] |
| 489 | | ip_maskr[4][r_in >> 24] |
| 490 | | ip_maskr[5][(r_in >> 16) & 0xff] |
| 491 | | ip_maskr[6][(r_in >> 8) & 0xff] |
| 492 | | ip_maskr[7][r_in & 0xff]; |
| 493 | |
| 494 | while (count--) { |
| 495 | /* Do each round. */ |
| 496 | kl = kl1; |
| 497 | kr = kr1; |
| 498 | round = 16; |
| 499 | do { |
| 500 | /* Expand R to 48 bits (simulate the E-box). */ |
| 501 | r48l = ((r & 0x00000001) << 23) |
| 502 | | ((r & 0xf8000000) >> 9) |
| 503 | | ((r & 0x1f800000) >> 11) |
| 504 | | ((r & 0x01f80000) >> 13) |
| 505 | | ((r & 0x001f8000) >> 15); |
| 506 | r48r = ((r & 0x0001f800) << 7) |
| 507 | | ((r & 0x00001f80) << 5) |
| 508 | | ((r & 0x000001f8) << 3) |
| 509 | | ((r & 0x0000001f) << 1) |
| 510 | | ((r & 0x80000000) >> 31); |
| 511 | /* |
| 512 | * Do salting for crypt() and friends, and |
| 513 | * XOR with the permuted key. |
| 514 | */ |
| 515 | f = (r48l ^ r48r) & saltbits; |
| 516 | r48l ^= f ^ *kl++; |
| 517 | r48r ^= f ^ *kr++; |
| 518 | /* |
| 519 | * Do sbox lookups (which shrink it back to 32 bits) |
| 520 | * and do the pbox permutation at the same time. |
| 521 | */ |
| 522 | f = psbox[0][m_sbox[0][r48l >> 12]] |
| 523 | | psbox[1][m_sbox[1][r48l & 0xfff]] |
| 524 | | psbox[2][m_sbox[2][r48r >> 12]] |
| 525 | | psbox[3][m_sbox[3][r48r & 0xfff]]; |
| 526 | /* Now that we've permuted things, complete f(). */ |
| 527 | f ^= l; |
| 528 | l = r; |
| 529 | r = f; |
| 530 | } while (--round); |
| 531 | r = l; |
| 532 | l = f; |
| 533 | } |
| 534 | /* Do final permutation (inverse of IP). */ |
| 535 | *l_out = fp_maskl[0][l >> 24] |
| 536 | | fp_maskl[1][(l >> 16) & 0xff] |
| 537 | | fp_maskl[2][(l >> 8) & 0xff] |
| 538 | | fp_maskl[3][l & 0xff] |
| 539 | | fp_maskl[4][r >> 24] |
| 540 | | fp_maskl[5][(r >> 16) & 0xff] |
| 541 | | fp_maskl[6][(r >> 8) & 0xff] |
| 542 | | fp_maskl[7][r & 0xff]; |
| 543 | *r_out = fp_maskr[0][l >> 24] |
| 544 | | fp_maskr[1][(l >> 16) & 0xff] |
| 545 | | fp_maskr[2][(l >> 8) & 0xff] |
| 546 | | fp_maskr[3][l & 0xff] |
| 547 | | fp_maskr[4][r >> 24] |
| 548 | | fp_maskr[5][(r >> 16) & 0xff] |
| 549 | | fp_maskr[6][(r >> 8) & 0xff] |
| 550 | | fp_maskr[7][r & 0xff]; |
| 551 | return(0); |
| 552 | } |
| 553 | |
| 554 | |
| 555 | #if 0 |
| 556 | static int |
| 557 | des_cipher(const char *in, char *out, u_int32_t salt, int count) |
| 558 | { |
| 559 | u_int32_t l_out, r_out, rawl, rawr; |
| 560 | int retval; |
| 561 | union { |
| 562 | u_int32_t *ui32; |
| 563 | const char *c; |
| 564 | } trans; |
| 565 | |
| 566 | des_init(); |
| 567 | |
| 568 | setup_salt(salt); |
| 569 | |
| 570 | trans.c = in; |
| 571 | rawl = ntohl(*trans.ui32++); |
| 572 | rawr = ntohl(*trans.ui32); |
| 573 | |
| 574 | retval = do_des(rawl, rawr, &l_out, &r_out, count); |
| 575 | |
| 576 | trans.c = out; |
| 577 | *trans.ui32++ = htonl(l_out); |
| 578 | *trans.ui32 = htonl(r_out); |
| 579 | return(retval); |
| 580 | } |
| 581 | #endif |
| 582 | |
| 583 | |
| 584 | void |
| 585 | setkey(const char *key) |
| 586 | { |
| 587 | int i, j; |
| 588 | u_int32_t packed_keys[2]; |
| 589 | u_char *p; |
| 590 | |
| 591 | p = (u_char *) packed_keys; |
| 592 | |
| 593 | for (i = 0; i < 8; i++) { |
| 594 | p[i] = 0; |
| 595 | for (j = 0; j < 8; j++) |
| 596 | if (*key++ & 1) |
| 597 | p[i] |= bits8[j]; |
| 598 | } |
| 599 | des_setkey((char *)p); |
| 600 | } |
| 601 | |
| 602 | |
| 603 | void |
| 604 | encrypt(char *block, int flag) |
| 605 | { |
| 606 | u_int32_t io[2]; |
| 607 | u_char *p; |
| 608 | int i, j; |
| 609 | |
| 610 | des_init(); |
| 611 | |
| 612 | setup_salt(0L); |
| 613 | p = (u_char*)block; |
| 614 | for (i = 0; i < 2; i++) { |
| 615 | io[i] = 0L; |
| 616 | for (j = 0; j < 32; j++) |
| 617 | if (*p++ & 1) |
| 618 | io[i] |= bits32[j]; |
| 619 | } |
| 620 | do_des(io[0], io[1], io, io + 1, flag ? -1 : 1); |
| 621 | for (i = 0; i < 2; i++) |
| 622 | for (j = 0; j < 32; j++) |
| 623 | block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0; |
| 624 | } |
| 625 | |
| 626 | char *__des_crypt(const unsigned char *key, const unsigned char *setting) |
| 627 | { |
| 628 | u_int32_t count, salt, l, r0, r1, keybuf[2]; |
| 629 | u_char *p, *q; |
| 630 | static char output[21]; |
| 631 | |
| 632 | des_init(); |
| 633 | |
| 634 | /* |
| 635 | * Copy the key, shifting each character up by one bit |
| 636 | * and padding with zeros. |
| 637 | */ |
| 638 | q = (u_char *)keybuf; |
| 639 | while (q - (u_char *)keybuf - 8) { |
| 640 | *q++ = *key << 1; |
| 641 | if (*(q - 1)) |
| 642 | key++; |
| 643 | } |
| 644 | des_setkey((char *)keybuf); |
| 645 | |
| 646 | #if 0 |
| 647 | if (*setting == _PASSWORD_EFMT1) { |
| 648 | int i; |
| 649 | /* |
| 650 | * "new"-style: |
| 651 | * setting - underscore, 4 bytes of count, 4 bytes of salt |
| 652 | * key - unlimited characters |
| 653 | */ |
| 654 | for (i = 1, count = 0L; i < 5; i++) |
| 655 | count |= ascii_to_bin(setting[i]) << ((i - 1) * 6); |
| 656 | |
| 657 | for (i = 5, salt = 0L; i < 9; i++) |
| 658 | salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6); |
| 659 | |
| 660 | while (*key) { |
| 661 | /* |
| 662 | * Encrypt the key with itself. |
| 663 | */ |
| 664 | if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1)) |
| 665 | return(NULL); |
| 666 | /* |
| 667 | * And XOR with the next 8 characters of the key. |
| 668 | */ |
| 669 | q = (u_char *)keybuf; |
| 670 | while (q - (u_char *)keybuf - 8 && *key) |
| 671 | *q++ ^= *key++ << 1; |
| 672 | |
| 673 | des_setkey((char *)keybuf); |
| 674 | } |
| 675 | strncpy(output, setting, 9); |
| 676 | |
| 677 | /* |
| 678 | * Double check that we weren't given a short setting. |
| 679 | * If we were, the above code will probably have created |
| 680 | * wierd values for count and salt, but we don't really care. |
| 681 | * Just make sure the output string doesn't have an extra |
| 682 | * NUL in it. |
| 683 | */ |
| 684 | output[9] = '\0'; |
| 685 | p = (u_char *)output + strlen(output); |
| 686 | } else |
| 687 | #endif |
| 688 | { |
| 689 | /* |
| 690 | * "old"-style: |
| 691 | * setting - 2 bytes of salt |
| 692 | * key - up to 8 characters |
| 693 | */ |
| 694 | count = 25; |
| 695 | |
| 696 | salt = (ascii_to_bin(setting[1]) << 6) |
| 697 | | ascii_to_bin(setting[0]); |
| 698 | |
| 699 | output[0] = setting[0]; |
| 700 | /* |
| 701 | * If the encrypted password that the salt was extracted from |
| 702 | * is only 1 character long, the salt will be corrupted. We |
| 703 | * need to ensure that the output string doesn't have an extra |
| 704 | * NUL in it! |
| 705 | */ |
| 706 | output[1] = setting[1] ? setting[1] : output[0]; |
| 707 | |
| 708 | p = (u_char *)output + 2; |
| 709 | } |
| 710 | setup_salt(salt); |
| 711 | /* |
| 712 | * Do it. |
| 713 | */ |
| 714 | if (do_des(0L, 0L, &r0, &r1, (int)count)) |
| 715 | return(NULL); |
| 716 | /* |
| 717 | * Now encode the result... |
| 718 | */ |
| 719 | l = (r0 >> 8); |
| 720 | *p++ = ascii64[(l >> 18) & 0x3f]; |
| 721 | *p++ = ascii64[(l >> 12) & 0x3f]; |
| 722 | *p++ = ascii64[(l >> 6) & 0x3f]; |
| 723 | *p++ = ascii64[l & 0x3f]; |
| 724 | |
| 725 | l = (r0 << 16) | ((r1 >> 16) & 0xffff); |
| 726 | *p++ = ascii64[(l >> 18) & 0x3f]; |
| 727 | *p++ = ascii64[(l >> 12) & 0x3f]; |
| 728 | *p++ = ascii64[(l >> 6) & 0x3f]; |
| 729 | *p++ = ascii64[l & 0x3f]; |
| 730 | |
| 731 | l = r1 << 2; |
| 732 | *p++ = ascii64[(l >> 12) & 0x3f]; |
| 733 | *p++ = ascii64[(l >> 6) & 0x3f]; |
| 734 | *p++ = ascii64[l & 0x3f]; |
| 735 | *p = 0; |
| 736 | |
| 737 | return(output); |
| 738 | } |
| 739 | |