lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | #ifndef _MATH_PRIVATE_H_ |
| 13 | #define _MATH_PRIVATE_H_ |
| 14 | |
| 15 | #include <endian.h> |
| 16 | #include <sys/types.h> |
| 17 | |
| 18 | /* The original fdlibm code used statements like: |
| 19 | n0 = ((*(int*)&one)>>29)^1; * index of high word * |
| 20 | ix0 = *(n0+(int*)&x); * high word of x * |
| 21 | ix1 = *((1-n0)+(int*)&x); * low word of x * |
| 22 | to dig two 32 bit words out of the 64 bit IEEE floating point |
| 23 | value. That is non-ANSI, and, moreover, the gcc instruction |
| 24 | scheduler gets it wrong. We instead use the following macros. |
| 25 | Unlike the original code, we determine the endianness at compile |
| 26 | time, not at run time; I don't see much benefit to selecting |
| 27 | endianness at run time. */ |
| 28 | |
| 29 | /* A union which permits us to convert between a double and two 32 bit |
| 30 | ints. */ |
| 31 | |
| 32 | /* |
| 33 | * Math on arm is special (read: stupid): |
| 34 | * For FPA, float words are always big-endian. |
| 35 | * For VFP, float words follow the memory system mode. |
| 36 | * For Maverick, float words are always little-endian. |
| 37 | */ |
| 38 | |
| 39 | #if !defined(__MAVERICK__) && ((__BYTE_ORDER == __BIG_ENDIAN) || \ |
| 40 | (!defined(__VFP_FP__) && (defined(__arm__) || defined(__thumb__)))) |
| 41 | |
| 42 | typedef union |
| 43 | { |
| 44 | double value; |
| 45 | struct |
| 46 | { |
| 47 | u_int32_t msw; |
| 48 | u_int32_t lsw; |
| 49 | } parts; |
| 50 | } ieee_double_shape_type; |
| 51 | |
| 52 | #else |
| 53 | |
| 54 | typedef union |
| 55 | { |
| 56 | double value; |
| 57 | struct |
| 58 | { |
| 59 | u_int32_t lsw; |
| 60 | u_int32_t msw; |
| 61 | } parts; |
| 62 | } ieee_double_shape_type; |
| 63 | |
| 64 | #endif |
| 65 | |
| 66 | /* Get two 32 bit ints from a double. */ |
| 67 | |
| 68 | #define EXTRACT_WORDS(ix0,ix1,d) \ |
| 69 | do { \ |
| 70 | ieee_double_shape_type ew_u; \ |
| 71 | ew_u.value = (d); \ |
| 72 | (ix0) = ew_u.parts.msw; \ |
| 73 | (ix1) = ew_u.parts.lsw; \ |
| 74 | } while (0) |
| 75 | |
| 76 | /* Get the more significant 32 bit int from a double. */ |
| 77 | |
| 78 | #define GET_HIGH_WORD(i,d) \ |
| 79 | do { \ |
| 80 | ieee_double_shape_type gh_u; \ |
| 81 | gh_u.value = (d); \ |
| 82 | (i) = gh_u.parts.msw; \ |
| 83 | } while (0) |
| 84 | |
| 85 | /* Get the less significant 32 bit int from a double. */ |
| 86 | |
| 87 | #define GET_LOW_WORD(i,d) \ |
| 88 | do { \ |
| 89 | ieee_double_shape_type gl_u; \ |
| 90 | gl_u.value = (d); \ |
| 91 | (i) = gl_u.parts.lsw; \ |
| 92 | } while (0) |
| 93 | |
| 94 | /* Set a double from two 32 bit ints. */ |
| 95 | |
| 96 | #define INSERT_WORDS(d,ix0,ix1) \ |
| 97 | do { \ |
| 98 | ieee_double_shape_type iw_u; \ |
| 99 | iw_u.parts.msw = (ix0); \ |
| 100 | iw_u.parts.lsw = (ix1); \ |
| 101 | (d) = iw_u.value; \ |
| 102 | } while (0) |
| 103 | |
| 104 | /* Set the more significant 32 bits of a double from an int. */ |
| 105 | |
| 106 | #define SET_HIGH_WORD(d,v) \ |
| 107 | do { \ |
| 108 | ieee_double_shape_type sh_u; \ |
| 109 | sh_u.value = (d); \ |
| 110 | sh_u.parts.msw = (v); \ |
| 111 | (d) = sh_u.value; \ |
| 112 | } while (0) |
| 113 | |
| 114 | /* Set the less significant 32 bits of a double from an int. */ |
| 115 | |
| 116 | #define SET_LOW_WORD(d,v) \ |
| 117 | do { \ |
| 118 | ieee_double_shape_type sl_u; \ |
| 119 | sl_u.value = (d); \ |
| 120 | sl_u.parts.lsw = (v); \ |
| 121 | (d) = sl_u.value; \ |
| 122 | } while (0) |
| 123 | |
| 124 | /* A union which permits us to convert between a float and a 32 bit |
| 125 | int. */ |
| 126 | |
| 127 | typedef union |
| 128 | { |
| 129 | float value; |
| 130 | u_int32_t word; |
| 131 | } ieee_float_shape_type; |
| 132 | |
| 133 | /* Get a 32 bit int from a float. */ |
| 134 | |
| 135 | #define GET_FLOAT_WORD(i,d) \ |
| 136 | do { \ |
| 137 | ieee_float_shape_type gf_u; \ |
| 138 | gf_u.value = (d); \ |
| 139 | (i) = gf_u.word; \ |
| 140 | } while (0) |
| 141 | |
| 142 | /* Set a float from a 32 bit int. */ |
| 143 | |
| 144 | #define SET_FLOAT_WORD(d,i) \ |
| 145 | do { \ |
| 146 | ieee_float_shape_type sf_u; \ |
| 147 | sf_u.word = (i); \ |
| 148 | (d) = sf_u.value; \ |
| 149 | } while (0) |
| 150 | |
| 151 | /* ieee style elementary functions */ |
| 152 | extern double __ieee754_sqrt (double) attribute_hidden; |
| 153 | extern double __ieee754_acos (double) attribute_hidden; |
| 154 | extern double __ieee754_acosh (double) attribute_hidden; |
| 155 | extern double __ieee754_log (double) attribute_hidden; |
| 156 | extern double __ieee754_log2 (double) attribute_hidden; |
| 157 | extern double __ieee754_atanh (double) attribute_hidden; |
| 158 | extern double __ieee754_asin (double) attribute_hidden; |
| 159 | extern double __ieee754_atan2 (double,double) attribute_hidden; |
| 160 | extern double __ieee754_exp (double) attribute_hidden; |
| 161 | extern double __ieee754_cosh (double) attribute_hidden; |
| 162 | extern double __ieee754_fmod (double,double) attribute_hidden; |
| 163 | extern double __ieee754_pow (double,double) attribute_hidden; |
| 164 | extern double __ieee754_lgamma_r (double,int *) attribute_hidden; |
| 165 | /*extern double __ieee754_gamma_r (double,int *) attribute_hidden;*/ |
| 166 | extern double __ieee754_lgamma (double) attribute_hidden; |
| 167 | /*extern double __ieee754_gamma (double) attribute_hidden;*/ |
| 168 | extern double __ieee754_log10 (double) attribute_hidden; |
| 169 | extern double __ieee754_sinh (double) attribute_hidden; |
| 170 | extern double __ieee754_hypot (double,double) attribute_hidden; |
| 171 | extern double __ieee754_j0 (double) attribute_hidden; |
| 172 | extern double __ieee754_j1 (double) attribute_hidden; |
| 173 | extern double __ieee754_y0 (double) attribute_hidden; |
| 174 | extern double __ieee754_y1 (double) attribute_hidden; |
| 175 | extern double __ieee754_jn (int,double) attribute_hidden; |
| 176 | extern double __ieee754_yn (int,double) attribute_hidden; |
| 177 | extern double __ieee754_remainder (double,double) attribute_hidden; |
| 178 | extern int __ieee754_rem_pio2 (double,double*) attribute_hidden; |
| 179 | extern double __ieee754_scalb (double,double) attribute_hidden; |
| 180 | |
| 181 | /* fdlibm kernel function */ |
| 182 | #ifndef _IEEE_LIBM |
| 183 | extern double __kernel_standard (double,double,int) attribute_hidden; |
| 184 | #endif |
| 185 | extern double __kernel_sin (double,double,int) attribute_hidden; |
| 186 | extern double __kernel_cos (double,double) attribute_hidden; |
| 187 | extern double __kernel_tan (double,double,int) attribute_hidden; |
| 188 | extern int __kernel_rem_pio2 (double*,double*,int,int,int,const int*) attribute_hidden; |
| 189 | |
| 190 | /* |
| 191 | * math_opt_barrier(x): safely load x, even if it was manipulated |
| 192 | * by non-floationg point operations. This macro returns the value of x. |
| 193 | * This ensures compiler does not (ab)use its knowledge about x value |
| 194 | * and don't optimize future operations. Example: |
| 195 | * float x; |
| 196 | * SET_FLOAT_WORD(x, 0x80000001); // sets a bit pattern |
| 197 | * y = math_opt_barrier(x); // "compiler, do not cheat!" |
| 198 | * y = y * y; // compiler can't optimize, must use real multiply insn |
| 199 | * |
| 200 | * math_force_eval(x): force expression x to be evaluated. |
| 201 | * Useful if otherwise compiler may eliminate the expression |
| 202 | * as unused. This macro returns no value. |
| 203 | * Example: "void fn(float f) { f = f * f; }" |
| 204 | * versus "void fn(float f) { f = f * f; math_force_eval(f); }" |
| 205 | * |
| 206 | * Currently, math_force_eval(x) stores x into |
| 207 | * a floating point register or memory *of the appropriate size*. |
| 208 | * There is no guarantee this will not change. |
| 209 | */ |
| 210 | #if defined(__i386__) |
| 211 | #define math_opt_barrier(x) ({ \ |
| 212 | __typeof(x) __x = (x); \ |
| 213 | /* "t": load x into top-of-stack fpreg */ \ |
| 214 | __asm__ ("" : "=t" (__x) : "0" (__x)); \ |
| 215 | __x; \ |
| 216 | }) |
| 217 | #define math_force_eval(x) do { \ |
| 218 | __typeof(x) __x = (x); \ |
| 219 | if (sizeof(__x) <= sizeof(double)) \ |
| 220 | /* "m": store x into a memory location */ \ |
| 221 | __asm__ __volatile__ ("" : : "m" (__x)); \ |
| 222 | else /* long double */ \ |
| 223 | /* "f": load x into (any) fpreg */ \ |
| 224 | __asm__ __volatile__ ("" : : "f" (__x)); \ |
| 225 | } while (0) |
| 226 | #endif |
| 227 | |
| 228 | #if defined(__x86_64__) |
| 229 | #define math_opt_barrier(x) ({ \ |
| 230 | __typeof(x) __x = (x); \ |
| 231 | if (sizeof(__x) <= sizeof(double)) \ |
| 232 | /* "x": load into XMM SSE register */ \ |
| 233 | __asm__ ("" : "=x" (__x) : "0" (__x)); \ |
| 234 | else /* long double */ \ |
| 235 | /* "t": load x into top-of-stack fpreg */ \ |
| 236 | __asm__ ("" : "=t" (__x) : "0" (__x)); \ |
| 237 | __x; \ |
| 238 | }) |
| 239 | #define math_force_eval(x) do { \ |
| 240 | __typeof(x) __x = (x); \ |
| 241 | if (sizeof(__x) <= sizeof(double)) \ |
| 242 | /* "x": load into XMM SSE register */ \ |
| 243 | __asm__ __volatile__ ("" : : "x" (__x)); \ |
| 244 | else /* long double */ \ |
| 245 | /* "f": load x into (any) fpreg */ \ |
| 246 | __asm__ __volatile__ ("" : : "f" (__x)); \ |
| 247 | } while (0) |
| 248 | #endif |
| 249 | |
| 250 | /* Default implementations force store to a memory location */ |
| 251 | #ifndef math_opt_barrier |
| 252 | #define math_opt_barrier(x) ({ __typeof(x) __x = (x); __asm__ ("" : "+m" (__x)); __x; }) |
| 253 | #endif |
| 254 | #ifndef math_force_eval |
| 255 | #define math_force_eval(x) do { __typeof(x) __x = (x); __asm__ __volatile__ ("" : : "m" (__x)); } while (0) |
| 256 | #endif |
| 257 | |
| 258 | |
| 259 | #endif /* _MATH_PRIVATE_H_ */ |