blob: a6fd6ac243db6ac14b75dc51e3783541152e8f68 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001# Begin of automatic generation
2
3# acos
4Test "acos (0.75) == 0.722734247813415611178377352641333362":
5ildouble: 1
6ldouble: 1
7
8# asin
9Test "asin (-0.5) == -pi/6":
10ildouble: 1
11ldouble: 1
12Test "asin (-1.0) == -pi/2":
13ildouble: 1
14ldouble: 1
15Test "asin (0.5) == pi/6":
16ildouble: 1
17ldouble: 1
18Test "asin (0.75) == 0.848062078981481008052944338998418080":
19ildouble: 1
20ldouble: 1
21Test "asin (1.0) == pi/2":
22ildouble: 1
23ldouble: 1
24
25# atanh
26Test "atanh (0.75) == 0.972955074527656652552676371721589865":
27ildouble: 2
28ldouble: 1
29
30# cacos
31Test "Imaginary part of: cacos (0.75 + 1.25 i) == 1.11752014915610270578240049553777969 - 1.13239363160530819522266333696834467 i":
32float: 1
33ifloat: 1
34ildouble: 2
35ldouble: 2
36
37# cacosh
38Test "Real part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
39double: 1
40float: 9
41idouble: 1
42ifloat: 9
43ildouble: 6
44ldouble: 6
45Test "Imaginary part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
46double: 1
47float: 4
48idouble: 1
49ifloat: 4
50ildouble: 1
51ldouble: 1
52Test "Real part of: cacosh (0.75 + 1.25 i) == 1.13239363160530819522266333696834467 + 1.11752014915610270578240049553777969 i":
53ildouble: 1
54ldouble: 1
55
56# casin
57Test "Real part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
58double: 1
59float: 1
60idouble: 1
61ifloat: 1
62ildouble: 2
63ldouble: 2
64Test "Imaginary part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
65float: 1
66ifloat: 1
67ildouble: 2
68ldouble: 2
69
70# casinh
71Test "Real part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
72double: 5
73float: 1
74idouble: 5
75ifloat: 1
76ildouble: 5
77ldouble: 5
78Test "Imaginary part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
79double: 3
80float: 6
81idouble: 3
82ifloat: 6
83ildouble: 5
84ldouble: 5
85Test "Real part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
86float: 1
87ifloat: 1
88Test "Imaginary part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
89double: 1
90float: 1
91idouble: 1
92ifloat: 1
93ildouble: 1
94ldouble: 1
95
96# catan
97Test "Imaginary part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":
98double: 1
99float: 1
100idouble: 1
101ifloat: 1
102
103# catanh
104Test "Real part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":
105double: 2
106float: 1
107idouble: 2
108ifloat: 1
109ildouble: 1
110ldouble: 1
111Test "Real part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":
112double: 1
113idouble: 1
114
115# cbrt
116Test "cbrt (-27.0) == -3.0":
117ildouble: 1
118ldouble: 1
119Test "cbrt (0.75) == 0.908560296416069829445605878163630251":
120ildouble: 1
121ldouble: 1
122
123# ccos
124Test "Imaginary part of: ccos (-2 - 3 i) == -4.18962569096880723013255501961597373 - 9.10922789375533659797919726277886212 i":
125float: 1
126ifloat: 1
127ildouble: 1
128ldouble: 1
129Test "Real part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
130double: 1
131idouble: 1
132ildouble: 1
133ldouble: 1
134Test "Imaginary part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
135ildouble: 1
136ldouble: 1
137
138# ccosh
139Test "Imaginary part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":
140double: 1
141float: 1
142idouble: 1
143ifloat: 1
144ildouble: 1
145ldouble: 1
146Test "Real part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
147double: 1
148float: 1
149idouble: 1
150ifloat: 1
151Test "Imaginary part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
152double: 1
153float: 1
154idouble: 1
155ifloat: 1
156
157# cexp
158Test "Real part of: cexp (-2.0 - 3.0 i) == -0.13398091492954261346140525546115575 - 0.019098516261135196432576240858800925 i":
159ildouble: 1
160ldouble: 1
161Test "Imaginary part of: cexp (-2.0 - 3.0 i) == -0.13398091492954261346140525546115575 - 0.019098516261135196432576240858800925 i":
162ildouble: 1
163ldouble: 1
164Test "Real part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":
165ildouble: 1
166ldouble: 1
167
168# clog
169Test "Real part of: clog (0.75 + 1.25 i) == 0.376885901188190075998919126749298416 + 1.03037682652431246378774332703115153 i":
170float: 1
171ifloat: 1
172ildouble: 1
173ldouble: 1
174
175# clog10
176Test "Imaginary part of: clog10 (-0 + inf i) == inf + pi/2*log10(e) i":
177double: 1
178float: 1
179idouble: 1
180ifloat: 1
181Test "Imaginary part of: clog10 (-0 - inf i) == inf - pi/2*log10(e) i":
182double: 1
183float: 1
184idouble: 1
185ifloat: 1
186Test "Imaginary part of: clog10 (-2 - 3 i) == 0.556971676153418384603252578971164214 - 0.937554462986374708541507952140189646 i":
187double: 1
188idouble: 1
189ildouble: 1
190ldouble: 1
191Test "Imaginary part of: clog10 (-3 + inf i) == inf + pi/2*log10(e) i":
192double: 1
193float: 1
194idouble: 1
195ifloat: 1
196Test "Imaginary part of: clog10 (-3 - inf i) == inf - pi/2*log10(e) i":
197double: 1
198float: 1
199idouble: 1
200ifloat: 1
201Test "Imaginary part of: clog10 (-inf + 0 i) == inf + pi*log10(e) i":
202double: 1
203float: 1
204idouble: 1
205ifloat: 1
206Test "Imaginary part of: clog10 (-inf + 1 i) == inf + pi*log10(e) i":
207double: 1
208float: 1
209idouble: 1
210ifloat: 1
211Test "Imaginary part of: clog10 (-inf + inf i) == inf + 3/4 pi*log10(e) i":
212double: 1
213idouble: 1
214Test "Imaginary part of: clog10 (-inf - 0 i) == inf - pi*log10(e) i":
215double: 1
216float: 1
217idouble: 1
218ifloat: 1
219Test "Imaginary part of: clog10 (-inf - 1 i) == inf - pi*log10(e) i":
220double: 1
221float: 1
222idouble: 1
223ifloat: 1
224Test "Imaginary part of: clog10 (0 + inf i) == inf + pi/2*log10(e) i":
225double: 1
226float: 1
227idouble: 1
228ifloat: 1
229Test "Imaginary part of: clog10 (0 - inf i) == inf - pi/2*log10(e) i":
230double: 1
231float: 1
232idouble: 1
233ifloat: 1
234Test "Real part of: clog10 (0.75 + 1.25 i) == 0.163679467193165171449476605077428975 + 0.447486970040493067069984724340855636 i":
235double: 1
236float: 1
237idouble: 1
238ifloat: 1
239ildouble: 1
240ldouble: 1
241Test "Imaginary part of: clog10 (3 + inf i) == inf + pi/2*log10(e) i":
242double: 1
243float: 1
244idouble: 1
245ifloat: 1
246Test "Imaginary part of: clog10 (3 - inf i) == inf - pi/2*log10(e) i":
247double: 1
248float: 1
249idouble: 1
250ifloat: 1
251Test "Imaginary part of: clog10 (inf + inf i) == inf + pi/4*log10(e) i":
252double: 1
253float: 1
254idouble: 1
255ifloat: 1
256Test "Imaginary part of: clog10 (inf - inf i) == inf - pi/4*log10(e) i":
257double: 1
258float: 1
259idouble: 1
260ifloat: 1
261
262# cos
263Test "cos (M_PI_6l * 2.0) == 0.5":
264double: 1
265float: 1
266idouble: 1
267ifloat: 1
268Test "cos (M_PI_6l * 4.0) == -0.5":
269double: 2
270float: 1
271idouble: 2
272ifloat: 1
273ildouble: 1
274ldouble: 1
275Test "cos (pi/2) == 0":
276double: 1
277float: 1
278idouble: 1
279ifloat: 1
280ildouble: 1
281ldouble: 1
282
283# cosh
284Test "cosh (0.75) == 1.29468328467684468784170818539018176":
285ildouble: 1
286
287# cpow
288Test "Real part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
289float: 1
290ifloat: 1
291ildouble: 1
292ldouble: 1
293Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
294ildouble: 1
295ldouble: 1
296Test "Real part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":
297float: 3
298ifloat: 3
299ildouble: 6
300ldouble: 6
301Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":
302float: 1
303ifloat: 1
304ildouble: 1
305ldouble: 1
306Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 0.0 i) == 0.75 + 1.25 i":
307ildouble: 1
308ldouble: 1
309Test "Imaginary part of: cpow (0.75 + 1.25 i, 1.0 + 0.0 i) == 0.75 + 1.25 i":
310float: 1
311ifloat: 1
312Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 1.0 i) == 0.0846958290317209430433805274189191353 + 0.513285749182902449043287190519090481 i":
313double: 1
314float: 3
315idouble: 1
316ifloat: 3
317ildouble: 3
318ldouble: 3
319Test "Real part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
320double: 1
321float: 4
322idouble: 1
323ifloat: 4
324Test "Imaginary part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
325float: 1
326ifloat: 1
327ildouble: 2
328ldouble: 2
329Test "Imaginary part of: cpow (e + 0 i, 0 + 2 * M_PIl i) == 1.0 + 0.0 i":
330double: 2
331float: 3
332idouble: 2
333ifloat: 3
334ildouble: 1
335ldouble: 1
336
337# csin
338Test "Real part of: csin (0.75 + 1.25 i) == 1.28722291002649188575873510790565441 + 1.17210635989270256101081285116138863 i":
339float: 1
340ifloat: 1
341ildouble: 1
342ldouble: 1
343Test "Imaginary part of: csin (0.75 + 1.25 i) == 1.28722291002649188575873510790565441 + 1.17210635989270256101081285116138863 i":
344float: 1
345ifloat: 1
346
347# csinh
348Test "Real part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
349double: 1
350idouble: 1
351Test "Imaginary part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
352double: 1
353float: 1
354idouble: 1
355ifloat: 1
356ildouble: 2
357ldouble: 2
358Test "Real part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
359double: 1
360float: 1
361idouble: 1
362ifloat: 1
363ildouble: 1
364ldouble: 1
365Test "Imaginary part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
366float: 1
367ifloat: 1
368
369# ctan
370Test "Real part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
371double: 1
372idouble: 1
373ildouble: 439
374ldouble: 439
375Test "Imaginary part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
376float: 1
377ifloat: 1
378ildouble: 2
379ldouble: 2
380Test "Real part of: ctan (0.75 + 1.25 i) == 0.160807785916206426725166058173438663 + 0.975363285031235646193581759755216379 i":
381ildouble: 1
382ldouble: 1
383Test "Imaginary part of: ctan (0.75 + 1.25 i) == 0.160807785916206426725166058173438663 + 0.975363285031235646193581759755216379 i":
384double: 1
385float: 1
386idouble: 1
387ifloat: 1
388ildouble: 3
389ldouble: 3
390
391# ctanh
392Test "Real part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
393ildouble: 5
394ldouble: 5
395Test "Imaginary part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
396float: 1
397ifloat: 1
398ildouble: 25
399ldouble: 25
400Test "Imaginary part of: ctanh (0 + pi/4 i) == 0.0 + 1.0 i":
401float: 1
402ifloat: 1
403Test "Real part of: ctanh (0.75 + 1.25 i) == 1.37260757053378320258048606571226857 + 0.385795952609750664177596760720790220 i":
404double: 1
405float: 1
406idouble: 1
407ifloat: 1
408Test "Imaginary part of: ctanh (0.75 + 1.25 i) == 1.37260757053378320258048606571226857 + 0.385795952609750664177596760720790220 i":
409double: 1
410float: 1
411idouble: 1
412ifloat: 1
413ildouble: 1
414ldouble: 1
415
416# erf
417Test "erf (1.25) == 0.922900128256458230136523481197281140":
418double: 1
419idouble: 1
420
421# erfc
422Test "erfc (0.75) == 0.288844366346484868401062165408589223":
423float: 1
424ifloat: 1
425Test "erfc (1.25) == 0.0770998717435417698634765188027188596":
426ildouble: 1
427ldouble: 1
428Test "erfc (2.0) == 0.00467773498104726583793074363274707139":
429double: 1
430idouble: 1
431Test "erfc (4.125) == 0.542340079956506600531223408575531062e-8":
432double: 1
433idouble: 1
434ildouble: 1
435ldouble: 1
436
437# exp
438Test "exp (0.75) == 2.11700001661267466854536981983709561":
439ildouble: 1
440Test "exp (1000.0) == 0.197007111401704699388887935224332313e435":
441ildouble: 754
442Test "exp (50.0) == 5184705528587072464087.45332293348538":
443ildouble: 16
444
445# exp10
446Test "exp10 (-1) == 0.1":
447ildouble: 1
448ldouble: 1
449Test "exp10 (0.75) == 5.62341325190349080394951039776481231":
450ildouble: 2
451ldouble: 2
452Test "exp10 (3) == 1000":
453ildouble: 8
454ldouble: 8
455
456# expm1
457Test "expm1 (1) == M_El - 1.0":
458ildouble: 1
459
460# gamma
461Test "gamma (-0.5) == log(2*sqrt(pi))":
462double: 1
463idouble: 1
464ildouble: 1
465ldouble: 1
466
467# hypot
468Test "hypot (-0.7, -12.4) == 12.419742348374220601176836866763271":
469float: 1
470ifloat: 1
471Test "hypot (-0.7, 12.4) == 12.419742348374220601176836866763271":
472float: 1
473ifloat: 1
474Test "hypot (-12.4, -0.7) == 12.419742348374220601176836866763271":
475float: 1
476ifloat: 1
477Test "hypot (-12.4, 0.7) == 12.419742348374220601176836866763271":
478float: 1
479ifloat: 1
480Test "hypot (0.7, -12.4) == 12.419742348374220601176836866763271":
481float: 1
482ifloat: 1
483Test "hypot (0.7, 12.4) == 12.419742348374220601176836866763271":
484float: 1
485ifloat: 1
486Test "hypot (12.4, -0.7) == 12.419742348374220601176836866763271":
487float: 1
488ifloat: 1
489Test "hypot (12.4, 0.7) == 12.419742348374220601176836866763271":
490float: 1
491ifloat: 1
492
493# j0
494Test "j0 (-4.0) == -3.9714980986384737228659076845169804197562E-1":
495double: 1
496float: 2
497idouble: 1
498ifloat: 2
499ildouble: 1
500ldouble: 1
501Test "j0 (10.0) == -0.245935764451348335197760862485328754":
502double: 3
503float: 1
504idouble: 3
505ifloat: 1
506Test "j0 (2.0) == 0.223890779141235668051827454649948626":
507double: 1
508float: 1
509idouble: 1
510ifloat: 1
511Test "j0 (4.0) == -3.9714980986384737228659076845169804197562E-1":
512double: 1
513float: 2
514idouble: 1
515ifloat: 2
516ildouble: 1
517ldouble: 1
518Test "j0 (8.0) == 0.171650807137553906090869407851972001":
519float: 1
520ifloat: 1
521
522# j1
523Test "j1 (0.75) == 0.349243602174862192523281016426251335":
524double: 1
525idouble: 1
526Test "j1 (10.0) == 0.0434727461688614366697487680258592883":
527double: 1
528float: 1
529idouble: 1
530ifloat: 1
531ildouble: 1
532ldouble: 1
533Test "j1 (2.0) == 0.576724807756873387202448242269137087":
534double: 1
535idouble: 1
536Test "j1 (8.0) == 0.234636346853914624381276651590454612":
537double: 1
538float: 1
539idouble: 1
540ifloat: 1
541ildouble: 1
542ldouble: 1
543
544# jn
545Test "jn (0, -4.0) == -3.9714980986384737228659076845169804197562E-1":
546double: 1
547float: 2
548idouble: 1
549ifloat: 2
550ildouble: 1
551ldouble: 1
552Test "jn (0, 10.0) == -0.245935764451348335197760862485328754":
553double: 3
554float: 1
555idouble: 3
556ifloat: 1
557Test "jn (0, 2.0) == 0.223890779141235668051827454649948626":
558double: 1
559float: 1
560idouble: 1
561ifloat: 1
562Test "jn (0, 4.0) == -3.9714980986384737228659076845169804197562E-1":
563double: 1
564float: 2
565idouble: 1
566ifloat: 2
567ildouble: 1
568ldouble: 1
569Test "jn (0, 8.0) == 0.171650807137553906090869407851972001":
570float: 1
571ifloat: 1
572Test "jn (1, 0.75) == 0.349243602174862192523281016426251335":
573double: 1
574idouble: 1
575Test "jn (1, 10.0) == 0.0434727461688614366697487680258592883":
576double: 1
577float: 1
578idouble: 1
579ifloat: 1
580ildouble: 1
581ldouble: 1
582Test "jn (1, 2.0) == 0.576724807756873387202448242269137087":
583double: 1
584idouble: 1
585Test "jn (1, 8.0) == 0.234636346853914624381276651590454612":
586double: 1
587float: 1
588idouble: 1
589ifloat: 1
590ildouble: 1
591ldouble: 1
592Test "jn (10, -1.0) == 0.263061512368745320699785368779050294e-9":
593double: 1
594float: 1
595idouble: 1
596ifloat: 1
597ildouble: 1
598ldouble: 1
599Test "jn (10, 0.125) == 0.250543369809369890173993791865771547e-18":
600double: 1
601float: 1
602idouble: 1
603ifloat: 1
604Test "jn (10, 0.75) == 0.149621713117596814698712483621682835e-10":
605float: 1
606ifloat: 1
607ildouble: 2
608ldouble: 2
609Test "jn (10, 1.0) == 0.263061512368745320699785368779050294e-9":
610double: 1
611float: 1
612idouble: 1
613ifloat: 1
614ildouble: 1
615ldouble: 1
616Test "jn (10, 10.0) == 0.207486106633358857697278723518753428":
617double: 5
618float: 2
619idouble: 5
620ifloat: 2
621ildouble: 2
622ldouble: 2
623Test "jn (10, 2.0) == 0.251538628271673670963516093751820639e-6":
624double: 2
625idouble: 2
626ildouble: 1
627ldouble: 1
628Test "jn (3, -1.0) == -0.0195633539826684059189053216217515083":
629ildouble: 1
630ldouble: 1
631Test "jn (3, 0.75) == 0.848438342327410884392755236884386804e-2":
632double: 1
633float: 1
634idouble: 1
635ifloat: 1
636Test "jn (3, 1.0) == 0.0195633539826684059189053216217515083":
637ildouble: 1
638ldouble: 1
639Test "jn (3, 10.0) == 0.0583793793051868123429354784103409563":
640double: 5
641float: 2
642idouble: 5
643ifloat: 2
644ildouble: 1
645ldouble: 1
646Test "jn (3, 2.0) == 0.128943249474402051098793332969239835":
647double: 1
648idouble: 1
649ildouble: 1
650ldouble: 1
651
652# lgamma
653Test "lgamma (-0.5) == log(2*sqrt(pi))":
654double: 1
655idouble: 1
656ildouble: 1
657ldouble: 1
658Test "lgamma (0.7) == 0.260867246531666514385732417016759578":
659double: 1
660float: 1
661idouble: 1
662ifloat: 1
663Test "lgamma (1.2) == -0.853740900033158497197028392998854470e-1":
664double: 1
665float: 2
666idouble: 1
667ifloat: 2
668ildouble: 1
669ldouble: 1
670
671# log
672Test "log (e) == 1":
673float: 1
674ifloat: 1
675
676# log10
677Test "log10 (0.75) == -0.124938736608299953132449886193870744":
678ildouble: 1
679ldouble: 1
680Test "log10 (e) == log10(e)":
681float: 1
682ifloat: 1
683ildouble: 1
684ldouble: 1
685
686# sincos
687Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.5 in cos_res":
688double: 1
689float: 1
690idouble: 1
691ifloat: 1
692Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in sin_res":
693double: 1
694float: 1
695idouble: 1
696ifloat: 1
697ildouble: 1
698ldouble: 1
699Test "sincos (pi/2, &sin_res, &cos_res) puts 0 in cos_res":
700double: 1
701float: 1
702idouble: 1
703ifloat: 1
704ildouble: 1
705ldouble: 1
706
707# sin
708Test "sin (0.80190127184058835) == 0.71867942238767868":
709double: 1
710idouble: 1
711
712# sinh
713Test "sinh (0.75) == 0.822316731935829980703661634446913849":
714double: 1
715ildouble: 1
716
717# tan
718Test "tan (pi/4) == 1":
719double: 1
720idouble: 1
721
722# tgamma
723Test "tgamma (-0.5) == -2 sqrt (pi)":
724double: 2
725float: 1
726idouble: 2
727ifloat: 1
728ildouble: 1
729ldouble: 1
730Test "tgamma (0.5) == sqrt (pi)":
731float: 1
732ifloat: 1
733Test "tgamma (0.7) == 1.29805533264755778568117117915281162":
734double: 1
735float: 1
736idouble: 1
737ifloat: 1
738Test "tgamma (4) == 6":
739ildouble: 1
740ldouble: 1
741
742# y0
743Test "y0 (0.125) == -1.38968062514384052915582277745018693":
744ildouble: 1
745ldouble: 1
746Test "y0 (0.75) == -0.137172769385772397522814379396581855":
747double: 1
748float: 1
749idouble: 1
750ifloat: 1
751Test "y0 (1.0) == 0.0882569642156769579829267660235151628":
752double: 2
753float: 1
754idouble: 2
755ifloat: 1
756ildouble: 1
757ldouble: 1
758Test "y0 (1.5) == 0.382448923797758843955068554978089862":
759double: 1
760float: 1
761idouble: 1
762ifloat: 1
763Test "y0 (10.0) == 0.0556711672835993914244598774101900481":
764double: 1
765float: 1
766idouble: 1
767ifloat: 1
768ildouble: 1
769ldouble: 1
770Test "y0 (8.0) == 0.223521489387566220527323400498620359":
771double: 1
772float: 1
773idouble: 1
774ifloat: 1
775ildouble: 1
776ldouble: 1
777
778# y1
779Test "y1 (0.125) == -5.19993611253477499595928744876579921":
780ildouble: 1
781ldouble: 1
782Test "y1 (1.0) == -0.781212821300288716547150000047964821":
783double: 1
784idouble: 1
785Test "y1 (10.0) == 0.249015424206953883923283474663222803":
786double: 2
787float: 2
788idouble: 2
789ifloat: 2
790Test "y1 (2.0) == -0.107032431540937546888370772277476637":
791double: 1
792float: 2
793idouble: 1
794ifloat: 2
795ildouble: 1
796ldouble: 1
797Test "y1 (8.0) == -0.158060461731247494255555266187483550":
798double: 1
799float: 2
800idouble: 1
801ifloat: 2
802ildouble: 1
803ldouble: 1
804
805# yn
806Test "yn (0, 0.125) == -1.38968062514384052915582277745018693":
807ildouble: 1
808ldouble: 1
809Test "yn (0, 0.75) == -0.137172769385772397522814379396581855":
810double: 1
811float: 1
812idouble: 1
813ifloat: 1
814Test "yn (0, 1.0) == 0.0882569642156769579829267660235151628":
815double: 2
816float: 1
817idouble: 2
818ifloat: 1
819ildouble: 1
820ldouble: 1
821Test "yn (0, 1.5) == 0.382448923797758843955068554978089862":
822double: 1
823float: 1
824idouble: 1
825ifloat: 1
826Test "yn (0, 10.0) == 0.0556711672835993914244598774101900481":
827double: 1
828float: 1
829idouble: 1
830ifloat: 1
831ildouble: 1
832ldouble: 1
833Test "yn (0, 8.0) == 0.223521489387566220527323400498620359":
834double: 1
835float: 1
836idouble: 1
837ifloat: 1
838ildouble: 1
839ldouble: 1
840Test "yn (1, 0.125) == -5.19993611253477499595928744876579921":
841ildouble: 1
842ldouble: 1
843Test "yn (1, 1.0) == -0.781212821300288716547150000047964821":
844double: 1
845idouble: 1
846Test "yn (1, 10.0) == 0.249015424206953883923283474663222803":
847double: 2
848float: 2
849idouble: 2
850ifloat: 2
851Test "yn (1, 2.0) == -0.107032431540937546888370772277476637":
852double: 1
853float: 2
854idouble: 1
855ifloat: 2
856ildouble: 1
857ldouble: 1
858Test "yn (1, 8.0) == -0.158060461731247494255555266187483550":
859double: 1
860float: 2
861idouble: 1
862ifloat: 2
863ildouble: 1
864ldouble: 1
865Test "yn (10, 0.125) == -127057845771019398.252538486899753195":
866double: 1
867float: 1
868idouble: 1
869ifloat: 1
870ildouble: 2
871ldouble: 2
872Test "yn (10, 0.75) == -2133501638.90573424452445412893839236":
873float: 1
874ifloat: 1
875ildouble: 4
876ldouble: 4
877Test "yn (10, 1.0) == -121618014.278689189288130426667971145":
878double: 1
879float: 2
880idouble: 1
881ifloat: 2
882Test "yn (10, 10.0) == -0.359814152183402722051986577343560609":
883double: 1
884float: 3
885idouble: 1
886ifloat: 3
887Test "yn (10, 2.0) == -129184.542208039282635913145923304214":
888double: 2
889float: 3
890idouble: 2
891ifloat: 3
892Test "yn (3, 0.125) == -2612.69757350066712600220955744091741":
893ildouble: 1
894ldouble: 1
895Test "yn (3, 0.75) == -12.9877176234475433186319774484809207":
896double: 1
897float: 1
898idouble: 1
899ifloat: 1
900ildouble: 2
901ldouble: 2
902Test "yn (3, 10.0) == -0.251362657183837329779204747654240998":
903double: 1
904float: 1
905idouble: 1
906ifloat: 1
907Test "yn (3, 2.0) == -1.12778377684042778608158395773179238":
908double: 1
909float: 1
910idouble: 1
911ifloat: 1
912
913# Maximal error of functions:
914Function: "acos":
915ildouble: 622
916ldouble: 622
917
918Function: "asin":
919ildouble: 1
920ldouble: 1
921
922Function: "atanh":
923ildouble: 2
924ldouble: 1
925
926Function: Imaginary part of "cacos":
927float: 1
928ifloat: 1
929ildouble: 2
930ldouble: 2
931
932Function: Real part of "cacosh":
933double: 1
934float: 9
935idouble: 1
936ifloat: 9
937ildouble: 6
938ldouble: 6
939
940Function: Imaginary part of "cacosh":
941double: 1
942float: 4
943idouble: 1
944ifloat: 4
945ildouble: 1
946ldouble: 1
947
948Function: Real part of "casin":
949double: 1
950float: 1
951idouble: 1
952ifloat: 1
953ildouble: 2
954ldouble: 2
955
956Function: Imaginary part of "casin":
957float: 1
958ifloat: 1
959ildouble: 2
960ldouble: 2
961
962Function: Real part of "casinh":
963double: 5
964float: 1
965idouble: 5
966ifloat: 1
967ildouble: 5
968ldouble: 5
969
970Function: Imaginary part of "casinh":
971double: 3
972float: 6
973idouble: 3
974ifloat: 6
975ildouble: 5
976ldouble: 5
977
978Function: Imaginary part of "catan":
979double: 1
980float: 1
981idouble: 1
982ifloat: 1
983
984Function: Real part of "catanh":
985double: 2
986float: 1
987idouble: 2
988ifloat: 1
989ildouble: 1
990ldouble: 1
991
992Function: "cbrt":
993ildouble: 1
994ldouble: 1
995
996Function: Real part of "ccos":
997double: 1
998idouble: 1
999ildouble: 1
1000ldouble: 1
1001
1002Function: Imaginary part of "ccos":
1003float: 1
1004ifloat: 1
1005ildouble: 1
1006ldouble: 1
1007
1008Function: Real part of "ccosh":
1009double: 1
1010float: 1
1011idouble: 1
1012ifloat: 1
1013
1014Function: Imaginary part of "ccosh":
1015double: 1
1016float: 1
1017idouble: 1
1018ifloat: 1
1019ildouble: 1
1020ldouble: 1
1021
1022Function: Real part of "cexp":
1023ildouble: 1
1024ldouble: 1
1025
1026Function: Imaginary part of "cexp":
1027ildouble: 1
1028ldouble: 1
1029
1030Function: Real part of "clog":
1031float: 1
1032ifloat: 1
1033ildouble: 1
1034ldouble: 1
1035
1036Function: Real part of "clog10":
1037double: 1
1038float: 1
1039idouble: 1
1040ifloat: 1
1041ildouble: 1
1042ldouble: 1
1043
1044Function: Imaginary part of "clog10":
1045double: 1
1046float: 1
1047idouble: 1
1048ifloat: 1
1049ildouble: 1
1050ldouble: 1
1051
1052Function: "cos":
1053double: 2
1054float: 1
1055idouble: 2
1056ifloat: 1
1057ildouble: 1
1058ldouble: 1
1059
1060Function: "cosh":
1061ildouble: 1
1062
1063Function: Real part of "cpow":
1064double: 1
1065float: 4
1066idouble: 1
1067ifloat: 4
1068ildouble: 763
1069ldouble: 763
1070
1071Function: Imaginary part of "cpow":
1072double: 2
1073float: 3
1074idouble: 2
1075ifloat: 3
1076ildouble: 2
1077ldouble: 2
1078
1079Function: Real part of "csin":
1080float: 1
1081ifloat: 1
1082ildouble: 1
1083ldouble: 1
1084
1085Function: Imaginary part of "csin":
1086float: 1
1087ifloat: 1
1088
1089Function: Real part of "csinh":
1090double: 1
1091float: 1
1092idouble: 1
1093ifloat: 1
1094ildouble: 1
1095ldouble: 1
1096
1097Function: Imaginary part of "csinh":
1098double: 1
1099float: 1
1100idouble: 1
1101ifloat: 1
1102ildouble: 2
1103ldouble: 2
1104
1105Function: Real part of "ctan":
1106double: 1
1107idouble: 1
1108ildouble: 439
1109ldouble: 439
1110
1111Function: Imaginary part of "ctan":
1112double: 1
1113float: 1
1114idouble: 1
1115ifloat: 1
1116ildouble: 3
1117ldouble: 3
1118
1119Function: Real part of "ctanh":
1120double: 1
1121float: 1
1122idouble: 1
1123ifloat: 1
1124ildouble: 5
1125ldouble: 5
1126
1127Function: Imaginary part of "ctanh":
1128double: 1
1129float: 1
1130idouble: 1
1131ifloat: 1
1132ildouble: 25
1133ldouble: 25
1134
1135Function: "erf":
1136double: 1
1137idouble: 1
1138
1139Function: "erfc":
1140double: 1
1141float: 1
1142idouble: 1
1143ifloat: 1
1144ildouble: 1
1145ldouble: 1
1146
1147Function: "exp":
1148ildouble: 754
1149
1150Function: "exp10":
1151ildouble: 8
1152ldouble: 8
1153
1154Function: "expm1":
1155ildouble: 1
1156
1157Function: "gamma":
1158double: 1
1159idouble: 1
1160ildouble: 1
1161ldouble: 1
1162
1163Function: "hypot":
1164float: 1
1165ifloat: 1
1166
1167Function: "j0":
1168double: 3
1169float: 2
1170idouble: 3
1171ifloat: 2
1172ildouble: 1
1173ldouble: 1
1174
1175Function: "j1":
1176double: 1
1177float: 1
1178idouble: 1
1179ifloat: 1
1180ildouble: 1
1181ldouble: 1
1182
1183Function: "jn":
1184double: 5
1185float: 2
1186idouble: 5
1187ifloat: 2
1188ildouble: 2
1189ldouble: 2
1190
1191Function: "lgamma":
1192double: 1
1193float: 2
1194idouble: 1
1195ifloat: 2
1196ildouble: 1
1197ldouble: 1
1198
1199Function: "log":
1200float: 1
1201ifloat: 1
1202
1203Function: "log10":
1204float: 1
1205ifloat: 1
1206ildouble: 1
1207ldouble: 1
1208
1209Function: "sincos":
1210double: 1
1211float: 1
1212idouble: 1
1213ifloat: 1
1214ildouble: 1
1215ldouble: 1
1216
1217Function: "sin":
1218double: 1
1219idouble: 1
1220
1221Function: "sinh":
1222double: 1
1223ildouble: 1
1224
1225Function: "tan":
1226double: 1
1227idouble: 1
1228
1229Function: "tgamma":
1230double: 2
1231float: 1
1232idouble: 2
1233ifloat: 1
1234ildouble: 1
1235ldouble: 1
1236
1237Function: "y0":
1238double: 2
1239float: 1
1240idouble: 2
1241ifloat: 1
1242ildouble: 1
1243ldouble: 1
1244
1245Function: "y1":
1246double: 2
1247float: 2
1248idouble: 2
1249ifloat: 2
1250ildouble: 1
1251ldouble: 1
1252
1253Function: "yn":
1254double: 2
1255float: 3
1256idouble: 2
1257ifloat: 3
1258ildouble: 4
1259ldouble: 4
1260
1261# end of automatic generation