blob: c5a2a08549fa71dde142e0161d4ac8e8d2b1a45b [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001# Begin of automatic generation
2
3# cacos
4Test "Imaginary part of: cacos (0.75 + 1.25 i) == 1.11752014915610270578240049553777969 - 1.13239363160530819522266333696834467 i":
5float: 1
6ifloat: 1
7ildouble: 2
8ldouble: 2
9
10# cacosh
11Test "Real part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
12double: 1
13float: 7
14idouble: 1
15ifloat: 7
16ildouble: 7
17ldouble: 7
18Test "Imaginary part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
19double: 1
20idouble: 1
21ildouble: 1
22ldouble: 1
23
24# casin
25Test "Real part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
26double: 1
27float: 1
28idouble: 1
29ifloat: 1
30ildouble: 2
31ldouble: 2
32Test "Imaginary part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
33float: 1
34ifloat: 1
35ildouble: 2
36ldouble: 2
37
38# casinh
39Test "Real part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
40double: 5
41float: 1
42idouble: 5
43ifloat: 1
44ildouble: 5
45ldouble: 5
46Test "Imaginary part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
47double: 3
48float: 6
49idouble: 3
50ifloat: 6
51ildouble: 5
52ldouble: 5
53Test "Real part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
54float: 1
55ifloat: 1
56ildouble: 1
57ldouble: 1
58Test "Imaginary part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
59double: 1
60float: 1
61idouble: 1
62ifloat: 1
63
64# catan
65Test "Imaginary part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":
66double: 1
67float: 1
68idouble: 1
69ifloat: 1
70
71# catanh
72Test "Real part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":
73double: 4
74idouble: 4
75ildouble: 1
76ldouble: 1
77Test "Real part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":
78double: 1
79idouble: 1
80
81# ccos
82Test "Imaginary part of: ccos (-2 - 3 i) == -4.18962569096880723013255501961597373 - 9.10922789375533659797919726277886212 i":
83float: 1
84ifloat: 1
85ildouble: 1
86ldouble: 1
87Test "Real part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
88double: 1
89idouble: 1
90ildouble: 1
91ldouble: 1
92Test "Imaginary part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
93ildouble: 1
94ldouble: 1
95
96# ccosh
97Test "Imaginary part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":
98double: 1
99float: 1
100idouble: 1
101ifloat: 1
102ildouble: 1
103ldouble: 1
104Test "Real part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
105double: 1
106float: 1
107idouble: 1
108ifloat: 1
109Test "Imaginary part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
110float: 1
111ifloat: 1
112
113# cexp
114Test "Imaginary part of: cexp (-2.0 - 3.0 i) == -0.13398091492954261346140525546115575 - 0.019098516261135196432576240858800925 i":
115float: 1
116ifloat: 1
117Test "Real part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":
118float: 1
119ifloat: 1
120Test "Imaginary part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":
121ildouble: 1
122ldouble: 1
123
124# clog
125Test "Real part of: clog (0.75 + 1.25 i) == 0.376885901188190075998919126749298416 + 1.03037682652431246378774332703115153 i":
126float: 1
127ifloat: 1
128ildouble: 1
129ldouble: 1
130
131# clog10
132Test "Imaginary part of: clog10 (-0 + inf i) == inf + pi/2*log10(e) i":
133double: 1
134float: 1
135idouble: 1
136ifloat: 1
137Test "Imaginary part of: clog10 (-0 - inf i) == inf - pi/2*log10(e) i":
138double: 1
139float: 1
140idouble: 1
141ifloat: 1
142Test "Imaginary part of: clog10 (-2 - 3 i) == 0.556971676153418384603252578971164214 - 0.937554462986374708541507952140189646 i":
143double: 1
144idouble: 1
145ildouble: 1
146ldouble: 1
147Test "Imaginary part of: clog10 (-3 + inf i) == inf + pi/2*log10(e) i":
148double: 1
149float: 1
150idouble: 1
151ifloat: 1
152Test "Imaginary part of: clog10 (-3 - inf i) == inf - pi/2*log10(e) i":
153double: 1
154float: 1
155idouble: 1
156ifloat: 1
157Test "Imaginary part of: clog10 (-inf + 0 i) == inf + pi*log10(e) i":
158double: 1
159float: 1
160idouble: 1
161ifloat: 1
162Test "Imaginary part of: clog10 (-inf + 1 i) == inf + pi*log10(e) i":
163double: 1
164float: 1
165idouble: 1
166ifloat: 1
167Test "Imaginary part of: clog10 (-inf + inf i) == inf + 3/4 pi*log10(e) i":
168double: 1
169idouble: 1
170Test "Imaginary part of: clog10 (-inf - 0 i) == inf - pi*log10(e) i":
171double: 1
172float: 1
173idouble: 1
174ifloat: 1
175Test "Imaginary part of: clog10 (-inf - 1 i) == inf - pi*log10(e) i":
176double: 1
177float: 1
178idouble: 1
179ifloat: 1
180Test "Imaginary part of: clog10 (0 + inf i) == inf + pi/2*log10(e) i":
181double: 1
182float: 1
183idouble: 1
184ifloat: 1
185Test "Imaginary part of: clog10 (0 - inf i) == inf - pi/2*log10(e) i":
186double: 1
187float: 1
188idouble: 1
189ifloat: 1
190Test "Real part of: clog10 (0.75 + 1.25 i) == 0.163679467193165171449476605077428975 + 0.447486970040493067069984724340855636 i":
191double: 1
192float: 1
193idouble: 1
194ifloat: 1
195ildouble: 1
196ldouble: 1
197Test "Imaginary part of: clog10 (3 + inf i) == inf + pi/2*log10(e) i":
198double: 1
199float: 1
200idouble: 1
201ifloat: 1
202Test "Imaginary part of: clog10 (3 - inf i) == inf - pi/2*log10(e) i":
203double: 1
204float: 1
205idouble: 1
206ifloat: 1
207Test "Imaginary part of: clog10 (inf + inf i) == inf + pi/4*log10(e) i":
208double: 1
209float: 1
210idouble: 1
211ifloat: 1
212Test "Imaginary part of: clog10 (inf - inf i) == inf - pi/4*log10(e) i":
213double: 1
214float: 1
215idouble: 1
216ifloat: 1
217
218# cos
219Test "cos (0.80190127184058835) == 0.69534156199418473":
220double: 1
221idouble: 1
222Test "cos (M_PI_6l * 2.0) == 0.5":
223double: 1
224float: 1
225idouble: 1
226ifloat: 1
227Test "cos (M_PI_6l * 4.0) == -0.5":
228double: 2
229float: 1
230idouble: 2
231ifloat: 1
232ildouble: 1
233ldouble: 1
234Test "cos (pi/2) == 0":
235double: 1
236float: 1
237idouble: 1
238ifloat: 1
239ildouble: 1
240ldouble: 1
241
242# cpow
243Test "Real part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
244float: 1
245ifloat: 1
246Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
247float: 1
248ifloat: 1
249ildouble: 1
250ldouble: 1
251Test "Real part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":
252double: 1
253float: 4
254idouble: 1
255ifloat: 4
256ildouble: 6
257ldouble: 6
258Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":
259ildouble: 1
260ldouble: 1
261Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 0.0 i) == 0.75 + 1.25 i":
262ildouble: 1
263ldouble: 1
264Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 1.0 i) == 0.0846958290317209430433805274189191353 + 0.513285749182902449043287190519090481 i":
265double: 2
266float: 3
267idouble: 2
268ifloat: 3
269ildouble: 3
270ldouble: 3
271Test "Real part of: cpow (2 + 0 i, 10 + 0 i) == 1024.0 + 0.0 i":
272ildouble: 1
273ldouble: 1
274Test "Real part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
275double: 1
276float: 5
277idouble: 1
278ifloat: 5
279ildouble: 1
280ldouble: 1
281Test "Imaginary part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
282float: 2
283ifloat: 2
284ildouble: 4
285ldouble: 4
286Test "Imaginary part of: cpow (e + 0 i, 0 + 2 * M_PIl i) == 1.0 + 0.0 i":
287double: 2
288float: 3
289idouble: 2
290ifloat: 3
291ildouble: 1
292ldouble: 1
293
294# csin
295Test "Real part of: csin (0.75 + 1.25 i) == 1.28722291002649188575873510790565441 + 1.17210635989270256101081285116138863 i":
296float: 1
297ifloat: 1
298ildouble: 1
299ldouble: 1
300Test "Imaginary part of: csin (0.75 + 1.25 i) == 1.28722291002649188575873510790565441 + 1.17210635989270256101081285116138863 i":
301float: 1
302ifloat: 1
303
304# csinh
305Test "Real part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
306double: 1
307idouble: 1
308Test "Imaginary part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
309double: 1
310float: 1
311idouble: 1
312ifloat: 1
313ildouble: 2
314ldouble: 2
315Test "Real part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
316float: 1
317ifloat: 1
318ildouble: 1
319ldouble: 1
320Test "Imaginary part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
321float: 1
322ifloat: 1
323
324# csqrt
325Test "Real part of: csqrt (-2 + 3 i) == 0.89597747612983812471573375529004348 + 1.6741492280355400404480393008490519 i":
326float: 1
327ifloat: 1
328Test "Real part of: csqrt (-2 - 3 i) == 0.89597747612983812471573375529004348 - 1.6741492280355400404480393008490519 i":
329float: 1
330ifloat: 1
331
332# ctan
333Test "Real part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
334double: 1
335idouble: 1
336ildouble: 2
337ldouble: 2
338Test "Imaginary part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
339float: 1
340ifloat: 1
341ildouble: 1
342ldouble: 1
343Test "Real part of: ctan (0.75 + 1.25 i) == 0.160807785916206426725166058173438663 + 0.975363285031235646193581759755216379 i":
344ildouble: 1
345ldouble: 1
346Test "Imaginary part of: ctan (0.75 + 1.25 i) == 0.160807785916206426725166058173438663 + 0.975363285031235646193581759755216379 i":
347double: 1
348float: 1
349idouble: 1
350ifloat: 1
351
352# ctanh
353Test "Real part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
354ildouble: 1
355ldouble: 1
356Test "Imaginary part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
357float: 1
358ifloat: 1
359ildouble: 24
360ldouble: 24
361Test "Imaginary part of: ctanh (0 + pi/4 i) == 0.0 + 1.0 i":
362float: 1
363ifloat: 1
364Test "Real part of: ctanh (0.75 + 1.25 i) == 1.37260757053378320258048606571226857 + 0.385795952609750664177596760720790220 i":
365double: 1
366idouble: 1
367Test "Imaginary part of: ctanh (0.75 + 1.25 i) == 1.37260757053378320258048606571226857 + 0.385795952609750664177596760720790220 i":
368double: 1
369idouble: 1
370ildouble: 1
371ldouble: 1
372
373# erf
374Test "erf (1.25) == 0.922900128256458230136523481197281140":
375double: 1
376idouble: 1
377
378# erfc
379Test "erfc (0.75) == 0.288844366346484868401062165408589223":
380float: 1
381ifloat: 1
382Test "erfc (1.25) == 0.0770998717435417698634765188027188596":
383ildouble: 1
384ldouble: 1
385Test "erfc (2.0) == 0.00467773498104726583793074363274707139":
386double: 1
387idouble: 1
388Test "erfc (4.125) == 0.542340079956506600531223408575531062e-8":
389double: 1
390idouble: 1
391ildouble: 1
392ldouble: 1
393
394# exp10
395Test "exp10 (-1) == 0.1":
396double: 2
397float: 1
398idouble: 2
399ifloat: 1
400Test "exp10 (0.75) == 5.62341325190349080394951039776481231":
401double: 1
402float: 1
403idouble: 1
404ifloat: 1
405ildouble: 1
406ldouble: 1
407Test "exp10 (3) == 1000":
408double: 6
409float: 2
410idouble: 6
411ifloat: 2
412ildouble: 3
413ldouble: 3
414
415# expm1
416Test "expm1 (1) == M_El - 1.0":
417ildouble: 1
418ldouble: 1
419
420# gamma
421Test "gamma (-0.5) == log(2*sqrt(pi))":
422ildouble: 1
423ldouble: 1
424
425# hypot
426Test "hypot (-0.7, -12.4) == 12.419742348374220601176836866763271":
427float: 1
428ifloat: 1
429Test "hypot (-0.7, 12.4) == 12.419742348374220601176836866763271":
430float: 1
431ifloat: 1
432Test "hypot (-12.4, -0.7) == 12.419742348374220601176836866763271":
433float: 1
434ifloat: 1
435Test "hypot (-12.4, 0.7) == 12.419742348374220601176836866763271":
436float: 1
437ifloat: 1
438Test "hypot (0.7, -12.4) == 12.419742348374220601176836866763271":
439float: 1
440ifloat: 1
441Test "hypot (0.7, 12.4) == 12.419742348374220601176836866763271":
442float: 1
443ifloat: 1
444Test "hypot (12.4, -0.7) == 12.419742348374220601176836866763271":
445float: 1
446ifloat: 1
447Test "hypot (12.4, 0.7) == 12.419742348374220601176836866763271":
448float: 1
449ifloat: 1
450
451# j0
452Test "j0 (-4.0) == -3.9714980986384737228659076845169804197562E-1":
453double: 1
454float: 2
455idouble: 1
456ifloat: 2
457ildouble: 2
458ldouble: 2
459Test "j0 (10.0) == -0.245935764451348335197760862485328754":
460double: 3
461float: 1
462idouble: 3
463ifloat: 1
464ildouble: 1
465ldouble: 1
466Test "j0 (2.0) == 0.223890779141235668051827454649948626":
467float: 2
468ifloat: 2
469Test "j0 (4.0) == -3.9714980986384737228659076845169804197562E-1":
470double: 1
471float: 2
472idouble: 1
473ifloat: 2
474ildouble: 2
475ldouble: 2
476Test "j0 (8.0) == 0.171650807137553906090869407851972001":
477float: 1
478ifloat: 1
479
480# j1
481Test "j1 (10.0) == 0.0434727461688614366697487680258592883":
482float: 2
483ifloat: 2
484ildouble: 1
485ldouble: 1
486Test "j1 (2.0) == 0.576724807756873387202448242269137087":
487double: 1
488idouble: 1
489Test "j1 (8.0) == 0.234636346853914624381276651590454612":
490double: 1
491idouble: 1
492
493# jn
494Test "jn (0, -4.0) == -3.9714980986384737228659076845169804197562E-1":
495double: 1
496float: 2
497idouble: 1
498ifloat: 2
499ildouble: 2
500ldouble: 2
501Test "jn (0, 10.0) == -0.245935764451348335197760862485328754":
502double: 3
503float: 1
504idouble: 3
505ifloat: 1
506ildouble: 1
507ldouble: 1
508Test "jn (0, 2.0) == 0.223890779141235668051827454649948626":
509float: 2
510ifloat: 2
511Test "jn (0, 4.0) == -3.9714980986384737228659076845169804197562E-1":
512double: 1
513float: 2
514idouble: 1
515ifloat: 2
516ildouble: 2
517ldouble: 2
518Test "jn (0, 8.0) == 0.171650807137553906090869407851972001":
519float: 1
520ifloat: 1
521Test "jn (1, 10.0) == 0.0434727461688614366697487680258592883":
522float: 2
523ifloat: 2
524ildouble: 1
525ldouble: 1
526Test "jn (1, 2.0) == 0.576724807756873387202448242269137087":
527double: 1
528idouble: 1
529Test "jn (1, 8.0) == 0.234636346853914624381276651590454612":
530double: 1
531idouble: 1
532Test "jn (10, -1.0) == 0.263061512368745320699785368779050294e-9":
533ildouble: 1
534ldouble: 1
535Test "jn (10, 0.125) == 0.250543369809369890173993791865771547e-18":
536double: 1
537float: 1
538idouble: 1
539ifloat: 1
540Test "jn (10, 0.75) == 0.149621713117596814698712483621682835e-10":
541double: 1
542float: 1
543idouble: 1
544ifloat: 1
545ildouble: 2
546ldouble: 2
547Test "jn (10, 1.0) == 0.263061512368745320699785368779050294e-9":
548ildouble: 1
549ldouble: 1
550Test "jn (10, 10.0) == 0.207486106633358857697278723518753428":
551float: 1
552ifloat: 1
553ildouble: 2
554ldouble: 2
555Test "jn (10, 2.0) == 0.251538628271673670963516093751820639e-6":
556float: 4
557ifloat: 4
558ildouble: 1
559ldouble: 1
560Test "jn (3, -1.0) == -0.0195633539826684059189053216217515083":
561ildouble: 1
562ldouble: 1
563Test "jn (3, 0.125) == 0.406503832554912875023029337653442868e-4":
564double: 1
565float: 1
566idouble: 1
567ifloat: 1
568Test "jn (3, 0.75) == 0.848438342327410884392755236884386804e-2":
569double: 1
570idouble: 1
571Test "jn (3, 1.0) == 0.0195633539826684059189053216217515083":
572ildouble: 1
573ldouble: 1
574Test "jn (3, 10.0) == 0.0583793793051868123429354784103409563":
575double: 3
576float: 2
577idouble: 3
578ifloat: 2
579ildouble: 1
580ldouble: 1
581Test "jn (3, 2.0) == 0.128943249474402051098793332969239835":
582double: 1
583float: 2
584idouble: 1
585ifloat: 2
586ildouble: 1
587ldouble: 1
588
589# lgamma
590Test "lgamma (-0.5) == log(2*sqrt(pi))":
591ildouble: 1
592ldouble: 1
593Test "lgamma (0.7) == 0.260867246531666514385732417016759578":
594double: 1
595float: 1
596idouble: 1
597ifloat: 1
598Test "lgamma (1.2) == -0.853740900033158497197028392998854470e-1":
599double: 1
600float: 2
601idouble: 1
602ifloat: 2
603ildouble: 1
604ldouble: 1
605
606# log
607Test "log (e) == 1":
608float: 1
609ifloat: 1
610
611# log10
612Test "log10 (e) == log10(e)":
613float: 1
614ifloat: 1
615ildouble: 1
616ldouble: 1
617
618# sincos
619Test "sincos (0.80190127184058835, &sin_res, &cos_res) puts 0.69534156199418473 in cos_res":
620double: 1
621idouble: 1
622Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.5 in cos_res":
623double: 1
624float: 1
625idouble: 1
626ifloat: 1
627Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in sin_res":
628double: 1
629float: 1
630idouble: 1
631ifloat: 1
632ildouble: 1
633ldouble: 1
634Test "sincos (pi/2, &sin_res, &cos_res) puts 0 in cos_res":
635double: 1
636float: 1
637idouble: 1
638ifloat: 1
639ildouble: 1
640ldouble: 1
641
642# tan
643Test "tan (pi/4) == 1":
644double: 1
645idouble: 1
646
647# tgamma
648Test "tgamma (-0.5) == -2 sqrt (pi)":
649double: 1
650float: 1
651idouble: 1
652ifloat: 1
653ildouble: 1
654ldouble: 1
655Test "tgamma (0.5) == sqrt (pi)":
656float: 1
657ifloat: 1
658Test "tgamma (0.7) == 1.29805533264755778568117117915281162":
659double: 1
660float: 1
661idouble: 1
662ifloat: 1
663
664# y0
665Test "y0 (0.125) == -1.38968062514384052915582277745018693":
666ildouble: 1
667ldouble: 1
668Test "y0 (1.0) == 0.0882569642156769579829267660235151628":
669double: 2
670float: 1
671idouble: 2
672ifloat: 1
673ildouble: 1
674ldouble: 1
675Test "y0 (1.5) == 0.382448923797758843955068554978089862":
676double: 2
677float: 1
678idouble: 2
679ifloat: 1
680Test "y0 (10.0) == 0.0556711672835993914244598774101900481":
681double: 1
682float: 1
683idouble: 1
684ifloat: 1
685Test "y0 (2.0) == 0.510375672649745119596606592727157873":
686double: 1
687idouble: 1
688Test "y0 (8.0) == 0.223521489387566220527323400498620359":
689double: 1
690float: 1
691idouble: 1
692ifloat: 1
693ildouble: 1
694ldouble: 1
695
696# y1
697Test "y1 (0.125) == -5.19993611253477499595928744876579921":
698double: 1
699idouble: 1
700ildouble: 1
701ldouble: 1
702Test "y1 (10.0) == 0.249015424206953883923283474663222803":
703double: 3
704float: 1
705idouble: 3
706ifloat: 1
707Test "y1 (1.5) == -0.412308626973911295952829820633445323";
708float: 1
709ifloat: 1
710ildouble: 1
711ldouble: 1
712Test "y1 (2.0) == -0.107032431540937546888370772277476637":
713double: 1
714float: 1
715idouble: 1
716ifloat: 1
717ildouble: 1
718ldouble: 1
719Test "y1 (8.0) == -0.158060461731247494255555266187483550":
720double: 1
721float: 2
722idouble: 1
723ifloat: 2
724
725# yn
726Test "yn (0, 0.125) == -1.38968062514384052915582277745018693":
727ildouble: 1
728ldouble: 1
729Test "yn (0, 1.0) == 0.0882569642156769579829267660235151628":
730double: 2
731float: 1
732idouble: 2
733ifloat: 1
734ildouble: 1
735ldouble: 1
736Test "yn (0, 1.5) == 0.382448923797758843955068554978089862":
737double: 2
738float: 1
739idouble: 2
740ifloat: 1
741Test "yn (0, 10.0) == 0.0556711672835993914244598774101900481":
742double: 1
743float: 1
744idouble: 1
745ifloat: 1
746Test "yn (0, 2.0) == 0.510375672649745119596606592727157873":
747double: 1
748idouble: 1
749Test "yn (0, 8.0) == 0.223521489387566220527323400498620359":
750double: 1
751float: 1
752idouble: 1
753ifloat: 1
754ildouble: 1
755ldouble: 1
756Test "yn (1, 0.125) == -5.19993611253477499595928744876579921":
757double: 1
758idouble: 1
759ildouble: 1
760ldouble: 1
761Test "yn (1, 10.0) == 0.249015424206953883923283474663222803":
762double: 3
763float: 1
764idouble: 3
765ifloat: 1
766Test "yn (1, 1.5) == -0.412308626973911295952829820633445323";
767float: 1
768ifloat: 1
769ldouble: 1
770ildouble: 1
771Test "yn (1, 2.0) == -0.107032431540937546888370772277476637":
772double: 1
773float: 1
774idouble: 1
775ifloat: 1
776ildouble: 1
777ldouble: 1
778Test "yn (1, 8.0) == -0.158060461731247494255555266187483550":
779double: 1
780float: 2
781idouble: 1
782ifloat: 2
783Test "yn (10, 0.125) == -127057845771019398.252538486899753195":
784double: 1
785idouble: 1
786ildouble: 2
787ldouble: 2
788Test "yn (10, 0.75) == -2133501638.90573424452445412893839236":
789double: 1
790float: 2
791idouble: 1
792ifloat: 2
793Test "yn (10, 1.0) == -121618014.278689189288130426667971145":
794float: 2
795ifloat: 2
796Test "yn (10, 10.0) == -0.359814152183402722051986577343560609":
797double: 2
798float: 2
799idouble: 2
800ifloat: 2
801Test "yn (10, 2.0) == -129184.542208039282635913145923304214":
802double: 3
803float: 1
804idouble: 3
805ifloat: 1
806Test "yn (3, 0.125) == -2612.69757350066712600220955744091741":
807double: 1
808idouble: 1
809ildouble: 1
810ldouble: 1
811Test "yn (3, 0.75) == -12.9877176234475433186319774484809207":
812float: 1
813ifloat: 1
814ildouble: 1
815ldouble: 1
816Test "yn (3, 10.0) == -0.251362657183837329779204747654240998":
817double: 1
818float: 1
819idouble: 1
820ifloat: 1
821Test "yn (3, 2.0) == -1.12778377684042778608158395773179238":
822double: 1
823idouble: 1
824
825# Maximal error of functions:
826Function: Imaginary part of "cacos":
827float: 1
828ifloat: 1
829ildouble: 2
830ldouble: 2
831
832Function: Real part of "cacosh":
833double: 1
834float: 7
835idouble: 1
836ifloat: 7
837ildouble: 7
838ldouble: 7
839
840Function: Imaginary part of "cacosh":
841double: 1
842idouble: 1
843ildouble: 1
844ldouble: 1
845
846Function: Real part of "casin":
847double: 1
848float: 1
849idouble: 1
850ifloat: 1
851ildouble: 2
852ldouble: 2
853
854Function: Imaginary part of "casin":
855float: 1
856ifloat: 1
857ildouble: 2
858ldouble: 2
859
860Function: Real part of "casinh":
861double: 5
862float: 1
863idouble: 5
864ifloat: 1
865ildouble: 5
866ldouble: 5
867
868Function: Imaginary part of "casinh":
869double: 3
870float: 6
871idouble: 3
872ifloat: 6
873ildouble: 5
874ldouble: 5
875
876Function: Imaginary part of "catan":
877double: 1
878float: 1
879idouble: 1
880ifloat: 1
881
882Function: Real part of "catanh":
883double: 4
884idouble: 4
885ildouble: 1
886ldouble: 1
887
888Function: Real part of "ccos":
889double: 1
890idouble: 1
891ildouble: 1
892ldouble: 1
893
894Function: Imaginary part of "ccos":
895float: 1
896ifloat: 1
897ildouble: 1
898ldouble: 1
899
900Function: Real part of "ccosh":
901double: 1
902float: 1
903idouble: 1
904ifloat: 1
905
906Function: Imaginary part of "ccosh":
907double: 1
908float: 1
909idouble: 1
910ifloat: 1
911ildouble: 1
912ldouble: 1
913
914Function: Real part of "cexp":
915float: 1
916ifloat: 1
917
918Function: Imaginary part of "cexp":
919float: 1
920ifloat: 1
921ildouble: 1
922ldouble: 1
923
924Function: Real part of "clog":
925float: 1
926ifloat: 1
927ildouble: 1
928ldouble: 1
929
930Function: Real part of "clog10":
931double: 1
932float: 1
933idouble: 1
934ifloat: 1
935ildouble: 1
936ldouble: 1
937
938Function: Imaginary part of "clog10":
939double: 1
940float: 1
941idouble: 1
942ifloat: 1
943ildouble: 1
944ldouble: 1
945
946Function: "cos":
947double: 2
948float: 1
949idouble: 2
950ifloat: 1
951ildouble: 1
952ldouble: 1
953
954Function: Real part of "cpow":
955double: 2
956float: 5
957idouble: 2
958ifloat: 5
959ildouble: 6
960ldouble: 6
961
962Function: Imaginary part of "cpow":
963double: 2
964float: 3
965idouble: 2
966ifloat: 3
967ildouble: 4
968ldouble: 4
969
970Function: Real part of "csin":
971float: 1
972ifloat: 1
973ildouble: 1
974ldouble: 1
975
976Function: Imaginary part of "csin":
977float: 1
978ifloat: 1
979
980Function: Real part of "csinh":
981double: 1
982float: 1
983idouble: 1
984ifloat: 1
985ildouble: 1
986ldouble: 1
987
988Function: Imaginary part of "csinh":
989double: 1
990float: 1
991idouble: 1
992ifloat: 1
993ildouble: 2
994ldouble: 2
995
996Function: Real part of "csqrt":
997float: 1
998ifloat: 1
999
1000Function: Real part of "ctan":
1001double: 1
1002idouble: 1
1003ildouble: 2
1004ldouble: 2
1005
1006Function: Imaginary part of "ctan":
1007double: 1
1008float: 1
1009idouble: 1
1010ifloat: 1
1011ildouble: 1
1012ldouble: 1
1013
1014Function: Real part of "ctanh":
1015double: 1
1016idouble: 1
1017ildouble: 1
1018ldouble: 1
1019
1020Function: Imaginary part of "ctanh":
1021double: 1
1022float: 1
1023idouble: 1
1024ifloat: 1
1025ildouble: 24
1026ldouble: 24
1027
1028Function: "erf":
1029double: 1
1030idouble: 1
1031
1032Function: "erfc":
1033double: 1
1034float: 1
1035idouble: 1
1036ifloat: 1
1037ildouble: 1
1038ldouble: 1
1039
1040Function: "exp10":
1041double: 6
1042float: 2
1043idouble: 6
1044ifloat: 2
1045ildouble: 3
1046ldouble: 3
1047
1048Function: "expm1":
1049ildouble: 1
1050ldouble: 1
1051
1052Function: "gamma":
1053ildouble: 1
1054ldouble: 1
1055
1056Function: "hypot":
1057float: 1
1058ifloat: 1
1059
1060Function: "j0":
1061double: 3
1062float: 2
1063idouble: 3
1064ifloat: 2
1065ildouble: 2
1066ldouble: 2
1067
1068Function: "j1":
1069double: 1
1070float: 2
1071idouble: 1
1072ifloat: 2
1073ildouble: 1
1074ldouble: 1
1075
1076Function: "jn":
1077double: 3
1078float: 4
1079idouble: 3
1080ifloat: 4
1081ildouble: 2
1082ldouble: 2
1083
1084Function: "lgamma":
1085double: 1
1086float: 2
1087idouble: 1
1088ifloat: 2
1089ildouble: 1
1090ldouble: 1
1091
1092Function: "log":
1093float: 1
1094ifloat: 1
1095
1096Function: "log10":
1097float: 1
1098ifloat: 1
1099ildouble: 1
1100ldouble: 1
1101
1102Function: "sincos":
1103double: 1
1104float: 1
1105idouble: 1
1106ifloat: 1
1107ildouble: 1
1108ldouble: 1
1109
1110Function: "tan":
1111double: 1
1112idouble: 1
1113
1114Function: "tgamma":
1115double: 1
1116float: 1
1117idouble: 1
1118ifloat: 1
1119ildouble: 1
1120ldouble: 1
1121
1122Function: "y0":
1123double: 2
1124float: 1
1125idouble: 2
1126ifloat: 1
1127ildouble: 1
1128ldouble: 1
1129
1130Function: "y1":
1131double: 3
1132float: 2
1133idouble: 3
1134ifloat: 2
1135ildouble: 1
1136ldouble: 1
1137
1138Function: "yn":
1139double: 3
1140float: 2
1141idouble: 3
1142ifloat: 2
1143ildouble: 2
1144ldouble: 2
1145
1146# end of automatic generation