blob: 989722e6519a4f21e0ede3a44d8eb5333f57845d [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001# Begin of automatic generation
2
3# atan2
4Test "atan2 (-0.00756827042671106339, -.001792735857538728036) == -1.80338464113663849327153994379639112":
5ildouble: 1
6ldouble: 1
7Test "atan2 (-0.75, -1.0) == -2.49809154479650885165983415456218025":
8float: 1
9ifloat: 1
10ildouble: 1
11ldouble: 1
12Test "atan2 (0.75, -1.0) == 2.49809154479650885165983415456218025":
13float: 1
14ifloat: 1
15ildouble: 1
16ldouble: 1
17Test "atan2 (1.390625, 0.9296875) == 0.981498387184244311516296577615519772":
18float: 1
19ifloat: 1
20ildouble: 1
21ldouble: 1
22
23# atanh
24Test "atanh (0.75) == 0.972955074527656652552676371721589865":
25float: 1
26ifloat: 1
27
28# cacos
29Test "Imaginary part of: cacos (0.75 + 1.25 i) == 1.11752014915610270578240049553777969 - 1.13239363160530819522266333696834467 i":
30ildouble: 1
31ldouble: 1
32
33# cacosh
34Test "Real part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
35double: 1
36float: 7
37idouble: 1
38ifloat: 7
39Test "Imaginary part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
40double: 1
41float: 3
42idouble: 1
43ifloat: 3
44ildouble: 1
45ldouble: 1
46
47# casin
48Test "Real part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
49double: 1
50float: 1
51idouble: 1
52ifloat: 1
53Test "Imaginary part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
54ildouble: 1
55ldouble: 1
56
57# casinh
58Test "Real part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
59double: 5
60float: 1
61idouble: 5
62ifloat: 1
63ildouble: 4
64ldouble: 4
65Test "Imaginary part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
66double: 3
67float: 6
68idouble: 3
69ifloat: 6
70ildouble: 2
71ldouble: 2
72Test "Real part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
73float: 1
74ifloat: 1
75ildouble: 1
76ldouble: 1
77Test "Imaginary part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
78double: 1
79float: 1
80idouble: 1
81ifloat: 1
82ildouble: 1
83ldouble: 1
84
85# catan
86Test "Real part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":
87float: 3
88ifloat: 3
89Test "Imaginary part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":
90double: 1
91float: 1
92idouble: 1
93ifloat: 1
94Test "Real part of: catan (0.75 + 1.25 i) == 1.10714871779409050301706546017853704 + 0.549306144334054845697622618461262852 i":
95float: 4
96ifloat: 4
97Test "Imaginary part of: catan (0.75 + 1.25 i) == 1.10714871779409050301706546017853704 + 0.549306144334054845697622618461262852 i":
98ildouble: 1
99ldouble: 1
100
101# catanh
102Test "Real part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":
103double: 4
104idouble: 4
105Test "Imaginary part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":
106float: 4
107ifloat: 4
108Test "Real part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":
109double: 1
110idouble: 1
111ildouble: 1
112ldouble: 1
113Test "Imaginary part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":
114float: 6
115ifloat: 6
116ildouble: 1
117ldouble: 1
118
119# cbrt
120Test "cbrt (-0.001) == -0.1":
121ildouble: 1
122ldouble: 1
123Test "cbrt (-27.0) == -3.0":
124double: 1
125idouble: 1
126Test "cbrt (0.75) == 0.908560296416069829445605878163630251":
127double: 1
128idouble: 1
129Test "cbrt (0.9921875) == 0.997389022060725270579075195353955217":
130double: 1
131idouble: 1
132
133# ccos
134Test "Real part of: ccos (-2 - 3 i) == -4.18962569096880723013255501961597373 - 9.10922789375533659797919726277886212 i":
135ildouble: 1
136ldouble: 1
137Test "Imaginary part of: ccos (-2 - 3 i) == -4.18962569096880723013255501961597373 - 9.10922789375533659797919726277886212 i":
138float: 1
139ifloat: 1
140ildouble: 1
141ldouble: 1
142Test "Real part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
143double: 1
144float: 1
145idouble: 1
146ifloat: 1
147Test "Imaginary part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
148float: 1
149ifloat: 1
150
151# ccosh
152Test "Real part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":
153float: 1
154ifloat: 1
155ildouble: 1
156ldouble: 1
157Test "Imaginary part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":
158float: 1
159ifloat: 1
160ildouble: 1
161ldouble: 1
162Test "Real part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
163double: 1
164float: 1
165idouble: 1
166ifloat: 1
167Test "Imaginary part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
168float: 1
169ifloat: 1
170
171# cexp
172Test "Real part of: cexp (-2.0 - 3.0 i) == -0.13398091492954261346140525546115575 - 0.019098516261135196432576240858800925 i":
173ildouble: 1
174ldouble: 1
175Test "Imaginary part of: cexp (-2.0 - 3.0 i) == -0.13398091492954261346140525546115575 - 0.019098516261135196432576240858800925 i":
176float: 1
177ifloat: 1
178ildouble: 1
179ldouble: 1
180Test "Real part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":
181float: 1
182ifloat: 1
183Test "Imaginary part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":
184ildouble: 1
185ldouble: 1
186
187# clog
188Test "Imaginary part of: clog (-2 - 3 i) == 1.2824746787307683680267437207826593 - 2.1587989303424641704769327722648368 i":
189float: 3
190ifloat: 3
191Test "Real part of: clog (0.75 + 1.25 i) == 0.376885901188190075998919126749298416 + 1.03037682652431246378774332703115153 i":
192float: 1
193ifloat: 1
194ildouble: 1
195ldouble: 1
196
197# clog10
198Test "Imaginary part of: clog10 (-0 + inf i) == inf + pi/2*log10(e) i":
199double: 1
200float: 1
201idouble: 1
202ifloat: 1
203Test "Imaginary part of: clog10 (-0 - inf i) == inf - pi/2*log10(e) i":
204double: 1
205float: 1
206idouble: 1
207ifloat: 1
208Test "Real part of: clog10 (-2 - 3 i) == 0.556971676153418384603252578971164214 - 0.937554462986374708541507952140189646 i":
209ildouble: 1
210ldouble: 1
211Test "Imaginary part of: clog10 (-2 - 3 i) == 0.556971676153418384603252578971164214 - 0.937554462986374708541507952140189646 i":
212double: 1
213float: 5
214idouble: 1
215ifloat: 5
216ildouble: 1
217ldouble: 1
218Test "Imaginary part of: clog10 (-3 + inf i) == inf + pi/2*log10(e) i":
219double: 1
220float: 1
221idouble: 1
222ifloat: 1
223Test "Imaginary part of: clog10 (-3 - inf i) == inf - pi/2*log10(e) i":
224double: 1
225float: 1
226idouble: 1
227ifloat: 1
228Test "Imaginary part of: clog10 (-inf + 0 i) == inf + pi*log10(e) i":
229double: 1
230float: 1
231idouble: 1
232ifloat: 1
233Test "Imaginary part of: clog10 (-inf + 1 i) == inf + pi*log10(e) i":
234double: 1
235float: 1
236idouble: 1
237ifloat: 1
238Test "Imaginary part of: clog10 (-inf + inf i) == inf + 3/4 pi*log10(e) i":
239double: 1
240idouble: 1
241Test "Imaginary part of: clog10 (-inf - 0 i) == inf - pi*log10(e) i":
242double: 1
243float: 1
244idouble: 1
245ifloat: 1
246Test "Imaginary part of: clog10 (-inf - 1 i) == inf - pi*log10(e) i":
247double: 1
248float: 1
249idouble: 1
250ifloat: 1
251Test "Imaginary part of: clog10 (0 + inf i) == inf + pi/2*log10(e) i":
252double: 1
253float: 1
254idouble: 1
255ifloat: 1
256Test "Imaginary part of: clog10 (0 - inf i) == inf - pi/2*log10(e) i":
257double: 1
258float: 1
259idouble: 1
260ifloat: 1
261Test "Real part of: clog10 (0.75 + 1.25 i) == 0.163679467193165171449476605077428975 + 0.447486970040493067069984724340855636 i":
262float: 1
263ifloat: 1
264Test "Imaginary part of: clog10 (0.75 + 1.25 i) == 0.163679467193165171449476605077428975 + 0.447486970040493067069984724340855636 i":
265ildouble: 1
266ldouble: 1
267Test "Imaginary part of: clog10 (3 + inf i) == inf + pi/2*log10(e) i":
268double: 1
269float: 1
270idouble: 1
271ifloat: 1
272Test "Imaginary part of: clog10 (3 - inf i) == inf - pi/2*log10(e) i":
273double: 1
274float: 1
275idouble: 1
276ifloat: 1
277Test "Imaginary part of: clog10 (inf + inf i) == inf + pi/4*log10(e) i":
278double: 1
279float: 1
280idouble: 1
281ifloat: 1
282Test "Imaginary part of: clog10 (inf - inf i) == inf - pi/4*log10(e) i":
283double: 1
284float: 1
285idouble: 1
286ifloat: 1
287
288# cos
289Test "cos (M_PI_6l * 2.0) == 0.5":
290double: 1
291float: 1
292idouble: 1
293ifloat: 1
294ildouble: 1
295ldouble: 1
296Test "cos (M_PI_6l * 4.0) == -0.5":
297double: 2
298float: 1
299idouble: 2
300ifloat: 1
301ildouble: 1
302ldouble: 1
303Test "cos (pi/2) == 0":
304double: 1
305float: 1
306idouble: 1
307ifloat: 1
308
309# cpow
310Test "Real part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
311float: 1
312ifloat: 1
313Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
314float: 1
315ifloat: 1
316Test "Real part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":
317double: 1
318float: 4
319idouble: 1
320ifloat: 4
321ildouble: 4
322ldouble: 4
323Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 0.0 i) == 0.75 + 1.25 i":
324ildouble: 2
325ldouble: 2
326Test "Imaginary part of: cpow (0.75 + 1.25 i, 1.0 + 0.0 i) == 0.75 + 1.25 i":
327ildouble: 1
328ldouble: 1
329Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 1.0 i) == 0.0846958290317209430433805274189191353 + 0.513285749182902449043287190519090481 i":
330double: 2
331float: 3
332idouble: 2
333ifloat: 3
334ildouble: 10
335ldouble: 10
336Test "Real part of: cpow (2 + 0 i, 10 + 0 i) == 1024.0 + 0.0 i":
337ildouble: 2
338ldouble: 2
339Test "Real part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
340double: 1
341float: 4
342idouble: 1
343ifloat: 4
344ildouble: 3
345ldouble: 3
346Test "Imaginary part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
347float: 2
348ifloat: 2
349Test "Imaginary part of: cpow (e + 0 i, 0 + 2 * M_PIl i) == 1.0 + 0.0 i":
350double: 2
351float: 2
352idouble: 2
353ifloat: 2
354ildouble: 1
355ldouble: 1
356
357# csin
358Test "Imaginary part of: csin (-2 - 3 i) == -9.15449914691142957346729954460983256 + 4.16890695996656435075481305885375484 i":
359ildouble: 1
360ldouble: 1
361Test "Real part of: csin (0.75 + 1.25 i) == 1.28722291002649188575873510790565441 + 1.17210635989270256101081285116138863 i":
362ildouble: 1
363ldouble: 1
364
365# csinh
366Test "Real part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
367ildouble: 1
368ldouble: 1
369Test "Imaginary part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
370double: 1
371idouble: 1
372Test "Real part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
373float: 1
374ifloat: 1
375Test "Imaginary part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
376float: 1
377ifloat: 1
378
379# csqrt
380Test "Real part of: csqrt (-2 + 3 i) == 0.89597747612983812471573375529004348 + 1.6741492280355400404480393008490519 i":
381float: 1
382ifloat: 1
383ildouble: 1
384ldouble: 1
385Test "Real part of: csqrt (-2 - 3 i) == 0.89597747612983812471573375529004348 - 1.6741492280355400404480393008490519 i":
386float: 1
387ifloat: 1
388ildouble: 1
389ldouble: 1
390Test "Imaginary part of: csqrt (0.75 + 1.25 i) == 1.05065169626078392338656675760808326 + 0.594868882070379067881984030639932657 i":
391ildouble: 1
392ldouble: 1
393
394# ctan
395Test "Real part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
396double: 1
397idouble: 1
398ildouble: 1
399ldouble: 1
400Test "Imaginary part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
401ildouble: 1
402ldouble: 1
403Test "Imaginary part of: ctan (0.75 + 1.25 i) == 0.160807785916206426725166058173438663 + 0.975363285031235646193581759755216379 i":
404double: 1
405idouble: 1
406ildouble: 2
407ldouble: 2
408
409# ctanh
410Test "Real part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
411double: 1
412float: 2
413idouble: 1
414ifloat: 2
415ildouble: 1
416ldouble: 1
417Test "Imaginary part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
418ildouble: 1
419ldouble: 1
420Test "Imaginary part of: ctanh (0 + pi/4 i) == 0.0 + 1.0 i":
421float: 1
422ifloat: 1
423Test "Real part of: ctanh (0.75 + 1.25 i) == 1.37260757053378320258048606571226857 + 0.385795952609750664177596760720790220 i":
424double: 1
425idouble: 1
426
427# erf
428Test "erf (1.25) == 0.922900128256458230136523481197281140":
429double: 1
430idouble: 1
431
432# erfc
433Test "erfc (0.75) == 0.288844366346484868401062165408589223":
434float: 1
435ifloat: 1
436Test "erfc (2.0) == 0.00467773498104726583793074363274707139":
437double: 1
438idouble: 1
439Test "erfc (27.0) == 0.523704892378925568501606768284954709e-318":
440ildouble: 1
441ldouble: 1
442Test "erfc (4.125) == 0.542340079956506600531223408575531062e-8":
443double: 1
444idouble: 1
445
446# exp10
447Test "exp10 (-1) == 0.1":
448double: 2
449float: 1
450idouble: 2
451ifloat: 1
452Test "exp10 (0.75) == 5.62341325190349080394951039776481231":
453double: 1
454float: 1
455idouble: 1
456ifloat: 1
457Test "exp10 (3) == 1000":
458double: 6
459float: 2
460idouble: 6
461ifloat: 2
462ildouble: 1
463ldouble: 1
464
465# exp2
466Test "exp2 (10) == 1024":
467ildouble: 2
468ldouble: 2
469
470# expm1
471Test "expm1 (0.75) == 1.11700001661267466854536981983709561":
472double: 1
473idouble: 1
474Test "expm1 (1) == M_El - 1.0":
475double: 1
476float: 1
477idouble: 1
478ifloat: 1
479ildouble: 1
480ldouble: 1
481
482# gamma
483Test "gamma (-0.5) == log(2*sqrt(pi))":
484ildouble: 1
485ldouble: 1
486
487# hypot
488Test "hypot (-0.7, -12.4) == 12.419742348374220601176836866763271":
489float: 1
490ifloat: 1
491Test "hypot (-0.7, 12.4) == 12.419742348374220601176836866763271":
492float: 1
493ifloat: 1
494Test "hypot (-12.4, -0.7) == 12.419742348374220601176836866763271":
495float: 1
496ifloat: 1
497Test "hypot (-12.4, 0.7) == 12.419742348374220601176836866763271":
498float: 1
499ifloat: 1
500Test "hypot (0.7, -12.4) == 12.419742348374220601176836866763271":
501float: 1
502ifloat: 1
503Test "hypot (0.7, 12.4) == 12.419742348374220601176836866763271":
504float: 1
505ifloat: 1
506Test "hypot (12.4, -0.7) == 12.419742348374220601176836866763271":
507float: 1
508ifloat: 1
509Test "hypot (12.4, 0.7) == 12.419742348374220601176836866763271":
510float: 1
511ifloat: 1
512
513# j0
514Test "j0 (-4.0) == -3.9714980986384737228659076845169804197562E-1":
515double: 1
516float: 2
517idouble: 1
518ifloat: 2
519Test "j0 (0.75) == 0.864242275166648623555731103820923211":
520float: 1
521ifloat: 1
522Test "j0 (10.0) == -0.245935764451348335197760862485328754":
523double: 3
524float: 1
525idouble: 3
526ifloat: 1
527ildouble: 2
528ldouble: 2
529Test "j0 (2.0) == 0.223890779141235668051827454649948626":
530float: 2
531ifloat: 2
532ildouble: 2
533ldouble: 2
534Test "j0 (4.0) == -3.9714980986384737228659076845169804197562E-1":
535double: 1
536float: 2
537idouble: 1
538ifloat: 2
539Test "j0 (8.0) == 0.171650807137553906090869407851972001":
540float: 1
541ifloat: 1
542ildouble: 1
543ldouble: 1
544
545# j1
546Test "j1 (-1.0) == -0.440050585744933515959682203718914913":
547ildouble: 1
548ldouble: 1
549Test "j1 (0.75) == 0.349243602174862192523281016426251335":
550ildouble: 1
551ldouble: 1
552Test "j1 (1.0) == 0.440050585744933515959682203718914913":
553ildouble: 1
554ldouble: 1
555Test "j1 (10.0) == 0.0434727461688614366697487680258592883":
556float: 2
557ifloat: 2
558ildouble: 2
559ldouble: 2
560Test "j1 (2.0) == 0.576724807756873387202448242269137087":
561double: 1
562idouble: 1
563Test "j1 (8.0) == 0.234636346853914624381276651590454612":
564double: 1
565idouble: 1
566ildouble: 4
567ldouble: 4
568
569# jn
570Test "jn (0, -4.0) == -3.9714980986384737228659076845169804197562E-1":
571double: 1
572float: 2
573idouble: 1
574ifloat: 2
575Test "jn (0, 0.75) == 0.864242275166648623555731103820923211":
576float: 1
577ifloat: 1
578Test "jn (0, 10.0) == -0.245935764451348335197760862485328754":
579double: 3
580float: 1
581idouble: 3
582ifloat: 1
583ildouble: 2
584ldouble: 2
585Test "jn (0, 2.0) == 0.223890779141235668051827454649948626":
586float: 2
587ifloat: 2
588ildouble: 2
589ldouble: 2
590Test "jn (0, 4.0) == -3.9714980986384737228659076845169804197562E-1":
591double: 1
592float: 2
593idouble: 1
594ifloat: 2
595Test "jn (0, 8.0) == 0.171650807137553906090869407851972001":
596float: 1
597ifloat: 1
598ildouble: 1
599ldouble: 1
600Test "jn (1, -1.0) == -0.440050585744933515959682203718914913":
601ildouble: 1
602ldouble: 1
603Test "jn (1, 0.75) == 0.349243602174862192523281016426251335":
604ildouble: 1
605ldouble: 1
606Test "jn (1, 1.0) == 0.440050585744933515959682203718914913":
607ildouble: 1
608ldouble: 1
609Test "jn (1, 10.0) == 0.0434727461688614366697487680258592883":
610float: 2
611ifloat: 2
612ildouble: 2
613ldouble: 2
614Test "jn (1, 2.0) == 0.576724807756873387202448242269137087":
615double: 1
616idouble: 1
617Test "jn (1, 8.0) == 0.234636346853914624381276651590454612":
618double: 1
619idouble: 1
620ildouble: 4
621ldouble: 4
622Test "jn (10, -1.0) == 0.263061512368745320699785368779050294e-9":
623ildouble: 1
624ldouble: 1
625Test "jn (10, 0.125) == 0.250543369809369890173993791865771547e-18":
626double: 1
627float: 1
628idouble: 1
629ifloat: 1
630ildouble: 1
631ldouble: 1
632Test "jn (10, 0.75) == 0.149621713117596814698712483621682835e-10":
633double: 1
634float: 1
635idouble: 1
636ifloat: 1
637ildouble: 1
638ldouble: 1
639Test "jn (10, 1.0) == 0.263061512368745320699785368779050294e-9":
640ildouble: 1
641ldouble: 1
642Test "jn (10, 10.0) == 0.207486106633358857697278723518753428":
643double: 4
644float: 3
645idouble: 4
646ifloat: 3
647ildouble: 2
648ldouble: 2
649Test "jn (10, 2.0) == 0.251538628271673670963516093751820639e-6":
650float: 4
651ifloat: 4
652Test "jn (3, 0.125) == 0.406503832554912875023029337653442868e-4":
653double: 1
654float: 1
655idouble: 1
656ifloat: 1
657Test "jn (3, 0.75) == 0.848438342327410884392755236884386804e-2":
658double: 1
659float: 1
660idouble: 1
661ifloat: 1
662Test "jn (3, 10.0) == 0.0583793793051868123429354784103409563":
663double: 3
664float: 2
665idouble: 3
666ifloat: 2
667ildouble: 2
668ldouble: 2
669Test "jn (3, 2.0) == 0.128943249474402051098793332969239835":
670double: 1
671float: 2
672idouble: 1
673ifloat: 2
674
675# lgamma
676Test "lgamma (-0.5) == log(2*sqrt(pi))":
677ildouble: 1
678ldouble: 1
679Test "lgamma (0.7) == 0.260867246531666514385732417016759578":
680double: 1
681float: 1
682idouble: 1
683ifloat: 1
684ildouble: 1
685ldouble: 1
686Test "lgamma (1.2) == -0.853740900033158497197028392998854470e-1":
687double: 1
688float: 2
689idouble: 1
690ifloat: 2
691ildouble: 1
692ldouble: 1
693
694# log10
695Test "log10 (0.75) == -0.124938736608299953132449886193870744":
696double: 1
697float: 2
698idouble: 1
699ifloat: 2
700Test "log10 (e) == log10(e)":
701float: 1
702ifloat: 1
703ildouble: 1
704ldouble: 1
705
706# log1p
707Test "log1p (-0.25) == -0.287682072451780927439219005993827432":
708float: 1
709ifloat: 1
710
711# log2
712Test "log2 (0.75) == -.415037499278843818546261056052183492":
713ildouble: 1
714ldouble: 1
715
716# sincos
717Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.5 in cos_res":
718double: 1
719float: 1
720idouble: 1
721ifloat: 1
722ildouble: 1
723ldouble: 1
724Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in sin_res":
725double: 1
726float: 1
727idouble: 1
728ifloat: 1
729ildouble: 1
730ldouble: 1
731Test "sincos (pi/2, &sin_res, &cos_res) puts 0 in cos_res":
732double: 1
733float: 1
734idouble: 1
735ifloat: 1
736Test "sincos (pi/6, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in cos_res":
737float: 1
738ifloat: 1
739
740# sqrt
741Test "sqrt (2) == M_SQRT2l":
742ildouble: 1
743ldouble: 1
744
745# tan
746Test "tan (pi/4) == 1":
747double: 1
748idouble: 1
749
750# tanh
751Test "tanh (-0.75) == -0.635148952387287319214434357312496495":
752ildouble: 1
753ldouble: 1
754Test "tanh (-1.0) == -0.7615941559557648881194582826047935904":
755ildouble: 1
756ldouble: 1
757Test "tanh (0.75) == 0.635148952387287319214434357312496495":
758ildouble: 1
759ldouble: 1
760Test "tanh (1.0) == 0.7615941559557648881194582826047935904":
761ildouble: 1
762ldouble: 1
763
764# tgamma
765Test "tgamma (-0.5) == -2 sqrt (pi)":
766double: 1
767float: 1
768idouble: 1
769ifloat: 1
770ildouble: 1
771ldouble: 1
772Test "tgamma (0.5) == sqrt (pi)":
773float: 1
774ifloat: 1
775Test "tgamma (0.7) == 1.29805533264755778568117117915281162":
776double: 1
777float: 1
778idouble: 1
779ifloat: 1
780Test "tgamma (4) == 6":
781ildouble: 1
782ldouble: 1
783
784# y0
785Test "y0 (1.0) == 0.0882569642156769579829267660235151628":
786double: 2
787float: 1
788idouble: 2
789ifloat: 1
790Test "y0 (1.5) == 0.382448923797758843955068554978089862":
791double: 2
792float: 1
793idouble: 2
794ifloat: 1
795Test "y0 (10.0) == 0.0556711672835993914244598774101900481":
796double: 1
797float: 1
798idouble: 1
799ifloat: 1
800ildouble: 3
801ldouble: 3
802Test "y0 (2.0) == 0.510375672649745119596606592727157873":
803double: 1
804idouble: 1
805Test "y0 (8.0) == 0.223521489387566220527323400498620359":
806double: 1
807float: 1
808idouble: 1
809ifloat: 1
810ildouble: 3
811ldouble: 3
812
813# y1
814Test "y1 (0.125) == -5.19993611253477499595928744876579921":
815double: 1
816idouble: 1
817Test "y1 (0.75) == -1.03759455076928541973767132140642198":
818ildouble: 1
819ldouble: 1
820Test "y1 (1.5) == -0.412308626973911295952829820633445323":
821double: 1
822float: 1
823idouble: 1
824ifloat: 1
825ildouble: 1
826ldouble: 1
827Test "y1 (10.0) == 0.249015424206953883923283474663222803":
828double: 3
829float: 1
830idouble: 3
831ifloat: 1
832Test "y1 (2.0) == -0.107032431540937546888370772277476637":
833double: 1
834float: 1
835idouble: 1
836ifloat: 1
837ildouble: 1
838ldouble: 1
839Test "y1 (8.0) == -0.158060461731247494255555266187483550":
840double: 1
841float: 2
842idouble: 1
843ifloat: 2
844ildouble: 1
845ldouble: 1
846
847# yn
848Test "yn (0, 1.0) == 0.0882569642156769579829267660235151628":
849double: 2
850float: 1
851idouble: 2
852ifloat: 1
853Test "yn (0, 1.5) == 0.382448923797758843955068554978089862":
854double: 2
855float: 1
856idouble: 2
857ifloat: 1
858Test "yn (0, 10.0) == 0.0556711672835993914244598774101900481":
859double: 1
860float: 1
861idouble: 1
862ifloat: 1
863ildouble: 3
864ldouble: 3
865Test "yn (0, 2.0) == 0.510375672649745119596606592727157873":
866double: 1
867idouble: 1
868Test "yn (0, 8.0) == 0.223521489387566220527323400498620359":
869double: 1
870float: 1
871idouble: 1
872ifloat: 1
873ildouble: 3
874ldouble: 3
875Test "yn (1, 0.125) == -5.19993611253477499595928744876579921":
876double: 1
877idouble: 1
878Test "yn (1, 0.75) == -1.03759455076928541973767132140642198":
879ildouble: 1
880ldouble: 1
881Test "yn (1, 1.5) == -0.412308626973911295952829820633445323":
882double: 1
883float: 1
884idouble: 1
885ifloat: 1
886ildouble: 1
887ldouble: 1
888Test "yn (1, 10.0) == 0.249015424206953883923283474663222803":
889double: 3
890float: 1
891idouble: 3
892ifloat: 1
893Test "yn (1, 2.0) == -0.107032431540937546888370772277476637":
894double: 1
895float: 1
896idouble: 1
897ifloat: 1
898ildouble: 1
899ldouble: 1
900Test "yn (1, 8.0) == -0.158060461731247494255555266187483550":
901double: 1
902float: 2
903idouble: 1
904ifloat: 2
905ildouble: 1
906ldouble: 1
907Test "yn (10, 0.125) == -127057845771019398.252538486899753195":
908double: 1
909idouble: 1
910ildouble: 2
911ldouble: 2
912Test "yn (10, 0.75) == -2133501638.90573424452445412893839236":
913double: 1
914float: 2
915idouble: 1
916ifloat: 2
917ildouble: 5
918ldouble: 5
919Test "yn (10, 1.0) == -121618014.278689189288130426667971145":
920double: 1
921float: 2
922idouble: 1
923ifloat: 2
924ildouble: 1
925ldouble: 1
926Test "yn (10, 10.0) == -0.359814152183402722051986577343560609":
927double: 2
928float: 2
929idouble: 2
930ifloat: 2
931ildouble: 2
932ldouble: 2
933Test "yn (10, 2.0) == -129184.542208039282635913145923304214":
934double: 3
935float: 1
936idouble: 3
937ifloat: 1
938ildouble: 2
939ldouble: 2
940Test "yn (3, 0.125) == -2612.69757350066712600220955744091741":
941double: 1
942idouble: 1
943Test "yn (3, 0.75) == -12.9877176234475433186319774484809207":
944double: 1
945float: 1
946idouble: 1
947ifloat: 1
948ildouble: 2
949ldouble: 2
950Test "yn (3, 10.0) == -0.251362657183837329779204747654240998":
951double: 1
952float: 1
953idouble: 1
954ifloat: 1
955ildouble: 1
956ldouble: 1
957Test "yn (3, 2.0) == -1.12778377684042778608158395773179238":
958double: 1
959idouble: 1
960
961# Maximal error of functions:
962Function: "atan2":
963float: 1
964ifloat: 1
965ildouble: 1
966ldouble: 1
967
968Function: "atanh":
969float: 1
970ifloat: 1
971
972Function: Imaginary part of "cacos":
973ildouble: 1
974ldouble: 1
975
976Function: Real part of "cacosh":
977double: 1
978float: 7
979idouble: 1
980ifloat: 7
981
982Function: Imaginary part of "cacosh":
983double: 1
984float: 3
985idouble: 1
986ifloat: 3
987ildouble: 1
988ldouble: 1
989
990Function: Real part of "casin":
991double: 1
992float: 1
993idouble: 1
994ifloat: 1
995
996Function: Imaginary part of "casin":
997ildouble: 1
998ldouble: 1
999
1000Function: Real part of "casinh":
1001double: 5
1002float: 1
1003idouble: 5
1004ifloat: 1
1005ildouble: 4
1006ldouble: 4
1007
1008Function: Imaginary part of "casinh":
1009double: 3
1010float: 6
1011idouble: 3
1012ifloat: 6
1013ildouble: 2
1014ldouble: 2
1015
1016Function: Real part of "catan":
1017float: 4
1018ifloat: 4
1019
1020Function: Imaginary part of "catan":
1021double: 1
1022float: 1
1023idouble: 1
1024ifloat: 1
1025ildouble: 1
1026ldouble: 1
1027
1028Function: Real part of "catanh":
1029double: 4
1030idouble: 4
1031ildouble: 1
1032ldouble: 1
1033
1034Function: Imaginary part of "catanh":
1035float: 6
1036ifloat: 6
1037ildouble: 1
1038ldouble: 1
1039
1040Function: "cbrt":
1041double: 1
1042idouble: 1
1043ildouble: 1
1044ldouble: 1
1045
1046Function: Real part of "ccos":
1047double: 1
1048float: 1
1049idouble: 1
1050ifloat: 1
1051ildouble: 1
1052ldouble: 1
1053
1054Function: Imaginary part of "ccos":
1055float: 1
1056ifloat: 1
1057ildouble: 1
1058ldouble: 1
1059
1060Function: Real part of "ccosh":
1061double: 1
1062float: 1
1063idouble: 1
1064ifloat: 1
1065ildouble: 1
1066ldouble: 1
1067
1068Function: Imaginary part of "ccosh":
1069float: 1
1070ifloat: 1
1071ildouble: 1
1072ldouble: 1
1073
1074Function: Real part of "cexp":
1075float: 1
1076ifloat: 1
1077ildouble: 1
1078ldouble: 1
1079
1080Function: Imaginary part of "cexp":
1081float: 1
1082ifloat: 1
1083ildouble: 1
1084ldouble: 1
1085
1086Function: Real part of "clog":
1087float: 1
1088ifloat: 1
1089ildouble: 1
1090ldouble: 1
1091
1092Function: Imaginary part of "clog":
1093float: 3
1094ifloat: 3
1095
1096Function: Real part of "clog10":
1097float: 1
1098ifloat: 1
1099ildouble: 1
1100ldouble: 1
1101
1102Function: Imaginary part of "clog10":
1103double: 1
1104float: 5
1105idouble: 1
1106ifloat: 5
1107ildouble: 1
1108ldouble: 1
1109
1110Function: "cos":
1111double: 2
1112float: 1
1113idouble: 2
1114ifloat: 1
1115ildouble: 1
1116ldouble: 1
1117
1118Function: Real part of "cpow":
1119double: 2
1120float: 4
1121idouble: 2
1122ifloat: 4
1123ildouble: 10
1124ldouble: 10
1125
1126Function: Imaginary part of "cpow":
1127double: 2
1128float: 2
1129idouble: 2
1130ifloat: 2
1131ildouble: 1
1132ldouble: 1
1133
1134Function: Real part of "csin":
1135ildouble: 1
1136ldouble: 1
1137
1138Function: Imaginary part of "csin":
1139ildouble: 1
1140ldouble: 1
1141
1142Function: Real part of "csinh":
1143float: 1
1144ifloat: 1
1145ildouble: 1
1146ldouble: 1
1147
1148Function: Imaginary part of "csinh":
1149double: 1
1150float: 1
1151idouble: 1
1152ifloat: 1
1153
1154Function: Real part of "csqrt":
1155float: 1
1156ifloat: 1
1157ildouble: 1
1158ldouble: 1
1159
1160Function: Imaginary part of "csqrt":
1161ildouble: 1
1162ldouble: 1
1163
1164Function: Real part of "ctan":
1165double: 1
1166idouble: 1
1167ildouble: 1
1168ldouble: 1
1169
1170Function: Imaginary part of "ctan":
1171double: 1
1172idouble: 1
1173ildouble: 2
1174ldouble: 2
1175
1176Function: Real part of "ctanh":
1177double: 1
1178float: 2
1179idouble: 1
1180ifloat: 2
1181ildouble: 1
1182ldouble: 1
1183
1184Function: Imaginary part of "ctanh":
1185float: 1
1186ifloat: 1
1187ildouble: 1
1188ldouble: 1
1189
1190Function: "erf":
1191double: 1
1192idouble: 1
1193
1194Function: "erfc":
1195double: 1
1196float: 1
1197idouble: 1
1198ifloat: 1
1199ildouble: 1
1200ldouble: 1
1201
1202Function: "exp10":
1203double: 6
1204float: 2
1205idouble: 6
1206ifloat: 2
1207ildouble: 1
1208ldouble: 1
1209
1210Function: "exp2":
1211ildouble: 2
1212ldouble: 2
1213
1214Function: "expm1":
1215double: 1
1216float: 1
1217idouble: 1
1218ifloat: 1
1219ildouble: 1
1220ldouble: 1
1221
1222Function: "gamma":
1223ildouble: 1
1224ldouble: 1
1225
1226Function: "hypot":
1227float: 1
1228ifloat: 1
1229
1230Function: "j0":
1231double: 3
1232float: 2
1233idouble: 3
1234ifloat: 2
1235ildouble: 2
1236ldouble: 2
1237
1238Function: "j1":
1239double: 1
1240float: 2
1241idouble: 1
1242ifloat: 2
1243ildouble: 4
1244ldouble: 4
1245
1246Function: "jn":
1247double: 4
1248float: 4
1249idouble: 4
1250ifloat: 4
1251ildouble: 4
1252ldouble: 4
1253
1254Function: "lgamma":
1255double: 1
1256float: 2
1257idouble: 1
1258ifloat: 2
1259ildouble: 1
1260ldouble: 1
1261
1262Function: "log10":
1263double: 1
1264float: 2
1265idouble: 1
1266ifloat: 2
1267ildouble: 1
1268ldouble: 1
1269
1270Function: "log1p":
1271float: 1
1272ifloat: 1
1273ildouble: 1
1274ldouble: 1
1275
1276Function: "log2":
1277ildouble: 1
1278ldouble: 1
1279
1280Function: "sincos":
1281double: 1
1282float: 1
1283idouble: 1
1284ifloat: 1
1285ildouble: 1
1286ldouble: 1
1287
1288Function: "sqrt":
1289ildouble: 1
1290ldouble: 1
1291
1292Function: "tan":
1293double: 1
1294idouble: 1
1295
1296Function: "tanh":
1297ildouble: 1
1298ldouble: 1
1299
1300Function: "tgamma":
1301double: 1
1302float: 1
1303idouble: 1
1304ifloat: 1
1305ildouble: 1
1306ldouble: 1
1307
1308Function: "y0":
1309double: 2
1310float: 1
1311idouble: 2
1312ifloat: 1
1313ildouble: 3
1314ldouble: 3
1315
1316Function: "y1":
1317double: 3
1318float: 2
1319idouble: 3
1320ifloat: 2
1321ildouble: 1
1322ldouble: 1
1323
1324Function: "yn":
1325double: 3
1326float: 2
1327idouble: 3
1328ifloat: 2
1329ildouble: 5
1330ldouble: 5
1331
1332# end of automatic generation