blob: ccf53788a6ecbcd5fc7154f434d46bae07bf317c [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001# Begin of automatic generation
2
3# atan2
4Test "atan2 (-0.75, -1.0) == -2.49809154479650885165983415456218025":
5float: 3
6ifloat: 3
7ildouble: 1
8ldouble: 1
9Test "atan2 (0.75, -1.0) == 2.49809154479650885165983415456218025":
10float: 3
11ifloat: 3
12ildouble: 1
13ldouble: 1
14Test "atan2 (1.390625, 0.9296875) == 0.981498387184244311516296577615519772":
15float: 1
16ifloat: 1
17ildouble: 1
18ldouble: 1
19Test "atan2 (-0.00756827042671106339, -.001792735857538728036) == -1.80338464113663849327153994379639112":
20float: 6
21ifloat: 6
22ildouble: 1
23ldouble: 1
24
25# atanh
26Test "atanh (0.75) == 0.972955074527656652552676371721589865":
27float: 1
28ifloat: 1
29
30# cacos
31Test "Imaginary part of: cacos (0.75 + 1.25 i) == 1.11752014915610270578240049553777969 - 1.13239363160530819522266333696834467 i":
32ildouble: 1
33ldouble: 1
34
35# cacosh
36Test "Real part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
37double: 1
38float: 7
39idouble: 1
40ifloat: 7
41ildouble: 5
42ldouble: 5
43Test "Imaginary part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
44double: 1
45float: 3
46idouble: 1
47ifloat: 3
48ildouble: 1
49ldouble: 1
50
51# casin
52Test "Real part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
53double: 1
54float: 1
55idouble: 1
56ifloat: 1
57Test "Imaginary part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
58ildouble: 1
59ldouble: 1
60
61# casinh
62Test "Real part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
63double: 5
64float: 1
65idouble: 5
66ifloat: 1
67ildouble: 4
68ldouble: 4
69Test "Imaginary part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
70double: 3
71float: 6
72idouble: 3
73ifloat: 6
74ildouble: 2
75ldouble: 2
76Test "Real part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
77float: 1
78ifloat: 1
79ildouble: 1
80ldouble: 1
81Test "Imaginary part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
82double: 1
83float: 1
84idouble: 1
85ifloat: 1
86ildouble: 1
87ldouble: 1
88
89# catan
90Test "Real part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":
91float: 3
92ifloat: 3
93Test "Imaginary part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":
94double: 1
95float: 1
96idouble: 1
97ifloat: 1
98Test "Real part of: catan (0.75 + 1.25 i) == 1.10714871779409050301706546017853704 + 0.549306144334054845697622618461262852 i":
99float: 4
100ifloat: 4
101Test "Imaginary part of: catan (0.75 + 1.25 i) == 1.10714871779409050301706546017853704 + 0.549306144334054845697622618461262852 i":
102ildouble: 1
103ldouble: 1
104
105# catanh
106Test "Real part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":
107double: 4
108idouble: 4
109Test "Imaginary part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":
110float: 4
111ifloat: 4
112Test "Real part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":
113double: 1
114idouble: 1
115ildouble: 1
116ldouble: 1
117Test "Imaginary part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":
118float: 6
119ifloat: 6
120ildouble: 1
121ldouble: 1
122
123# cbrt
124Test "cbrt (-0.001) == -0.1":
125ildouble: 1
126ldouble: 1
127Test "cbrt (-27.0) == -3.0":
128double: 1
129idouble: 1
130Test "cbrt (0.75) == 0.908560296416069829445605878163630251":
131double: 1
132idouble: 1
133Test "cbrt (0.9921875) == 0.997389022060725270579075195353955217":
134double: 1
135idouble: 1
136
137# ccos
138Test "Real part of: ccos (-2 - 3 i) == -4.18962569096880723013255501961597373 - 9.10922789375533659797919726277886212 i":
139ildouble: 1
140ldouble: 1
141Test "Imaginary part of: ccos (-2 - 3 i) == -4.18962569096880723013255501961597373 - 9.10922789375533659797919726277886212 i":
142float: 1
143ifloat: 1
144ildouble: 1
145ldouble: 1
146Test "Real part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
147double: 1
148float: 1
149idouble: 1
150ifloat: 1
151Test "Imaginary part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
152float: 1
153ifloat: 1
154
155# ccosh
156Test "Real part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":
157float: 1
158ifloat: 1
159ildouble: 1
160ldouble: 1
161Test "Imaginary part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":
162float: 1
163ifloat: 1
164ildouble: 1
165ldouble: 1
166Test "Real part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
167double: 1
168float: 1
169idouble: 1
170ifloat: 1
171Test "Imaginary part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
172float: 1
173ifloat: 1
174
175# cexp
176Test "Real part of: cexp (-2.0 - 3.0 i) == -0.13398091492954261346140525546115575 - 0.019098516261135196432576240858800925 i":
177ildouble: 1
178ldouble: 1
179Test "Imaginary part of: cexp (-2.0 - 3.0 i) == -0.13398091492954261346140525546115575 - 0.019098516261135196432576240858800925 i":
180float: 1
181ifloat: 1
182ildouble: 1
183ldouble: 1
184Test "Real part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":
185float: 1
186ifloat: 1
187Test "Imaginary part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":
188ildouble: 1
189ldouble: 1
190
191# clog
192Test "Imaginary part of: clog (-2 - 3 i) == 1.2824746787307683680267437207826593 - 2.1587989303424641704769327722648368 i":
193float: 3
194ifloat: 3
195Test "Real part of: clog (0.75 + 1.25 i) == 0.376885901188190075998919126749298416 + 1.03037682652431246378774332703115153 i":
196float: 1
197ifloat: 1
198ildouble: 1
199ldouble: 1
200
201# clog10
202Test "Imaginary part of: clog10 (-0 + inf i) == inf + pi/2*log10(e) i":
203double: 1
204float: 1
205idouble: 1
206ifloat: 1
207Test "Imaginary part of: clog10 (-0 - inf i) == inf - pi/2*log10(e) i":
208double: 1
209float: 1
210idouble: 1
211ifloat: 1
212Test "Real part of: clog10 (-2 - 3 i) == 0.556971676153418384603252578971164214 - 0.937554462986374708541507952140189646 i":
213ildouble: 1
214ldouble: 1
215Test "Imaginary part of: clog10 (-2 - 3 i) == 0.556971676153418384603252578971164214 - 0.937554462986374708541507952140189646 i":
216double: 1
217float: 5
218idouble: 1
219ifloat: 5
220ildouble: 1
221ldouble: 1
222Test "Imaginary part of: clog10 (-3 + inf i) == inf + pi/2*log10(e) i":
223double: 1
224float: 1
225idouble: 1
226ifloat: 1
227Test "Imaginary part of: clog10 (-3 - inf i) == inf - pi/2*log10(e) i":
228double: 1
229float: 1
230idouble: 1
231ifloat: 1
232Test "Imaginary part of: clog10 (-inf + 0 i) == inf + pi*log10(e) i":
233double: 1
234float: 1
235idouble: 1
236ifloat: 1
237Test "Imaginary part of: clog10 (-inf + 1 i) == inf + pi*log10(e) i":
238double: 1
239float: 1
240idouble: 1
241ifloat: 1
242Test "Imaginary part of: clog10 (-inf + inf i) == inf + 3/4 pi*log10(e) i":
243double: 1
244idouble: 1
245Test "Imaginary part of: clog10 (-inf - 0 i) == inf - pi*log10(e) i":
246double: 1
247float: 1
248idouble: 1
249ifloat: 1
250Test "Imaginary part of: clog10 (-inf - 1 i) == inf - pi*log10(e) i":
251double: 1
252float: 1
253idouble: 1
254ifloat: 1
255Test "Imaginary part of: clog10 (0 + inf i) == inf + pi/2*log10(e) i":
256double: 1
257float: 1
258idouble: 1
259ifloat: 1
260Test "Imaginary part of: clog10 (0 - inf i) == inf - pi/2*log10(e) i":
261double: 1
262float: 1
263idouble: 1
264ifloat: 1
265Test "Real part of: clog10 (0.75 + 1.25 i) == 0.163679467193165171449476605077428975 + 0.447486970040493067069984724340855636 i":
266float: 1
267ifloat: 1
268Test "Imaginary part of: clog10 (0.75 + 1.25 i) == 0.163679467193165171449476605077428975 + 0.447486970040493067069984724340855636 i":
269ildouble: 1
270ldouble: 1
271Test "Imaginary part of: clog10 (3 + inf i) == inf + pi/2*log10(e) i":
272double: 1
273float: 1
274idouble: 1
275ifloat: 1
276Test "Imaginary part of: clog10 (3 - inf i) == inf - pi/2*log10(e) i":
277double: 1
278float: 1
279idouble: 1
280ifloat: 1
281Test "Imaginary part of: clog10 (inf + inf i) == inf + pi/4*log10(e) i":
282double: 1
283float: 1
284idouble: 1
285ifloat: 1
286Test "Imaginary part of: clog10 (inf - inf i) == inf - pi/4*log10(e) i":
287double: 1
288float: 1
289idouble: 1
290ifloat: 1
291
292# cos
293Test "cos (M_PI_6l * 2.0) == 0.5":
294double: 1
295float: 1
296idouble: 1
297ifloat: 1
298ildouble: 1
299ldouble: 1
300Test "cos (M_PI_6l * 4.0) == -0.5":
301double: 2
302float: 1
303idouble: 2
304ifloat: 1
305ildouble: 1
306ldouble: 1
307Test "cos (pi/2) == 0":
308double: 1
309float: 1
310idouble: 1
311ifloat: 1
312ildouble: 1
313ldouble: 1
314
315# cpow
316Test "Real part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
317float: 1
318ifloat: 1
319Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
320float: 1
321ifloat: 1
322Test "Real part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":
323double: 1
324float: 4
325idouble: 1
326ifloat: 4
327ildouble: 4
328ldouble: 4
329Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 0.0 i) == 0.75 + 1.25 i":
330ildouble: 2
331ldouble: 2
332Test "Imaginary part of: cpow (0.75 + 1.25 i, 1.0 + 0.0 i) == 0.75 + 1.25 i":
333ildouble: 1
334ldouble: 1
335Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 1.0 i) == 0.0846958290317209430433805274189191353 + 0.513285749182902449043287190519090481 i":
336double: 2
337float: 3
338idouble: 2
339ifloat: 3
340ildouble: 10
341ldouble: 10
342Test "Real part of: cpow (2 + 0 i, 10 + 0 i) == 1024.0 + 0.0 i":
343ildouble: 2
344ldouble: 2
345Test "Real part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
346double: 1
347float: 4
348idouble: 1
349ifloat: 4
350ildouble: 3
351ldouble: 3
352Test "Imaginary part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
353float: 2
354ifloat: 2
355Test "Imaginary part of: cpow (e + 0 i, 0 + 2 * M_PIl i) == 1.0 + 0.0 i":
356double: 2
357float: 2
358idouble: 2
359ifloat: 2
360ildouble: 1
361ldouble: 1
362
363# csin
364Test "Imaginary part of: csin (-2 - 3 i) == -9.15449914691142957346729954460983256 + 4.16890695996656435075481305885375484 i":
365ildouble: 1
366ldouble: 1
367Test "Real part of: csin (0.75 + 1.25 i) == 1.28722291002649188575873510790565441 + 1.17210635989270256101081285116138863 i":
368ildouble: 1
369ldouble: 1
370
371# csinh
372Test "Real part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
373ildouble: 1
374ldouble: 1
375Test "Imaginary part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
376double: 1
377idouble: 1
378Test "Real part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
379float: 1
380ifloat: 1
381Test "Imaginary part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
382float: 1
383ifloat: 1
384
385# csqrt
386Test "Real part of: csqrt (-2 + 3 i) == 0.89597747612983812471573375529004348 + 1.6741492280355400404480393008490519 i":
387float: 1
388ifloat: 1
389ildouble: 1
390ldouble: 1
391Test "Real part of: csqrt (-2 - 3 i) == 0.89597747612983812471573375529004348 - 1.6741492280355400404480393008490519 i":
392float: 1
393ifloat: 1
394ildouble: 1
395ldouble: 1
396Test "Imaginary part of: csqrt (0.75 + 1.25 i) == 1.05065169626078392338656675760808326 + 0.594868882070379067881984030639932657 i":
397ildouble: 1
398ldouble: 1
399
400# ctan
401Test "Real part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
402double: 1
403idouble: 1
404ildouble: 1
405ldouble: 1
406Test "Imaginary part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
407ildouble: 1
408ldouble: 1
409Test "Imaginary part of: ctan (0.75 + 1.25 i) == 0.160807785916206426725166058173438663 + 0.975363285031235646193581759755216379 i":
410double: 1
411idouble: 1
412ildouble: 2
413ldouble: 2
414
415# ctanh
416Test "Real part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
417double: 1
418float: 2
419idouble: 1
420ifloat: 2
421ildouble: 1
422ldouble: 1
423Test "Imaginary part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
424ildouble: 1
425ldouble: 1
426Test "Imaginary part of: ctanh (0 + pi/4 i) == 0.0 + 1.0 i":
427float: 1
428ifloat: 1
429Test "Real part of: ctanh (0.75 + 1.25 i) == 1.37260757053378320258048606571226857 + 0.385795952609750664177596760720790220 i":
430double: 1
431idouble: 1
432
433# erf
434Test "erf (1.25) == 0.922900128256458230136523481197281140":
435double: 1
436idouble: 1
437
438# erfc
439Test "erfc (2.0) == 0.00467773498104726583793074363274707139":
440double: 1
441idouble: 1
442Test "erfc (27.0) == 0.523704892378925568501606768284954709e-318":
443ildouble: 1
444ldouble: 1
445Test "erfc (4.125) == 0.542340079956506600531223408575531062e-8":
446double: 1
447idouble: 1
448
449# exp10
450Test "exp10 (-1) == 0.1":
451double: 2
452float: 1
453idouble: 2
454ifloat: 1
455Test "exp10 (0.75) == 5.62341325190349080394951039776481231":
456double: 1
457float: 1
458idouble: 1
459ifloat: 1
460Test "exp10 (3) == 1000":
461double: 6
462float: 2
463idouble: 6
464ifloat: 2
465ildouble: 1
466ldouble: 1
467
468# exp2
469Test "exp2 (10) == 1024":
470ildouble: 2
471ldouble: 2
472
473# expm1
474Test "expm1 (0.75) == 1.11700001661267466854536981983709561":
475double: 1
476idouble: 1
477Test "expm1 (1) == M_El - 1.0":
478double: 1
479float: 1
480idouble: 1
481ifloat: 1
482ildouble: 1
483ldouble: 1
484
485# gamma
486Test "gamma (-0.5) == log(2*sqrt(pi))":
487ildouble: 1
488ldouble: 1
489
490# hypot
491Test "hypot (-0.7, -12.4) == 12.419742348374220601176836866763271":
492float: 1
493ifloat: 1
494Test "hypot (-0.7, 12.4) == 12.419742348374220601176836866763271":
495float: 1
496ifloat: 1
497Test "hypot (-12.4, -0.7) == 12.419742348374220601176836866763271":
498float: 1
499ifloat: 1
500Test "hypot (-12.4, 0.7) == 12.419742348374220601176836866763271":
501float: 1
502ifloat: 1
503Test "hypot (0.7, -12.4) == 12.419742348374220601176836866763271":
504float: 1
505ifloat: 1
506Test "hypot (0.7, 12.4) == 12.419742348374220601176836866763271":
507float: 1
508ifloat: 1
509Test "hypot (12.4, -0.7) == 12.419742348374220601176836866763271":
510float: 1
511ifloat: 1
512Test "hypot (12.4, 0.7) == 12.419742348374220601176836866763271":
513float: 1
514ifloat: 1
515
516# j0
517Test "j0 (-4.0) == -3.9714980986384737228659076845169804197562E-1":
518double: 1
519float: 1
520idouble: 1
521ifloat: 1
522Test "j0 (0.75) == 0.864242275166648623555731103820923211":
523float: 1
524ifloat: 1
525Test "j0 (10.0) == -0.245935764451348335197760862485328754":
526double: 2
527float: 1
528idouble: 2
529ifloat: 1
530ildouble: 2
531ldouble: 2
532Test "j0 (2.0) == 0.223890779141235668051827454649948626":
533float: 2
534ifloat: 2
535ildouble: 2
536ldouble: 2
537Test "j0 (4.0) == -3.9714980986384737228659076845169804197562E-1":
538double: 1
539float: 1
540idouble: 1
541ifloat: 1
542Test "j0 (8.0) == 0.171650807137553906090869407851972001":
543float: 1
544ifloat: 1
545ildouble: 1
546ldouble: 1
547
548# j1
549Test "j1 (-1.0) == -0.440050585744933515959682203718914913":
550ildouble: 1
551ldouble: 1
552Test "j1 (0.75) == 0.349243602174862192523281016426251335":
553ildouble: 1
554ldouble: 1
555Test "j1 (1.0) == 0.440050585744933515959682203718914913":
556ildouble: 1
557ldouble: 1
558Test "j1 (10.0) == 0.0434727461688614366697487680258592883":
559float: 2
560ifloat: 2
561ildouble: 2
562ldouble: 2
563Test "j1 (2.0) == 0.576724807756873387202448242269137087":
564double: 1
565idouble: 1
566Test "j1 (8.0) == 0.234636346853914624381276651590454612":
567double: 1
568idouble: 1
569ildouble: 4
570ldouble: 4
571
572# jn
573Test "jn (0, -4.0) == -3.9714980986384737228659076845169804197562E-1":
574double: 1
575float: 1
576idouble: 1
577ifloat: 1
578Test "jn (0, 0.75) == 0.864242275166648623555731103820923211":
579float: 1
580ifloat: 1
581Test "jn (0, 10.0) == -0.245935764451348335197760862485328754":
582double: 2
583float: 1
584idouble: 2
585ifloat: 1
586ildouble: 2
587ldouble: 2
588Test "jn (0, 2.0) == 0.223890779141235668051827454649948626":
589float: 2
590ifloat: 2
591ildouble: 2
592ldouble: 2
593Test "jn (0, 4.0) == -3.9714980986384737228659076845169804197562E-1":
594double: 1
595float: 1
596idouble: 1
597ifloat: 1
598Test "jn (0, 8.0) == 0.171650807137553906090869407851972001":
599float: 1
600ifloat: 1
601ildouble: 1
602ldouble: 1
603Test "jn (1, -1.0) == -0.440050585744933515959682203718914913":
604ildouble: 1
605ldouble: 1
606Test "jn (1, 0.75) == 0.349243602174862192523281016426251335":
607ildouble: 1
608ldouble: 1
609Test "jn (1, 1.0) == 0.440050585744933515959682203718914913":
610ildouble: 1
611ldouble: 1
612Test "jn (1, 10.0) == 0.0434727461688614366697487680258592883":
613float: 2
614ifloat: 2
615ildouble: 2
616ldouble: 2
617Test "jn (1, 2.0) == 0.576724807756873387202448242269137087":
618double: 1
619idouble: 1
620Test "jn (1, 8.0) == 0.234636346853914624381276651590454612":
621double: 1
622idouble: 1
623ildouble: 4
624ldouble: 4
625Test "jn (10, -1.0) == 0.263061512368745320699785368779050294e-9":
626ildouble: 1
627ldouble: 1
628Test "jn (10, 0.125) == 0.250543369809369890173993791865771547e-18":
629double: 1
630float: 1
631idouble: 1
632ifloat: 1
633ildouble: 1
634ldouble: 1
635Test "jn (10, 0.75) == 0.149621713117596814698712483621682835e-10":
636double: 1
637float: 1
638idouble: 1
639ifloat: 1
640ildouble: 1
641ldouble: 1
642Test "jn (10, 1.0) == 0.263061512368745320699785368779050294e-9":
643ildouble: 1
644ldouble: 1
645Test "jn (10, 10.0) == 0.207486106633358857697278723518753428":
646double: 4
647float: 3
648idouble: 4
649ifloat: 3
650ildouble: 2
651ldouble: 2
652Test "jn (10, 2.0) == 0.251538628271673670963516093751820639e-6":
653float: 4
654ifloat: 4
655Test "jn (3, 0.125) == 0.406503832554912875023029337653442868e-4":
656double: 1
657float: 1
658idouble: 1
659ifloat: 1
660Test "jn (3, 0.75) == 0.848438342327410884392755236884386804e-2":
661double: 1
662float: 1
663idouble: 1
664ifloat: 1
665Test "jn (3, 10.0) == 0.0583793793051868123429354784103409563":
666double: 3
667float: 1
668idouble: 3
669ifloat: 1
670ildouble: 2
671ldouble: 2
672Test "jn (3, 2.0) == 0.128943249474402051098793332969239835":
673double: 1
674float: 2
675idouble: 1
676ifloat: 2
677
678# lgamma
679Test "lgamma (-0.5) == log(2*sqrt(pi))":
680ildouble: 1
681ldouble: 1
682Test "lgamma (0.7) == 0.260867246531666514385732417016759578":
683double: 1
684float: 1
685idouble: 1
686ifloat: 1
687ildouble: 1
688ldouble: 1
689Test "lgamma (1.2) == -0.853740900033158497197028392998854470e-1":
690double: 1
691float: 2
692idouble: 1
693ifloat: 2
694ildouble: 1
695ldouble: 1
696
697# log10
698Test "log10 (0.75) == -0.124938736608299953132449886193870744":
699double: 1
700float: 2
701idouble: 1
702ifloat: 2
703Test "log10 (e) == log10(e)":
704float: 1
705ifloat: 1
706ildouble: 1
707ldouble: 1
708
709# log1p
710Test "log1p (-0.25) == -0.287682072451780927439219005993827432":
711float: 1
712ifloat: 1
713Test "log1p (M_El - 1.0) == 1":
714ildouble: 1
715ldouble: 1
716
717# log2
718Test "log2 (0.75) == -.415037499278843818546261056052183492":
719ildouble: 1
720ldouble: 1
721
722# sincos
723Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.5 in cos_res":
724double: 1
725float: 1
726idouble: 1
727ifloat: 1
728ildouble: 1
729ldouble: 1
730Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in sin_res":
731double: 1
732float: 1
733idouble: 1
734ifloat: 1
735ildouble: 1
736ldouble: 1
737Test "sincos (pi/2, &sin_res, &cos_res) puts 0 in cos_res":
738double: 1
739float: 1
740idouble: 1
741ifloat: 1
742ildouble: 1
743ldouble: 1
744Test "sincos (pi/6, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in cos_res":
745float: 1
746ifloat: 1
747
748# sqrt
749Test "sqrt (2) == M_SQRT2l":
750ildouble: 1
751ldouble: 1
752
753# tan
754Test "tan (pi/4) == 1":
755double: 1
756idouble: 1
757
758# tanh
759Test "tanh (-0.75) == -0.635148952387287319214434357312496495":
760ildouble: 1
761ldouble: 1
762Test "tanh (-1.0) == -0.7615941559557648881194582826047935904":
763ildouble: 1
764ldouble: 1
765Test "tanh (0.75) == 0.635148952387287319214434357312496495":
766ildouble: 1
767ldouble: 1
768Test "tanh (1.0) == 0.7615941559557648881194582826047935904":
769ildouble: 1
770ldouble: 1
771
772# tgamma
773Test "tgamma (-0.5) == -2 sqrt (pi)":
774double: 1
775float: 1
776idouble: 1
777ifloat: 1
778ildouble: 1
779ldouble: 1
780Test "tgamma (0.5) == sqrt (pi)":
781float: 1
782ifloat: 1
783Test "tgamma (0.7) == 1.29805533264755778568117117915281162":
784double: 1
785float: 1
786idouble: 1
787ifloat: 1
788Test "tgamma (4) == 6":
789ildouble: 1
790ldouble: 1
791
792# y0
793Test "y0 (1.0) == 0.0882569642156769579829267660235151628":
794double: 2
795float: 1
796idouble: 2
797ifloat: 1
798Test "y0 (1.5) == 0.382448923797758843955068554978089862":
799double: 2
800float: 1
801idouble: 2
802ifloat: 1
803Test "y0 (10.0) == 0.0556711672835993914244598774101900481":
804float: 1
805ifloat: 1
806ildouble: 3
807ldouble: 3
808Test "y0 (8.0) == 0.223521489387566220527323400498620359":
809double: 1
810float: 1
811idouble: 1
812ifloat: 1
813ildouble: 3
814ldouble: 3
815
816# y1
817Test "y1 (0.125) == -5.19993611253477499595928744876579921":
818double: 1
819idouble: 1
820Test "y1 (0.75) == -1.03759455076928541973767132140642198":
821ildouble: 1
822ldouble: 1
823Test "y1 (1.5) == -0.412308626973911295952829820633445323":
824float: 1
825ifloat: 1
826ildouble: 1
827ldouble: 1
828Test "y1 (10.0) == 0.249015424206953883923283474663222803":
829double: 3
830float: 1
831idouble: 3
832ifloat: 1
833Test "y1 (2.0) == -0.107032431540937546888370772277476637":
834double: 1
835float: 1
836idouble: 1
837ifloat: 1
838ildouble: 1
839ldouble: 1
840Test "y1 (8.0) == -0.158060461731247494255555266187483550":
841double: 1
842float: 2
843idouble: 1
844ifloat: 2
845ildouble: 1
846ldouble: 1
847
848# yn
849Test "yn (0, 1.0) == 0.0882569642156769579829267660235151628":
850double: 2
851float: 1
852idouble: 2
853ifloat: 1
854Test "yn (0, 1.5) == 0.382448923797758843955068554978089862":
855double: 2
856float: 1
857idouble: 2
858ifloat: 1
859Test "yn (0, 10.0) == 0.0556711672835993914244598774101900481":
860float: 1
861ifloat: 1
862ildouble: 3
863ldouble: 3
864Test "yn (0, 8.0) == 0.223521489387566220527323400498620359":
865double: 1
866float: 1
867idouble: 1
868ifloat: 1
869ildouble: 3
870ldouble: 3
871Test "yn (1, 0.125) == -5.19993611253477499595928744876579921":
872double: 1
873idouble: 1
874Test "yn (1, 0.75) == -1.03759455076928541973767132140642198":
875ildouble: 1
876ldouble: 1
877Test "yn (1, 1.5) == -0.412308626973911295952829820633445323":
878float: 1
879ifloat: 1
880ildouble: 1
881ldouble: 1
882Test "yn (1, 10.0) == 0.249015424206953883923283474663222803":
883double: 3
884float: 1
885idouble: 3
886ifloat: 1
887Test "yn (1, 2.0) == -0.107032431540937546888370772277476637":
888double: 1
889float: 1
890idouble: 1
891ifloat: 1
892ildouble: 1
893ldouble: 1
894Test "yn (1, 8.0) == -0.158060461731247494255555266187483550":
895double: 1
896float: 2
897idouble: 1
898ifloat: 2
899ildouble: 1
900ldouble: 1
901Test "yn (10, 0.125) == -127057845771019398.252538486899753195":
902double: 1
903idouble: 1
904ildouble: 2
905ldouble: 2
906Test "yn (10, 0.75) == -2133501638.90573424452445412893839236":
907double: 1
908float: 1
909idouble: 1
910ifloat: 1
911ildouble: 5
912ldouble: 5
913Test "yn (10, 1.0) == -121618014.278689189288130426667971145":
914double: 1
915idouble: 1
916ildouble: 1
917ldouble: 1
918Test "yn (10, 10.0) == -0.359814152183402722051986577343560609":
919double: 1
920float: 1
921idouble: 1
922ifloat: 1
923ildouble: 2
924ldouble: 2
925Test "yn (10, 2.0) == -129184.542208039282635913145923304214":
926double: 2
927idouble: 2
928ildouble: 2
929ldouble: 2
930Test "yn (3, 0.125) == -2612.69757350066712600220955744091741":
931double: 1
932idouble: 1
933Test "yn (3, 0.75) == -12.9877176234475433186319774484809207":
934double: 1
935float: 1
936idouble: 1
937ifloat: 1
938ildouble: 2
939ldouble: 2
940Test "yn (3, 10.0) == -0.251362657183837329779204747654240998":
941double: 1
942float: 1
943idouble: 1
944ifloat: 1
945ildouble: 1
946ldouble: 1
947Test "yn (3, 2.0) == -1.12778377684042778608158395773179238":
948double: 1
949idouble: 1
950
951# Maximal error of functions:
952Function: "atan2":
953float: 6
954ifloat: 6
955ildouble: 1
956ldouble: 1
957
958Function: "atanh":
959float: 1
960ifloat: 1
961
962Function: Imaginary part of "cacos":
963ildouble: 1
964ldouble: 1
965
966Function: Real part of "cacosh":
967double: 1
968float: 7
969idouble: 1
970ifloat: 7
971ildouble: 5
972ldouble: 5
973
974Function: Imaginary part of "cacosh":
975double: 1
976float: 3
977idouble: 1
978ifloat: 3
979ildouble: 1
980ldouble: 1
981
982Function: Real part of "casin":
983double: 1
984float: 1
985idouble: 1
986ifloat: 1
987
988Function: Imaginary part of "casin":
989ildouble: 1
990ldouble: 1
991
992Function: Real part of "casinh":
993double: 5
994float: 1
995idouble: 5
996ifloat: 1
997ildouble: 4
998ldouble: 4
999
1000Function: Imaginary part of "casinh":
1001double: 3
1002float: 6
1003idouble: 3
1004ifloat: 6
1005ildouble: 2
1006ldouble: 2
1007
1008Function: Real part of "catan":
1009float: 4
1010ifloat: 4
1011
1012Function: Imaginary part of "catan":
1013double: 1
1014float: 1
1015idouble: 1
1016ifloat: 1
1017ildouble: 1
1018ldouble: 1
1019
1020Function: Real part of "catanh":
1021double: 4
1022idouble: 4
1023ildouble: 1
1024ldouble: 1
1025
1026Function: Imaginary part of "catanh":
1027float: 6
1028ifloat: 6
1029ildouble: 1
1030ldouble: 1
1031
1032Function: "cbrt":
1033double: 1
1034idouble: 1
1035ildouble: 1
1036ldouble: 1
1037
1038Function: Real part of "ccos":
1039double: 1
1040float: 1
1041idouble: 1
1042ifloat: 1
1043ildouble: 1
1044ldouble: 1
1045
1046Function: Imaginary part of "ccos":
1047float: 1
1048ifloat: 1
1049ildouble: 1
1050ldouble: 1
1051
1052Function: Real part of "ccosh":
1053double: 1
1054float: 1
1055idouble: 1
1056ifloat: 1
1057ildouble: 1
1058ldouble: 1
1059
1060Function: Imaginary part of "ccosh":
1061float: 1
1062ifloat: 1
1063ildouble: 1
1064ldouble: 1
1065
1066Function: Real part of "cexp":
1067float: 1
1068ifloat: 1
1069ildouble: 1
1070ldouble: 1
1071
1072Function: Imaginary part of "cexp":
1073float: 1
1074ifloat: 1
1075ildouble: 1
1076ldouble: 1
1077
1078Function: Real part of "clog":
1079float: 1
1080ifloat: 1
1081ildouble: 1
1082ldouble: 1
1083
1084Function: Imaginary part of "clog":
1085float: 3
1086ifloat: 3
1087
1088Function: Real part of "clog10":
1089float: 1
1090ifloat: 1
1091ildouble: 1
1092ldouble: 1
1093
1094Function: Imaginary part of "clog10":
1095double: 1
1096float: 5
1097idouble: 1
1098ifloat: 5
1099ildouble: 1
1100ldouble: 1
1101
1102Function: "cos":
1103double: 2
1104float: 1
1105idouble: 2
1106ifloat: 1
1107ildouble: 1
1108ldouble: 1
1109
1110Function: Real part of "cpow":
1111double: 2
1112float: 4
1113idouble: 2
1114ifloat: 4
1115ildouble: 10
1116ldouble: 10
1117
1118Function: Imaginary part of "cpow":
1119double: 2
1120float: 2
1121idouble: 2
1122ifloat: 2
1123ildouble: 1
1124ldouble: 1
1125
1126Function: Real part of "csin":
1127ildouble: 1
1128ldouble: 1
1129
1130Function: Imaginary part of "csin":
1131ildouble: 1
1132ldouble: 1
1133
1134Function: Real part of "csinh":
1135float: 1
1136ifloat: 1
1137ildouble: 1
1138ldouble: 1
1139
1140Function: Imaginary part of "csinh":
1141double: 1
1142float: 1
1143idouble: 1
1144ifloat: 1
1145
1146Function: Real part of "csqrt":
1147float: 1
1148ifloat: 1
1149ildouble: 1
1150ldouble: 1
1151
1152Function: Imaginary part of "csqrt":
1153ildouble: 1
1154ldouble: 1
1155
1156Function: Real part of "ctan":
1157double: 1
1158idouble: 1
1159ildouble: 1
1160ldouble: 1
1161
1162Function: Imaginary part of "ctan":
1163double: 1
1164idouble: 1
1165ildouble: 2
1166ldouble: 2
1167
1168Function: Real part of "ctanh":
1169double: 1
1170float: 2
1171idouble: 1
1172ifloat: 2
1173ildouble: 1
1174ldouble: 1
1175
1176Function: Imaginary part of "ctanh":
1177float: 1
1178ifloat: 1
1179ildouble: 1
1180ldouble: 1
1181
1182Function: "erf":
1183double: 1
1184idouble: 1
1185
1186Function: "erfc":
1187double: 1
1188idouble: 1
1189ildouble: 1
1190ldouble: 1
1191
1192Function: "exp10":
1193double: 6
1194float: 2
1195idouble: 6
1196ifloat: 2
1197ildouble: 1
1198ldouble: 1
1199
1200Function: "exp2":
1201ildouble: 2
1202ldouble: 2
1203
1204Function: "expm1":
1205double: 1
1206float: 1
1207idouble: 1
1208ifloat: 1
1209ildouble: 1
1210ldouble: 1
1211
1212Function: "gamma":
1213ildouble: 1
1214ldouble: 1
1215
1216Function: "hypot":
1217float: 1
1218ifloat: 1
1219
1220Function: "j0":
1221double: 2
1222float: 2
1223idouble: 2
1224ifloat: 2
1225ildouble: 2
1226ldouble: 2
1227
1228Function: "j1":
1229double: 1
1230float: 2
1231idouble: 1
1232ifloat: 2
1233ildouble: 4
1234ldouble: 4
1235
1236Function: "jn":
1237double: 4
1238float: 4
1239idouble: 4
1240ifloat: 4
1241ildouble: 4
1242ldouble: 4
1243
1244Function: "lgamma":
1245double: 1
1246float: 2
1247idouble: 1
1248ifloat: 2
1249ildouble: 1
1250ldouble: 1
1251
1252Function: "log10":
1253double: 1
1254float: 2
1255idouble: 1
1256ifloat: 2
1257ildouble: 1
1258ldouble: 1
1259
1260Function: "log1p":
1261float: 1
1262ifloat: 1
1263ildouble: 1
1264ldouble: 1
1265
1266Function: "log2":
1267ildouble: 1
1268ldouble: 1
1269
1270Function: "sincos":
1271double: 1
1272float: 1
1273idouble: 1
1274ifloat: 1
1275ildouble: 1
1276ldouble: 1
1277
1278Function: "sqrt":
1279ildouble: 1
1280ldouble: 1
1281
1282Function: "tan":
1283double: 1
1284idouble: 1
1285
1286Function: "tanh":
1287ildouble: 1
1288ldouble: 1
1289
1290Function: "tgamma":
1291double: 1
1292float: 1
1293idouble: 1
1294ifloat: 1
1295ildouble: 1
1296ldouble: 1
1297
1298Function: "y0":
1299double: 2
1300float: 1
1301idouble: 2
1302ifloat: 1
1303ildouble: 3
1304ldouble: 3
1305
1306Function: "y1":
1307double: 3
1308float: 2
1309idouble: 3
1310ifloat: 2
1311ildouble: 1
1312ldouble: 1
1313
1314Function: "yn":
1315double: 3
1316float: 2
1317idouble: 3
1318ifloat: 2
1319ildouble: 5
1320ldouble: 5
1321
1322# end of automatic generation