lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * Support for PVK format keys and related structures (such a PUBLICKEYBLOB |
| 12 | * and PRIVATEKEYBLOB). |
| 13 | */ |
| 14 | |
| 15 | #include "internal/cryptlib.h" |
| 16 | #include <openssl/pem.h> |
| 17 | #include <openssl/rand.h> |
| 18 | #include <openssl/bn.h> |
| 19 | #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA) |
| 20 | # include <openssl/dsa.h> |
| 21 | # include <openssl/rsa.h> |
| 22 | |
| 23 | /* |
| 24 | * Utility function: read a DWORD (4 byte unsigned integer) in little endian |
| 25 | * format |
| 26 | */ |
| 27 | |
| 28 | static unsigned int read_ledword(const unsigned char **in) |
| 29 | { |
| 30 | const unsigned char *p = *in; |
| 31 | unsigned int ret; |
| 32 | ret = (unsigned int)*p++; |
| 33 | ret |= (unsigned int)*p++ << 8; |
| 34 | ret |= (unsigned int)*p++ << 16; |
| 35 | ret |= (unsigned int)*p++ << 24; |
| 36 | *in = p; |
| 37 | return ret; |
| 38 | } |
| 39 | |
| 40 | /* |
| 41 | * Read a BIGNUM in little endian format. The docs say that this should take |
| 42 | * up bitlen/8 bytes. |
| 43 | */ |
| 44 | |
| 45 | static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) |
| 46 | { |
| 47 | *r = BN_lebin2bn(*in, nbyte, NULL); |
| 48 | if (*r == NULL) |
| 49 | return 0; |
| 50 | *in += nbyte; |
| 51 | return 1; |
| 52 | } |
| 53 | |
| 54 | /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ |
| 55 | |
| 56 | # define MS_PUBLICKEYBLOB 0x6 |
| 57 | # define MS_PRIVATEKEYBLOB 0x7 |
| 58 | # define MS_RSA1MAGIC 0x31415352L |
| 59 | # define MS_RSA2MAGIC 0x32415352L |
| 60 | # define MS_DSS1MAGIC 0x31535344L |
| 61 | # define MS_DSS2MAGIC 0x32535344L |
| 62 | |
| 63 | # define MS_KEYALG_RSA_KEYX 0xa400 |
| 64 | # define MS_KEYALG_DSS_SIGN 0x2200 |
| 65 | |
| 66 | # define MS_KEYTYPE_KEYX 0x1 |
| 67 | # define MS_KEYTYPE_SIGN 0x2 |
| 68 | |
| 69 | /* Maximum length of a blob after header */ |
| 70 | # define BLOB_MAX_LENGTH 102400 |
| 71 | |
| 72 | /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */ |
| 73 | # define MS_PVKMAGIC 0xb0b5f11eL |
| 74 | /* Salt length for PVK files */ |
| 75 | # define PVK_SALTLEN 0x10 |
| 76 | /* Maximum length in PVK header */ |
| 77 | # define PVK_MAX_KEYLEN 102400 |
| 78 | /* Maximum salt length */ |
| 79 | # define PVK_MAX_SALTLEN 10240 |
| 80 | |
| 81 | static EVP_PKEY *b2i_rsa(const unsigned char **in, |
| 82 | unsigned int bitlen, int ispub); |
| 83 | static EVP_PKEY *b2i_dss(const unsigned char **in, |
| 84 | unsigned int bitlen, int ispub); |
| 85 | |
| 86 | static int do_blob_header(const unsigned char **in, unsigned int length, |
| 87 | unsigned int *pmagic, unsigned int *pbitlen, |
| 88 | int *pisdss, int *pispub) |
| 89 | { |
| 90 | const unsigned char *p = *in; |
| 91 | if (length < 16) |
| 92 | return 0; |
| 93 | /* bType */ |
| 94 | if (*p == MS_PUBLICKEYBLOB) { |
| 95 | if (*pispub == 0) { |
| 96 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); |
| 97 | return 0; |
| 98 | } |
| 99 | *pispub = 1; |
| 100 | } else if (*p == MS_PRIVATEKEYBLOB) { |
| 101 | if (*pispub == 1) { |
| 102 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); |
| 103 | return 0; |
| 104 | } |
| 105 | *pispub = 0; |
| 106 | } else |
| 107 | return 0; |
| 108 | p++; |
| 109 | /* Version */ |
| 110 | if (*p++ != 0x2) { |
| 111 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); |
| 112 | return 0; |
| 113 | } |
| 114 | /* Ignore reserved, aiKeyAlg */ |
| 115 | p += 6; |
| 116 | *pmagic = read_ledword(&p); |
| 117 | *pbitlen = read_ledword(&p); |
| 118 | *pisdss = 0; |
| 119 | switch (*pmagic) { |
| 120 | |
| 121 | case MS_DSS1MAGIC: |
| 122 | *pisdss = 1; |
| 123 | /* fall thru */ |
| 124 | case MS_RSA1MAGIC: |
| 125 | if (*pispub == 0) { |
| 126 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); |
| 127 | return 0; |
| 128 | } |
| 129 | break; |
| 130 | |
| 131 | case MS_DSS2MAGIC: |
| 132 | *pisdss = 1; |
| 133 | /* fall thru */ |
| 134 | case MS_RSA2MAGIC: |
| 135 | if (*pispub == 1) { |
| 136 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); |
| 137 | return 0; |
| 138 | } |
| 139 | break; |
| 140 | |
| 141 | default: |
| 142 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); |
| 143 | return -1; |
| 144 | } |
| 145 | *in = p; |
| 146 | return 1; |
| 147 | } |
| 148 | |
| 149 | static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) |
| 150 | { |
| 151 | unsigned int nbyte, hnbyte; |
| 152 | nbyte = (bitlen + 7) >> 3; |
| 153 | hnbyte = (bitlen + 15) >> 4; |
| 154 | if (isdss) { |
| 155 | |
| 156 | /* |
| 157 | * Expected length: 20 for q + 3 components bitlen each + 24 for seed |
| 158 | * structure. |
| 159 | */ |
| 160 | if (ispub) |
| 161 | return 44 + 3 * nbyte; |
| 162 | /* |
| 163 | * Expected length: 20 for q, priv, 2 bitlen components + 24 for seed |
| 164 | * structure. |
| 165 | */ |
| 166 | else |
| 167 | return 64 + 2 * nbyte; |
| 168 | } else { |
| 169 | /* Expected length: 4 for 'e' + 'n' */ |
| 170 | if (ispub) |
| 171 | return 4 + nbyte; |
| 172 | else |
| 173 | /* |
| 174 | * Expected length: 4 for 'e' and 7 other components. 2 |
| 175 | * components are bitlen size, 5 are bitlen/2 |
| 176 | */ |
| 177 | return 4 + 2 * nbyte + 5 * hnbyte; |
| 178 | } |
| 179 | |
| 180 | } |
| 181 | |
| 182 | static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length, |
| 183 | int ispub) |
| 184 | { |
| 185 | const unsigned char *p = *in; |
| 186 | unsigned int bitlen, magic; |
| 187 | int isdss; |
| 188 | if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) { |
| 189 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); |
| 190 | return NULL; |
| 191 | } |
| 192 | length -= 16; |
| 193 | if (length < blob_length(bitlen, isdss, ispub)) { |
| 194 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); |
| 195 | return NULL; |
| 196 | } |
| 197 | if (isdss) |
| 198 | return b2i_dss(&p, bitlen, ispub); |
| 199 | else |
| 200 | return b2i_rsa(&p, bitlen, ispub); |
| 201 | } |
| 202 | |
| 203 | static EVP_PKEY *do_b2i_bio(BIO *in, int ispub) |
| 204 | { |
| 205 | const unsigned char *p; |
| 206 | unsigned char hdr_buf[16], *buf = NULL; |
| 207 | unsigned int bitlen, magic, length; |
| 208 | int isdss; |
| 209 | EVP_PKEY *ret = NULL; |
| 210 | if (BIO_read(in, hdr_buf, 16) != 16) { |
| 211 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); |
| 212 | return NULL; |
| 213 | } |
| 214 | p = hdr_buf; |
| 215 | if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) |
| 216 | return NULL; |
| 217 | |
| 218 | length = blob_length(bitlen, isdss, ispub); |
| 219 | if (length > BLOB_MAX_LENGTH) { |
| 220 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_HEADER_TOO_LONG); |
| 221 | return NULL; |
| 222 | } |
| 223 | buf = OPENSSL_malloc(length); |
| 224 | if (buf == NULL) { |
| 225 | PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); |
| 226 | goto err; |
| 227 | } |
| 228 | p = buf; |
| 229 | if (BIO_read(in, buf, length) != (int)length) { |
| 230 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); |
| 231 | goto err; |
| 232 | } |
| 233 | |
| 234 | if (isdss) |
| 235 | ret = b2i_dss(&p, bitlen, ispub); |
| 236 | else |
| 237 | ret = b2i_rsa(&p, bitlen, ispub); |
| 238 | |
| 239 | err: |
| 240 | OPENSSL_free(buf); |
| 241 | return ret; |
| 242 | } |
| 243 | |
| 244 | static EVP_PKEY *b2i_dss(const unsigned char **in, |
| 245 | unsigned int bitlen, int ispub) |
| 246 | { |
| 247 | const unsigned char *p = *in; |
| 248 | EVP_PKEY *ret = NULL; |
| 249 | DSA *dsa = NULL; |
| 250 | BN_CTX *ctx = NULL; |
| 251 | unsigned int nbyte; |
| 252 | BIGNUM *pbn = NULL, *qbn = NULL, *gbn = NULL, *priv_key = NULL; |
| 253 | BIGNUM *pub_key = NULL; |
| 254 | |
| 255 | nbyte = (bitlen + 7) >> 3; |
| 256 | |
| 257 | dsa = DSA_new(); |
| 258 | ret = EVP_PKEY_new(); |
| 259 | if (dsa == NULL || ret == NULL) |
| 260 | goto memerr; |
| 261 | if (!read_lebn(&p, nbyte, &pbn)) |
| 262 | goto memerr; |
| 263 | |
| 264 | if (!read_lebn(&p, 20, &qbn)) |
| 265 | goto memerr; |
| 266 | |
| 267 | if (!read_lebn(&p, nbyte, &gbn)) |
| 268 | goto memerr; |
| 269 | |
| 270 | if (ispub) { |
| 271 | if (!read_lebn(&p, nbyte, &pub_key)) |
| 272 | goto memerr; |
| 273 | } else { |
| 274 | if (!read_lebn(&p, 20, &priv_key)) |
| 275 | goto memerr; |
| 276 | |
| 277 | /* Set constant time flag before public key calculation */ |
| 278 | BN_set_flags(priv_key, BN_FLG_CONSTTIME); |
| 279 | |
| 280 | /* Calculate public key */ |
| 281 | pub_key = BN_new(); |
| 282 | if (pub_key == NULL) |
| 283 | goto memerr; |
| 284 | if ((ctx = BN_CTX_new()) == NULL) |
| 285 | goto memerr; |
| 286 | |
| 287 | if (!BN_mod_exp(pub_key, gbn, priv_key, pbn, ctx)) |
| 288 | goto memerr; |
| 289 | |
| 290 | BN_CTX_free(ctx); |
| 291 | ctx = NULL; |
| 292 | } |
| 293 | if (!DSA_set0_pqg(dsa, pbn, qbn, gbn)) |
| 294 | goto memerr; |
| 295 | pbn = qbn = gbn = NULL; |
| 296 | if (!DSA_set0_key(dsa, pub_key, priv_key)) |
| 297 | goto memerr; |
| 298 | pub_key = priv_key = NULL; |
| 299 | |
| 300 | if (!EVP_PKEY_set1_DSA(ret, dsa)) |
| 301 | goto memerr; |
| 302 | DSA_free(dsa); |
| 303 | *in = p; |
| 304 | return ret; |
| 305 | |
| 306 | memerr: |
| 307 | PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); |
| 308 | DSA_free(dsa); |
| 309 | BN_free(pbn); |
| 310 | BN_free(qbn); |
| 311 | BN_free(gbn); |
| 312 | BN_free(pub_key); |
| 313 | BN_free(priv_key); |
| 314 | EVP_PKEY_free(ret); |
| 315 | BN_CTX_free(ctx); |
| 316 | return NULL; |
| 317 | } |
| 318 | |
| 319 | static EVP_PKEY *b2i_rsa(const unsigned char **in, |
| 320 | unsigned int bitlen, int ispub) |
| 321 | { |
| 322 | const unsigned char *pin = *in; |
| 323 | EVP_PKEY *ret = NULL; |
| 324 | BIGNUM *e = NULL, *n = NULL, *d = NULL; |
| 325 | BIGNUM *p = NULL, *q = NULL, *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL; |
| 326 | RSA *rsa = NULL; |
| 327 | unsigned int nbyte, hnbyte; |
| 328 | nbyte = (bitlen + 7) >> 3; |
| 329 | hnbyte = (bitlen + 15) >> 4; |
| 330 | rsa = RSA_new(); |
| 331 | ret = EVP_PKEY_new(); |
| 332 | if (rsa == NULL || ret == NULL) |
| 333 | goto memerr; |
| 334 | e = BN_new(); |
| 335 | if (e == NULL) |
| 336 | goto memerr; |
| 337 | if (!BN_set_word(e, read_ledword(&pin))) |
| 338 | goto memerr; |
| 339 | if (!read_lebn(&pin, nbyte, &n)) |
| 340 | goto memerr; |
| 341 | if (!ispub) { |
| 342 | if (!read_lebn(&pin, hnbyte, &p)) |
| 343 | goto memerr; |
| 344 | if (!read_lebn(&pin, hnbyte, &q)) |
| 345 | goto memerr; |
| 346 | if (!read_lebn(&pin, hnbyte, &dmp1)) |
| 347 | goto memerr; |
| 348 | if (!read_lebn(&pin, hnbyte, &dmq1)) |
| 349 | goto memerr; |
| 350 | if (!read_lebn(&pin, hnbyte, &iqmp)) |
| 351 | goto memerr; |
| 352 | if (!read_lebn(&pin, nbyte, &d)) |
| 353 | goto memerr; |
| 354 | if (!RSA_set0_factors(rsa, p, q)) |
| 355 | goto memerr; |
| 356 | p = q = NULL; |
| 357 | if (!RSA_set0_crt_params(rsa, dmp1, dmq1, iqmp)) |
| 358 | goto memerr; |
| 359 | dmp1 = dmq1 = iqmp = NULL; |
| 360 | } |
| 361 | if (!RSA_set0_key(rsa, n, e, d)) |
| 362 | goto memerr; |
| 363 | n = e = d = NULL; |
| 364 | |
| 365 | if (!EVP_PKEY_set1_RSA(ret, rsa)) |
| 366 | goto memerr; |
| 367 | RSA_free(rsa); |
| 368 | *in = pin; |
| 369 | return ret; |
| 370 | memerr: |
| 371 | PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); |
| 372 | BN_free(e); |
| 373 | BN_free(n); |
| 374 | BN_free(p); |
| 375 | BN_free(q); |
| 376 | BN_free(dmp1); |
| 377 | BN_free(dmq1); |
| 378 | BN_free(iqmp); |
| 379 | BN_free(d); |
| 380 | RSA_free(rsa); |
| 381 | EVP_PKEY_free(ret); |
| 382 | return NULL; |
| 383 | } |
| 384 | |
| 385 | EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length) |
| 386 | { |
| 387 | return do_b2i(in, length, 0); |
| 388 | } |
| 389 | |
| 390 | EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length) |
| 391 | { |
| 392 | return do_b2i(in, length, 1); |
| 393 | } |
| 394 | |
| 395 | EVP_PKEY *b2i_PrivateKey_bio(BIO *in) |
| 396 | { |
| 397 | return do_b2i_bio(in, 0); |
| 398 | } |
| 399 | |
| 400 | EVP_PKEY *b2i_PublicKey_bio(BIO *in) |
| 401 | { |
| 402 | return do_b2i_bio(in, 1); |
| 403 | } |
| 404 | |
| 405 | static void write_ledword(unsigned char **out, unsigned int dw) |
| 406 | { |
| 407 | unsigned char *p = *out; |
| 408 | *p++ = dw & 0xff; |
| 409 | *p++ = (dw >> 8) & 0xff; |
| 410 | *p++ = (dw >> 16) & 0xff; |
| 411 | *p++ = (dw >> 24) & 0xff; |
| 412 | *out = p; |
| 413 | } |
| 414 | |
| 415 | static void write_lebn(unsigned char **out, const BIGNUM *bn, int len) |
| 416 | { |
| 417 | BN_bn2lebinpad(bn, *out, len); |
| 418 | *out += len; |
| 419 | } |
| 420 | |
| 421 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); |
| 422 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); |
| 423 | |
| 424 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub); |
| 425 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub); |
| 426 | |
| 427 | static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) |
| 428 | { |
| 429 | unsigned char *p; |
| 430 | unsigned int bitlen, magic = 0, keyalg; |
| 431 | int outlen, noinc = 0; |
| 432 | int pktype = EVP_PKEY_id(pk); |
| 433 | if (pktype == EVP_PKEY_DSA) { |
| 434 | bitlen = check_bitlen_dsa(EVP_PKEY_get0_DSA(pk), ispub, &magic); |
| 435 | keyalg = MS_KEYALG_DSS_SIGN; |
| 436 | } else if (pktype == EVP_PKEY_RSA) { |
| 437 | bitlen = check_bitlen_rsa(EVP_PKEY_get0_RSA(pk), ispub, &magic); |
| 438 | keyalg = MS_KEYALG_RSA_KEYX; |
| 439 | } else |
| 440 | return -1; |
| 441 | if (bitlen == 0) |
| 442 | return -1; |
| 443 | outlen = 16 + blob_length(bitlen, |
| 444 | keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); |
| 445 | if (out == NULL) |
| 446 | return outlen; |
| 447 | if (*out) |
| 448 | p = *out; |
| 449 | else { |
| 450 | if ((p = OPENSSL_malloc(outlen)) == NULL) { |
| 451 | PEMerr(PEM_F_DO_I2B, ERR_R_MALLOC_FAILURE); |
| 452 | return -1; |
| 453 | } |
| 454 | *out = p; |
| 455 | noinc = 1; |
| 456 | } |
| 457 | if (ispub) |
| 458 | *p++ = MS_PUBLICKEYBLOB; |
| 459 | else |
| 460 | *p++ = MS_PRIVATEKEYBLOB; |
| 461 | *p++ = 0x2; |
| 462 | *p++ = 0; |
| 463 | *p++ = 0; |
| 464 | write_ledword(&p, keyalg); |
| 465 | write_ledword(&p, magic); |
| 466 | write_ledword(&p, bitlen); |
| 467 | if (keyalg == MS_KEYALG_DSS_SIGN) |
| 468 | write_dsa(&p, EVP_PKEY_get0_DSA(pk), ispub); |
| 469 | else |
| 470 | write_rsa(&p, EVP_PKEY_get0_RSA(pk), ispub); |
| 471 | if (!noinc) |
| 472 | *out += outlen; |
| 473 | return outlen; |
| 474 | } |
| 475 | |
| 476 | static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) |
| 477 | { |
| 478 | unsigned char *tmp = NULL; |
| 479 | int outlen, wrlen; |
| 480 | outlen = do_i2b(&tmp, pk, ispub); |
| 481 | if (outlen < 0) |
| 482 | return -1; |
| 483 | wrlen = BIO_write(out, tmp, outlen); |
| 484 | OPENSSL_free(tmp); |
| 485 | if (wrlen == outlen) |
| 486 | return outlen; |
| 487 | return -1; |
| 488 | } |
| 489 | |
| 490 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) |
| 491 | { |
| 492 | int bitlen; |
| 493 | const BIGNUM *p = NULL, *q = NULL, *g = NULL; |
| 494 | const BIGNUM *pub_key = NULL, *priv_key = NULL; |
| 495 | |
| 496 | DSA_get0_pqg(dsa, &p, &q, &g); |
| 497 | DSA_get0_key(dsa, &pub_key, &priv_key); |
| 498 | bitlen = BN_num_bits(p); |
| 499 | if ((bitlen & 7) || (BN_num_bits(q) != 160) |
| 500 | || (BN_num_bits(g) > bitlen)) |
| 501 | goto badkey; |
| 502 | if (ispub) { |
| 503 | if (BN_num_bits(pub_key) > bitlen) |
| 504 | goto badkey; |
| 505 | *pmagic = MS_DSS1MAGIC; |
| 506 | } else { |
| 507 | if (BN_num_bits(priv_key) > 160) |
| 508 | goto badkey; |
| 509 | *pmagic = MS_DSS2MAGIC; |
| 510 | } |
| 511 | |
| 512 | return bitlen; |
| 513 | badkey: |
| 514 | PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); |
| 515 | return 0; |
| 516 | } |
| 517 | |
| 518 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) |
| 519 | { |
| 520 | int nbyte, hnbyte, bitlen; |
| 521 | const BIGNUM *e; |
| 522 | |
| 523 | RSA_get0_key(rsa, NULL, &e, NULL); |
| 524 | if (BN_num_bits(e) > 32) |
| 525 | goto badkey; |
| 526 | bitlen = RSA_bits(rsa); |
| 527 | nbyte = RSA_size(rsa); |
| 528 | hnbyte = (bitlen + 15) >> 4; |
| 529 | if (ispub) { |
| 530 | *pmagic = MS_RSA1MAGIC; |
| 531 | return bitlen; |
| 532 | } else { |
| 533 | const BIGNUM *d, *p, *q, *iqmp, *dmp1, *dmq1; |
| 534 | |
| 535 | *pmagic = MS_RSA2MAGIC; |
| 536 | |
| 537 | /* |
| 538 | * For private key each component must fit within nbyte or hnbyte. |
| 539 | */ |
| 540 | RSA_get0_key(rsa, NULL, NULL, &d); |
| 541 | if (BN_num_bytes(d) > nbyte) |
| 542 | goto badkey; |
| 543 | RSA_get0_factors(rsa, &p, &q); |
| 544 | RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp); |
| 545 | if ((BN_num_bytes(iqmp) > hnbyte) |
| 546 | || (BN_num_bytes(p) > hnbyte) |
| 547 | || (BN_num_bytes(q) > hnbyte) |
| 548 | || (BN_num_bytes(dmp1) > hnbyte) |
| 549 | || (BN_num_bytes(dmq1) > hnbyte)) |
| 550 | goto badkey; |
| 551 | } |
| 552 | return bitlen; |
| 553 | badkey: |
| 554 | PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); |
| 555 | return 0; |
| 556 | } |
| 557 | |
| 558 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub) |
| 559 | { |
| 560 | int nbyte, hnbyte; |
| 561 | const BIGNUM *n, *d, *e, *p, *q, *iqmp, *dmp1, *dmq1; |
| 562 | |
| 563 | nbyte = RSA_size(rsa); |
| 564 | hnbyte = (RSA_bits(rsa) + 15) >> 4; |
| 565 | RSA_get0_key(rsa, &n, &e, &d); |
| 566 | write_lebn(out, e, 4); |
| 567 | write_lebn(out, n, nbyte); |
| 568 | if (ispub) |
| 569 | return; |
| 570 | RSA_get0_factors(rsa, &p, &q); |
| 571 | RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp); |
| 572 | write_lebn(out, p, hnbyte); |
| 573 | write_lebn(out, q, hnbyte); |
| 574 | write_lebn(out, dmp1, hnbyte); |
| 575 | write_lebn(out, dmq1, hnbyte); |
| 576 | write_lebn(out, iqmp, hnbyte); |
| 577 | write_lebn(out, d, nbyte); |
| 578 | } |
| 579 | |
| 580 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub) |
| 581 | { |
| 582 | int nbyte; |
| 583 | const BIGNUM *p = NULL, *q = NULL, *g = NULL; |
| 584 | const BIGNUM *pub_key = NULL, *priv_key = NULL; |
| 585 | |
| 586 | DSA_get0_pqg(dsa, &p, &q, &g); |
| 587 | DSA_get0_key(dsa, &pub_key, &priv_key); |
| 588 | nbyte = BN_num_bytes(p); |
| 589 | write_lebn(out, p, nbyte); |
| 590 | write_lebn(out, q, 20); |
| 591 | write_lebn(out, g, nbyte); |
| 592 | if (ispub) |
| 593 | write_lebn(out, pub_key, nbyte); |
| 594 | else |
| 595 | write_lebn(out, priv_key, 20); |
| 596 | /* Set "invalid" for seed structure values */ |
| 597 | memset(*out, 0xff, 24); |
| 598 | *out += 24; |
| 599 | return; |
| 600 | } |
| 601 | |
| 602 | int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) |
| 603 | { |
| 604 | return do_i2b_bio(out, pk, 0); |
| 605 | } |
| 606 | |
| 607 | int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) |
| 608 | { |
| 609 | return do_i2b_bio(out, pk, 1); |
| 610 | } |
| 611 | |
| 612 | # ifndef OPENSSL_NO_RC4 |
| 613 | |
| 614 | static int do_PVK_header(const unsigned char **in, unsigned int length, |
| 615 | int skip_magic, |
| 616 | unsigned int *psaltlen, unsigned int *pkeylen) |
| 617 | { |
| 618 | const unsigned char *p = *in; |
| 619 | unsigned int pvk_magic, is_encrypted; |
| 620 | if (skip_magic) { |
| 621 | if (length < 20) { |
| 622 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); |
| 623 | return 0; |
| 624 | } |
| 625 | } else { |
| 626 | if (length < 24) { |
| 627 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); |
| 628 | return 0; |
| 629 | } |
| 630 | pvk_magic = read_ledword(&p); |
| 631 | if (pvk_magic != MS_PVKMAGIC) { |
| 632 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); |
| 633 | return 0; |
| 634 | } |
| 635 | } |
| 636 | /* Skip reserved */ |
| 637 | p += 4; |
| 638 | /* |
| 639 | * keytype = |
| 640 | */ read_ledword(&p); |
| 641 | is_encrypted = read_ledword(&p); |
| 642 | *psaltlen = read_ledword(&p); |
| 643 | *pkeylen = read_ledword(&p); |
| 644 | |
| 645 | if (*pkeylen > PVK_MAX_KEYLEN || *psaltlen > PVK_MAX_SALTLEN) |
| 646 | return 0; |
| 647 | |
| 648 | if (is_encrypted && !*psaltlen) { |
| 649 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); |
| 650 | return 0; |
| 651 | } |
| 652 | |
| 653 | *in = p; |
| 654 | return 1; |
| 655 | } |
| 656 | |
| 657 | static int derive_pvk_key(unsigned char *key, |
| 658 | const unsigned char *salt, unsigned int saltlen, |
| 659 | const unsigned char *pass, int passlen) |
| 660 | { |
| 661 | EVP_MD_CTX *mctx = EVP_MD_CTX_new(); |
| 662 | int rv = 1; |
| 663 | if (mctx == NULL |
| 664 | || !EVP_DigestInit_ex(mctx, EVP_sha1(), NULL) |
| 665 | || !EVP_DigestUpdate(mctx, salt, saltlen) |
| 666 | || !EVP_DigestUpdate(mctx, pass, passlen) |
| 667 | || !EVP_DigestFinal_ex(mctx, key, NULL)) |
| 668 | rv = 0; |
| 669 | |
| 670 | EVP_MD_CTX_free(mctx); |
| 671 | return rv; |
| 672 | } |
| 673 | |
| 674 | static EVP_PKEY *do_PVK_body(const unsigned char **in, |
| 675 | unsigned int saltlen, unsigned int keylen, |
| 676 | pem_password_cb *cb, void *u) |
| 677 | { |
| 678 | EVP_PKEY *ret = NULL; |
| 679 | const unsigned char *p = *in; |
| 680 | unsigned int magic; |
| 681 | unsigned char *enctmp = NULL, *q; |
| 682 | unsigned char keybuf[20]; |
| 683 | |
| 684 | EVP_CIPHER_CTX *cctx = EVP_CIPHER_CTX_new(); |
| 685 | if (saltlen) { |
| 686 | char psbuf[PEM_BUFSIZE]; |
| 687 | int enctmplen, inlen; |
| 688 | if (cb) |
| 689 | inlen = cb(psbuf, PEM_BUFSIZE, 0, u); |
| 690 | else |
| 691 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); |
| 692 | if (inlen < 0) { |
| 693 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ); |
| 694 | goto err; |
| 695 | } |
| 696 | enctmp = OPENSSL_malloc(keylen + 8); |
| 697 | if (enctmp == NULL) { |
| 698 | PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); |
| 699 | goto err; |
| 700 | } |
| 701 | if (!derive_pvk_key(keybuf, p, saltlen, |
| 702 | (unsigned char *)psbuf, inlen)) |
| 703 | goto err; |
| 704 | p += saltlen; |
| 705 | /* Copy BLOBHEADER across, decrypt rest */ |
| 706 | memcpy(enctmp, p, 8); |
| 707 | p += 8; |
| 708 | if (keylen < 8) { |
| 709 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT); |
| 710 | goto err; |
| 711 | } |
| 712 | inlen = keylen - 8; |
| 713 | q = enctmp + 8; |
| 714 | if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) |
| 715 | goto err; |
| 716 | if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) |
| 717 | goto err; |
| 718 | if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen)) |
| 719 | goto err; |
| 720 | magic = read_ledword((const unsigned char **)&q); |
| 721 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { |
| 722 | q = enctmp + 8; |
| 723 | memset(keybuf + 5, 0, 11); |
| 724 | if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) |
| 725 | goto err; |
| 726 | if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) |
| 727 | goto err; |
| 728 | if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen)) |
| 729 | goto err; |
| 730 | magic = read_ledword((const unsigned char **)&q); |
| 731 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { |
| 732 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); |
| 733 | goto err; |
| 734 | } |
| 735 | } |
| 736 | p = enctmp; |
| 737 | } |
| 738 | |
| 739 | ret = b2i_PrivateKey(&p, keylen); |
| 740 | err: |
| 741 | EVP_CIPHER_CTX_free(cctx); |
| 742 | if (enctmp != NULL) { |
| 743 | OPENSSL_cleanse(keybuf, sizeof(keybuf)); |
| 744 | OPENSSL_free(enctmp); |
| 745 | } |
| 746 | return ret; |
| 747 | } |
| 748 | |
| 749 | EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) |
| 750 | { |
| 751 | unsigned char pvk_hdr[24], *buf = NULL; |
| 752 | const unsigned char *p; |
| 753 | int buflen; |
| 754 | EVP_PKEY *ret = NULL; |
| 755 | unsigned int saltlen, keylen; |
| 756 | if (BIO_read(in, pvk_hdr, 24) != 24) { |
| 757 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); |
| 758 | return NULL; |
| 759 | } |
| 760 | p = pvk_hdr; |
| 761 | |
| 762 | if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) |
| 763 | return 0; |
| 764 | buflen = (int)keylen + saltlen; |
| 765 | buf = OPENSSL_malloc(buflen); |
| 766 | if (buf == NULL) { |
| 767 | PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); |
| 768 | return 0; |
| 769 | } |
| 770 | p = buf; |
| 771 | if (BIO_read(in, buf, buflen) != buflen) { |
| 772 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); |
| 773 | goto err; |
| 774 | } |
| 775 | ret = do_PVK_body(&p, saltlen, keylen, cb, u); |
| 776 | |
| 777 | err: |
| 778 | OPENSSL_clear_free(buf, buflen); |
| 779 | return ret; |
| 780 | } |
| 781 | |
| 782 | static int i2b_PVK(unsigned char **out, EVP_PKEY *pk, int enclevel, |
| 783 | pem_password_cb *cb, void *u) |
| 784 | { |
| 785 | int outlen = 24, pklen; |
| 786 | unsigned char *p = NULL, *start = NULL, *salt = NULL; |
| 787 | EVP_CIPHER_CTX *cctx = NULL; |
| 788 | if (enclevel) |
| 789 | outlen += PVK_SALTLEN; |
| 790 | pklen = do_i2b(NULL, pk, 0); |
| 791 | if (pklen < 0) |
| 792 | return -1; |
| 793 | outlen += pklen; |
| 794 | if (out == NULL) |
| 795 | return outlen; |
| 796 | if (*out != NULL) { |
| 797 | p = *out; |
| 798 | } else { |
| 799 | start = p = OPENSSL_malloc(outlen); |
| 800 | if (p == NULL) { |
| 801 | PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE); |
| 802 | return -1; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | cctx = EVP_CIPHER_CTX_new(); |
| 807 | if (cctx == NULL) |
| 808 | goto error; |
| 809 | |
| 810 | write_ledword(&p, MS_PVKMAGIC); |
| 811 | write_ledword(&p, 0); |
| 812 | if (EVP_PKEY_id(pk) == EVP_PKEY_DSA) |
| 813 | write_ledword(&p, MS_KEYTYPE_SIGN); |
| 814 | else |
| 815 | write_ledword(&p, MS_KEYTYPE_KEYX); |
| 816 | write_ledword(&p, enclevel ? 1 : 0); |
| 817 | write_ledword(&p, enclevel ? PVK_SALTLEN : 0); |
| 818 | write_ledword(&p, pklen); |
| 819 | if (enclevel) { |
| 820 | if (RAND_bytes(p, PVK_SALTLEN) <= 0) |
| 821 | goto error; |
| 822 | salt = p; |
| 823 | p += PVK_SALTLEN; |
| 824 | } |
| 825 | do_i2b(&p, pk, 0); |
| 826 | if (enclevel != 0) { |
| 827 | char psbuf[PEM_BUFSIZE]; |
| 828 | unsigned char keybuf[20]; |
| 829 | int enctmplen, inlen; |
| 830 | if (cb) |
| 831 | inlen = cb(psbuf, PEM_BUFSIZE, 1, u); |
| 832 | else |
| 833 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u); |
| 834 | if (inlen <= 0) { |
| 835 | PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ); |
| 836 | goto error; |
| 837 | } |
| 838 | if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, |
| 839 | (unsigned char *)psbuf, inlen)) |
| 840 | goto error; |
| 841 | if (enclevel == 1) |
| 842 | memset(keybuf + 5, 0, 11); |
| 843 | p = salt + PVK_SALTLEN + 8; |
| 844 | if (!EVP_EncryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) |
| 845 | goto error; |
| 846 | OPENSSL_cleanse(keybuf, 20); |
| 847 | if (!EVP_EncryptUpdate(cctx, p, &enctmplen, p, pklen - 8)) |
| 848 | goto error; |
| 849 | if (!EVP_EncryptFinal_ex(cctx, p + enctmplen, &enctmplen)) |
| 850 | goto error; |
| 851 | } |
| 852 | |
| 853 | EVP_CIPHER_CTX_free(cctx); |
| 854 | |
| 855 | if (*out == NULL) |
| 856 | *out = start; |
| 857 | |
| 858 | return outlen; |
| 859 | |
| 860 | error: |
| 861 | EVP_CIPHER_CTX_free(cctx); |
| 862 | if (*out == NULL) |
| 863 | OPENSSL_free(start); |
| 864 | return -1; |
| 865 | } |
| 866 | |
| 867 | int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, |
| 868 | pem_password_cb *cb, void *u) |
| 869 | { |
| 870 | unsigned char *tmp = NULL; |
| 871 | int outlen, wrlen; |
| 872 | outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); |
| 873 | if (outlen < 0) |
| 874 | return -1; |
| 875 | wrlen = BIO_write(out, tmp, outlen); |
| 876 | OPENSSL_free(tmp); |
| 877 | if (wrlen == outlen) { |
| 878 | return outlen; |
| 879 | } |
| 880 | PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); |
| 881 | return -1; |
| 882 | } |
| 883 | |
| 884 | # endif |
| 885 | |
| 886 | #endif |