lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdlib.h> |
| 11 | #include <string.h> |
| 12 | #include <openssl/crypto.h> |
| 13 | |
| 14 | #include "crypto/poly1305.h" |
| 15 | #include "poly1305_local.h" |
| 16 | |
| 17 | size_t Poly1305_ctx_size(void) |
| 18 | { |
| 19 | return sizeof(struct poly1305_context); |
| 20 | } |
| 21 | |
| 22 | /* pick 32-bit unsigned integer in little endian order */ |
| 23 | static unsigned int U8TOU32(const unsigned char *p) |
| 24 | { |
| 25 | return (((unsigned int)(p[0] & 0xff)) | |
| 26 | ((unsigned int)(p[1] & 0xff) << 8) | |
| 27 | ((unsigned int)(p[2] & 0xff) << 16) | |
| 28 | ((unsigned int)(p[3] & 0xff) << 24)); |
| 29 | } |
| 30 | |
| 31 | /* |
| 32 | * Implementations can be classified by amount of significant bits in |
| 33 | * words making up the multi-precision value, or in other words radix |
| 34 | * or base of numerical representation, e.g. base 2^64, base 2^32, |
| 35 | * base 2^26. Complementary characteristic is how wide is the result of |
| 36 | * multiplication of pair of digits, e.g. it would take 128 bits to |
| 37 | * accommodate multiplication result in base 2^64 case. These are used |
| 38 | * interchangeably. To describe implementation that is. But interface |
| 39 | * is designed to isolate this so that low-level primitives implemented |
| 40 | * in assembly can be self-contained/self-coherent. |
| 41 | */ |
| 42 | #ifndef POLY1305_ASM |
| 43 | /* |
| 44 | * Even though there is __int128 reference implementation targeting |
| 45 | * 64-bit platforms provided below, it's not obvious that it's optimal |
| 46 | * choice for every one of them. Depending on instruction set overall |
| 47 | * amount of instructions can be comparable to one in __int64 |
| 48 | * implementation. Amount of multiplication instructions would be lower, |
| 49 | * but not necessarily overall. And in out-of-order execution context, |
| 50 | * it is the latter that can be crucial... |
| 51 | * |
| 52 | * On related note. Poly1305 author, D. J. Bernstein, discusses and |
| 53 | * provides floating-point implementations of the algorithm in question. |
| 54 | * It made a lot of sense by the time of introduction, because most |
| 55 | * then-modern processors didn't have pipelined integer multiplier. |
| 56 | * [Not to mention that some had non-constant timing for integer |
| 57 | * multiplications.] Floating-point instructions on the other hand could |
| 58 | * be issued every cycle, which allowed to achieve better performance. |
| 59 | * Nowadays, with SIMD and/or out-or-order execution, shared or |
| 60 | * even emulated FPU, it's more complicated, and floating-point |
| 61 | * implementation is not necessarily optimal choice in every situation, |
| 62 | * rather contrary... |
| 63 | * |
| 64 | * <appro@openssl.org> |
| 65 | */ |
| 66 | |
| 67 | typedef unsigned int u32; |
| 68 | |
| 69 | /* |
| 70 | * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks |
| 71 | * of |inp| no longer than |len|. Behaviour for |len| not divisible by |
| 72 | * block size is unspecified in general case, even though in reference |
| 73 | * implementation the trailing chunk is simply ignored. Per algorithm |
| 74 | * specification, every input block, complete or last partial, is to be |
| 75 | * padded with a bit past most significant byte. The latter kind is then |
| 76 | * padded with zeros till block size. This last partial block padding |
| 77 | * is caller(*)'s responsibility, and because of this the last partial |
| 78 | * block is always processed with separate call with |len| set to |
| 79 | * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit| |
| 80 | * should be set to 1 to perform implicit padding with 128th bit. |
| 81 | * poly1305_blocks does not actually check for this constraint though, |
| 82 | * it's caller(*)'s responsibility to comply. |
| 83 | * |
| 84 | * (*) In the context "caller" is not application code, but higher |
| 85 | * level Poly1305_* from this very module, so that quirks are |
| 86 | * handled locally. |
| 87 | */ |
| 88 | static void |
| 89 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit); |
| 90 | |
| 91 | /* |
| 92 | * Type-agnostic "rip-off" from constant_time.h |
| 93 | */ |
| 94 | # define CONSTANT_TIME_CARRY(a,b) ( \ |
| 95 | (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \ |
| 96 | ) |
| 97 | |
| 98 | # if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \ |
| 99 | (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8) |
| 100 | |
| 101 | typedef unsigned long u64; |
| 102 | typedef __uint128_t u128; |
| 103 | |
| 104 | typedef struct { |
| 105 | u64 h[3]; |
| 106 | u64 r[2]; |
| 107 | } poly1305_internal; |
| 108 | |
| 109 | /* pick 32-bit unsigned integer in little endian order */ |
| 110 | static u64 U8TOU64(const unsigned char *p) |
| 111 | { |
| 112 | return (((u64)(p[0] & 0xff)) | |
| 113 | ((u64)(p[1] & 0xff) << 8) | |
| 114 | ((u64)(p[2] & 0xff) << 16) | |
| 115 | ((u64)(p[3] & 0xff) << 24) | |
| 116 | ((u64)(p[4] & 0xff) << 32) | |
| 117 | ((u64)(p[5] & 0xff) << 40) | |
| 118 | ((u64)(p[6] & 0xff) << 48) | |
| 119 | ((u64)(p[7] & 0xff) << 56)); |
| 120 | } |
| 121 | |
| 122 | /* store a 32-bit unsigned integer in little endian */ |
| 123 | static void U64TO8(unsigned char *p, u64 v) |
| 124 | { |
| 125 | p[0] = (unsigned char)((v) & 0xff); |
| 126 | p[1] = (unsigned char)((v >> 8) & 0xff); |
| 127 | p[2] = (unsigned char)((v >> 16) & 0xff); |
| 128 | p[3] = (unsigned char)((v >> 24) & 0xff); |
| 129 | p[4] = (unsigned char)((v >> 32) & 0xff); |
| 130 | p[5] = (unsigned char)((v >> 40) & 0xff); |
| 131 | p[6] = (unsigned char)((v >> 48) & 0xff); |
| 132 | p[7] = (unsigned char)((v >> 56) & 0xff); |
| 133 | } |
| 134 | |
| 135 | static void poly1305_init(void *ctx, const unsigned char key[16]) |
| 136 | { |
| 137 | poly1305_internal *st = (poly1305_internal *) ctx; |
| 138 | |
| 139 | /* h = 0 */ |
| 140 | st->h[0] = 0; |
| 141 | st->h[1] = 0; |
| 142 | st->h[2] = 0; |
| 143 | |
| 144 | /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ |
| 145 | st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff; |
| 146 | st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc; |
| 147 | } |
| 148 | |
| 149 | static void |
| 150 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) |
| 151 | { |
| 152 | poly1305_internal *st = (poly1305_internal *)ctx; |
| 153 | u64 r0, r1; |
| 154 | u64 s1; |
| 155 | u64 h0, h1, h2, c; |
| 156 | u128 d0, d1; |
| 157 | |
| 158 | r0 = st->r[0]; |
| 159 | r1 = st->r[1]; |
| 160 | |
| 161 | s1 = r1 + (r1 >> 2); |
| 162 | |
| 163 | h0 = st->h[0]; |
| 164 | h1 = st->h[1]; |
| 165 | h2 = st->h[2]; |
| 166 | |
| 167 | while (len >= POLY1305_BLOCK_SIZE) { |
| 168 | /* h += m[i] */ |
| 169 | h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0)); |
| 170 | h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8)); |
| 171 | /* |
| 172 | * padbit can be zero only when original len was |
| 173 | * POLY1306_BLOCK_SIZE, but we don't check |
| 174 | */ |
| 175 | h2 += (u64)(d1 >> 64) + padbit; |
| 176 | |
| 177 | /* h *= r "%" p, where "%" stands for "partial remainder" */ |
| 178 | d0 = ((u128)h0 * r0) + |
| 179 | ((u128)h1 * s1); |
| 180 | d1 = ((u128)h0 * r1) + |
| 181 | ((u128)h1 * r0) + |
| 182 | (h2 * s1); |
| 183 | h2 = (h2 * r0); |
| 184 | |
| 185 | /* last reduction step: */ |
| 186 | /* a) h2:h0 = h2<<128 + d1<<64 + d0 */ |
| 187 | h0 = (u64)d0; |
| 188 | h1 = (u64)(d1 += d0 >> 64); |
| 189 | h2 += (u64)(d1 >> 64); |
| 190 | /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */ |
| 191 | c = (h2 >> 2) + (h2 & ~3UL); |
| 192 | h2 &= 3; |
| 193 | h0 += c; |
| 194 | h1 += (c = CONSTANT_TIME_CARRY(h0,c)); |
| 195 | h2 += CONSTANT_TIME_CARRY(h1,c); |
| 196 | /* |
| 197 | * Occasional overflows to 3rd bit of h2 are taken care of |
| 198 | * "naturally". If after this point we end up at the top of |
| 199 | * this loop, then the overflow bit will be accounted for |
| 200 | * in next iteration. If we end up in poly1305_emit, then |
| 201 | * comparison to modulus below will still count as "carry |
| 202 | * into 131st bit", so that properly reduced value will be |
| 203 | * picked in conditional move. |
| 204 | */ |
| 205 | |
| 206 | inp += POLY1305_BLOCK_SIZE; |
| 207 | len -= POLY1305_BLOCK_SIZE; |
| 208 | } |
| 209 | |
| 210 | st->h[0] = h0; |
| 211 | st->h[1] = h1; |
| 212 | st->h[2] = h2; |
| 213 | } |
| 214 | |
| 215 | static void poly1305_emit(void *ctx, unsigned char mac[16], |
| 216 | const u32 nonce[4]) |
| 217 | { |
| 218 | poly1305_internal *st = (poly1305_internal *) ctx; |
| 219 | u64 h0, h1, h2; |
| 220 | u64 g0, g1, g2; |
| 221 | u128 t; |
| 222 | u64 mask; |
| 223 | |
| 224 | h0 = st->h[0]; |
| 225 | h1 = st->h[1]; |
| 226 | h2 = st->h[2]; |
| 227 | |
| 228 | /* compare to modulus by computing h + -p */ |
| 229 | g0 = (u64)(t = (u128)h0 + 5); |
| 230 | g1 = (u64)(t = (u128)h1 + (t >> 64)); |
| 231 | g2 = h2 + (u64)(t >> 64); |
| 232 | |
| 233 | /* if there was carry into 131st bit, h1:h0 = g1:g0 */ |
| 234 | mask = 0 - (g2 >> 2); |
| 235 | g0 &= mask; |
| 236 | g1 &= mask; |
| 237 | mask = ~mask; |
| 238 | h0 = (h0 & mask) | g0; |
| 239 | h1 = (h1 & mask) | g1; |
| 240 | |
| 241 | /* mac = (h + nonce) % (2^128) */ |
| 242 | h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32)); |
| 243 | h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64)); |
| 244 | |
| 245 | U64TO8(mac + 0, h0); |
| 246 | U64TO8(mac + 8, h1); |
| 247 | } |
| 248 | |
| 249 | # else |
| 250 | |
| 251 | # if defined(_WIN32) && !defined(__MINGW32__) |
| 252 | typedef unsigned __int64 u64; |
| 253 | # elif defined(__arch64__) |
| 254 | typedef unsigned long u64; |
| 255 | # else |
| 256 | typedef unsigned long long u64; |
| 257 | # endif |
| 258 | |
| 259 | typedef struct { |
| 260 | u32 h[5]; |
| 261 | u32 r[4]; |
| 262 | } poly1305_internal; |
| 263 | |
| 264 | /* store a 32-bit unsigned integer in little endian */ |
| 265 | static void U32TO8(unsigned char *p, unsigned int v) |
| 266 | { |
| 267 | p[0] = (unsigned char)((v) & 0xff); |
| 268 | p[1] = (unsigned char)((v >> 8) & 0xff); |
| 269 | p[2] = (unsigned char)((v >> 16) & 0xff); |
| 270 | p[3] = (unsigned char)((v >> 24) & 0xff); |
| 271 | } |
| 272 | |
| 273 | static void poly1305_init(void *ctx, const unsigned char key[16]) |
| 274 | { |
| 275 | poly1305_internal *st = (poly1305_internal *) ctx; |
| 276 | |
| 277 | /* h = 0 */ |
| 278 | st->h[0] = 0; |
| 279 | st->h[1] = 0; |
| 280 | st->h[2] = 0; |
| 281 | st->h[3] = 0; |
| 282 | st->h[4] = 0; |
| 283 | |
| 284 | /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ |
| 285 | st->r[0] = U8TOU32(&key[0]) & 0x0fffffff; |
| 286 | st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc; |
| 287 | st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc; |
| 288 | st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc; |
| 289 | } |
| 290 | |
| 291 | static void |
| 292 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) |
| 293 | { |
| 294 | poly1305_internal *st = (poly1305_internal *)ctx; |
| 295 | u32 r0, r1, r2, r3; |
| 296 | u32 s1, s2, s3; |
| 297 | u32 h0, h1, h2, h3, h4, c; |
| 298 | u64 d0, d1, d2, d3; |
| 299 | |
| 300 | r0 = st->r[0]; |
| 301 | r1 = st->r[1]; |
| 302 | r2 = st->r[2]; |
| 303 | r3 = st->r[3]; |
| 304 | |
| 305 | s1 = r1 + (r1 >> 2); |
| 306 | s2 = r2 + (r2 >> 2); |
| 307 | s3 = r3 + (r3 >> 2); |
| 308 | |
| 309 | h0 = st->h[0]; |
| 310 | h1 = st->h[1]; |
| 311 | h2 = st->h[2]; |
| 312 | h3 = st->h[3]; |
| 313 | h4 = st->h[4]; |
| 314 | |
| 315 | while (len >= POLY1305_BLOCK_SIZE) { |
| 316 | /* h += m[i] */ |
| 317 | h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0)); |
| 318 | h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4)); |
| 319 | h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8)); |
| 320 | h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12)); |
| 321 | h4 += (u32)(d3 >> 32) + padbit; |
| 322 | |
| 323 | /* h *= r "%" p, where "%" stands for "partial remainder" */ |
| 324 | d0 = ((u64)h0 * r0) + |
| 325 | ((u64)h1 * s3) + |
| 326 | ((u64)h2 * s2) + |
| 327 | ((u64)h3 * s1); |
| 328 | d1 = ((u64)h0 * r1) + |
| 329 | ((u64)h1 * r0) + |
| 330 | ((u64)h2 * s3) + |
| 331 | ((u64)h3 * s2) + |
| 332 | (h4 * s1); |
| 333 | d2 = ((u64)h0 * r2) + |
| 334 | ((u64)h1 * r1) + |
| 335 | ((u64)h2 * r0) + |
| 336 | ((u64)h3 * s3) + |
| 337 | (h4 * s2); |
| 338 | d3 = ((u64)h0 * r3) + |
| 339 | ((u64)h1 * r2) + |
| 340 | ((u64)h2 * r1) + |
| 341 | ((u64)h3 * r0) + |
| 342 | (h4 * s3); |
| 343 | h4 = (h4 * r0); |
| 344 | |
| 345 | /* last reduction step: */ |
| 346 | /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */ |
| 347 | h0 = (u32)d0; |
| 348 | h1 = (u32)(d1 += d0 >> 32); |
| 349 | h2 = (u32)(d2 += d1 >> 32); |
| 350 | h3 = (u32)(d3 += d2 >> 32); |
| 351 | h4 += (u32)(d3 >> 32); |
| 352 | /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */ |
| 353 | c = (h4 >> 2) + (h4 & ~3U); |
| 354 | h4 &= 3; |
| 355 | h0 += c; |
| 356 | h1 += (c = CONSTANT_TIME_CARRY(h0,c)); |
| 357 | h2 += (c = CONSTANT_TIME_CARRY(h1,c)); |
| 358 | h3 += (c = CONSTANT_TIME_CARRY(h2,c)); |
| 359 | h4 += CONSTANT_TIME_CARRY(h3,c); |
| 360 | /* |
| 361 | * Occasional overflows to 3rd bit of h4 are taken care of |
| 362 | * "naturally". If after this point we end up at the top of |
| 363 | * this loop, then the overflow bit will be accounted for |
| 364 | * in next iteration. If we end up in poly1305_emit, then |
| 365 | * comparison to modulus below will still count as "carry |
| 366 | * into 131st bit", so that properly reduced value will be |
| 367 | * picked in conditional move. |
| 368 | */ |
| 369 | |
| 370 | inp += POLY1305_BLOCK_SIZE; |
| 371 | len -= POLY1305_BLOCK_SIZE; |
| 372 | } |
| 373 | |
| 374 | st->h[0] = h0; |
| 375 | st->h[1] = h1; |
| 376 | st->h[2] = h2; |
| 377 | st->h[3] = h3; |
| 378 | st->h[4] = h4; |
| 379 | } |
| 380 | |
| 381 | static void poly1305_emit(void *ctx, unsigned char mac[16], |
| 382 | const u32 nonce[4]) |
| 383 | { |
| 384 | poly1305_internal *st = (poly1305_internal *) ctx; |
| 385 | u32 h0, h1, h2, h3, h4; |
| 386 | u32 g0, g1, g2, g3, g4; |
| 387 | u64 t; |
| 388 | u32 mask; |
| 389 | |
| 390 | h0 = st->h[0]; |
| 391 | h1 = st->h[1]; |
| 392 | h2 = st->h[2]; |
| 393 | h3 = st->h[3]; |
| 394 | h4 = st->h[4]; |
| 395 | |
| 396 | /* compare to modulus by computing h + -p */ |
| 397 | g0 = (u32)(t = (u64)h0 + 5); |
| 398 | g1 = (u32)(t = (u64)h1 + (t >> 32)); |
| 399 | g2 = (u32)(t = (u64)h2 + (t >> 32)); |
| 400 | g3 = (u32)(t = (u64)h3 + (t >> 32)); |
| 401 | g4 = h4 + (u32)(t >> 32); |
| 402 | |
| 403 | /* if there was carry into 131st bit, h3:h0 = g3:g0 */ |
| 404 | mask = 0 - (g4 >> 2); |
| 405 | g0 &= mask; |
| 406 | g1 &= mask; |
| 407 | g2 &= mask; |
| 408 | g3 &= mask; |
| 409 | mask = ~mask; |
| 410 | h0 = (h0 & mask) | g0; |
| 411 | h1 = (h1 & mask) | g1; |
| 412 | h2 = (h2 & mask) | g2; |
| 413 | h3 = (h3 & mask) | g3; |
| 414 | |
| 415 | /* mac = (h + nonce) % (2^128) */ |
| 416 | h0 = (u32)(t = (u64)h0 + nonce[0]); |
| 417 | h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]); |
| 418 | h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]); |
| 419 | h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]); |
| 420 | |
| 421 | U32TO8(mac + 0, h0); |
| 422 | U32TO8(mac + 4, h1); |
| 423 | U32TO8(mac + 8, h2); |
| 424 | U32TO8(mac + 12, h3); |
| 425 | } |
| 426 | # endif |
| 427 | #else |
| 428 | int poly1305_init(void *ctx, const unsigned char key[16], void *func); |
| 429 | void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, |
| 430 | unsigned int padbit); |
| 431 | void poly1305_emit(void *ctx, unsigned char mac[16], |
| 432 | const unsigned int nonce[4]); |
| 433 | #endif |
| 434 | |
| 435 | void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32]) |
| 436 | { |
| 437 | ctx->nonce[0] = U8TOU32(&key[16]); |
| 438 | ctx->nonce[1] = U8TOU32(&key[20]); |
| 439 | ctx->nonce[2] = U8TOU32(&key[24]); |
| 440 | ctx->nonce[3] = U8TOU32(&key[28]); |
| 441 | |
| 442 | #ifndef POLY1305_ASM |
| 443 | poly1305_init(ctx->opaque, key); |
| 444 | #else |
| 445 | /* |
| 446 | * Unlike reference poly1305_init assembly counterpart is expected |
| 447 | * to return a value: non-zero if it initializes ctx->func, and zero |
| 448 | * otherwise. Latter is to simplify assembly in cases when there no |
| 449 | * multiple code paths to switch between. |
| 450 | */ |
| 451 | if (!poly1305_init(ctx->opaque, key, &ctx->func)) { |
| 452 | ctx->func.blocks = poly1305_blocks; |
| 453 | ctx->func.emit = poly1305_emit; |
| 454 | } |
| 455 | #endif |
| 456 | |
| 457 | ctx->num = 0; |
| 458 | |
| 459 | } |
| 460 | |
| 461 | #ifdef POLY1305_ASM |
| 462 | /* |
| 463 | * This "eclipses" poly1305_blocks and poly1305_emit, but it's |
| 464 | * conscious choice imposed by -Wshadow compiler warnings. |
| 465 | */ |
| 466 | # define poly1305_blocks (*poly1305_blocks_p) |
| 467 | # define poly1305_emit (*poly1305_emit_p) |
| 468 | #endif |
| 469 | |
| 470 | void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len) |
| 471 | { |
| 472 | #ifdef POLY1305_ASM |
| 473 | /* |
| 474 | * As documented, poly1305_blocks is never called with input |
| 475 | * longer than single block and padbit argument set to 0. This |
| 476 | * property is fluently used in assembly modules to optimize |
| 477 | * padbit handling on loop boundary. |
| 478 | */ |
| 479 | poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; |
| 480 | #endif |
| 481 | size_t rem, num; |
| 482 | |
| 483 | if ((num = ctx->num)) { |
| 484 | rem = POLY1305_BLOCK_SIZE - num; |
| 485 | if (len >= rem) { |
| 486 | memcpy(ctx->data + num, inp, rem); |
| 487 | poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1); |
| 488 | inp += rem; |
| 489 | len -= rem; |
| 490 | } else { |
| 491 | /* Still not enough data to process a block. */ |
| 492 | memcpy(ctx->data + num, inp, len); |
| 493 | ctx->num = num + len; |
| 494 | return; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | rem = len % POLY1305_BLOCK_SIZE; |
| 499 | len -= rem; |
| 500 | |
| 501 | if (len >= POLY1305_BLOCK_SIZE) { |
| 502 | poly1305_blocks(ctx->opaque, inp, len, 1); |
| 503 | inp += len; |
| 504 | } |
| 505 | |
| 506 | if (rem) |
| 507 | memcpy(ctx->data, inp, rem); |
| 508 | |
| 509 | ctx->num = rem; |
| 510 | } |
| 511 | |
| 512 | void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16]) |
| 513 | { |
| 514 | #ifdef POLY1305_ASM |
| 515 | poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; |
| 516 | poly1305_emit_f poly1305_emit_p = ctx->func.emit; |
| 517 | #endif |
| 518 | size_t num; |
| 519 | |
| 520 | if ((num = ctx->num)) { |
| 521 | ctx->data[num++] = 1; /* pad bit */ |
| 522 | while (num < POLY1305_BLOCK_SIZE) |
| 523 | ctx->data[num++] = 0; |
| 524 | poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0); |
| 525 | } |
| 526 | |
| 527 | poly1305_emit(ctx->opaque, mac, ctx->nonce); |
| 528 | |
| 529 | /* zero out the state */ |
| 530 | OPENSSL_cleanse(ctx, sizeof(*ctx)); |
| 531 | } |