lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2004-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <string.h> |
| 12 | |
| 13 | #include <openssl/opensslconf.h> |
| 14 | #include <openssl/crypto.h> |
| 15 | #include <openssl/engine.h> |
| 16 | #include <openssl/evp.h> |
| 17 | #include <openssl/aes.h> |
| 18 | #include <openssl/rand.h> |
| 19 | #include <openssl/err.h> |
| 20 | #include <openssl/modes.h> |
| 21 | |
| 22 | #ifndef OPENSSL_NO_HW |
| 23 | # ifndef OPENSSL_NO_HW_PADLOCK |
| 24 | |
| 25 | /* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */ |
| 26 | # if (OPENSSL_VERSION_NUMBER >= 0x00908000L) |
| 27 | # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
| 28 | # define DYNAMIC_ENGINE |
| 29 | # endif |
| 30 | # elif (OPENSSL_VERSION_NUMBER >= 0x00907000L) |
| 31 | # ifdef ENGINE_DYNAMIC_SUPPORT |
| 32 | # define DYNAMIC_ENGINE |
| 33 | # endif |
| 34 | # else |
| 35 | # error "Only OpenSSL >= 0.9.7 is supported" |
| 36 | # endif |
| 37 | |
| 38 | /* |
| 39 | * VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it |
| 40 | * doesn't exist elsewhere, but it even can't be compiled on other platforms! |
| 41 | */ |
| 42 | |
| 43 | # undef COMPILE_HW_PADLOCK |
| 44 | # if defined(PADLOCK_ASM) |
| 45 | # define COMPILE_HW_PADLOCK |
| 46 | # ifdef OPENSSL_NO_DYNAMIC_ENGINE |
| 47 | static ENGINE *ENGINE_padlock(void); |
| 48 | # endif |
| 49 | # endif |
| 50 | |
| 51 | # ifdef OPENSSL_NO_DYNAMIC_ENGINE |
| 52 | void engine_load_padlock_int(void); |
| 53 | void engine_load_padlock_int(void) |
| 54 | { |
| 55 | /* On non-x86 CPUs it just returns. */ |
| 56 | # ifdef COMPILE_HW_PADLOCK |
| 57 | ENGINE *toadd = ENGINE_padlock(); |
| 58 | if (!toadd) |
| 59 | return; |
| 60 | ENGINE_add(toadd); |
| 61 | ENGINE_free(toadd); |
| 62 | ERR_clear_error(); |
| 63 | # endif |
| 64 | } |
| 65 | |
| 66 | # endif |
| 67 | |
| 68 | # ifdef COMPILE_HW_PADLOCK |
| 69 | |
| 70 | /* Function for ENGINE detection and control */ |
| 71 | static int padlock_available(void); |
| 72 | static int padlock_init(ENGINE *e); |
| 73 | |
| 74 | /* RNG Stuff */ |
| 75 | static RAND_METHOD padlock_rand; |
| 76 | |
| 77 | /* Cipher Stuff */ |
| 78 | static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, |
| 79 | const int **nids, int nid); |
| 80 | |
| 81 | /* Engine names */ |
| 82 | static const char *padlock_id = "padlock"; |
| 83 | static char padlock_name[100]; |
| 84 | |
| 85 | /* Available features */ |
| 86 | static int padlock_use_ace = 0; /* Advanced Cryptography Engine */ |
| 87 | static int padlock_use_rng = 0; /* Random Number Generator */ |
| 88 | |
| 89 | /* ===== Engine "management" functions ===== */ |
| 90 | |
| 91 | /* Prepare the ENGINE structure for registration */ |
| 92 | static int padlock_bind_helper(ENGINE *e) |
| 93 | { |
| 94 | /* Check available features */ |
| 95 | padlock_available(); |
| 96 | |
| 97 | /* |
| 98 | * RNG is currently disabled for reasons discussed in commentary just |
| 99 | * before padlock_rand_bytes function. |
| 100 | */ |
| 101 | padlock_use_rng = 0; |
| 102 | |
| 103 | /* Generate a nice engine name with available features */ |
| 104 | BIO_snprintf(padlock_name, sizeof(padlock_name), |
| 105 | "VIA PadLock (%s, %s)", |
| 106 | padlock_use_rng ? "RNG" : "no-RNG", |
| 107 | padlock_use_ace ? "ACE" : "no-ACE"); |
| 108 | |
| 109 | /* Register everything or return with an error */ |
| 110 | if (!ENGINE_set_id(e, padlock_id) || |
| 111 | !ENGINE_set_name(e, padlock_name) || |
| 112 | !ENGINE_set_init_function(e, padlock_init) || |
| 113 | (padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) || |
| 114 | (padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) { |
| 115 | return 0; |
| 116 | } |
| 117 | |
| 118 | /* Everything looks good */ |
| 119 | return 1; |
| 120 | } |
| 121 | |
| 122 | # ifdef OPENSSL_NO_DYNAMIC_ENGINE |
| 123 | /* Constructor */ |
| 124 | static ENGINE *ENGINE_padlock(void) |
| 125 | { |
| 126 | ENGINE *eng = ENGINE_new(); |
| 127 | |
| 128 | if (eng == NULL) { |
| 129 | return NULL; |
| 130 | } |
| 131 | |
| 132 | if (!padlock_bind_helper(eng)) { |
| 133 | ENGINE_free(eng); |
| 134 | return NULL; |
| 135 | } |
| 136 | |
| 137 | return eng; |
| 138 | } |
| 139 | # endif |
| 140 | |
| 141 | /* Check availability of the engine */ |
| 142 | static int padlock_init(ENGINE *e) |
| 143 | { |
| 144 | return (padlock_use_rng || padlock_use_ace); |
| 145 | } |
| 146 | |
| 147 | /* |
| 148 | * This stuff is needed if this ENGINE is being compiled into a |
| 149 | * self-contained shared-library. |
| 150 | */ |
| 151 | # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
| 152 | static int padlock_bind_fn(ENGINE *e, const char *id) |
| 153 | { |
| 154 | if (id && (strcmp(id, padlock_id) != 0)) { |
| 155 | return 0; |
| 156 | } |
| 157 | |
| 158 | if (!padlock_bind_helper(e)) { |
| 159 | return 0; |
| 160 | } |
| 161 | |
| 162 | return 1; |
| 163 | } |
| 164 | |
| 165 | IMPLEMENT_DYNAMIC_CHECK_FN() |
| 166 | IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn) |
| 167 | # endif /* !OPENSSL_NO_DYNAMIC_ENGINE */ |
| 168 | /* ===== Here comes the "real" engine ===== */ |
| 169 | |
| 170 | /* Some AES-related constants */ |
| 171 | # define AES_BLOCK_SIZE 16 |
| 172 | # define AES_KEY_SIZE_128 16 |
| 173 | # define AES_KEY_SIZE_192 24 |
| 174 | # define AES_KEY_SIZE_256 32 |
| 175 | /* |
| 176 | * Here we store the status information relevant to the current context. |
| 177 | */ |
| 178 | /* |
| 179 | * BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on |
| 180 | * the order of items in this structure. Don't blindly modify, reorder, |
| 181 | * etc! |
| 182 | */ |
| 183 | struct padlock_cipher_data { |
| 184 | unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */ |
| 185 | union { |
| 186 | unsigned int pad[4]; |
| 187 | struct { |
| 188 | int rounds:4; |
| 189 | int dgst:1; /* n/a in C3 */ |
| 190 | int align:1; /* n/a in C3 */ |
| 191 | int ciphr:1; /* n/a in C3 */ |
| 192 | unsigned int keygen:1; |
| 193 | int interm:1; |
| 194 | unsigned int encdec:1; |
| 195 | int ksize:2; |
| 196 | } b; |
| 197 | } cword; /* Control word */ |
| 198 | AES_KEY ks; /* Encryption key */ |
| 199 | }; |
| 200 | |
| 201 | /* Interface to assembler module */ |
| 202 | unsigned int padlock_capability(void); |
| 203 | void padlock_key_bswap(AES_KEY *key); |
| 204 | void padlock_verify_context(struct padlock_cipher_data *ctx); |
| 205 | void padlock_reload_key(void); |
| 206 | void padlock_aes_block(void *out, const void *inp, |
| 207 | struct padlock_cipher_data *ctx); |
| 208 | int padlock_ecb_encrypt(void *out, const void *inp, |
| 209 | struct padlock_cipher_data *ctx, size_t len); |
| 210 | int padlock_cbc_encrypt(void *out, const void *inp, |
| 211 | struct padlock_cipher_data *ctx, size_t len); |
| 212 | int padlock_cfb_encrypt(void *out, const void *inp, |
| 213 | struct padlock_cipher_data *ctx, size_t len); |
| 214 | int padlock_ofb_encrypt(void *out, const void *inp, |
| 215 | struct padlock_cipher_data *ctx, size_t len); |
| 216 | int padlock_ctr32_encrypt(void *out, const void *inp, |
| 217 | struct padlock_cipher_data *ctx, size_t len); |
| 218 | int padlock_xstore(void *out, int edx); |
| 219 | void padlock_sha1_oneshot(void *ctx, const void *inp, size_t len); |
| 220 | void padlock_sha1(void *ctx, const void *inp, size_t len); |
| 221 | void padlock_sha256_oneshot(void *ctx, const void *inp, size_t len); |
| 222 | void padlock_sha256(void *ctx, const void *inp, size_t len); |
| 223 | |
| 224 | /* |
| 225 | * Load supported features of the CPU to see if the PadLock is available. |
| 226 | */ |
| 227 | static int padlock_available(void) |
| 228 | { |
| 229 | unsigned int edx = padlock_capability(); |
| 230 | |
| 231 | /* Fill up some flags */ |
| 232 | padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6)); |
| 233 | padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2)); |
| 234 | |
| 235 | return padlock_use_ace + padlock_use_rng; |
| 236 | } |
| 237 | |
| 238 | /* ===== AES encryption/decryption ===== */ |
| 239 | |
| 240 | # if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb) |
| 241 | # define NID_aes_128_cfb NID_aes_128_cfb128 |
| 242 | # endif |
| 243 | |
| 244 | # if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb) |
| 245 | # define NID_aes_128_ofb NID_aes_128_ofb128 |
| 246 | # endif |
| 247 | |
| 248 | # if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb) |
| 249 | # define NID_aes_192_cfb NID_aes_192_cfb128 |
| 250 | # endif |
| 251 | |
| 252 | # if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb) |
| 253 | # define NID_aes_192_ofb NID_aes_192_ofb128 |
| 254 | # endif |
| 255 | |
| 256 | # if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb) |
| 257 | # define NID_aes_256_cfb NID_aes_256_cfb128 |
| 258 | # endif |
| 259 | |
| 260 | # if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb) |
| 261 | # define NID_aes_256_ofb NID_aes_256_ofb128 |
| 262 | # endif |
| 263 | |
| 264 | /* List of supported ciphers. */ |
| 265 | static const int padlock_cipher_nids[] = { |
| 266 | NID_aes_128_ecb, |
| 267 | NID_aes_128_cbc, |
| 268 | NID_aes_128_cfb, |
| 269 | NID_aes_128_ofb, |
| 270 | NID_aes_128_ctr, |
| 271 | |
| 272 | NID_aes_192_ecb, |
| 273 | NID_aes_192_cbc, |
| 274 | NID_aes_192_cfb, |
| 275 | NID_aes_192_ofb, |
| 276 | NID_aes_192_ctr, |
| 277 | |
| 278 | NID_aes_256_ecb, |
| 279 | NID_aes_256_cbc, |
| 280 | NID_aes_256_cfb, |
| 281 | NID_aes_256_ofb, |
| 282 | NID_aes_256_ctr |
| 283 | }; |
| 284 | |
| 285 | static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) / |
| 286 | sizeof(padlock_cipher_nids[0])); |
| 287 | |
| 288 | /* Function prototypes ... */ |
| 289 | static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 290 | const unsigned char *iv, int enc); |
| 291 | |
| 292 | # define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \ |
| 293 | ( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) ) |
| 294 | # define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\ |
| 295 | NEAREST_ALIGNED(EVP_CIPHER_CTX_get_cipher_data(ctx))) |
| 296 | |
| 297 | static int |
| 298 | padlock_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| 299 | const unsigned char *in_arg, size_t nbytes) |
| 300 | { |
| 301 | return padlock_ecb_encrypt(out_arg, in_arg, |
| 302 | ALIGNED_CIPHER_DATA(ctx), nbytes); |
| 303 | } |
| 304 | |
| 305 | static int |
| 306 | padlock_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| 307 | const unsigned char *in_arg, size_t nbytes) |
| 308 | { |
| 309 | struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
| 310 | int ret; |
| 311 | |
| 312 | memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE); |
| 313 | if ((ret = padlock_cbc_encrypt(out_arg, in_arg, cdata, nbytes))) |
| 314 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE); |
| 315 | return ret; |
| 316 | } |
| 317 | |
| 318 | static int |
| 319 | padlock_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| 320 | const unsigned char *in_arg, size_t nbytes) |
| 321 | { |
| 322 | struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
| 323 | size_t chunk; |
| 324 | |
| 325 | if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */ |
| 326 | unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 327 | |
| 328 | if (chunk >= AES_BLOCK_SIZE) |
| 329 | return 0; /* bogus value */ |
| 330 | |
| 331 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 332 | while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
| 333 | ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
| 334 | chunk++, nbytes--; |
| 335 | } else |
| 336 | while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
| 337 | unsigned char c = *(in_arg++); |
| 338 | *(out_arg++) = c ^ ivp[chunk]; |
| 339 | ivp[chunk++] = c, nbytes--; |
| 340 | } |
| 341 | |
| 342 | EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE); |
| 343 | } |
| 344 | |
| 345 | if (nbytes == 0) |
| 346 | return 1; |
| 347 | |
| 348 | memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE); |
| 349 | |
| 350 | if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) { |
| 351 | if (!padlock_cfb_encrypt(out_arg, in_arg, cdata, chunk)) |
| 352 | return 0; |
| 353 | nbytes -= chunk; |
| 354 | } |
| 355 | |
| 356 | if (nbytes) { |
| 357 | unsigned char *ivp = cdata->iv; |
| 358 | |
| 359 | out_arg += chunk; |
| 360 | in_arg += chunk; |
| 361 | EVP_CIPHER_CTX_set_num(ctx, nbytes); |
| 362 | if (cdata->cword.b.encdec) { |
| 363 | cdata->cword.b.encdec = 0; |
| 364 | padlock_reload_key(); |
| 365 | padlock_aes_block(ivp, ivp, cdata); |
| 366 | cdata->cword.b.encdec = 1; |
| 367 | padlock_reload_key(); |
| 368 | while (nbytes) { |
| 369 | unsigned char c = *(in_arg++); |
| 370 | *(out_arg++) = c ^ *ivp; |
| 371 | *(ivp++) = c, nbytes--; |
| 372 | } |
| 373 | } else { |
| 374 | padlock_reload_key(); |
| 375 | padlock_aes_block(ivp, ivp, cdata); |
| 376 | padlock_reload_key(); |
| 377 | while (nbytes) { |
| 378 | *ivp = *(out_arg++) = *(in_arg++) ^ *ivp; |
| 379 | ivp++, nbytes--; |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE); |
| 385 | |
| 386 | return 1; |
| 387 | } |
| 388 | |
| 389 | static int |
| 390 | padlock_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| 391 | const unsigned char *in_arg, size_t nbytes) |
| 392 | { |
| 393 | struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
| 394 | size_t chunk; |
| 395 | |
| 396 | /* |
| 397 | * ctx->num is maintained in byte-oriented modes, such as CFB and OFB... |
| 398 | */ |
| 399 | if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */ |
| 400 | unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 401 | |
| 402 | if (chunk >= AES_BLOCK_SIZE) |
| 403 | return 0; /* bogus value */ |
| 404 | |
| 405 | while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
| 406 | *(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
| 407 | chunk++, nbytes--; |
| 408 | } |
| 409 | |
| 410 | EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE); |
| 411 | } |
| 412 | |
| 413 | if (nbytes == 0) |
| 414 | return 1; |
| 415 | |
| 416 | memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE); |
| 417 | |
| 418 | if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) { |
| 419 | if (!padlock_ofb_encrypt(out_arg, in_arg, cdata, chunk)) |
| 420 | return 0; |
| 421 | nbytes -= chunk; |
| 422 | } |
| 423 | |
| 424 | if (nbytes) { |
| 425 | unsigned char *ivp = cdata->iv; |
| 426 | |
| 427 | out_arg += chunk; |
| 428 | in_arg += chunk; |
| 429 | EVP_CIPHER_CTX_set_num(ctx, nbytes); |
| 430 | padlock_reload_key(); /* empirically found */ |
| 431 | padlock_aes_block(ivp, ivp, cdata); |
| 432 | padlock_reload_key(); /* empirically found */ |
| 433 | while (nbytes) { |
| 434 | *(out_arg++) = *(in_arg++) ^ *ivp; |
| 435 | ivp++, nbytes--; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE); |
| 440 | |
| 441 | return 1; |
| 442 | } |
| 443 | |
| 444 | static void padlock_ctr32_encrypt_glue(const unsigned char *in, |
| 445 | unsigned char *out, size_t blocks, |
| 446 | struct padlock_cipher_data *ctx, |
| 447 | const unsigned char *ivec) |
| 448 | { |
| 449 | memcpy(ctx->iv, ivec, AES_BLOCK_SIZE); |
| 450 | padlock_ctr32_encrypt(out, in, ctx, AES_BLOCK_SIZE * blocks); |
| 451 | } |
| 452 | |
| 453 | static int |
| 454 | padlock_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| 455 | const unsigned char *in_arg, size_t nbytes) |
| 456 | { |
| 457 | struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
| 458 | unsigned int num = EVP_CIPHER_CTX_num(ctx); |
| 459 | |
| 460 | CRYPTO_ctr128_encrypt_ctr32(in_arg, out_arg, nbytes, |
| 461 | cdata, EVP_CIPHER_CTX_iv_noconst(ctx), |
| 462 | EVP_CIPHER_CTX_buf_noconst(ctx), &num, |
| 463 | (ctr128_f) padlock_ctr32_encrypt_glue); |
| 464 | |
| 465 | EVP_CIPHER_CTX_set_num(ctx, (size_t)num); |
| 466 | return 1; |
| 467 | } |
| 468 | |
| 469 | # define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE |
| 470 | # define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE |
| 471 | # define EVP_CIPHER_block_size_OFB 1 |
| 472 | # define EVP_CIPHER_block_size_CFB 1 |
| 473 | # define EVP_CIPHER_block_size_CTR 1 |
| 474 | |
| 475 | /* |
| 476 | * Declaring so many ciphers by hand would be a pain. Instead introduce a bit |
| 477 | * of preprocessor magic :-) |
| 478 | */ |
| 479 | # define DECLARE_AES_EVP(ksize,lmode,umode) \ |
| 480 | static EVP_CIPHER *_hidden_aes_##ksize##_##lmode = NULL; \ |
| 481 | static const EVP_CIPHER *padlock_aes_##ksize##_##lmode(void) \ |
| 482 | { \ |
| 483 | if (_hidden_aes_##ksize##_##lmode == NULL \ |
| 484 | && ((_hidden_aes_##ksize##_##lmode = \ |
| 485 | EVP_CIPHER_meth_new(NID_aes_##ksize##_##lmode, \ |
| 486 | EVP_CIPHER_block_size_##umode, \ |
| 487 | AES_KEY_SIZE_##ksize)) == NULL \ |
| 488 | || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_##ksize##_##lmode, \ |
| 489 | AES_BLOCK_SIZE) \ |
| 490 | || !EVP_CIPHER_meth_set_flags(_hidden_aes_##ksize##_##lmode, \ |
| 491 | 0 | EVP_CIPH_##umode##_MODE) \ |
| 492 | || !EVP_CIPHER_meth_set_init(_hidden_aes_##ksize##_##lmode, \ |
| 493 | padlock_aes_init_key) \ |
| 494 | || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_##ksize##_##lmode, \ |
| 495 | padlock_##lmode##_cipher) \ |
| 496 | || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_##ksize##_##lmode, \ |
| 497 | sizeof(struct padlock_cipher_data) + 16) \ |
| 498 | || !EVP_CIPHER_meth_set_set_asn1_params(_hidden_aes_##ksize##_##lmode, \ |
| 499 | EVP_CIPHER_set_asn1_iv) \ |
| 500 | || !EVP_CIPHER_meth_set_get_asn1_params(_hidden_aes_##ksize##_##lmode, \ |
| 501 | EVP_CIPHER_get_asn1_iv))) { \ |
| 502 | EVP_CIPHER_meth_free(_hidden_aes_##ksize##_##lmode); \ |
| 503 | _hidden_aes_##ksize##_##lmode = NULL; \ |
| 504 | } \ |
| 505 | return _hidden_aes_##ksize##_##lmode; \ |
| 506 | } |
| 507 | |
| 508 | DECLARE_AES_EVP(128, ecb, ECB) |
| 509 | DECLARE_AES_EVP(128, cbc, CBC) |
| 510 | DECLARE_AES_EVP(128, cfb, CFB) |
| 511 | DECLARE_AES_EVP(128, ofb, OFB) |
| 512 | DECLARE_AES_EVP(128, ctr, CTR) |
| 513 | |
| 514 | DECLARE_AES_EVP(192, ecb, ECB) |
| 515 | DECLARE_AES_EVP(192, cbc, CBC) |
| 516 | DECLARE_AES_EVP(192, cfb, CFB) |
| 517 | DECLARE_AES_EVP(192, ofb, OFB) |
| 518 | DECLARE_AES_EVP(192, ctr, CTR) |
| 519 | |
| 520 | DECLARE_AES_EVP(256, ecb, ECB) |
| 521 | DECLARE_AES_EVP(256, cbc, CBC) |
| 522 | DECLARE_AES_EVP(256, cfb, CFB) |
| 523 | DECLARE_AES_EVP(256, ofb, OFB) |
| 524 | DECLARE_AES_EVP(256, ctr, CTR) |
| 525 | |
| 526 | static int |
| 527 | padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, |
| 528 | int nid) |
| 529 | { |
| 530 | /* No specific cipher => return a list of supported nids ... */ |
| 531 | if (!cipher) { |
| 532 | *nids = padlock_cipher_nids; |
| 533 | return padlock_cipher_nids_num; |
| 534 | } |
| 535 | |
| 536 | /* ... or the requested "cipher" otherwise */ |
| 537 | switch (nid) { |
| 538 | case NID_aes_128_ecb: |
| 539 | *cipher = padlock_aes_128_ecb(); |
| 540 | break; |
| 541 | case NID_aes_128_cbc: |
| 542 | *cipher = padlock_aes_128_cbc(); |
| 543 | break; |
| 544 | case NID_aes_128_cfb: |
| 545 | *cipher = padlock_aes_128_cfb(); |
| 546 | break; |
| 547 | case NID_aes_128_ofb: |
| 548 | *cipher = padlock_aes_128_ofb(); |
| 549 | break; |
| 550 | case NID_aes_128_ctr: |
| 551 | *cipher = padlock_aes_128_ctr(); |
| 552 | break; |
| 553 | |
| 554 | case NID_aes_192_ecb: |
| 555 | *cipher = padlock_aes_192_ecb(); |
| 556 | break; |
| 557 | case NID_aes_192_cbc: |
| 558 | *cipher = padlock_aes_192_cbc(); |
| 559 | break; |
| 560 | case NID_aes_192_cfb: |
| 561 | *cipher = padlock_aes_192_cfb(); |
| 562 | break; |
| 563 | case NID_aes_192_ofb: |
| 564 | *cipher = padlock_aes_192_ofb(); |
| 565 | break; |
| 566 | case NID_aes_192_ctr: |
| 567 | *cipher = padlock_aes_192_ctr(); |
| 568 | break; |
| 569 | |
| 570 | case NID_aes_256_ecb: |
| 571 | *cipher = padlock_aes_256_ecb(); |
| 572 | break; |
| 573 | case NID_aes_256_cbc: |
| 574 | *cipher = padlock_aes_256_cbc(); |
| 575 | break; |
| 576 | case NID_aes_256_cfb: |
| 577 | *cipher = padlock_aes_256_cfb(); |
| 578 | break; |
| 579 | case NID_aes_256_ofb: |
| 580 | *cipher = padlock_aes_256_ofb(); |
| 581 | break; |
| 582 | case NID_aes_256_ctr: |
| 583 | *cipher = padlock_aes_256_ctr(); |
| 584 | break; |
| 585 | |
| 586 | default: |
| 587 | /* Sorry, we don't support this NID */ |
| 588 | *cipher = NULL; |
| 589 | return 0; |
| 590 | } |
| 591 | |
| 592 | return 1; |
| 593 | } |
| 594 | |
| 595 | /* Prepare the encryption key for PadLock usage */ |
| 596 | static int |
| 597 | padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 598 | const unsigned char *iv, int enc) |
| 599 | { |
| 600 | struct padlock_cipher_data *cdata; |
| 601 | int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| 602 | unsigned long mode = EVP_CIPHER_CTX_mode(ctx); |
| 603 | |
| 604 | if (key == NULL) |
| 605 | return 0; /* ERROR */ |
| 606 | |
| 607 | cdata = ALIGNED_CIPHER_DATA(ctx); |
| 608 | memset(cdata, 0, sizeof(*cdata)); |
| 609 | |
| 610 | /* Prepare Control word. */ |
| 611 | if (mode == EVP_CIPH_OFB_MODE || mode == EVP_CIPH_CTR_MODE) |
| 612 | cdata->cword.b.encdec = 0; |
| 613 | else |
| 614 | cdata->cword.b.encdec = (EVP_CIPHER_CTX_encrypting(ctx) == 0); |
| 615 | cdata->cword.b.rounds = 10 + (key_len - 128) / 32; |
| 616 | cdata->cword.b.ksize = (key_len - 128) / 64; |
| 617 | |
| 618 | switch (key_len) { |
| 619 | case 128: |
| 620 | /* |
| 621 | * PadLock can generate an extended key for AES128 in hardware |
| 622 | */ |
| 623 | memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128); |
| 624 | cdata->cword.b.keygen = 0; |
| 625 | break; |
| 626 | |
| 627 | case 192: |
| 628 | case 256: |
| 629 | /* |
| 630 | * Generate an extended AES key in software. Needed for AES192/AES256 |
| 631 | */ |
| 632 | /* |
| 633 | * Well, the above applies to Stepping 8 CPUs and is listed as |
| 634 | * hardware errata. They most likely will fix it at some point and |
| 635 | * then a check for stepping would be due here. |
| 636 | */ |
| 637 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| 638 | && !enc) |
| 639 | AES_set_decrypt_key(key, key_len, &cdata->ks); |
| 640 | else |
| 641 | AES_set_encrypt_key(key, key_len, &cdata->ks); |
| 642 | # ifndef AES_ASM |
| 643 | /* |
| 644 | * OpenSSL C functions use byte-swapped extended key. |
| 645 | */ |
| 646 | padlock_key_bswap(&cdata->ks); |
| 647 | # endif |
| 648 | cdata->cword.b.keygen = 1; |
| 649 | break; |
| 650 | |
| 651 | default: |
| 652 | /* ERROR */ |
| 653 | return 0; |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * This is done to cover for cases when user reuses the |
| 658 | * context for new key. The catch is that if we don't do |
| 659 | * this, padlock_eas_cipher might proceed with old key... |
| 660 | */ |
| 661 | padlock_reload_key(); |
| 662 | |
| 663 | return 1; |
| 664 | } |
| 665 | |
| 666 | /* ===== Random Number Generator ===== */ |
| 667 | /* |
| 668 | * This code is not engaged. The reason is that it does not comply |
| 669 | * with recommendations for VIA RNG usage for secure applications |
| 670 | * (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it |
| 671 | * provide meaningful error control... |
| 672 | */ |
| 673 | /* |
| 674 | * Wrapper that provides an interface between the API and the raw PadLock |
| 675 | * RNG |
| 676 | */ |
| 677 | static int padlock_rand_bytes(unsigned char *output, int count) |
| 678 | { |
| 679 | unsigned int eax, buf; |
| 680 | |
| 681 | while (count >= 8) { |
| 682 | eax = padlock_xstore(output, 0); |
| 683 | if (!(eax & (1 << 6))) |
| 684 | return 0; /* RNG disabled */ |
| 685 | /* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
| 686 | if (eax & (0x1F << 10)) |
| 687 | return 0; |
| 688 | if ((eax & 0x1F) == 0) |
| 689 | continue; /* no data, retry... */ |
| 690 | if ((eax & 0x1F) != 8) |
| 691 | return 0; /* fatal failure... */ |
| 692 | output += 8; |
| 693 | count -= 8; |
| 694 | } |
| 695 | while (count > 0) { |
| 696 | eax = padlock_xstore(&buf, 3); |
| 697 | if (!(eax & (1 << 6))) |
| 698 | return 0; /* RNG disabled */ |
| 699 | /* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
| 700 | if (eax & (0x1F << 10)) |
| 701 | return 0; |
| 702 | if ((eax & 0x1F) == 0) |
| 703 | continue; /* no data, retry... */ |
| 704 | if ((eax & 0x1F) != 1) |
| 705 | return 0; /* fatal failure... */ |
| 706 | *output++ = (unsigned char)buf; |
| 707 | count--; |
| 708 | } |
| 709 | OPENSSL_cleanse(&buf, sizeof(buf)); |
| 710 | |
| 711 | return 1; |
| 712 | } |
| 713 | |
| 714 | /* Dummy but necessary function */ |
| 715 | static int padlock_rand_status(void) |
| 716 | { |
| 717 | return 1; |
| 718 | } |
| 719 | |
| 720 | /* Prepare structure for registration */ |
| 721 | static RAND_METHOD padlock_rand = { |
| 722 | NULL, /* seed */ |
| 723 | padlock_rand_bytes, /* bytes */ |
| 724 | NULL, /* cleanup */ |
| 725 | NULL, /* add */ |
| 726 | padlock_rand_bytes, /* pseudorand */ |
| 727 | padlock_rand_status, /* rand status */ |
| 728 | }; |
| 729 | |
| 730 | # endif /* COMPILE_HW_PADLOCK */ |
| 731 | # endif /* !OPENSSL_NO_HW_PADLOCK */ |
| 732 | #endif /* !OPENSSL_NO_HW */ |
| 733 | |
| 734 | #if defined(OPENSSL_NO_HW) || defined(OPENSSL_NO_HW_PADLOCK) \ |
| 735 | || !defined(COMPILE_HW_PADLOCK) |
| 736 | # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
| 737 | OPENSSL_EXPORT |
| 738 | int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); |
| 739 | OPENSSL_EXPORT |
| 740 | int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) |
| 741 | { |
| 742 | return 0; |
| 743 | } |
| 744 | |
| 745 | IMPLEMENT_DYNAMIC_CHECK_FN() |
| 746 | # endif |
| 747 | #endif |