lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2012-2021 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include "internal/constant_time.h" |
| 11 | #include "ssl_local.h" |
| 12 | #include "internal/cryptlib.h" |
| 13 | |
| 14 | #include <openssl/md5.h> |
| 15 | #include <openssl/sha.h> |
| 16 | |
| 17 | /* |
| 18 | * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's |
| 19 | * length field. (SHA-384/512 have 128-bit length.) |
| 20 | */ |
| 21 | #define MAX_HASH_BIT_COUNT_BYTES 16 |
| 22 | |
| 23 | /* |
| 24 | * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. |
| 25 | * Currently SHA-384/512 has a 128-byte block size and that's the largest |
| 26 | * supported by TLS.) |
| 27 | */ |
| 28 | #define MAX_HASH_BLOCK_SIZE 128 |
| 29 | |
| 30 | /* |
| 31 | * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in |
| 32 | * little-endian order. The value of p is advanced by four. |
| 33 | */ |
| 34 | #define u32toLE(n, p) \ |
| 35 | (*((p)++)=(unsigned char)(n), \ |
| 36 | *((p)++)=(unsigned char)(n>>8), \ |
| 37 | *((p)++)=(unsigned char)(n>>16), \ |
| 38 | *((p)++)=(unsigned char)(n>>24)) |
| 39 | |
| 40 | /* |
| 41 | * These functions serialize the state of a hash and thus perform the |
| 42 | * standard "final" operation without adding the padding and length that such |
| 43 | * a function typically does. |
| 44 | */ |
| 45 | static void tls1_md5_final_raw(void *ctx, unsigned char *md_out) |
| 46 | { |
| 47 | MD5_CTX *md5 = ctx; |
| 48 | u32toLE(md5->A, md_out); |
| 49 | u32toLE(md5->B, md_out); |
| 50 | u32toLE(md5->C, md_out); |
| 51 | u32toLE(md5->D, md_out); |
| 52 | } |
| 53 | |
| 54 | static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out) |
| 55 | { |
| 56 | SHA_CTX *sha1 = ctx; |
| 57 | l2n(sha1->h0, md_out); |
| 58 | l2n(sha1->h1, md_out); |
| 59 | l2n(sha1->h2, md_out); |
| 60 | l2n(sha1->h3, md_out); |
| 61 | l2n(sha1->h4, md_out); |
| 62 | } |
| 63 | |
| 64 | static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out) |
| 65 | { |
| 66 | SHA256_CTX *sha256 = ctx; |
| 67 | unsigned i; |
| 68 | |
| 69 | for (i = 0; i < 8; i++) { |
| 70 | l2n(sha256->h[i], md_out); |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out) |
| 75 | { |
| 76 | SHA512_CTX *sha512 = ctx; |
| 77 | unsigned i; |
| 78 | |
| 79 | for (i = 0; i < 8; i++) { |
| 80 | l2n8(sha512->h[i], md_out); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | #undef LARGEST_DIGEST_CTX |
| 85 | #define LARGEST_DIGEST_CTX SHA512_CTX |
| 86 | |
| 87 | /* |
| 88 | * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function |
| 89 | * which ssl3_cbc_digest_record supports. |
| 90 | */ |
| 91 | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx) |
| 92 | { |
| 93 | switch (EVP_MD_CTX_type(ctx)) { |
| 94 | case NID_md5: |
| 95 | case NID_sha1: |
| 96 | case NID_sha224: |
| 97 | case NID_sha256: |
| 98 | case NID_sha384: |
| 99 | case NID_sha512: |
| 100 | return 1; |
| 101 | default: |
| 102 | return 0; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | /*- |
| 107 | * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS |
| 108 | * record. |
| 109 | * |
| 110 | * ctx: the EVP_MD_CTX from which we take the hash function. |
| 111 | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. |
| 112 | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. |
| 113 | * md_out_size: if non-NULL, the number of output bytes is written here. |
| 114 | * header: the 13-byte, TLS record header. |
| 115 | * data: the record data itself, less any preceding explicit IV. |
| 116 | * data_plus_mac_size: the secret, reported length of the data and MAC |
| 117 | * once the padding has been removed. |
| 118 | * data_plus_mac_plus_padding_size: the public length of the whole |
| 119 | * record, including padding. |
| 120 | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. |
| 121 | * |
| 122 | * On entry: by virtue of having been through one of the remove_padding |
| 123 | * functions, above, we know that data_plus_mac_size is large enough to contain |
| 124 | * a padding byte and MAC. (If the padding was invalid, it might contain the |
| 125 | * padding too. ) |
| 126 | * Returns 1 on success or 0 on error |
| 127 | */ |
| 128 | int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, |
| 129 | unsigned char *md_out, |
| 130 | size_t *md_out_size, |
| 131 | const unsigned char *header, |
| 132 | const unsigned char *data, |
| 133 | size_t data_plus_mac_size, |
| 134 | size_t data_plus_mac_plus_padding_size, |
| 135 | const unsigned char *mac_secret, |
| 136 | size_t mac_secret_length, char is_sslv3) |
| 137 | { |
| 138 | union { |
| 139 | double align; |
| 140 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; |
| 141 | } md_state; |
| 142 | void (*md_final_raw) (void *ctx, unsigned char *md_out); |
| 143 | void (*md_transform) (void *ctx, const unsigned char *block); |
| 144 | size_t md_size, md_block_size = 64; |
| 145 | size_t sslv3_pad_length = 40, header_length, variance_blocks, |
| 146 | len, max_mac_bytes, num_blocks, |
| 147 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b; |
| 148 | size_t bits; /* at most 18 bits */ |
| 149 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; |
| 150 | /* hmac_pad is the masked HMAC key. */ |
| 151 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; |
| 152 | unsigned char first_block[MAX_HASH_BLOCK_SIZE]; |
| 153 | unsigned char mac_out[EVP_MAX_MD_SIZE]; |
| 154 | size_t i, j; |
| 155 | unsigned md_out_size_u; |
| 156 | EVP_MD_CTX *md_ctx = NULL; |
| 157 | /* |
| 158 | * mdLengthSize is the number of bytes in the length field that |
| 159 | * terminates * the hash. |
| 160 | */ |
| 161 | size_t md_length_size = 8; |
| 162 | char length_is_big_endian = 1; |
| 163 | int ret; |
| 164 | |
| 165 | /* |
| 166 | * This is a, hopefully redundant, check that allows us to forget about |
| 167 | * many possible overflows later in this function. |
| 168 | */ |
| 169 | if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024)) |
| 170 | return 0; |
| 171 | |
| 172 | switch (EVP_MD_CTX_type(ctx)) { |
| 173 | case NID_md5: |
| 174 | if (MD5_Init((MD5_CTX *)md_state.c) <= 0) |
| 175 | return 0; |
| 176 | md_final_raw = tls1_md5_final_raw; |
| 177 | md_transform = |
| 178 | (void (*)(void *ctx, const unsigned char *block))MD5_Transform; |
| 179 | md_size = 16; |
| 180 | sslv3_pad_length = 48; |
| 181 | length_is_big_endian = 0; |
| 182 | break; |
| 183 | case NID_sha1: |
| 184 | if (SHA1_Init((SHA_CTX *)md_state.c) <= 0) |
| 185 | return 0; |
| 186 | md_final_raw = tls1_sha1_final_raw; |
| 187 | md_transform = |
| 188 | (void (*)(void *ctx, const unsigned char *block))SHA1_Transform; |
| 189 | md_size = 20; |
| 190 | break; |
| 191 | case NID_sha224: |
| 192 | if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0) |
| 193 | return 0; |
| 194 | md_final_raw = tls1_sha256_final_raw; |
| 195 | md_transform = |
| 196 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; |
| 197 | md_size = 224 / 8; |
| 198 | break; |
| 199 | case NID_sha256: |
| 200 | if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0) |
| 201 | return 0; |
| 202 | md_final_raw = tls1_sha256_final_raw; |
| 203 | md_transform = |
| 204 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; |
| 205 | md_size = 32; |
| 206 | break; |
| 207 | case NID_sha384: |
| 208 | if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0) |
| 209 | return 0; |
| 210 | md_final_raw = tls1_sha512_final_raw; |
| 211 | md_transform = |
| 212 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; |
| 213 | md_size = 384 / 8; |
| 214 | md_block_size = 128; |
| 215 | md_length_size = 16; |
| 216 | break; |
| 217 | case NID_sha512: |
| 218 | if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0) |
| 219 | return 0; |
| 220 | md_final_raw = tls1_sha512_final_raw; |
| 221 | md_transform = |
| 222 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; |
| 223 | md_size = 64; |
| 224 | md_block_size = 128; |
| 225 | md_length_size = 16; |
| 226 | break; |
| 227 | default: |
| 228 | /* |
| 229 | * ssl3_cbc_record_digest_supported should have been called first to |
| 230 | * check that the hash function is supported. |
| 231 | */ |
| 232 | if (md_out_size != NULL) |
| 233 | *md_out_size = 0; |
| 234 | return ossl_assert(0); |
| 235 | } |
| 236 | |
| 237 | if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES) |
| 238 | || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE) |
| 239 | || !ossl_assert(md_size <= EVP_MAX_MD_SIZE)) |
| 240 | return 0; |
| 241 | |
| 242 | header_length = 13; |
| 243 | if (is_sslv3) { |
| 244 | header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence |
| 245 | * number */ + |
| 246 | 1 /* record type */ + |
| 247 | 2 /* record length */ ; |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * variance_blocks is the number of blocks of the hash that we have to |
| 252 | * calculate in constant time because they could be altered by the |
| 253 | * padding value. In SSLv3, the padding must be minimal so the end of |
| 254 | * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively |
| 255 | * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes |
| 256 | * of hash termination (0x80 + 64-bit length) don't fit in the final |
| 257 | * block, we say that the final two blocks can vary based on the padding. |
| 258 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not |
| 259 | * required to be minimal. Therefore we say that the final |variance_blocks| |
| 260 | * blocks can |
| 261 | * vary based on the padding. Later in the function, if the message is |
| 262 | * short and there obviously cannot be this many blocks then |
| 263 | * variance_blocks can be reduced. |
| 264 | */ |
| 265 | variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1); |
| 266 | /* |
| 267 | * From now on we're dealing with the MAC, which conceptually has 13 |
| 268 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes |
| 269 | * (SSLv3) |
| 270 | */ |
| 271 | len = data_plus_mac_plus_padding_size + header_length; |
| 272 | /* |
| 273 | * max_mac_bytes contains the maximum bytes of bytes in the MAC, |
| 274 | * including * |header|, assuming that there's no padding. |
| 275 | */ |
| 276 | max_mac_bytes = len - md_size - 1; |
| 277 | /* num_blocks is the maximum number of hash blocks. */ |
| 278 | num_blocks = |
| 279 | (max_mac_bytes + 1 + md_length_size + md_block_size - |
| 280 | 1) / md_block_size; |
| 281 | /* |
| 282 | * In order to calculate the MAC in constant time we have to handle the |
| 283 | * final blocks specially because the padding value could cause the end |
| 284 | * to appear somewhere in the final |variance_blocks| blocks and we can't |
| 285 | * leak where. However, |num_starting_blocks| worth of data can be hashed |
| 286 | * right away because no padding value can affect whether they are |
| 287 | * plaintext. |
| 288 | */ |
| 289 | num_starting_blocks = 0; |
| 290 | /* |
| 291 | * k is the starting byte offset into the conceptual header||data where |
| 292 | * we start processing. |
| 293 | */ |
| 294 | k = 0; |
| 295 | /* |
| 296 | * mac_end_offset is the index just past the end of the data to be MACed. |
| 297 | */ |
| 298 | mac_end_offset = data_plus_mac_size + header_length - md_size; |
| 299 | /* |
| 300 | * c is the index of the 0x80 byte in the final hash block that contains |
| 301 | * application data. |
| 302 | */ |
| 303 | c = mac_end_offset % md_block_size; |
| 304 | /* |
| 305 | * index_a is the hash block number that contains the 0x80 terminating |
| 306 | * value. |
| 307 | */ |
| 308 | index_a = mac_end_offset / md_block_size; |
| 309 | /* |
| 310 | * index_b is the hash block number that contains the 64-bit hash length, |
| 311 | * in bits. |
| 312 | */ |
| 313 | index_b = (mac_end_offset + md_length_size) / md_block_size; |
| 314 | /* |
| 315 | * bits is the hash-length in bits. It includes the additional hash block |
| 316 | * for the masked HMAC key, or whole of |header| in the case of SSLv3. |
| 317 | */ |
| 318 | |
| 319 | /* |
| 320 | * For SSLv3, if we're going to have any starting blocks then we need at |
| 321 | * least two because the header is larger than a single block. |
| 322 | */ |
| 323 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { |
| 324 | num_starting_blocks = num_blocks - variance_blocks; |
| 325 | k = md_block_size * num_starting_blocks; |
| 326 | } |
| 327 | |
| 328 | bits = 8 * mac_end_offset; |
| 329 | if (!is_sslv3) { |
| 330 | /* |
| 331 | * Compute the initial HMAC block. For SSLv3, the padding and secret |
| 332 | * bytes are included in |header| because they take more than a |
| 333 | * single block. |
| 334 | */ |
| 335 | bits += 8 * md_block_size; |
| 336 | memset(hmac_pad, 0, md_block_size); |
| 337 | if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad))) |
| 338 | return 0; |
| 339 | memcpy(hmac_pad, mac_secret, mac_secret_length); |
| 340 | for (i = 0; i < md_block_size; i++) |
| 341 | hmac_pad[i] ^= 0x36; |
| 342 | |
| 343 | md_transform(md_state.c, hmac_pad); |
| 344 | } |
| 345 | |
| 346 | if (length_is_big_endian) { |
| 347 | memset(length_bytes, 0, md_length_size - 4); |
| 348 | length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24); |
| 349 | length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16); |
| 350 | length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8); |
| 351 | length_bytes[md_length_size - 1] = (unsigned char)bits; |
| 352 | } else { |
| 353 | memset(length_bytes, 0, md_length_size); |
| 354 | length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24); |
| 355 | length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16); |
| 356 | length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8); |
| 357 | length_bytes[md_length_size - 8] = (unsigned char)bits; |
| 358 | } |
| 359 | |
| 360 | if (k > 0) { |
| 361 | if (is_sslv3) { |
| 362 | size_t overhang; |
| 363 | |
| 364 | /* |
| 365 | * The SSLv3 header is larger than a single block. overhang is |
| 366 | * the number of bytes beyond a single block that the header |
| 367 | * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no |
| 368 | * ciphersuites in SSLv3 that are not SHA1 or MD5 based and |
| 369 | * therefore we can be confident that the header_length will be |
| 370 | * greater than |md_block_size|. However we add a sanity check just |
| 371 | * in case |
| 372 | */ |
| 373 | if (header_length <= md_block_size) { |
| 374 | /* Should never happen */ |
| 375 | return 0; |
| 376 | } |
| 377 | overhang = header_length - md_block_size; |
| 378 | md_transform(md_state.c, header); |
| 379 | memcpy(first_block, header + md_block_size, overhang); |
| 380 | memcpy(first_block + overhang, data, md_block_size - overhang); |
| 381 | md_transform(md_state.c, first_block); |
| 382 | for (i = 1; i < k / md_block_size - 1; i++) |
| 383 | md_transform(md_state.c, data + md_block_size * i - overhang); |
| 384 | } else { |
| 385 | /* k is a multiple of md_block_size. */ |
| 386 | memcpy(first_block, header, 13); |
| 387 | memcpy(first_block + 13, data, md_block_size - 13); |
| 388 | md_transform(md_state.c, first_block); |
| 389 | for (i = 1; i < k / md_block_size; i++) |
| 390 | md_transform(md_state.c, data + md_block_size * i - 13); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | memset(mac_out, 0, sizeof(mac_out)); |
| 395 | |
| 396 | /* |
| 397 | * We now process the final hash blocks. For each block, we construct it |
| 398 | * in constant time. If the |i==index_a| then we'll include the 0x80 |
| 399 | * bytes and zero pad etc. For each block we selectively copy it, in |
| 400 | * constant time, to |mac_out|. |
| 401 | */ |
| 402 | for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; |
| 403 | i++) { |
| 404 | unsigned char block[MAX_HASH_BLOCK_SIZE]; |
| 405 | unsigned char is_block_a = constant_time_eq_8_s(i, index_a); |
| 406 | unsigned char is_block_b = constant_time_eq_8_s(i, index_b); |
| 407 | for (j = 0; j < md_block_size; j++) { |
| 408 | unsigned char b = 0, is_past_c, is_past_cp1; |
| 409 | if (k < header_length) |
| 410 | b = header[k]; |
| 411 | else if (k < data_plus_mac_plus_padding_size + header_length) |
| 412 | b = data[k - header_length]; |
| 413 | k++; |
| 414 | |
| 415 | is_past_c = is_block_a & constant_time_ge_8_s(j, c); |
| 416 | is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1); |
| 417 | /* |
| 418 | * If this is the block containing the end of the application |
| 419 | * data, and we are at the offset for the 0x80 value, then |
| 420 | * overwrite b with 0x80. |
| 421 | */ |
| 422 | b = constant_time_select_8(is_past_c, 0x80, b); |
| 423 | /* |
| 424 | * If this block contains the end of the application data |
| 425 | * and we're past the 0x80 value then just write zero. |
| 426 | */ |
| 427 | b = b & ~is_past_cp1; |
| 428 | /* |
| 429 | * If this is index_b (the final block), but not index_a (the end |
| 430 | * of the data), then the 64-bit length didn't fit into index_a |
| 431 | * and we're having to add an extra block of zeros. |
| 432 | */ |
| 433 | b &= ~is_block_b | is_block_a; |
| 434 | |
| 435 | /* |
| 436 | * The final bytes of one of the blocks contains the length. |
| 437 | */ |
| 438 | if (j >= md_block_size - md_length_size) { |
| 439 | /* If this is index_b, write a length byte. */ |
| 440 | b = constant_time_select_8(is_block_b, |
| 441 | length_bytes[j - |
| 442 | (md_block_size - |
| 443 | md_length_size)], b); |
| 444 | } |
| 445 | block[j] = b; |
| 446 | } |
| 447 | |
| 448 | md_transform(md_state.c, block); |
| 449 | md_final_raw(md_state.c, block); |
| 450 | /* If this is index_b, copy the hash value to |mac_out|. */ |
| 451 | for (j = 0; j < md_size; j++) |
| 452 | mac_out[j] |= block[j] & is_block_b; |
| 453 | } |
| 454 | |
| 455 | md_ctx = EVP_MD_CTX_new(); |
| 456 | if (md_ctx == NULL) |
| 457 | goto err; |
| 458 | if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0) |
| 459 | goto err; |
| 460 | if (is_sslv3) { |
| 461 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ |
| 462 | memset(hmac_pad, 0x5c, sslv3_pad_length); |
| 463 | |
| 464 | if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0 |
| 465 | || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0 |
| 466 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) |
| 467 | goto err; |
| 468 | } else { |
| 469 | /* Complete the HMAC in the standard manner. */ |
| 470 | for (i = 0; i < md_block_size; i++) |
| 471 | hmac_pad[i] ^= 0x6a; |
| 472 | |
| 473 | if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0 |
| 474 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) |
| 475 | goto err; |
| 476 | } |
| 477 | /* TODO(size_t): Convert me */ |
| 478 | ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u); |
| 479 | if (ret && md_out_size) |
| 480 | *md_out_size = md_out_size_u; |
| 481 | EVP_MD_CTX_free(md_ctx); |
| 482 | |
| 483 | return 1; |
| 484 | err: |
| 485 | EVP_MD_CTX_free(md_ctx); |
| 486 | return 0; |
| 487 | } |