lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * UFC-crypt: ultra fast crypt(3) implementation |
| 3 | * |
| 4 | * Copyright (C) 1991-2015 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This library is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU Lesser General Public |
| 8 | * License as published by the Free Software Foundation; either |
| 9 | * version 2.1 of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * This library is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | * Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public |
| 17 | * License along with this library; see the file COPYING.LIB. If not, |
| 18 | * see <http://www.gnu.org/licenses/>. |
| 19 | * |
| 20 | * @(#)crypt_util.c 2.56 12/20/96 |
| 21 | * |
| 22 | * Support routines |
| 23 | * |
| 24 | */ |
| 25 | |
| 26 | #ifdef DEBUG |
| 27 | #include <stdio.h> |
| 28 | #endif |
| 29 | #include <atomic.h> |
| 30 | #include <string.h> |
| 31 | |
| 32 | #ifndef STATIC |
| 33 | #define STATIC static |
| 34 | #endif |
| 35 | |
| 36 | #include "crypt-private.h" |
| 37 | |
| 38 | /* Prototypes for local functions. */ |
| 39 | #ifndef __GNU_LIBRARY__ |
| 40 | void _ufc_clearmem (char *start, int cnt); |
| 41 | void _ufc_copymem (char *from, char *to, int cnt); |
| 42 | #endif |
| 43 | #ifdef _UFC_32_ |
| 44 | STATIC void shuffle_sb (long32 *k, ufc_long saltbits); |
| 45 | #else |
| 46 | STATIC void shuffle_sb (long64 *k, ufc_long saltbits); |
| 47 | #endif |
| 48 | |
| 49 | |
| 50 | /* |
| 51 | * Permutation done once on the 56 bit |
| 52 | * key derived from the original 8 byte ASCII key. |
| 53 | */ |
| 54 | static const int pc1[56] = { |
| 55 | 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, |
| 56 | 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, |
| 57 | 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, |
| 58 | 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 |
| 59 | }; |
| 60 | |
| 61 | /* |
| 62 | * How much to rotate each 28 bit half of the pc1 permutated |
| 63 | * 56 bit key before using pc2 to give the i' key |
| 64 | */ |
| 65 | static const int rots[16] = { |
| 66 | 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 |
| 67 | }; |
| 68 | |
| 69 | /* |
| 70 | * Permutation giving the key |
| 71 | * of the i' DES round |
| 72 | */ |
| 73 | static const int pc2[48] = { |
| 74 | 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, |
| 75 | 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, |
| 76 | 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, |
| 77 | 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 |
| 78 | }; |
| 79 | |
| 80 | /* |
| 81 | * The E expansion table which selects |
| 82 | * bits from the 32 bit intermediate result. |
| 83 | */ |
| 84 | static const int esel[48] = { |
| 85 | 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, |
| 86 | 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, |
| 87 | 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, |
| 88 | 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 |
| 89 | }; |
| 90 | |
| 91 | /* |
| 92 | * Permutation done on the |
| 93 | * result of sbox lookups |
| 94 | */ |
| 95 | static const int perm32[32] = { |
| 96 | 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, |
| 97 | 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 |
| 98 | }; |
| 99 | |
| 100 | /* |
| 101 | * The sboxes |
| 102 | */ |
| 103 | static const int sbox[8][4][16]= { |
| 104 | { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, |
| 105 | { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, |
| 106 | { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, |
| 107 | { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } |
| 108 | }, |
| 109 | |
| 110 | { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, |
| 111 | { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, |
| 112 | { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, |
| 113 | { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } |
| 114 | }, |
| 115 | |
| 116 | { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, |
| 117 | { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, |
| 118 | { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, |
| 119 | { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } |
| 120 | }, |
| 121 | |
| 122 | { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, |
| 123 | { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, |
| 124 | { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, |
| 125 | { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } |
| 126 | }, |
| 127 | |
| 128 | { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, |
| 129 | { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, |
| 130 | { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, |
| 131 | { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } |
| 132 | }, |
| 133 | |
| 134 | { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, |
| 135 | { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, |
| 136 | { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, |
| 137 | { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } |
| 138 | }, |
| 139 | |
| 140 | { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, |
| 141 | { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, |
| 142 | { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, |
| 143 | { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } |
| 144 | }, |
| 145 | |
| 146 | { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, |
| 147 | { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, |
| 148 | { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, |
| 149 | { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } |
| 150 | } |
| 151 | }; |
| 152 | |
| 153 | /* |
| 154 | * This is the initial |
| 155 | * permutation matrix |
| 156 | */ |
| 157 | static const int initial_perm[64] = { |
| 158 | 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, |
| 159 | 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, |
| 160 | 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, |
| 161 | 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 |
| 162 | }; |
| 163 | |
| 164 | /* |
| 165 | * This is the final |
| 166 | * permutation matrix |
| 167 | */ |
| 168 | static const int final_perm[64] = { |
| 169 | 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, |
| 170 | 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, |
| 171 | 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, |
| 172 | 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 |
| 173 | }; |
| 174 | |
| 175 | #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') |
| 176 | #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') |
| 177 | |
| 178 | static const ufc_long BITMASK[24] = { |
| 179 | 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, |
| 180 | 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, |
| 181 | 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, |
| 182 | 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008 |
| 183 | }; |
| 184 | |
| 185 | static const unsigned char bytemask[8] = { |
| 186 | 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 |
| 187 | }; |
| 188 | |
| 189 | static const ufc_long longmask[32] = { |
| 190 | 0x80000000, 0x40000000, 0x20000000, 0x10000000, |
| 191 | 0x08000000, 0x04000000, 0x02000000, 0x01000000, |
| 192 | 0x00800000, 0x00400000, 0x00200000, 0x00100000, |
| 193 | 0x00080000, 0x00040000, 0x00020000, 0x00010000, |
| 194 | 0x00008000, 0x00004000, 0x00002000, 0x00001000, |
| 195 | 0x00000800, 0x00000400, 0x00000200, 0x00000100, |
| 196 | 0x00000080, 0x00000040, 0x00000020, 0x00000010, |
| 197 | 0x00000008, 0x00000004, 0x00000002, 0x00000001 |
| 198 | }; |
| 199 | |
| 200 | /* |
| 201 | * do_pc1: permform pc1 permutation in the key schedule generation. |
| 202 | * |
| 203 | * The first index is the byte number in the 8 byte ASCII key |
| 204 | * - second - - the two 28 bits halfs of the result |
| 205 | * - third - selects the 7 bits actually used of each byte |
| 206 | * |
| 207 | * The result is kept with 28 bit per 32 bit with the 4 most significant |
| 208 | * bits zero. |
| 209 | */ |
| 210 | static ufc_long do_pc1[8][2][128]; |
| 211 | |
| 212 | /* |
| 213 | * do_pc2: permform pc2 permutation in the key schedule generation. |
| 214 | * |
| 215 | * The first index is the septet number in the two 28 bit intermediate values |
| 216 | * - second - - - septet values |
| 217 | * |
| 218 | * Knowledge of the structure of the pc2 permutation is used. |
| 219 | * |
| 220 | * The result is kept with 28 bit per 32 bit with the 4 most significant |
| 221 | * bits zero. |
| 222 | */ |
| 223 | static ufc_long do_pc2[8][128]; |
| 224 | |
| 225 | /* |
| 226 | * eperm32tab: do 32 bit permutation and E selection |
| 227 | * |
| 228 | * The first index is the byte number in the 32 bit value to be permuted |
| 229 | * - second - is the value of this byte |
| 230 | * - third - selects the two 32 bit values |
| 231 | * |
| 232 | * The table is used and generated internally in init_des to speed it up |
| 233 | */ |
| 234 | static ufc_long eperm32tab[4][256][2]; |
| 235 | |
| 236 | /* |
| 237 | * efp: undo an extra e selection and do final |
| 238 | * permutation giving the DES result. |
| 239 | * |
| 240 | * Invoked 6 bit a time on two 48 bit values |
| 241 | * giving two 32 bit longs. |
| 242 | */ |
| 243 | static ufc_long efp[16][64][2]; |
| 244 | |
| 245 | /* Table with characters for base64 transformation. */ |
| 246 | static const char b64t[64] = |
| 247 | "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
| 248 | |
| 249 | /* |
| 250 | * For use by the old, non-reentrant routines |
| 251 | * (crypt/encrypt/setkey) |
| 252 | */ |
| 253 | struct crypt_data _ufc_foobar; |
| 254 | |
| 255 | #ifdef __GNU_LIBRARY__ |
| 256 | #include <bits/libc-lock.h> |
| 257 | |
| 258 | __libc_lock_define_initialized (static, _ufc_tables_lock) |
| 259 | #endif |
| 260 | |
| 261 | #ifdef DEBUG |
| 262 | |
| 263 | void |
| 264 | _ufc_prbits(a, n) |
| 265 | ufc_long *a; |
| 266 | int n; |
| 267 | { |
| 268 | ufc_long i, j, t, tmp; |
| 269 | n /= 8; |
| 270 | for(i = 0; i < n; i++) { |
| 271 | tmp=0; |
| 272 | for(j = 0; j < 8; j++) { |
| 273 | t=8*i+j; |
| 274 | tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0; |
| 275 | } |
| 276 | (void)printf("%02x ",tmp); |
| 277 | } |
| 278 | printf(" "); |
| 279 | } |
| 280 | |
| 281 | static void |
| 282 | _ufc_set_bits(v, b) |
| 283 | ufc_long v; |
| 284 | ufc_long *b; |
| 285 | { |
| 286 | ufc_long i; |
| 287 | *b = 0; |
| 288 | for(i = 0; i < 24; i++) { |
| 289 | if(v & longmask[8 + i]) |
| 290 | *b |= BITMASK[i]; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | #endif |
| 295 | |
| 296 | #ifndef __GNU_LIBRARY__ |
| 297 | /* |
| 298 | * Silly rewrites of 'bzero'/'memset'. I do so |
| 299 | * because some machines don't have |
| 300 | * bzero and some don't have memset. |
| 301 | */ |
| 302 | |
| 303 | void |
| 304 | _ufc_clearmem(start, cnt) |
| 305 | char *start; |
| 306 | int cnt; |
| 307 | { |
| 308 | while(cnt--) |
| 309 | *start++ = '\0'; |
| 310 | } |
| 311 | |
| 312 | void |
| 313 | _ufc_copymem(from, to, cnt) |
| 314 | char *from, *to; |
| 315 | int cnt; |
| 316 | { |
| 317 | while(cnt--) |
| 318 | *to++ = *from++; |
| 319 | } |
| 320 | #else |
| 321 | #define _ufc_clearmem(start, cnt) memset(start, 0, cnt) |
| 322 | #define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt) |
| 323 | #endif |
| 324 | |
| 325 | /* lookup a 6 bit value in sbox */ |
| 326 | |
| 327 | #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; |
| 328 | |
| 329 | /* |
| 330 | * Initialize unit - may be invoked directly |
| 331 | * by fcrypt users. |
| 332 | */ |
| 333 | |
| 334 | void |
| 335 | __init_des_r(__data) |
| 336 | struct crypt_data * __restrict __data; |
| 337 | { |
| 338 | int comes_from_bit; |
| 339 | int bit, sg; |
| 340 | ufc_long j; |
| 341 | ufc_long mask1, mask2; |
| 342 | int e_inverse[64]; |
| 343 | static volatile int small_tables_initialized = 0; |
| 344 | |
| 345 | #ifdef _UFC_32_ |
| 346 | long32 *sb[4]; |
| 347 | sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1; |
| 348 | sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3; |
| 349 | #endif |
| 350 | #ifdef _UFC_64_ |
| 351 | long64 *sb[4]; |
| 352 | sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1; |
| 353 | sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3; |
| 354 | #endif |
| 355 | |
| 356 | if(small_tables_initialized == 0) { |
| 357 | #ifdef __GNU_LIBRARY__ |
| 358 | __libc_lock_lock (_ufc_tables_lock); |
| 359 | if(small_tables_initialized) |
| 360 | goto small_tables_done; |
| 361 | #endif |
| 362 | |
| 363 | /* |
| 364 | * Create the do_pc1 table used |
| 365 | * to affect pc1 permutation |
| 366 | * when generating keys |
| 367 | */ |
| 368 | _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1)); |
| 369 | for(bit = 0; bit < 56; bit++) { |
| 370 | comes_from_bit = pc1[bit] - 1; |
| 371 | mask1 = bytemask[comes_from_bit % 8 + 1]; |
| 372 | mask2 = longmask[bit % 28 + 4]; |
| 373 | for(j = 0; j < 128; j++) { |
| 374 | if(j & mask1) |
| 375 | do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2; |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | /* |
| 380 | * Create the do_pc2 table used |
| 381 | * to affect pc2 permutation when |
| 382 | * generating keys |
| 383 | */ |
| 384 | _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2)); |
| 385 | for(bit = 0; bit < 48; bit++) { |
| 386 | comes_from_bit = pc2[bit] - 1; |
| 387 | mask1 = bytemask[comes_from_bit % 7 + 1]; |
| 388 | mask2 = BITMASK[bit % 24]; |
| 389 | for(j = 0; j < 128; j++) { |
| 390 | if(j & mask1) |
| 391 | do_pc2[comes_from_bit / 7][j] |= mask2; |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Now generate the table used to do combined |
| 397 | * 32 bit permutation and e expansion |
| 398 | * |
| 399 | * We use it because we have to permute 16384 32 bit |
| 400 | * longs into 48 bit in order to initialize sb. |
| 401 | * |
| 402 | * Looping 48 rounds per permutation becomes |
| 403 | * just too slow... |
| 404 | * |
| 405 | */ |
| 406 | |
| 407 | _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab)); |
| 408 | for(bit = 0; bit < 48; bit++) { |
| 409 | ufc_long mask1,comes_from; |
| 410 | comes_from = perm32[esel[bit]-1]-1; |
| 411 | mask1 = bytemask[comes_from % 8]; |
| 412 | for(j = 256; j--;) { |
| 413 | if(j & mask1) |
| 414 | eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24]; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * Create an inverse matrix for esel telling |
| 420 | * where to plug out bits if undoing it |
| 421 | */ |
| 422 | for(bit=48; bit--;) { |
| 423 | e_inverse[esel[bit] - 1 ] = bit; |
| 424 | e_inverse[esel[bit] - 1 + 32] = bit + 48; |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * create efp: the matrix used to |
| 429 | * undo the E expansion and effect final permutation |
| 430 | */ |
| 431 | _ufc_clearmem((char*)efp, (int)sizeof efp); |
| 432 | for(bit = 0; bit < 64; bit++) { |
| 433 | int o_bit, o_long; |
| 434 | ufc_long word_value, mask1, mask2; |
| 435 | int comes_from_f_bit, comes_from_e_bit; |
| 436 | int comes_from_word, bit_within_word; |
| 437 | |
| 438 | /* See where bit i belongs in the two 32 bit long's */ |
| 439 | o_long = bit / 32; /* 0..1 */ |
| 440 | o_bit = bit % 32; /* 0..31 */ |
| 441 | |
| 442 | /* |
| 443 | * And find a bit in the e permutated value setting this bit. |
| 444 | * |
| 445 | * Note: the e selection may have selected the same bit several |
| 446 | * times. By the initialization of e_inverse, we only look |
| 447 | * for one specific instance. |
| 448 | */ |
| 449 | comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */ |
| 450 | comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ |
| 451 | comes_from_word = comes_from_e_bit / 6; /* 0..15 */ |
| 452 | bit_within_word = comes_from_e_bit % 6; /* 0..5 */ |
| 453 | |
| 454 | mask1 = longmask[bit_within_word + 26]; |
| 455 | mask2 = longmask[o_bit]; |
| 456 | |
| 457 | for(word_value = 64; word_value--;) { |
| 458 | if(word_value & mask1) |
| 459 | efp[comes_from_word][word_value][o_long] |= mask2; |
| 460 | } |
| 461 | } |
| 462 | atomic_write_barrier (); |
| 463 | small_tables_initialized = 1; |
| 464 | #ifdef __GNU_LIBRARY__ |
| 465 | small_tables_done: |
| 466 | __libc_lock_unlock(_ufc_tables_lock); |
| 467 | #endif |
| 468 | } else |
| 469 | atomic_read_barrier (); |
| 470 | |
| 471 | /* |
| 472 | * Create the sb tables: |
| 473 | * |
| 474 | * For each 12 bit segment of an 48 bit intermediate |
| 475 | * result, the sb table precomputes the two 4 bit |
| 476 | * values of the sbox lookups done with the two 6 |
| 477 | * bit halves, shifts them to their proper place, |
| 478 | * sends them through perm32 and finally E expands |
| 479 | * them so that they are ready for the next |
| 480 | * DES round. |
| 481 | * |
| 482 | */ |
| 483 | |
| 484 | if (__data->sb0 + sizeof (__data->sb0) == __data->sb1 |
| 485 | && __data->sb1 + sizeof (__data->sb1) == __data->sb2 |
| 486 | && __data->sb2 + sizeof (__data->sb2) == __data->sb3) |
| 487 | _ufc_clearmem(__data->sb0, |
| 488 | (int)sizeof(__data->sb0) |
| 489 | + (int)sizeof(__data->sb1) |
| 490 | + (int)sizeof(__data->sb2) |
| 491 | + (int)sizeof(__data->sb3)); |
| 492 | else { |
| 493 | _ufc_clearmem(__data->sb0, (int)sizeof(__data->sb0)); |
| 494 | _ufc_clearmem(__data->sb1, (int)sizeof(__data->sb1)); |
| 495 | _ufc_clearmem(__data->sb2, (int)sizeof(__data->sb2)); |
| 496 | _ufc_clearmem(__data->sb3, (int)sizeof(__data->sb3)); |
| 497 | } |
| 498 | |
| 499 | for(sg = 0; sg < 4; sg++) { |
| 500 | int j1, j2; |
| 501 | int s1, s2; |
| 502 | |
| 503 | for(j1 = 0; j1 < 64; j1++) { |
| 504 | s1 = s_lookup(2 * sg, j1); |
| 505 | for(j2 = 0; j2 < 64; j2++) { |
| 506 | ufc_long to_permute, inx; |
| 507 | |
| 508 | s2 = s_lookup(2 * sg + 1, j2); |
| 509 | to_permute = (((ufc_long)s1 << 4) | |
| 510 | (ufc_long)s2) << (24 - 8 * (ufc_long)sg); |
| 511 | |
| 512 | #ifdef _UFC_32_ |
| 513 | inx = ((j1 << 6) | j2) << 1; |
| 514 | sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; |
| 515 | sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; |
| 516 | sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; |
| 517 | sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; |
| 518 | sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; |
| 519 | sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; |
| 520 | sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; |
| 521 | sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1]; |
| 522 | #endif |
| 523 | #ifdef _UFC_64_ |
| 524 | inx = ((j1 << 6) | j2); |
| 525 | sb[sg][inx] = |
| 526 | ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | |
| 527 | (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; |
| 528 | sb[sg][inx] |= |
| 529 | ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | |
| 530 | (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; |
| 531 | sb[sg][inx] |= |
| 532 | ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) | |
| 533 | (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1]; |
| 534 | sb[sg][inx] |= |
| 535 | ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) | |
| 536 | (long64)eperm32tab[3][(to_permute) & 0xff][1]; |
| 537 | #endif |
| 538 | } |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | __data->current_saltbits = 0; |
| 543 | __data->current_salt[0] = 0; |
| 544 | __data->current_salt[1] = 0; |
| 545 | __data->initialized++; |
| 546 | } |
| 547 | |
| 548 | void |
| 549 | __init_des (void) |
| 550 | { |
| 551 | __init_des_r(&_ufc_foobar); |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * Process the elements of the sb table permuting the |
| 556 | * bits swapped in the expansion by the current salt. |
| 557 | */ |
| 558 | |
| 559 | #ifdef _UFC_32_ |
| 560 | STATIC void |
| 561 | shuffle_sb(k, saltbits) |
| 562 | long32 *k; |
| 563 | ufc_long saltbits; |
| 564 | { |
| 565 | ufc_long j; |
| 566 | long32 x; |
| 567 | for(j=4096; j--;) { |
| 568 | x = (k[0] ^ k[1]) & (long32)saltbits; |
| 569 | *k++ ^= x; |
| 570 | *k++ ^= x; |
| 571 | } |
| 572 | } |
| 573 | #endif |
| 574 | |
| 575 | #ifdef _UFC_64_ |
| 576 | STATIC void |
| 577 | shuffle_sb(k, saltbits) |
| 578 | long64 *k; |
| 579 | ufc_long saltbits; |
| 580 | { |
| 581 | ufc_long j; |
| 582 | long64 x; |
| 583 | for(j=4096; j--;) { |
| 584 | x = ((*k >> 32) ^ *k) & (long64)saltbits; |
| 585 | *k++ ^= (x << 32) | x; |
| 586 | } |
| 587 | } |
| 588 | #endif |
| 589 | |
| 590 | /* |
| 591 | * Return false iff C is in the specified alphabet for crypt salt. |
| 592 | */ |
| 593 | |
| 594 | static bool |
| 595 | bad_for_salt (char c) |
| 596 | { |
| 597 | switch (c) |
| 598 | { |
| 599 | case '0' ... '9': |
| 600 | case 'A' ... 'Z': |
| 601 | case 'a' ... 'z': |
| 602 | case '.': case '/': |
| 603 | return false; |
| 604 | |
| 605 | default: |
| 606 | return true; |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * Setup the unit for a new salt |
| 612 | * Hopefully we'll not see a new salt in each crypt call. |
| 613 | * Return false if an unexpected character was found in s[0] or s[1]. |
| 614 | */ |
| 615 | |
| 616 | bool |
| 617 | _ufc_setup_salt_r(s, __data) |
| 618 | const char *s; |
| 619 | struct crypt_data * __restrict __data; |
| 620 | { |
| 621 | ufc_long i, j, saltbits; |
| 622 | char s0, s1; |
| 623 | |
| 624 | if(__data->initialized == 0) |
| 625 | __init_des_r(__data); |
| 626 | |
| 627 | s0 = s[0]; |
| 628 | if(bad_for_salt (s0)) |
| 629 | return false; |
| 630 | |
| 631 | s1 = s[1]; |
| 632 | if(bad_for_salt (s1)) |
| 633 | return false; |
| 634 | |
| 635 | if(s0 == __data->current_salt[0] && s1 == __data->current_salt[1]) |
| 636 | return true; |
| 637 | |
| 638 | __data->current_salt[0] = s0; |
| 639 | __data->current_salt[1] = s1; |
| 640 | |
| 641 | /* |
| 642 | * This is the only crypt change to DES: |
| 643 | * entries are swapped in the expansion table |
| 644 | * according to the bits set in the salt. |
| 645 | */ |
| 646 | saltbits = 0; |
| 647 | for(i = 0; i < 2; i++) { |
| 648 | long c=ascii_to_bin(s[i]); |
| 649 | for(j = 0; j < 6; j++) { |
| 650 | if((c >> j) & 0x1) |
| 651 | saltbits |= BITMASK[6 * i + j]; |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * Permute the sb table values |
| 657 | * to reflect the changed e |
| 658 | * selection table |
| 659 | */ |
| 660 | #ifdef _UFC_32_ |
| 661 | #define LONGG long32* |
| 662 | #endif |
| 663 | #ifdef _UFC_64_ |
| 664 | #define LONGG long64* |
| 665 | #endif |
| 666 | |
| 667 | shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits); |
| 668 | shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits); |
| 669 | shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits); |
| 670 | shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits); |
| 671 | |
| 672 | __data->current_saltbits = saltbits; |
| 673 | |
| 674 | return true; |
| 675 | } |
| 676 | |
| 677 | void |
| 678 | _ufc_mk_keytab_r(key, __data) |
| 679 | const char *key; |
| 680 | struct crypt_data * __restrict __data; |
| 681 | { |
| 682 | ufc_long v1, v2, *k1; |
| 683 | int i; |
| 684 | #ifdef _UFC_32_ |
| 685 | long32 v, *k2; |
| 686 | k2 = (long32*)__data->keysched; |
| 687 | #endif |
| 688 | #ifdef _UFC_64_ |
| 689 | long64 v, *k2; |
| 690 | k2 = (long64*)__data->keysched; |
| 691 | #endif |
| 692 | |
| 693 | v1 = v2 = 0; k1 = &do_pc1[0][0][0]; |
| 694 | for(i = 8; i--;) { |
| 695 | v1 |= k1[*key & 0x7f]; k1 += 128; |
| 696 | v2 |= k1[*key++ & 0x7f]; k1 += 128; |
| 697 | } |
| 698 | |
| 699 | for(i = 0; i < 16; i++) { |
| 700 | k1 = &do_pc2[0][0]; |
| 701 | |
| 702 | v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); |
| 703 | v = k1[(v1 >> 21) & 0x7f]; k1 += 128; |
| 704 | v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; |
| 705 | v |= k1[(v1 >> 7) & 0x7f]; k1 += 128; |
| 706 | v |= k1[(v1 ) & 0x7f]; k1 += 128; |
| 707 | |
| 708 | #ifdef _UFC_32_ |
| 709 | *k2++ = (v | 0x00008000); |
| 710 | v = 0; |
| 711 | #endif |
| 712 | #ifdef _UFC_64_ |
| 713 | v = (v << 32); |
| 714 | #endif |
| 715 | |
| 716 | v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); |
| 717 | v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; |
| 718 | v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; |
| 719 | v |= k1[(v2 >> 7) & 0x7f]; k1 += 128; |
| 720 | v |= k1[(v2 ) & 0x7f]; |
| 721 | |
| 722 | #ifdef _UFC_32_ |
| 723 | *k2++ = (v | 0x00008000); |
| 724 | #endif |
| 725 | #ifdef _UFC_64_ |
| 726 | *k2++ = v | 0x0000800000008000l; |
| 727 | #endif |
| 728 | } |
| 729 | |
| 730 | __data->direction = 0; |
| 731 | } |
| 732 | |
| 733 | /* |
| 734 | * Undo an extra E selection and do final permutations |
| 735 | */ |
| 736 | |
| 737 | void |
| 738 | _ufc_dofinalperm_r(res, __data) |
| 739 | ufc_long *res; |
| 740 | struct crypt_data * __restrict __data; |
| 741 | { |
| 742 | ufc_long v1, v2, x; |
| 743 | ufc_long l1,l2,r1,r2; |
| 744 | |
| 745 | l1 = res[0]; l2 = res[1]; |
| 746 | r1 = res[2]; r2 = res[3]; |
| 747 | |
| 748 | x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x; |
| 749 | x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x; |
| 750 | |
| 751 | v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; |
| 752 | |
| 753 | v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; |
| 754 | v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; |
| 755 | v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; |
| 756 | v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; |
| 757 | |
| 758 | v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; |
| 759 | v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; |
| 760 | v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; |
| 761 | v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; |
| 762 | |
| 763 | v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; |
| 764 | v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; |
| 765 | v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; |
| 766 | v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; |
| 767 | |
| 768 | v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; |
| 769 | v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; |
| 770 | v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; |
| 771 | v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; |
| 772 | |
| 773 | res[0] = v1; res[1] = v2; |
| 774 | } |
| 775 | |
| 776 | /* |
| 777 | * crypt only: convert from 64 bit to 11 bit ASCII |
| 778 | * prefixing with the salt |
| 779 | */ |
| 780 | |
| 781 | void |
| 782 | _ufc_output_conversion_r(v1, v2, salt, __data) |
| 783 | ufc_long v1, v2; |
| 784 | const char *salt; |
| 785 | struct crypt_data * __restrict __data; |
| 786 | { |
| 787 | int i, s, shf; |
| 788 | |
| 789 | __data->crypt_3_buf[0] = salt[0]; |
| 790 | __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0]; |
| 791 | |
| 792 | for(i = 0; i < 5; i++) { |
| 793 | shf = (26 - 6 * i); /* to cope with MSC compiler bug */ |
| 794 | __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f); |
| 795 | } |
| 796 | |
| 797 | s = (v2 & 0xf) << 2; |
| 798 | v2 = (v2 >> 2) | ((v1 & 0x3) << 30); |
| 799 | |
| 800 | for(i = 5; i < 10; i++) { |
| 801 | shf = (56 - 6 * i); |
| 802 | __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f); |
| 803 | } |
| 804 | |
| 805 | __data->crypt_3_buf[12] = bin_to_ascii(s); |
| 806 | __data->crypt_3_buf[13] = 0; |
| 807 | } |
| 808 | |
| 809 | |
| 810 | /* |
| 811 | * UNIX encrypt function. Takes a bitvector |
| 812 | * represented by one byte per bit and |
| 813 | * encrypt/decrypt according to edflag |
| 814 | */ |
| 815 | |
| 816 | void |
| 817 | __encrypt_r(__block, __edflag, __data) |
| 818 | char *__block; |
| 819 | int __edflag; |
| 820 | struct crypt_data * __restrict __data; |
| 821 | { |
| 822 | ufc_long l1, l2, r1, r2, res[4]; |
| 823 | int i; |
| 824 | #ifdef _UFC_32_ |
| 825 | long32 *kt; |
| 826 | kt = (long32*)__data->keysched; |
| 827 | #endif |
| 828 | #ifdef _UFC_64_ |
| 829 | long64 *kt; |
| 830 | kt = (long64*)__data->keysched; |
| 831 | #endif |
| 832 | |
| 833 | /* |
| 834 | * Undo any salt changes to E expansion |
| 835 | */ |
| 836 | _ufc_setup_salt_r("..", __data); |
| 837 | |
| 838 | /* |
| 839 | * Reverse key table if |
| 840 | * changing operation (encrypt/decrypt) |
| 841 | */ |
| 842 | if((__edflag == 0) != (__data->direction == 0)) { |
| 843 | for(i = 0; i < 8; i++) { |
| 844 | #ifdef _UFC_32_ |
| 845 | long32 x; |
| 846 | x = kt[2 * (15-i)]; |
| 847 | kt[2 * (15-i)] = kt[2 * i]; |
| 848 | kt[2 * i] = x; |
| 849 | |
| 850 | x = kt[2 * (15-i) + 1]; |
| 851 | kt[2 * (15-i) + 1] = kt[2 * i + 1]; |
| 852 | kt[2 * i + 1] = x; |
| 853 | #endif |
| 854 | #ifdef _UFC_64_ |
| 855 | long64 x; |
| 856 | x = kt[15-i]; |
| 857 | kt[15-i] = kt[i]; |
| 858 | kt[i] = x; |
| 859 | #endif |
| 860 | } |
| 861 | __data->direction = __edflag; |
| 862 | } |
| 863 | |
| 864 | /* |
| 865 | * Do initial permutation + E expansion |
| 866 | */ |
| 867 | i = 0; |
| 868 | for(l1 = 0; i < 24; i++) { |
| 869 | if(__block[initial_perm[esel[i]-1]-1]) |
| 870 | l1 |= BITMASK[i]; |
| 871 | } |
| 872 | for(l2 = 0; i < 48; i++) { |
| 873 | if(__block[initial_perm[esel[i]-1]-1]) |
| 874 | l2 |= BITMASK[i-24]; |
| 875 | } |
| 876 | |
| 877 | i = 0; |
| 878 | for(r1 = 0; i < 24; i++) { |
| 879 | if(__block[initial_perm[esel[i]-1+32]-1]) |
| 880 | r1 |= BITMASK[i]; |
| 881 | } |
| 882 | for(r2 = 0; i < 48; i++) { |
| 883 | if(__block[initial_perm[esel[i]-1+32]-1]) |
| 884 | r2 |= BITMASK[i-24]; |
| 885 | } |
| 886 | |
| 887 | /* |
| 888 | * Do DES inner loops + final conversion |
| 889 | */ |
| 890 | res[0] = l1; res[1] = l2; |
| 891 | res[2] = r1; res[3] = r2; |
| 892 | _ufc_doit_r((ufc_long)1, __data, &res[0]); |
| 893 | |
| 894 | /* |
| 895 | * Do final permutations |
| 896 | */ |
| 897 | _ufc_dofinalperm_r(res, __data); |
| 898 | |
| 899 | /* |
| 900 | * And convert to bit array |
| 901 | */ |
| 902 | l1 = res[0]; r1 = res[1]; |
| 903 | for(i = 0; i < 32; i++) { |
| 904 | *__block++ = (l1 & longmask[i]) != 0; |
| 905 | } |
| 906 | for(i = 0; i < 32; i++) { |
| 907 | *__block++ = (r1 & longmask[i]) != 0; |
| 908 | } |
| 909 | } |
| 910 | weak_alias (__encrypt_r, encrypt_r) |
| 911 | |
| 912 | void |
| 913 | encrypt(__block, __edflag) |
| 914 | char *__block; |
| 915 | int __edflag; |
| 916 | { |
| 917 | __encrypt_r(__block, __edflag, &_ufc_foobar); |
| 918 | } |
| 919 | |
| 920 | |
| 921 | /* |
| 922 | * UNIX setkey function. Take a 64 bit DES |
| 923 | * key and setup the machinery. |
| 924 | */ |
| 925 | |
| 926 | void |
| 927 | __setkey_r(__key, __data) |
| 928 | const char *__key; |
| 929 | struct crypt_data * __restrict __data; |
| 930 | { |
| 931 | int i,j; |
| 932 | unsigned char c; |
| 933 | unsigned char ktab[8]; |
| 934 | |
| 935 | _ufc_setup_salt_r("..", __data); /* be sure we're initialized */ |
| 936 | |
| 937 | for(i = 0; i < 8; i++) { |
| 938 | for(j = 0, c = 0; j < 8; j++) |
| 939 | c = c << 1 | *__key++; |
| 940 | ktab[i] = c >> 1; |
| 941 | } |
| 942 | _ufc_mk_keytab_r((char *) ktab, __data); |
| 943 | } |
| 944 | weak_alias (__setkey_r, setkey_r) |
| 945 | |
| 946 | void |
| 947 | setkey(__key) |
| 948 | const char *__key; |
| 949 | { |
| 950 | __setkey_r(__key, &_ufc_foobar); |
| 951 | } |
| 952 | |
| 953 | void |
| 954 | __b64_from_24bit (char **cp, int *buflen, |
| 955 | unsigned int b2, unsigned int b1, unsigned int b0, |
| 956 | int n) |
| 957 | { |
| 958 | unsigned int w = (b2 << 16) | (b1 << 8) | b0; |
| 959 | while (n-- > 0 && (*buflen) > 0) |
| 960 | { |
| 961 | *(*cp)++ = b64t[w & 0x3f]; |
| 962 | --(*buflen); |
| 963 | w >>= 6; |
| 964 | } |
| 965 | } |