lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* One way encryption based on SHA256 sum. |
| 2 | Copyright (C) 2007-2015 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2007. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include <assert.h> |
| 21 | #include <errno.h> |
| 22 | #include <stdbool.h> |
| 23 | #include <stdlib.h> |
| 24 | #include <string.h> |
| 25 | #include <stdint.h> |
| 26 | #include <sys/param.h> |
| 27 | |
| 28 | #include "sha256.h" |
| 29 | #include "crypt-private.h" |
| 30 | |
| 31 | |
| 32 | #ifdef USE_NSS |
| 33 | typedef int PRBool; |
| 34 | # include <hasht.h> |
| 35 | # include <nsslowhash.h> |
| 36 | |
| 37 | # define sha256_init_ctx(ctxp, nss_ctxp) \ |
| 38 | do \ |
| 39 | { \ |
| 40 | if (((nss_ctxp = NSSLOWHASH_NewContext (nss_ictx, HASH_AlgSHA256)) \ |
| 41 | == NULL)) \ |
| 42 | { \ |
| 43 | if (nss_ctx != NULL) \ |
| 44 | NSSLOWHASH_Destroy (nss_ctx); \ |
| 45 | if (nss_alt_ctx != NULL) \ |
| 46 | NSSLOWHASH_Destroy (nss_alt_ctx); \ |
| 47 | return NULL; \ |
| 48 | } \ |
| 49 | NSSLOWHASH_Begin (nss_ctxp); \ |
| 50 | } \ |
| 51 | while (0) |
| 52 | |
| 53 | # define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \ |
| 54 | NSSLOWHASH_Update (nss_ctxp, (const unsigned char *) buf, len) |
| 55 | |
| 56 | # define sha256_finish_ctx(ctxp, nss_ctxp, result) \ |
| 57 | do \ |
| 58 | { \ |
| 59 | unsigned int ret; \ |
| 60 | NSSLOWHASH_End (nss_ctxp, result, &ret, sizeof (result)); \ |
| 61 | assert (ret == sizeof (result)); \ |
| 62 | NSSLOWHASH_Destroy (nss_ctxp); \ |
| 63 | nss_ctxp = NULL; \ |
| 64 | } \ |
| 65 | while (0) |
| 66 | #else |
| 67 | # define sha256_init_ctx(ctxp, nss_ctxp) \ |
| 68 | __sha256_init_ctx (ctxp) |
| 69 | |
| 70 | # define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \ |
| 71 | __sha256_process_bytes(buf, len, ctxp) |
| 72 | |
| 73 | # define sha256_finish_ctx(ctxp, nss_ctxp, result) \ |
| 74 | __sha256_finish_ctx (ctxp, result) |
| 75 | #endif |
| 76 | |
| 77 | |
| 78 | /* Define our magic string to mark salt for SHA256 "encryption" |
| 79 | replacement. */ |
| 80 | static const char sha256_salt_prefix[] = "$5$"; |
| 81 | |
| 82 | /* Prefix for optional rounds specification. */ |
| 83 | static const char sha256_rounds_prefix[] = "rounds="; |
| 84 | |
| 85 | /* Maximum salt string length. */ |
| 86 | #define SALT_LEN_MAX 16 |
| 87 | /* Default number of rounds if not explicitly specified. */ |
| 88 | #define ROUNDS_DEFAULT 5000 |
| 89 | /* Minimum number of rounds. */ |
| 90 | #define ROUNDS_MIN 1000 |
| 91 | /* Maximum number of rounds. */ |
| 92 | #define ROUNDS_MAX 999999999 |
| 93 | |
| 94 | |
| 95 | /* Prototypes for local functions. */ |
| 96 | extern char *__sha256_crypt_r (const char *key, const char *salt, |
| 97 | char *buffer, int buflen); |
| 98 | extern char *__sha256_crypt (const char *key, const char *salt); |
| 99 | |
| 100 | |
| 101 | char * |
| 102 | __sha256_crypt_r (key, salt, buffer, buflen) |
| 103 | const char *key; |
| 104 | const char *salt; |
| 105 | char *buffer; |
| 106 | int buflen; |
| 107 | { |
| 108 | unsigned char alt_result[32] |
| 109 | __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); |
| 110 | unsigned char temp_result[32] |
| 111 | __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); |
| 112 | size_t salt_len; |
| 113 | size_t key_len; |
| 114 | size_t cnt; |
| 115 | char *cp; |
| 116 | char *copied_key = NULL; |
| 117 | char *copied_salt = NULL; |
| 118 | char *p_bytes; |
| 119 | char *s_bytes; |
| 120 | /* Default number of rounds. */ |
| 121 | size_t rounds = ROUNDS_DEFAULT; |
| 122 | bool rounds_custom = false; |
| 123 | size_t alloca_used = 0; |
| 124 | char *free_key = NULL; |
| 125 | char *free_pbytes = NULL; |
| 126 | |
| 127 | /* Find beginning of salt string. The prefix should normally always |
| 128 | be present. Just in case it is not. */ |
| 129 | if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0) |
| 130 | /* Skip salt prefix. */ |
| 131 | salt += sizeof (sha256_salt_prefix) - 1; |
| 132 | |
| 133 | if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1) |
| 134 | == 0) |
| 135 | { |
| 136 | const char *num = salt + sizeof (sha256_rounds_prefix) - 1; |
| 137 | char *endp; |
| 138 | unsigned long int srounds = strtoul (num, &endp, 10); |
| 139 | if (*endp == '$') |
| 140 | { |
| 141 | salt = endp + 1; |
| 142 | rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX)); |
| 143 | rounds_custom = true; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX); |
| 148 | key_len = strlen (key); |
| 149 | |
| 150 | if ((key - (char *) 0) % __alignof__ (uint32_t) != 0) |
| 151 | { |
| 152 | char *tmp; |
| 153 | |
| 154 | if (__libc_use_alloca (alloca_used + key_len + __alignof__ (uint32_t))) |
| 155 | tmp = alloca_account (key_len + __alignof__ (uint32_t), alloca_used); |
| 156 | else |
| 157 | { |
| 158 | free_key = tmp = (char *) malloc (key_len + __alignof__ (uint32_t)); |
| 159 | if (tmp == NULL) |
| 160 | return NULL; |
| 161 | } |
| 162 | |
| 163 | key = copied_key = |
| 164 | memcpy (tmp + __alignof__ (uint32_t) |
| 165 | - (tmp - (char *) 0) % __alignof__ (uint32_t), |
| 166 | key, key_len); |
| 167 | assert ((key - (char *) 0) % __alignof__ (uint32_t) == 0); |
| 168 | } |
| 169 | |
| 170 | if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0) |
| 171 | { |
| 172 | char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t)); |
| 173 | alloca_used += salt_len + __alignof__ (uint32_t); |
| 174 | salt = copied_salt = |
| 175 | memcpy (tmp + __alignof__ (uint32_t) |
| 176 | - (tmp - (char *) 0) % __alignof__ (uint32_t), |
| 177 | salt, salt_len); |
| 178 | assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0); |
| 179 | } |
| 180 | |
| 181 | #ifdef USE_NSS |
| 182 | /* Initialize libfreebl3. */ |
| 183 | NSSLOWInitContext *nss_ictx = NSSLOW_Init (); |
| 184 | if (nss_ictx == NULL) |
| 185 | { |
| 186 | free (free_key); |
| 187 | return NULL; |
| 188 | } |
| 189 | NSSLOWHASHContext *nss_ctx = NULL; |
| 190 | NSSLOWHASHContext *nss_alt_ctx = NULL; |
| 191 | #else |
| 192 | struct sha256_ctx ctx; |
| 193 | struct sha256_ctx alt_ctx; |
| 194 | #endif |
| 195 | |
| 196 | /* Prepare for the real work. */ |
| 197 | sha256_init_ctx (&ctx, nss_ctx); |
| 198 | |
| 199 | /* Add the key string. */ |
| 200 | sha256_process_bytes (key, key_len, &ctx, nss_ctx); |
| 201 | |
| 202 | /* The last part is the salt string. This must be at most 16 |
| 203 | characters and it ends at the first `$' character. */ |
| 204 | sha256_process_bytes (salt, salt_len, &ctx, nss_ctx); |
| 205 | |
| 206 | |
| 207 | /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The |
| 208 | final result will be added to the first context. */ |
| 209 | sha256_init_ctx (&alt_ctx, nss_alt_ctx); |
| 210 | |
| 211 | /* Add key. */ |
| 212 | sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx); |
| 213 | |
| 214 | /* Add salt. */ |
| 215 | sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx); |
| 216 | |
| 217 | /* Add key again. */ |
| 218 | sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx); |
| 219 | |
| 220 | /* Now get result of this (32 bytes) and add it to the other |
| 221 | context. */ |
| 222 | sha256_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result); |
| 223 | |
| 224 | /* Add for any character in the key one byte of the alternate sum. */ |
| 225 | for (cnt = key_len; cnt > 32; cnt -= 32) |
| 226 | sha256_process_bytes (alt_result, 32, &ctx, nss_ctx); |
| 227 | sha256_process_bytes (alt_result, cnt, &ctx, nss_ctx); |
| 228 | |
| 229 | /* Take the binary representation of the length of the key and for every |
| 230 | 1 add the alternate sum, for every 0 the key. */ |
| 231 | for (cnt = key_len; cnt > 0; cnt >>= 1) |
| 232 | if ((cnt & 1) != 0) |
| 233 | sha256_process_bytes (alt_result, 32, &ctx, nss_ctx); |
| 234 | else |
| 235 | sha256_process_bytes (key, key_len, &ctx, nss_ctx); |
| 236 | |
| 237 | /* Create intermediate result. */ |
| 238 | sha256_finish_ctx (&ctx, nss_ctx, alt_result); |
| 239 | |
| 240 | /* Start computation of P byte sequence. */ |
| 241 | sha256_init_ctx (&alt_ctx, nss_alt_ctx); |
| 242 | |
| 243 | /* For every character in the password add the entire password. */ |
| 244 | for (cnt = 0; cnt < key_len; ++cnt) |
| 245 | sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx); |
| 246 | |
| 247 | /* Finish the digest. */ |
| 248 | sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result); |
| 249 | |
| 250 | /* Create byte sequence P. */ |
| 251 | if (__libc_use_alloca (alloca_used + key_len)) |
| 252 | cp = p_bytes = (char *) alloca (key_len); |
| 253 | else |
| 254 | { |
| 255 | free_pbytes = cp = p_bytes = (char *)malloc (key_len); |
| 256 | if (free_pbytes == NULL) |
| 257 | { |
| 258 | free (free_key); |
| 259 | return NULL; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | for (cnt = key_len; cnt >= 32; cnt -= 32) |
| 264 | cp = mempcpy (cp, temp_result, 32); |
| 265 | memcpy (cp, temp_result, cnt); |
| 266 | |
| 267 | /* Start computation of S byte sequence. */ |
| 268 | sha256_init_ctx (&alt_ctx, nss_alt_ctx); |
| 269 | |
| 270 | /* For every character in the password add the entire password. */ |
| 271 | for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) |
| 272 | sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx); |
| 273 | |
| 274 | /* Finish the digest. */ |
| 275 | sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result); |
| 276 | |
| 277 | /* Create byte sequence S. */ |
| 278 | cp = s_bytes = alloca (salt_len); |
| 279 | for (cnt = salt_len; cnt >= 32; cnt -= 32) |
| 280 | cp = mempcpy (cp, temp_result, 32); |
| 281 | memcpy (cp, temp_result, cnt); |
| 282 | |
| 283 | /* Repeatedly run the collected hash value through SHA256 to burn |
| 284 | CPU cycles. */ |
| 285 | for (cnt = 0; cnt < rounds; ++cnt) |
| 286 | { |
| 287 | /* New context. */ |
| 288 | sha256_init_ctx (&ctx, nss_ctx); |
| 289 | |
| 290 | /* Add key or last result. */ |
| 291 | if ((cnt & 1) != 0) |
| 292 | sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx); |
| 293 | else |
| 294 | sha256_process_bytes (alt_result, 32, &ctx, nss_ctx); |
| 295 | |
| 296 | /* Add salt for numbers not divisible by 3. */ |
| 297 | if (cnt % 3 != 0) |
| 298 | sha256_process_bytes (s_bytes, salt_len, &ctx, nss_ctx); |
| 299 | |
| 300 | /* Add key for numbers not divisible by 7. */ |
| 301 | if (cnt % 7 != 0) |
| 302 | sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx); |
| 303 | |
| 304 | /* Add key or last result. */ |
| 305 | if ((cnt & 1) != 0) |
| 306 | sha256_process_bytes (alt_result, 32, &ctx, nss_ctx); |
| 307 | else |
| 308 | sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx); |
| 309 | |
| 310 | /* Create intermediate result. */ |
| 311 | sha256_finish_ctx (&ctx, nss_ctx, alt_result); |
| 312 | } |
| 313 | |
| 314 | #ifdef USE_NSS |
| 315 | /* Free libfreebl3 resources. */ |
| 316 | NSSLOW_Shutdown (nss_ictx); |
| 317 | #endif |
| 318 | |
| 319 | /* Now we can construct the result string. It consists of three |
| 320 | parts. */ |
| 321 | cp = __stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen)); |
| 322 | buflen -= sizeof (sha256_salt_prefix) - 1; |
| 323 | |
| 324 | if (rounds_custom) |
| 325 | { |
| 326 | int n = snprintf (cp, MAX (0, buflen), "%s%zu$", |
| 327 | sha256_rounds_prefix, rounds); |
| 328 | cp += n; |
| 329 | buflen -= n; |
| 330 | } |
| 331 | |
| 332 | cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len)); |
| 333 | buflen -= MIN ((size_t) MAX (0, buflen), salt_len); |
| 334 | |
| 335 | if (buflen > 0) |
| 336 | { |
| 337 | *cp++ = '$'; |
| 338 | --buflen; |
| 339 | } |
| 340 | |
| 341 | __b64_from_24bit (&cp, &buflen, |
| 342 | alt_result[0], alt_result[10], alt_result[20], 4); |
| 343 | __b64_from_24bit (&cp, &buflen, |
| 344 | alt_result[21], alt_result[1], alt_result[11], 4); |
| 345 | __b64_from_24bit (&cp, &buflen, |
| 346 | alt_result[12], alt_result[22], alt_result[2], 4); |
| 347 | __b64_from_24bit (&cp, &buflen, |
| 348 | alt_result[3], alt_result[13], alt_result[23], 4); |
| 349 | __b64_from_24bit (&cp, &buflen, |
| 350 | alt_result[24], alt_result[4], alt_result[14], 4); |
| 351 | __b64_from_24bit (&cp, &buflen, |
| 352 | alt_result[15], alt_result[25], alt_result[5], 4); |
| 353 | __b64_from_24bit (&cp, &buflen, |
| 354 | alt_result[6], alt_result[16], alt_result[26], 4); |
| 355 | __b64_from_24bit (&cp, &buflen, |
| 356 | alt_result[27], alt_result[7], alt_result[17], 4); |
| 357 | __b64_from_24bit (&cp, &buflen, |
| 358 | alt_result[18], alt_result[28], alt_result[8], 4); |
| 359 | __b64_from_24bit (&cp, &buflen, |
| 360 | alt_result[9], alt_result[19], alt_result[29], 4); |
| 361 | __b64_from_24bit (&cp, &buflen, |
| 362 | 0, alt_result[31], alt_result[30], 3); |
| 363 | if (buflen <= 0) |
| 364 | { |
| 365 | __set_errno (ERANGE); |
| 366 | buffer = NULL; |
| 367 | } |
| 368 | else |
| 369 | *cp = '\0'; /* Terminate the string. */ |
| 370 | |
| 371 | /* Clear the buffer for the intermediate result so that people |
| 372 | attaching to processes or reading core dumps cannot get any |
| 373 | information. We do it in this way to clear correct_words[] |
| 374 | inside the SHA256 implementation as well. */ |
| 375 | #ifndef USE_NSS |
| 376 | __sha256_init_ctx (&ctx); |
| 377 | __sha256_finish_ctx (&ctx, alt_result); |
| 378 | memset (&ctx, '\0', sizeof (ctx)); |
| 379 | memset (&alt_ctx, '\0', sizeof (alt_ctx)); |
| 380 | #endif |
| 381 | memset (temp_result, '\0', sizeof (temp_result)); |
| 382 | memset (p_bytes, '\0', key_len); |
| 383 | memset (s_bytes, '\0', salt_len); |
| 384 | if (copied_key != NULL) |
| 385 | memset (copied_key, '\0', key_len); |
| 386 | if (copied_salt != NULL) |
| 387 | memset (copied_salt, '\0', salt_len); |
| 388 | |
| 389 | free (free_key); |
| 390 | free (free_pbytes); |
| 391 | return buffer; |
| 392 | } |
| 393 | |
| 394 | #ifndef _LIBC |
| 395 | # define libc_freeres_ptr(decl) decl |
| 396 | #endif |
| 397 | libc_freeres_ptr (static char *buffer); |
| 398 | |
| 399 | /* This entry point is equivalent to the `crypt' function in Unix |
| 400 | libcs. */ |
| 401 | char * |
| 402 | __sha256_crypt (const char *key, const char *salt) |
| 403 | { |
| 404 | /* We don't want to have an arbitrary limit in the size of the |
| 405 | password. We can compute an upper bound for the size of the |
| 406 | result in advance and so we can prepare the buffer we pass to |
| 407 | `sha256_crypt_r'. */ |
| 408 | static int buflen; |
| 409 | int needed = (sizeof (sha256_salt_prefix) - 1 |
| 410 | + sizeof (sha256_rounds_prefix) + 9 + 1 |
| 411 | + strlen (salt) + 1 + 43 + 1); |
| 412 | |
| 413 | if (buflen < needed) |
| 414 | { |
| 415 | char *new_buffer = (char *) realloc (buffer, needed); |
| 416 | if (new_buffer == NULL) |
| 417 | return NULL; |
| 418 | |
| 419 | buffer = new_buffer; |
| 420 | buflen = needed; |
| 421 | } |
| 422 | |
| 423 | return __sha256_crypt_r (key, salt, buffer, buflen); |
| 424 | } |
| 425 | |
| 426 | #ifndef _LIBC |
| 427 | static void |
| 428 | __attribute__ ((__destructor__)) |
| 429 | free_mem (void) |
| 430 | { |
| 431 | free (buffer); |
| 432 | } |
| 433 | #endif |