lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* Cache memory handling. |
| 2 | Copyright (C) 2004-2015 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2004. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify |
| 7 | it under the terms of the GNU General Public License as published |
| 8 | by the Free Software Foundation; version 2 of the License, or |
| 9 | (at your option) any later version. |
| 10 | |
| 11 | This program is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | GNU General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with this program; if not, see <http://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <assert.h> |
| 20 | #include <errno.h> |
| 21 | #include <error.h> |
| 22 | #include <fcntl.h> |
| 23 | #include <inttypes.h> |
| 24 | #include <libintl.h> |
| 25 | #include <limits.h> |
| 26 | #include <obstack.h> |
| 27 | #include <stdlib.h> |
| 28 | #include <string.h> |
| 29 | #include <unistd.h> |
| 30 | #include <sys/mman.h> |
| 31 | #include <sys/param.h> |
| 32 | |
| 33 | #include "dbg_log.h" |
| 34 | #include "nscd.h" |
| 35 | |
| 36 | |
| 37 | static int |
| 38 | sort_he (const void *p1, const void *p2) |
| 39 | { |
| 40 | struct hashentry *h1 = *(struct hashentry **) p1; |
| 41 | struct hashentry *h2 = *(struct hashentry **) p2; |
| 42 | |
| 43 | if (h1 < h2) |
| 44 | return -1; |
| 45 | if (h1 > h2) |
| 46 | return 1; |
| 47 | return 0; |
| 48 | } |
| 49 | |
| 50 | |
| 51 | static int |
| 52 | sort_he_data (const void *p1, const void *p2) |
| 53 | { |
| 54 | struct hashentry *h1 = *(struct hashentry **) p1; |
| 55 | struct hashentry *h2 = *(struct hashentry **) p2; |
| 56 | |
| 57 | if (h1->packet < h2->packet) |
| 58 | return -1; |
| 59 | if (h1->packet > h2->packet) |
| 60 | return 1; |
| 61 | return 0; |
| 62 | } |
| 63 | |
| 64 | |
| 65 | /* Basic definitions for the bitmap implementation. Only BITMAP_T |
| 66 | needs to be changed to choose a different word size. */ |
| 67 | #define BITMAP_T uint8_t |
| 68 | #define BITS (CHAR_BIT * sizeof (BITMAP_T)) |
| 69 | #define ALLBITS ((((BITMAP_T) 1) << BITS) - 1) |
| 70 | #define HIGHBIT (((BITMAP_T) 1) << (BITS - 1)) |
| 71 | |
| 72 | |
| 73 | static void |
| 74 | markrange (BITMAP_T *mark, ref_t start, size_t len) |
| 75 | { |
| 76 | /* Adjust parameters for block alignment. */ |
| 77 | assert ((start & BLOCK_ALIGN_M1) == 0); |
| 78 | start /= BLOCK_ALIGN; |
| 79 | len = (len + BLOCK_ALIGN_M1) / BLOCK_ALIGN; |
| 80 | |
| 81 | size_t elem = start / BITS; |
| 82 | |
| 83 | if (start % BITS != 0) |
| 84 | { |
| 85 | if (start % BITS + len <= BITS) |
| 86 | { |
| 87 | /* All fits in the partial byte. */ |
| 88 | mark[elem] |= (ALLBITS >> (BITS - len)) << (start % BITS); |
| 89 | return; |
| 90 | } |
| 91 | |
| 92 | mark[elem++] |= ALLBITS << (start % BITS); |
| 93 | len -= BITS - (start % BITS); |
| 94 | } |
| 95 | |
| 96 | while (len >= BITS) |
| 97 | { |
| 98 | mark[elem++] = ALLBITS; |
| 99 | len -= BITS; |
| 100 | } |
| 101 | |
| 102 | if (len > 0) |
| 103 | mark[elem] |= ALLBITS >> (BITS - len); |
| 104 | } |
| 105 | |
| 106 | |
| 107 | void |
| 108 | gc (struct database_dyn *db) |
| 109 | { |
| 110 | /* We need write access. */ |
| 111 | pthread_rwlock_wrlock (&db->lock); |
| 112 | |
| 113 | /* And the memory handling lock. */ |
| 114 | pthread_mutex_lock (&db->memlock); |
| 115 | |
| 116 | /* We need an array representing the data area. All memory |
| 117 | allocation is BLOCK_ALIGN aligned so this is the level at which |
| 118 | we have to look at the memory. We use a mark and sweep algorithm |
| 119 | where the marks are placed in this array. */ |
| 120 | assert (db->head->first_free % BLOCK_ALIGN == 0); |
| 121 | |
| 122 | BITMAP_T *mark; |
| 123 | bool mark_use_malloc; |
| 124 | /* In prune_cache we are also using a dynamically allocated array. |
| 125 | If the array in the caller is too large we have malloc'ed it. */ |
| 126 | size_t stack_used = sizeof (bool) * db->head->module; |
| 127 | if (__glibc_unlikely (stack_used > MAX_STACK_USE)) |
| 128 | stack_used = 0; |
| 129 | size_t nmark = (db->head->first_free / BLOCK_ALIGN + BITS - 1) / BITS; |
| 130 | size_t memory_needed = nmark * sizeof (BITMAP_T); |
| 131 | if (__glibc_likely (stack_used + memory_needed <= MAX_STACK_USE)) |
| 132 | { |
| 133 | mark = (BITMAP_T *) alloca_account (memory_needed, stack_used); |
| 134 | mark_use_malloc = false; |
| 135 | memset (mark, '\0', memory_needed); |
| 136 | } |
| 137 | else |
| 138 | { |
| 139 | mark = (BITMAP_T *) xcalloc (1, memory_needed); |
| 140 | mark_use_malloc = true; |
| 141 | } |
| 142 | |
| 143 | /* Create an array which can hold pointer to all the entries in hash |
| 144 | entries. */ |
| 145 | memory_needed = 2 * db->head->nentries * sizeof (struct hashentry *); |
| 146 | struct hashentry **he; |
| 147 | struct hashentry **he_data; |
| 148 | bool he_use_malloc; |
| 149 | if (__glibc_likely (stack_used + memory_needed <= MAX_STACK_USE)) |
| 150 | { |
| 151 | he = alloca_account (memory_needed, stack_used); |
| 152 | he_use_malloc = false; |
| 153 | } |
| 154 | else |
| 155 | { |
| 156 | he = xmalloc (memory_needed); |
| 157 | he_use_malloc = true; |
| 158 | } |
| 159 | he_data = &he[db->head->nentries]; |
| 160 | |
| 161 | size_t cnt = 0; |
| 162 | for (size_t idx = 0; idx < db->head->module; ++idx) |
| 163 | { |
| 164 | ref_t *prevp = &db->head->array[idx]; |
| 165 | ref_t run = *prevp; |
| 166 | |
| 167 | while (run != ENDREF) |
| 168 | { |
| 169 | assert (cnt < db->head->nentries); |
| 170 | he[cnt] = (struct hashentry *) (db->data + run); |
| 171 | |
| 172 | he[cnt]->prevp = prevp; |
| 173 | prevp = &he[cnt]->next; |
| 174 | |
| 175 | /* This is the hash entry itself. */ |
| 176 | markrange (mark, run, sizeof (struct hashentry)); |
| 177 | |
| 178 | /* Add the information for the data itself. We do this |
| 179 | only for the one special entry marked with FIRST. */ |
| 180 | if (he[cnt]->first) |
| 181 | { |
| 182 | struct datahead *dh |
| 183 | = (struct datahead *) (db->data + he[cnt]->packet); |
| 184 | markrange (mark, he[cnt]->packet, dh->allocsize); |
| 185 | } |
| 186 | |
| 187 | run = he[cnt]->next; |
| 188 | |
| 189 | ++cnt; |
| 190 | } |
| 191 | } |
| 192 | assert (cnt == db->head->nentries); |
| 193 | |
| 194 | /* Sort the entries by the addresses of the referenced data. All |
| 195 | the entries pointing to the same DATAHEAD object will have the |
| 196 | same key. Stability of the sorting is unimportant. */ |
| 197 | memcpy (he_data, he, cnt * sizeof (struct hashentry *)); |
| 198 | qsort (he_data, cnt, sizeof (struct hashentry *), sort_he_data); |
| 199 | |
| 200 | /* Sort the entries by their address. */ |
| 201 | qsort (he, cnt, sizeof (struct hashentry *), sort_he); |
| 202 | |
| 203 | #define obstack_chunk_alloc xmalloc |
| 204 | #define obstack_chunk_free free |
| 205 | struct obstack ob; |
| 206 | obstack_init (&ob); |
| 207 | |
| 208 | /* Determine the highest used address. */ |
| 209 | size_t high = nmark; |
| 210 | while (high > 0 && mark[high - 1] == 0) |
| 211 | --high; |
| 212 | |
| 213 | /* No memory used. */ |
| 214 | if (high == 0) |
| 215 | { |
| 216 | db->head->first_free = 0; |
| 217 | goto out; |
| 218 | } |
| 219 | |
| 220 | /* Determine the highest offset. */ |
| 221 | BITMAP_T mask = HIGHBIT; |
| 222 | ref_t highref = (high * BITS - 1) * BLOCK_ALIGN; |
| 223 | while ((mark[high - 1] & mask) == 0) |
| 224 | { |
| 225 | mask >>= 1; |
| 226 | highref -= BLOCK_ALIGN; |
| 227 | } |
| 228 | |
| 229 | /* Now we can iterate over the MARK array and find bits which are not |
| 230 | set. These represent memory which can be recovered. */ |
| 231 | size_t byte = 0; |
| 232 | /* Find the first gap. */ |
| 233 | while (byte < high && mark[byte] == ALLBITS) |
| 234 | ++byte; |
| 235 | |
| 236 | if (byte == high |
| 237 | || (byte == high - 1 && (mark[byte] & ~(mask | (mask - 1))) == 0)) |
| 238 | /* No gap. */ |
| 239 | goto out; |
| 240 | |
| 241 | mask = 1; |
| 242 | cnt = 0; |
| 243 | while ((mark[byte] & mask) != 0) |
| 244 | { |
| 245 | ++cnt; |
| 246 | mask <<= 1; |
| 247 | } |
| 248 | ref_t off_free = (byte * BITS + cnt) * BLOCK_ALIGN; |
| 249 | assert (off_free <= db->head->first_free); |
| 250 | |
| 251 | struct hashentry **next_hash = he; |
| 252 | struct hashentry **next_data = he_data; |
| 253 | |
| 254 | /* Skip over the hash entries in the first block which does not get |
| 255 | moved. */ |
| 256 | while (next_hash < &he[db->head->nentries] |
| 257 | && *next_hash < (struct hashentry *) (db->data + off_free)) |
| 258 | ++next_hash; |
| 259 | |
| 260 | while (next_data < &he_data[db->head->nentries] |
| 261 | && (*next_data)->packet < off_free) |
| 262 | ++next_data; |
| 263 | |
| 264 | |
| 265 | /* Now we start modifying the data. Make sure all readers of the |
| 266 | data are aware of this and temporarily don't use the data. */ |
| 267 | ++db->head->gc_cycle; |
| 268 | assert ((db->head->gc_cycle & 1) == 1); |
| 269 | |
| 270 | |
| 271 | /* We do not perform the move operations right away since the |
| 272 | he_data array is not sorted by the address of the data. */ |
| 273 | struct moveinfo |
| 274 | { |
| 275 | void *from; |
| 276 | void *to; |
| 277 | size_t size; |
| 278 | struct moveinfo *next; |
| 279 | } *moves = NULL; |
| 280 | |
| 281 | while (byte < high) |
| 282 | { |
| 283 | /* Search for the next filled block. BYTE is the index of the |
| 284 | entry in MARK, MASK is the bit, and CNT is the bit number. |
| 285 | OFF_FILLED is the corresponding offset. */ |
| 286 | if ((mark[byte] & ~(mask - 1)) == 0) |
| 287 | { |
| 288 | /* No other bit set in the same element of MARK. Search in the |
| 289 | following memory. */ |
| 290 | do |
| 291 | ++byte; |
| 292 | while (byte < high && mark[byte] == 0); |
| 293 | |
| 294 | if (byte == high) |
| 295 | /* That was it. */ |
| 296 | break; |
| 297 | |
| 298 | mask = 1; |
| 299 | cnt = 0; |
| 300 | } |
| 301 | /* Find the exact bit. */ |
| 302 | while ((mark[byte] & mask) == 0) |
| 303 | { |
| 304 | ++cnt; |
| 305 | mask <<= 1; |
| 306 | } |
| 307 | |
| 308 | ref_t off_alloc = (byte * BITS + cnt) * BLOCK_ALIGN; |
| 309 | assert (off_alloc <= db->head->first_free); |
| 310 | |
| 311 | /* Find the end of the used area. */ |
| 312 | if ((mark[byte] & ~(mask - 1)) == (BITMAP_T) ~(mask - 1)) |
| 313 | { |
| 314 | /* All other bits set. Search the next bytes in MARK. */ |
| 315 | do |
| 316 | ++byte; |
| 317 | while (byte < high && mark[byte] == ALLBITS); |
| 318 | |
| 319 | mask = 1; |
| 320 | cnt = 0; |
| 321 | } |
| 322 | if (byte < high) |
| 323 | { |
| 324 | /* Find the exact bit. */ |
| 325 | while ((mark[byte] & mask) != 0) |
| 326 | { |
| 327 | ++cnt; |
| 328 | mask <<= 1; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | ref_t off_allocend = (byte * BITS + cnt) * BLOCK_ALIGN; |
| 333 | assert (off_allocend <= db->head->first_free); |
| 334 | /* Now we know that we can copy the area from OFF_ALLOC to |
| 335 | OFF_ALLOCEND (not included) to the memory starting at |
| 336 | OFF_FREE. First fix up all the entries for the |
| 337 | displacement. */ |
| 338 | ref_t disp = off_alloc - off_free; |
| 339 | |
| 340 | struct moveinfo *new_move; |
| 341 | if (__builtin_expect (stack_used + sizeof (*new_move) <= MAX_STACK_USE, |
| 342 | 1)) |
| 343 | new_move = alloca_account (sizeof (*new_move), stack_used); |
| 344 | else |
| 345 | new_move = obstack_alloc (&ob, sizeof (*new_move)); |
| 346 | new_move->from = db->data + off_alloc; |
| 347 | new_move->to = db->data + off_free; |
| 348 | new_move->size = off_allocend - off_alloc; |
| 349 | /* Create a circular list to be always able to append at the end. */ |
| 350 | if (moves == NULL) |
| 351 | moves = new_move->next = new_move; |
| 352 | else |
| 353 | { |
| 354 | new_move->next = moves->next; |
| 355 | moves = moves->next = new_move; |
| 356 | } |
| 357 | |
| 358 | /* The following loop will prepare to move this much data. */ |
| 359 | off_free += off_allocend - off_alloc; |
| 360 | |
| 361 | while (off_alloc < off_allocend) |
| 362 | { |
| 363 | /* Determine whether the next entry is for a hash entry or |
| 364 | the data. */ |
| 365 | if ((struct hashentry *) (db->data + off_alloc) == *next_hash) |
| 366 | { |
| 367 | /* Just correct the forward reference. */ |
| 368 | *(*next_hash++)->prevp -= disp; |
| 369 | |
| 370 | off_alloc += ((sizeof (struct hashentry) + BLOCK_ALIGN_M1) |
| 371 | & ~BLOCK_ALIGN_M1); |
| 372 | } |
| 373 | else |
| 374 | { |
| 375 | assert (next_data < &he_data[db->head->nentries]); |
| 376 | assert ((*next_data)->packet == off_alloc); |
| 377 | |
| 378 | struct datahead *dh = (struct datahead *) (db->data + off_alloc); |
| 379 | do |
| 380 | { |
| 381 | assert ((*next_data)->key >= (*next_data)->packet); |
| 382 | assert ((*next_data)->key + (*next_data)->len |
| 383 | <= (*next_data)->packet + dh->allocsize); |
| 384 | |
| 385 | (*next_data)->packet -= disp; |
| 386 | (*next_data)->key -= disp; |
| 387 | ++next_data; |
| 388 | } |
| 389 | while (next_data < &he_data[db->head->nentries] |
| 390 | && (*next_data)->packet == off_alloc); |
| 391 | |
| 392 | off_alloc += (dh->allocsize + BLOCK_ALIGN_M1) & ~BLOCK_ALIGN_M1; |
| 393 | } |
| 394 | } |
| 395 | assert (off_alloc == off_allocend); |
| 396 | |
| 397 | assert (off_alloc <= db->head->first_free); |
| 398 | if (off_alloc == db->head->first_free) |
| 399 | /* We are done, that was the last block. */ |
| 400 | break; |
| 401 | } |
| 402 | assert (next_hash == &he[db->head->nentries]); |
| 403 | assert (next_data == &he_data[db->head->nentries]); |
| 404 | |
| 405 | /* Now perform the actual moves. */ |
| 406 | if (moves != NULL) |
| 407 | { |
| 408 | struct moveinfo *runp = moves->next; |
| 409 | do |
| 410 | { |
| 411 | assert ((char *) runp->to >= db->data); |
| 412 | assert ((char *) runp->to + runp->size |
| 413 | <= db->data + db->head->first_free); |
| 414 | assert ((char *) runp->from >= db->data); |
| 415 | assert ((char *) runp->from + runp->size |
| 416 | <= db->data + db->head->first_free); |
| 417 | |
| 418 | /* The regions may overlap. */ |
| 419 | memmove (runp->to, runp->from, runp->size); |
| 420 | runp = runp->next; |
| 421 | } |
| 422 | while (runp != moves->next); |
| 423 | |
| 424 | if (__glibc_unlikely (debug_level >= 3)) |
| 425 | dbg_log (_("freed %zu bytes in %s cache"), |
| 426 | (size_t) (db->head->first_free |
| 427 | - ((char *) moves->to + moves->size - db->data)), |
| 428 | dbnames[db - dbs]); |
| 429 | |
| 430 | /* The byte past the end of the last copied block is the next |
| 431 | available byte. */ |
| 432 | db->head->first_free = (char *) moves->to + moves->size - db->data; |
| 433 | |
| 434 | /* Consistency check. */ |
| 435 | if (__glibc_unlikely (debug_level >= 3)) |
| 436 | { |
| 437 | for (size_t idx = 0; idx < db->head->module; ++idx) |
| 438 | { |
| 439 | ref_t run = db->head->array[idx]; |
| 440 | size_t cnt = 0; |
| 441 | |
| 442 | while (run != ENDREF) |
| 443 | { |
| 444 | if (run + sizeof (struct hashentry) > db->head->first_free) |
| 445 | { |
| 446 | dbg_log ("entry %zu in hash bucket %zu out of bounds: " |
| 447 | "%" PRIu32 "+%zu > %zu\n", |
| 448 | cnt, idx, run, sizeof (struct hashentry), |
| 449 | (size_t) db->head->first_free); |
| 450 | break; |
| 451 | } |
| 452 | |
| 453 | struct hashentry *he = (struct hashentry *) (db->data + run); |
| 454 | |
| 455 | if (he->key + he->len > db->head->first_free) |
| 456 | dbg_log ("key of entry %zu in hash bucket %zu out of " |
| 457 | "bounds: %" PRIu32 "+%zu > %zu\n", |
| 458 | cnt, idx, he->key, (size_t) he->len, |
| 459 | (size_t) db->head->first_free); |
| 460 | |
| 461 | if (he->packet + sizeof (struct datahead) |
| 462 | > db->head->first_free) |
| 463 | dbg_log ("packet of entry %zu in hash bucket %zu out of " |
| 464 | "bounds: %" PRIu32 "+%zu > %zu\n", |
| 465 | cnt, idx, he->packet, sizeof (struct datahead), |
| 466 | (size_t) db->head->first_free); |
| 467 | else |
| 468 | { |
| 469 | struct datahead *dh = (struct datahead *) (db->data |
| 470 | + he->packet); |
| 471 | if (he->packet + dh->allocsize |
| 472 | > db->head->first_free) |
| 473 | dbg_log ("full key of entry %zu in hash bucket %zu " |
| 474 | "out of bounds: %" PRIu32 "+%zu > %zu", |
| 475 | cnt, idx, he->packet, (size_t) dh->allocsize, |
| 476 | (size_t) db->head->first_free); |
| 477 | } |
| 478 | |
| 479 | run = he->next; |
| 480 | ++cnt; |
| 481 | } |
| 482 | } |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | /* Make sure the data on disk is updated. */ |
| 487 | if (db->persistent) |
| 488 | msync (db->head, db->data + db->head->first_free - (char *) db->head, |
| 489 | MS_ASYNC); |
| 490 | |
| 491 | |
| 492 | /* Now we are done modifying the data. */ |
| 493 | ++db->head->gc_cycle; |
| 494 | assert ((db->head->gc_cycle & 1) == 0); |
| 495 | |
| 496 | /* We are done. */ |
| 497 | out: |
| 498 | pthread_mutex_unlock (&db->memlock); |
| 499 | pthread_rwlock_unlock (&db->lock); |
| 500 | |
| 501 | if (he_use_malloc) |
| 502 | free (he); |
| 503 | if (mark_use_malloc) |
| 504 | free (mark); |
| 505 | |
| 506 | obstack_free (&ob, NULL); |
| 507 | } |
| 508 | |
| 509 | |
| 510 | void * |
| 511 | mempool_alloc (struct database_dyn *db, size_t len, int data_alloc) |
| 512 | { |
| 513 | /* Make sure LEN is a multiple of our maximum alignment so we can |
| 514 | keep track of used memory is multiples of this alignment value. */ |
| 515 | if ((len & BLOCK_ALIGN_M1) != 0) |
| 516 | len += BLOCK_ALIGN - (len & BLOCK_ALIGN_M1); |
| 517 | |
| 518 | if (data_alloc) |
| 519 | pthread_rwlock_rdlock (&db->lock); |
| 520 | |
| 521 | pthread_mutex_lock (&db->memlock); |
| 522 | |
| 523 | assert ((db->head->first_free & BLOCK_ALIGN_M1) == 0); |
| 524 | |
| 525 | bool tried_resize = false; |
| 526 | void *res; |
| 527 | retry: |
| 528 | res = db->data + db->head->first_free; |
| 529 | |
| 530 | if (__glibc_unlikely (db->head->first_free + len > db->head->data_size)) |
| 531 | { |
| 532 | if (! tried_resize) |
| 533 | { |
| 534 | /* Try to resize the database. Grow size of 1/8th. */ |
| 535 | size_t oldtotal = (sizeof (struct database_pers_head) |
| 536 | + roundup (db->head->module * sizeof (ref_t), |
| 537 | ALIGN) |
| 538 | + db->head->data_size); |
| 539 | size_t new_data_size = (db->head->data_size |
| 540 | + MAX (2 * len, db->head->data_size / 8)); |
| 541 | size_t newtotal = (sizeof (struct database_pers_head) |
| 542 | + roundup (db->head->module * sizeof (ref_t), ALIGN) |
| 543 | + new_data_size); |
| 544 | if (newtotal > db->max_db_size) |
| 545 | { |
| 546 | new_data_size -= newtotal - db->max_db_size; |
| 547 | newtotal = db->max_db_size; |
| 548 | } |
| 549 | |
| 550 | if (db->mmap_used && newtotal > oldtotal |
| 551 | /* We only have to adjust the file size. The new pages |
| 552 | become magically available. */ |
| 553 | && TEMP_FAILURE_RETRY_VAL (posix_fallocate (db->wr_fd, oldtotal, |
| 554 | newtotal |
| 555 | - oldtotal)) == 0) |
| 556 | { |
| 557 | db->head->data_size = new_data_size; |
| 558 | tried_resize = true; |
| 559 | goto retry; |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | if (data_alloc) |
| 564 | pthread_rwlock_unlock (&db->lock); |
| 565 | |
| 566 | if (! db->last_alloc_failed) |
| 567 | { |
| 568 | dbg_log (_("no more memory for database '%s'"), dbnames[db - dbs]); |
| 569 | |
| 570 | db->last_alloc_failed = true; |
| 571 | } |
| 572 | |
| 573 | ++db->head->addfailed; |
| 574 | |
| 575 | /* No luck. */ |
| 576 | res = NULL; |
| 577 | } |
| 578 | else |
| 579 | { |
| 580 | db->head->first_free += len; |
| 581 | |
| 582 | db->last_alloc_failed = false; |
| 583 | |
| 584 | } |
| 585 | |
| 586 | pthread_mutex_unlock (&db->memlock); |
| 587 | |
| 588 | return res; |
| 589 | } |