lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* Convert string representing a number to float value, using given locale. |
| 2 | Copyright (C) 1997-2015 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include <xlocale.h> |
| 21 | |
| 22 | extern double ____strtod_l_internal (const char *, char **, int, __locale_t); |
| 23 | extern unsigned long long int ____strtoull_l_internal (const char *, char **, |
| 24 | int, int, __locale_t); |
| 25 | |
| 26 | /* Configuration part. These macros are defined by `strtold.c', |
| 27 | `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the |
| 28 | `long double' and `float' versions of the reader. */ |
| 29 | #ifndef FLOAT |
| 30 | # include <math_ldbl_opt.h> |
| 31 | # define FLOAT double |
| 32 | # define FLT DBL |
| 33 | # ifdef USE_WIDE_CHAR |
| 34 | # define STRTOF wcstod_l |
| 35 | # define __STRTOF __wcstod_l |
| 36 | # else |
| 37 | # define STRTOF strtod_l |
| 38 | # define __STRTOF __strtod_l |
| 39 | # endif |
| 40 | # define MPN2FLOAT __mpn_construct_double |
| 41 | # define FLOAT_HUGE_VAL HUGE_VAL |
| 42 | # define SET_MANTISSA(flt, mant) \ |
| 43 | do { union ieee754_double u; \ |
| 44 | u.d = (flt); \ |
| 45 | u.ieee_nan.mantissa0 = (mant) >> 32; \ |
| 46 | u.ieee_nan.mantissa1 = (mant); \ |
| 47 | if ((u.ieee.mantissa0 | u.ieee.mantissa1) != 0) \ |
| 48 | (flt) = u.d; \ |
| 49 | } while (0) |
| 50 | #endif |
| 51 | /* End of configuration part. */ |
| 52 | |
| 53 | #include <ctype.h> |
| 54 | #include <errno.h> |
| 55 | #include <float.h> |
| 56 | #include <ieee754.h> |
| 57 | #include "../locale/localeinfo.h" |
| 58 | #include <locale.h> |
| 59 | #include <math.h> |
| 60 | #include <stdlib.h> |
| 61 | #include <string.h> |
| 62 | #include <stdint.h> |
| 63 | #include <rounding-mode.h> |
| 64 | #include <tininess.h> |
| 65 | |
| 66 | /* The gmp headers need some configuration frobs. */ |
| 67 | #define HAVE_ALLOCA 1 |
| 68 | |
| 69 | /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB |
| 70 | and _LONG_LONG_LIMB in it can take effect into gmp.h. */ |
| 71 | #include <gmp-mparam.h> |
| 72 | #include <gmp.h> |
| 73 | #include "gmp-impl.h" |
| 74 | #include "longlong.h" |
| 75 | #include "fpioconst.h" |
| 76 | |
| 77 | #include <assert.h> |
| 78 | |
| 79 | |
| 80 | /* We use this code for the extended locale handling where the |
| 81 | function gets as an additional argument the locale which has to be |
| 82 | used. To access the values we have to redefine the _NL_CURRENT and |
| 83 | _NL_CURRENT_WORD macros. */ |
| 84 | #undef _NL_CURRENT |
| 85 | #define _NL_CURRENT(category, item) \ |
| 86 | (current->values[_NL_ITEM_INDEX (item)].string) |
| 87 | #undef _NL_CURRENT_WORD |
| 88 | #define _NL_CURRENT_WORD(category, item) \ |
| 89 | ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word) |
| 90 | |
| 91 | #if defined _LIBC || defined HAVE_WCHAR_H |
| 92 | # include <wchar.h> |
| 93 | #endif |
| 94 | |
| 95 | #ifdef USE_WIDE_CHAR |
| 96 | # include <wctype.h> |
| 97 | # define STRING_TYPE wchar_t |
| 98 | # define CHAR_TYPE wint_t |
| 99 | # define L_(Ch) L##Ch |
| 100 | # define ISSPACE(Ch) __iswspace_l ((Ch), loc) |
| 101 | # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc) |
| 102 | # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc) |
| 103 | # define TOLOWER(Ch) __towlower_l ((Ch), loc) |
| 104 | # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr) |
| 105 | # define STRNCASECMP(S1, S2, N) \ |
| 106 | __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr) |
| 107 | # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc) |
| 108 | #else |
| 109 | # define STRING_TYPE char |
| 110 | # define CHAR_TYPE char |
| 111 | # define L_(Ch) Ch |
| 112 | # define ISSPACE(Ch) __isspace_l ((Ch), loc) |
| 113 | # define ISDIGIT(Ch) __isdigit_l ((Ch), loc) |
| 114 | # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc) |
| 115 | # define TOLOWER(Ch) __tolower_l ((Ch), loc) |
| 116 | # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr) |
| 117 | # define STRNCASECMP(S1, S2, N) \ |
| 118 | __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr) |
| 119 | # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc) |
| 120 | #endif |
| 121 | |
| 122 | |
| 123 | /* Constants we need from float.h; select the set for the FLOAT precision. */ |
| 124 | #define MANT_DIG PASTE(FLT,_MANT_DIG) |
| 125 | #define DIG PASTE(FLT,_DIG) |
| 126 | #define MAX_EXP PASTE(FLT,_MAX_EXP) |
| 127 | #define MIN_EXP PASTE(FLT,_MIN_EXP) |
| 128 | #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP) |
| 129 | #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP) |
| 130 | #define MAX_VALUE PASTE(FLT,_MAX) |
| 131 | #define MIN_VALUE PASTE(FLT,_MIN) |
| 132 | |
| 133 | /* Extra macros required to get FLT expanded before the pasting. */ |
| 134 | #define PASTE(a,b) PASTE1(a,b) |
| 135 | #define PASTE1(a,b) a##b |
| 136 | |
| 137 | /* Function to construct a floating point number from an MP integer |
| 138 | containing the fraction bits, a base 2 exponent, and a sign flag. */ |
| 139 | extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative); |
| 140 | |
| 141 | /* Definitions according to limb size used. */ |
| 142 | #if BITS_PER_MP_LIMB == 32 |
| 143 | # define MAX_DIG_PER_LIMB 9 |
| 144 | # define MAX_FAC_PER_LIMB 1000000000UL |
| 145 | #elif BITS_PER_MP_LIMB == 64 |
| 146 | # define MAX_DIG_PER_LIMB 19 |
| 147 | # define MAX_FAC_PER_LIMB 10000000000000000000ULL |
| 148 | #else |
| 149 | # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for" |
| 150 | #endif |
| 151 | |
| 152 | extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1]; |
| 153 | |
| 154 | #ifndef howmany |
| 155 | #define howmany(x,y) (((x)+((y)-1))/(y)) |
| 156 | #endif |
| 157 | #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; }) |
| 158 | |
| 159 | #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB) |
| 160 | |
| 161 | #define RETURN(val,end) \ |
| 162 | do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \ |
| 163 | return val; } while (0) |
| 164 | |
| 165 | /* Maximum size necessary for mpn integers to hold floating point |
| 166 | numbers. The largest number we need to hold is 10^n where 2^-n is |
| 167 | 1/4 ulp of the smallest representable value (that is, n = MANT_DIG |
| 168 | - MIN_EXP + 2). Approximate using 10^3 < 2^10. */ |
| 169 | #define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \ |
| 170 | BITS_PER_MP_LIMB) + 2) |
| 171 | /* Declare an mpn integer variable that big. */ |
| 172 | #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size |
| 173 | /* Copy an mpn integer value. */ |
| 174 | #define MPN_ASSIGN(dst, src) \ |
| 175 | memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t)) |
| 176 | |
| 177 | |
| 178 | /* Set errno and return an overflowing value with sign specified by |
| 179 | NEGATIVE. */ |
| 180 | static FLOAT |
| 181 | overflow_value (int negative) |
| 182 | { |
| 183 | __set_errno (ERANGE); |
| 184 | #if FLT_EVAL_METHOD != 0 |
| 185 | volatile |
| 186 | #endif |
| 187 | FLOAT result = (negative ? -MAX_VALUE : MAX_VALUE) * MAX_VALUE; |
| 188 | return result; |
| 189 | } |
| 190 | |
| 191 | |
| 192 | /* Set errno and return an underflowing value with sign specified by |
| 193 | NEGATIVE. */ |
| 194 | static FLOAT |
| 195 | underflow_value (int negative) |
| 196 | { |
| 197 | __set_errno (ERANGE); |
| 198 | #if FLT_EVAL_METHOD != 0 |
| 199 | volatile |
| 200 | #endif |
| 201 | FLOAT result = (negative ? -MIN_VALUE : MIN_VALUE) * MIN_VALUE; |
| 202 | return result; |
| 203 | } |
| 204 | |
| 205 | |
| 206 | /* Return a floating point number of the needed type according to the given |
| 207 | multi-precision number after possible rounding. */ |
| 208 | static FLOAT |
| 209 | round_and_return (mp_limb_t *retval, intmax_t exponent, int negative, |
| 210 | mp_limb_t round_limb, mp_size_t round_bit, int more_bits) |
| 211 | { |
| 212 | int mode = get_rounding_mode (); |
| 213 | |
| 214 | if (exponent < MIN_EXP - 1) |
| 215 | { |
| 216 | if (exponent < MIN_EXP - 1 - MANT_DIG) |
| 217 | return underflow_value (negative); |
| 218 | |
| 219 | mp_size_t shift = MIN_EXP - 1 - exponent; |
| 220 | bool is_tiny = true; |
| 221 | |
| 222 | more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0; |
| 223 | if (shift == MANT_DIG) |
| 224 | /* This is a special case to handle the very seldom case where |
| 225 | the mantissa will be empty after the shift. */ |
| 226 | { |
| 227 | int i; |
| 228 | |
| 229 | round_limb = retval[RETURN_LIMB_SIZE - 1]; |
| 230 | round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB; |
| 231 | for (i = 0; i < RETURN_LIMB_SIZE - 1; ++i) |
| 232 | more_bits |= retval[i] != 0; |
| 233 | MPN_ZERO (retval, RETURN_LIMB_SIZE); |
| 234 | } |
| 235 | else if (shift >= BITS_PER_MP_LIMB) |
| 236 | { |
| 237 | int i; |
| 238 | |
| 239 | round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB]; |
| 240 | round_bit = (shift - 1) % BITS_PER_MP_LIMB; |
| 241 | for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i) |
| 242 | more_bits |= retval[i] != 0; |
| 243 | more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) |
| 244 | != 0); |
| 245 | |
| 246 | /* __mpn_rshift requires 0 < shift < BITS_PER_MP_LIMB. */ |
| 247 | if ((shift % BITS_PER_MP_LIMB) != 0) |
| 248 | (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB], |
| 249 | RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB), |
| 250 | shift % BITS_PER_MP_LIMB); |
| 251 | else |
| 252 | for (i = 0; i < RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB); i++) |
| 253 | retval[i] = retval[i + (shift / BITS_PER_MP_LIMB)]; |
| 254 | MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)], |
| 255 | shift / BITS_PER_MP_LIMB); |
| 256 | } |
| 257 | else if (shift > 0) |
| 258 | { |
| 259 | if (TININESS_AFTER_ROUNDING && shift == 1) |
| 260 | { |
| 261 | /* Whether the result counts as tiny depends on whether, |
| 262 | after rounding to the normal precision, it still has |
| 263 | a subnormal exponent. */ |
| 264 | mp_limb_t retval_normal[RETURN_LIMB_SIZE]; |
| 265 | if (round_away (negative, |
| 266 | (retval[0] & 1) != 0, |
| 267 | (round_limb |
| 268 | & (((mp_limb_t) 1) << round_bit)) != 0, |
| 269 | (more_bits |
| 270 | || ((round_limb |
| 271 | & ((((mp_limb_t) 1) << round_bit) - 1)) |
| 272 | != 0)), |
| 273 | mode)) |
| 274 | { |
| 275 | mp_limb_t cy = __mpn_add_1 (retval_normal, retval, |
| 276 | RETURN_LIMB_SIZE, 1); |
| 277 | |
| 278 | if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) || |
| 279 | ((MANT_DIG % BITS_PER_MP_LIMB) != 0 && |
| 280 | ((retval_normal[RETURN_LIMB_SIZE - 1] |
| 281 | & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) |
| 282 | != 0))) |
| 283 | is_tiny = false; |
| 284 | } |
| 285 | } |
| 286 | round_limb = retval[0]; |
| 287 | round_bit = shift - 1; |
| 288 | (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift); |
| 289 | } |
| 290 | /* This is a hook for the m68k long double format, where the |
| 291 | exponent bias is the same for normalized and denormalized |
| 292 | numbers. */ |
| 293 | #ifndef DENORM_EXP |
| 294 | # define DENORM_EXP (MIN_EXP - 2) |
| 295 | #endif |
| 296 | exponent = DENORM_EXP; |
| 297 | if (is_tiny |
| 298 | && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0 |
| 299 | || more_bits |
| 300 | || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0)) |
| 301 | { |
| 302 | __set_errno (ERANGE); |
| 303 | volatile FLOAT force_underflow_exception = MIN_VALUE * MIN_VALUE; |
| 304 | (void) force_underflow_exception; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | if (exponent > MAX_EXP) |
| 309 | goto overflow; |
| 310 | |
| 311 | if (round_away (negative, |
| 312 | (retval[0] & 1) != 0, |
| 313 | (round_limb & (((mp_limb_t) 1) << round_bit)) != 0, |
| 314 | (more_bits |
| 315 | || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0), |
| 316 | mode)) |
| 317 | { |
| 318 | mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1); |
| 319 | |
| 320 | if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) || |
| 321 | ((MANT_DIG % BITS_PER_MP_LIMB) != 0 && |
| 322 | (retval[RETURN_LIMB_SIZE - 1] |
| 323 | & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0)) |
| 324 | { |
| 325 | ++exponent; |
| 326 | (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1); |
| 327 | retval[RETURN_LIMB_SIZE - 1] |
| 328 | |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB); |
| 329 | } |
| 330 | else if (exponent == DENORM_EXP |
| 331 | && (retval[RETURN_LIMB_SIZE - 1] |
| 332 | & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB))) |
| 333 | != 0) |
| 334 | /* The number was denormalized but now normalized. */ |
| 335 | exponent = MIN_EXP - 1; |
| 336 | } |
| 337 | |
| 338 | if (exponent > MAX_EXP) |
| 339 | overflow: |
| 340 | return overflow_value (negative); |
| 341 | |
| 342 | return MPN2FLOAT (retval, exponent, negative); |
| 343 | } |
| 344 | |
| 345 | |
| 346 | /* Read a multi-precision integer starting at STR with exactly DIGCNT digits |
| 347 | into N. Return the size of the number limbs in NSIZE at the first |
| 348 | character od the string that is not part of the integer as the function |
| 349 | value. If the EXPONENT is small enough to be taken as an additional |
| 350 | factor for the resulting number (see code) multiply by it. */ |
| 351 | static const STRING_TYPE * |
| 352 | str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize, |
| 353 | intmax_t *exponent |
| 354 | #ifndef USE_WIDE_CHAR |
| 355 | , const char *decimal, size_t decimal_len, const char *thousands |
| 356 | #endif |
| 357 | |
| 358 | ) |
| 359 | { |
| 360 | /* Number of digits for actual limb. */ |
| 361 | int cnt = 0; |
| 362 | mp_limb_t low = 0; |
| 363 | mp_limb_t start; |
| 364 | |
| 365 | *nsize = 0; |
| 366 | assert (digcnt > 0); |
| 367 | do |
| 368 | { |
| 369 | if (cnt == MAX_DIG_PER_LIMB) |
| 370 | { |
| 371 | if (*nsize == 0) |
| 372 | { |
| 373 | n[0] = low; |
| 374 | *nsize = 1; |
| 375 | } |
| 376 | else |
| 377 | { |
| 378 | mp_limb_t cy; |
| 379 | cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB); |
| 380 | cy += __mpn_add_1 (n, n, *nsize, low); |
| 381 | if (cy != 0) |
| 382 | { |
| 383 | assert (*nsize < MPNSIZE); |
| 384 | n[*nsize] = cy; |
| 385 | ++(*nsize); |
| 386 | } |
| 387 | } |
| 388 | cnt = 0; |
| 389 | low = 0; |
| 390 | } |
| 391 | |
| 392 | /* There might be thousands separators or radix characters in |
| 393 | the string. But these all can be ignored because we know the |
| 394 | format of the number is correct and we have an exact number |
| 395 | of characters to read. */ |
| 396 | #ifdef USE_WIDE_CHAR |
| 397 | if (*str < L'0' || *str > L'9') |
| 398 | ++str; |
| 399 | #else |
| 400 | if (*str < '0' || *str > '9') |
| 401 | { |
| 402 | int inner = 0; |
| 403 | if (thousands != NULL && *str == *thousands |
| 404 | && ({ for (inner = 1; thousands[inner] != '\0'; ++inner) |
| 405 | if (thousands[inner] != str[inner]) |
| 406 | break; |
| 407 | thousands[inner] == '\0'; })) |
| 408 | str += inner; |
| 409 | else |
| 410 | str += decimal_len; |
| 411 | } |
| 412 | #endif |
| 413 | low = low * 10 + *str++ - L_('0'); |
| 414 | ++cnt; |
| 415 | } |
| 416 | while (--digcnt > 0); |
| 417 | |
| 418 | if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt) |
| 419 | { |
| 420 | low *= _tens_in_limb[*exponent]; |
| 421 | start = _tens_in_limb[cnt + *exponent]; |
| 422 | *exponent = 0; |
| 423 | } |
| 424 | else |
| 425 | start = _tens_in_limb[cnt]; |
| 426 | |
| 427 | if (*nsize == 0) |
| 428 | { |
| 429 | n[0] = low; |
| 430 | *nsize = 1; |
| 431 | } |
| 432 | else |
| 433 | { |
| 434 | mp_limb_t cy; |
| 435 | cy = __mpn_mul_1 (n, n, *nsize, start); |
| 436 | cy += __mpn_add_1 (n, n, *nsize, low); |
| 437 | if (cy != 0) |
| 438 | { |
| 439 | assert (*nsize < MPNSIZE); |
| 440 | n[(*nsize)++] = cy; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | return str; |
| 445 | } |
| 446 | |
| 447 | |
| 448 | /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits |
| 449 | with the COUNT most significant bits of LIMB. |
| 450 | |
| 451 | Implemented as a macro, so that __builtin_constant_p works even at -O0. |
| 452 | |
| 453 | Tege doesn't like this macro so I have to write it here myself. :) |
| 454 | --drepper */ |
| 455 | #define __mpn_lshift_1(ptr, size, count, limb) \ |
| 456 | do \ |
| 457 | { \ |
| 458 | mp_limb_t *__ptr = (ptr); \ |
| 459 | if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \ |
| 460 | { \ |
| 461 | mp_size_t i; \ |
| 462 | for (i = (size) - 1; i > 0; --i) \ |
| 463 | __ptr[i] = __ptr[i - 1]; \ |
| 464 | __ptr[0] = (limb); \ |
| 465 | } \ |
| 466 | else \ |
| 467 | { \ |
| 468 | /* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \ |
| 469 | unsigned int __count = (count); \ |
| 470 | (void) __mpn_lshift (__ptr, __ptr, size, __count); \ |
| 471 | __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \ |
| 472 | } \ |
| 473 | } \ |
| 474 | while (0) |
| 475 | |
| 476 | |
| 477 | #define INTERNAL(x) INTERNAL1(x) |
| 478 | #define INTERNAL1(x) __##x##_internal |
| 479 | #ifndef ____STRTOF_INTERNAL |
| 480 | # define ____STRTOF_INTERNAL INTERNAL (__STRTOF) |
| 481 | #endif |
| 482 | |
| 483 | /* This file defines a function to check for correct grouping. */ |
| 484 | #include "grouping.h" |
| 485 | |
| 486 | |
| 487 | /* Return a floating point number with the value of the given string NPTR. |
| 488 | Set *ENDPTR to the character after the last used one. If the number is |
| 489 | smaller than the smallest representable number, set `errno' to ERANGE and |
| 490 | return 0.0. If the number is too big to be represented, set `errno' to |
| 491 | ERANGE and return HUGE_VAL with the appropriate sign. */ |
| 492 | FLOAT |
| 493 | ____STRTOF_INTERNAL (nptr, endptr, group, loc) |
| 494 | const STRING_TYPE *nptr; |
| 495 | STRING_TYPE **endptr; |
| 496 | int group; |
| 497 | __locale_t loc; |
| 498 | { |
| 499 | int negative; /* The sign of the number. */ |
| 500 | MPN_VAR (num); /* MP representation of the number. */ |
| 501 | intmax_t exponent; /* Exponent of the number. */ |
| 502 | |
| 503 | /* Numbers starting `0X' or `0x' have to be processed with base 16. */ |
| 504 | int base = 10; |
| 505 | |
| 506 | /* When we have to compute fractional digits we form a fraction with a |
| 507 | second multi-precision number (and we sometimes need a second for |
| 508 | temporary results). */ |
| 509 | MPN_VAR (den); |
| 510 | |
| 511 | /* Representation for the return value. */ |
| 512 | mp_limb_t retval[RETURN_LIMB_SIZE]; |
| 513 | /* Number of bits currently in result value. */ |
| 514 | int bits; |
| 515 | |
| 516 | /* Running pointer after the last character processed in the string. */ |
| 517 | const STRING_TYPE *cp, *tp; |
| 518 | /* Start of significant part of the number. */ |
| 519 | const STRING_TYPE *startp, *start_of_digits; |
| 520 | /* Points at the character following the integer and fractional digits. */ |
| 521 | const STRING_TYPE *expp; |
| 522 | /* Total number of digit and number of digits in integer part. */ |
| 523 | size_t dig_no, int_no, lead_zero; |
| 524 | /* Contains the last character read. */ |
| 525 | CHAR_TYPE c; |
| 526 | |
| 527 | /* We should get wint_t from <stddef.h>, but not all GCC versions define it |
| 528 | there. So define it ourselves if it remains undefined. */ |
| 529 | #ifndef _WINT_T |
| 530 | typedef unsigned int wint_t; |
| 531 | #endif |
| 532 | /* The radix character of the current locale. */ |
| 533 | #ifdef USE_WIDE_CHAR |
| 534 | wchar_t decimal; |
| 535 | #else |
| 536 | const char *decimal; |
| 537 | size_t decimal_len; |
| 538 | #endif |
| 539 | /* The thousands character of the current locale. */ |
| 540 | #ifdef USE_WIDE_CHAR |
| 541 | wchar_t thousands = L'\0'; |
| 542 | #else |
| 543 | const char *thousands = NULL; |
| 544 | #endif |
| 545 | /* The numeric grouping specification of the current locale, |
| 546 | in the format described in <locale.h>. */ |
| 547 | const char *grouping; |
| 548 | /* Used in several places. */ |
| 549 | int cnt; |
| 550 | |
| 551 | struct __locale_data *current = loc->__locales[LC_NUMERIC]; |
| 552 | |
| 553 | if (__glibc_unlikely (group)) |
| 554 | { |
| 555 | grouping = _NL_CURRENT (LC_NUMERIC, GROUPING); |
| 556 | if (*grouping <= 0 || *grouping == CHAR_MAX) |
| 557 | grouping = NULL; |
| 558 | else |
| 559 | { |
| 560 | /* Figure out the thousands separator character. */ |
| 561 | #ifdef USE_WIDE_CHAR |
| 562 | thousands = _NL_CURRENT_WORD (LC_NUMERIC, |
| 563 | _NL_NUMERIC_THOUSANDS_SEP_WC); |
| 564 | if (thousands == L'\0') |
| 565 | grouping = NULL; |
| 566 | #else |
| 567 | thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP); |
| 568 | if (*thousands == '\0') |
| 569 | { |
| 570 | thousands = NULL; |
| 571 | grouping = NULL; |
| 572 | } |
| 573 | #endif |
| 574 | } |
| 575 | } |
| 576 | else |
| 577 | grouping = NULL; |
| 578 | |
| 579 | /* Find the locale's decimal point character. */ |
| 580 | #ifdef USE_WIDE_CHAR |
| 581 | decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC); |
| 582 | assert (decimal != L'\0'); |
| 583 | # define decimal_len 1 |
| 584 | #else |
| 585 | decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); |
| 586 | decimal_len = strlen (decimal); |
| 587 | assert (decimal_len > 0); |
| 588 | #endif |
| 589 | |
| 590 | /* Prepare number representation. */ |
| 591 | exponent = 0; |
| 592 | negative = 0; |
| 593 | bits = 0; |
| 594 | |
| 595 | /* Parse string to get maximal legal prefix. We need the number of |
| 596 | characters of the integer part, the fractional part and the exponent. */ |
| 597 | cp = nptr - 1; |
| 598 | /* Ignore leading white space. */ |
| 599 | do |
| 600 | c = *++cp; |
| 601 | while (ISSPACE (c)); |
| 602 | |
| 603 | /* Get sign of the result. */ |
| 604 | if (c == L_('-')) |
| 605 | { |
| 606 | negative = 1; |
| 607 | c = *++cp; |
| 608 | } |
| 609 | else if (c == L_('+')) |
| 610 | c = *++cp; |
| 611 | |
| 612 | /* Return 0.0 if no legal string is found. |
| 613 | No character is used even if a sign was found. */ |
| 614 | #ifdef USE_WIDE_CHAR |
| 615 | if (c == (wint_t) decimal |
| 616 | && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9') |
| 617 | { |
| 618 | /* We accept it. This funny construct is here only to indent |
| 619 | the code correctly. */ |
| 620 | } |
| 621 | #else |
| 622 | for (cnt = 0; decimal[cnt] != '\0'; ++cnt) |
| 623 | if (cp[cnt] != decimal[cnt]) |
| 624 | break; |
| 625 | if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9') |
| 626 | { |
| 627 | /* We accept it. This funny construct is here only to indent |
| 628 | the code correctly. */ |
| 629 | } |
| 630 | #endif |
| 631 | else if (c < L_('0') || c > L_('9')) |
| 632 | { |
| 633 | /* Check for `INF' or `INFINITY'. */ |
| 634 | CHAR_TYPE lowc = TOLOWER_C (c); |
| 635 | |
| 636 | if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0) |
| 637 | { |
| 638 | /* Return +/- infinity. */ |
| 639 | if (endptr != NULL) |
| 640 | *endptr = (STRING_TYPE *) |
| 641 | (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0 |
| 642 | ? 8 : 3)); |
| 643 | |
| 644 | return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL; |
| 645 | } |
| 646 | |
| 647 | if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0) |
| 648 | { |
| 649 | /* Return NaN. */ |
| 650 | FLOAT retval = NAN; |
| 651 | |
| 652 | cp += 3; |
| 653 | |
| 654 | /* Match `(n-char-sequence-digit)'. */ |
| 655 | if (*cp == L_('(')) |
| 656 | { |
| 657 | const STRING_TYPE *startp = cp; |
| 658 | do |
| 659 | ++cp; |
| 660 | while ((*cp >= L_('0') && *cp <= L_('9')) |
| 661 | || ({ CHAR_TYPE lo = TOLOWER (*cp); |
| 662 | lo >= L_('a') && lo <= L_('z'); }) |
| 663 | || *cp == L_('_')); |
| 664 | |
| 665 | if (*cp != L_(')')) |
| 666 | /* The closing brace is missing. Only match the NAN |
| 667 | part. */ |
| 668 | cp = startp; |
| 669 | else |
| 670 | { |
| 671 | /* This is a system-dependent way to specify the |
| 672 | bitmask used for the NaN. We expect it to be |
| 673 | a number which is put in the mantissa of the |
| 674 | number. */ |
| 675 | STRING_TYPE *endp; |
| 676 | unsigned long long int mant; |
| 677 | |
| 678 | mant = STRTOULL (startp + 1, &endp, 0); |
| 679 | if (endp == cp) |
| 680 | SET_MANTISSA (retval, mant); |
| 681 | |
| 682 | /* Consume the closing brace. */ |
| 683 | ++cp; |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | if (endptr != NULL) |
| 688 | *endptr = (STRING_TYPE *) cp; |
| 689 | |
| 690 | return retval; |
| 691 | } |
| 692 | |
| 693 | /* It is really a text we do not recognize. */ |
| 694 | RETURN (0.0, nptr); |
| 695 | } |
| 696 | |
| 697 | /* First look whether we are faced with a hexadecimal number. */ |
| 698 | if (c == L_('0') && TOLOWER (cp[1]) == L_('x')) |
| 699 | { |
| 700 | /* Okay, it is a hexa-decimal number. Remember this and skip |
| 701 | the characters. BTW: hexadecimal numbers must not be |
| 702 | grouped. */ |
| 703 | base = 16; |
| 704 | cp += 2; |
| 705 | c = *cp; |
| 706 | grouping = NULL; |
| 707 | } |
| 708 | |
| 709 | /* Record the start of the digits, in case we will check their grouping. */ |
| 710 | start_of_digits = startp = cp; |
| 711 | |
| 712 | /* Ignore leading zeroes. This helps us to avoid useless computations. */ |
| 713 | #ifdef USE_WIDE_CHAR |
| 714 | while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands)) |
| 715 | c = *++cp; |
| 716 | #else |
| 717 | if (__glibc_likely (thousands == NULL)) |
| 718 | while (c == '0') |
| 719 | c = *++cp; |
| 720 | else |
| 721 | { |
| 722 | /* We also have the multibyte thousands string. */ |
| 723 | while (1) |
| 724 | { |
| 725 | if (c != '0') |
| 726 | { |
| 727 | for (cnt = 0; thousands[cnt] != '\0'; ++cnt) |
| 728 | if (thousands[cnt] != cp[cnt]) |
| 729 | break; |
| 730 | if (thousands[cnt] != '\0') |
| 731 | break; |
| 732 | cp += cnt - 1; |
| 733 | } |
| 734 | c = *++cp; |
| 735 | } |
| 736 | } |
| 737 | #endif |
| 738 | |
| 739 | /* If no other digit but a '0' is found the result is 0.0. |
| 740 | Return current read pointer. */ |
| 741 | CHAR_TYPE lowc = TOLOWER (c); |
| 742 | if (!((c >= L_('0') && c <= L_('9')) |
| 743 | || (base == 16 && lowc >= L_('a') && lowc <= L_('f')) |
| 744 | || ( |
| 745 | #ifdef USE_WIDE_CHAR |
| 746 | c == (wint_t) decimal |
| 747 | #else |
| 748 | ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt) |
| 749 | if (decimal[cnt] != cp[cnt]) |
| 750 | break; |
| 751 | decimal[cnt] == '\0'; }) |
| 752 | #endif |
| 753 | /* '0x.' alone is not a valid hexadecimal number. |
| 754 | '.' alone is not valid either, but that has been checked |
| 755 | already earlier. */ |
| 756 | && (base != 16 |
| 757 | || cp != start_of_digits |
| 758 | || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9')) |
| 759 | || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]); |
| 760 | lo >= L_('a') && lo <= L_('f'); }))) |
| 761 | || (base == 16 && (cp != start_of_digits |
| 762 | && lowc == L_('p'))) |
| 763 | || (base != 16 && lowc == L_('e')))) |
| 764 | { |
| 765 | #ifdef USE_WIDE_CHAR |
| 766 | tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands, |
| 767 | grouping); |
| 768 | #else |
| 769 | tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands, |
| 770 | grouping); |
| 771 | #endif |
| 772 | /* If TP is at the start of the digits, there was no correctly |
| 773 | grouped prefix of the string; so no number found. */ |
| 774 | RETURN (negative ? -0.0 : 0.0, |
| 775 | tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp); |
| 776 | } |
| 777 | |
| 778 | /* Remember first significant digit and read following characters until the |
| 779 | decimal point, exponent character or any non-FP number character. */ |
| 780 | startp = cp; |
| 781 | dig_no = 0; |
| 782 | while (1) |
| 783 | { |
| 784 | if ((c >= L_('0') && c <= L_('9')) |
| 785 | || (base == 16 |
| 786 | && ({ CHAR_TYPE lo = TOLOWER (c); |
| 787 | lo >= L_('a') && lo <= L_('f'); }))) |
| 788 | ++dig_no; |
| 789 | else |
| 790 | { |
| 791 | #ifdef USE_WIDE_CHAR |
| 792 | if (__builtin_expect ((wint_t) thousands == L'\0', 1) |
| 793 | || c != (wint_t) thousands) |
| 794 | /* Not a digit or separator: end of the integer part. */ |
| 795 | break; |
| 796 | #else |
| 797 | if (__glibc_likely (thousands == NULL)) |
| 798 | break; |
| 799 | else |
| 800 | { |
| 801 | for (cnt = 0; thousands[cnt] != '\0'; ++cnt) |
| 802 | if (thousands[cnt] != cp[cnt]) |
| 803 | break; |
| 804 | if (thousands[cnt] != '\0') |
| 805 | break; |
| 806 | cp += cnt - 1; |
| 807 | } |
| 808 | #endif |
| 809 | } |
| 810 | c = *++cp; |
| 811 | } |
| 812 | |
| 813 | if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits) |
| 814 | { |
| 815 | /* Check the grouping of the digits. */ |
| 816 | #ifdef USE_WIDE_CHAR |
| 817 | tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands, |
| 818 | grouping); |
| 819 | #else |
| 820 | tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands, |
| 821 | grouping); |
| 822 | #endif |
| 823 | if (cp != tp) |
| 824 | { |
| 825 | /* Less than the entire string was correctly grouped. */ |
| 826 | |
| 827 | if (tp == start_of_digits) |
| 828 | /* No valid group of numbers at all: no valid number. */ |
| 829 | RETURN (0.0, nptr); |
| 830 | |
| 831 | if (tp < startp) |
| 832 | /* The number is validly grouped, but consists |
| 833 | only of zeroes. The whole value is zero. */ |
| 834 | RETURN (negative ? -0.0 : 0.0, tp); |
| 835 | |
| 836 | /* Recompute DIG_NO so we won't read more digits than |
| 837 | are properly grouped. */ |
| 838 | cp = tp; |
| 839 | dig_no = 0; |
| 840 | for (tp = startp; tp < cp; ++tp) |
| 841 | if (*tp >= L_('0') && *tp <= L_('9')) |
| 842 | ++dig_no; |
| 843 | |
| 844 | int_no = dig_no; |
| 845 | lead_zero = 0; |
| 846 | |
| 847 | goto number_parsed; |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | /* We have the number of digits in the integer part. Whether these |
| 852 | are all or any is really a fractional digit will be decided |
| 853 | later. */ |
| 854 | int_no = dig_no; |
| 855 | lead_zero = int_no == 0 ? (size_t) -1 : 0; |
| 856 | |
| 857 | /* Read the fractional digits. A special case are the 'american |
| 858 | style' numbers like `16.' i.e. with decimal point but without |
| 859 | trailing digits. */ |
| 860 | if ( |
| 861 | #ifdef USE_WIDE_CHAR |
| 862 | c == (wint_t) decimal |
| 863 | #else |
| 864 | ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt) |
| 865 | if (decimal[cnt] != cp[cnt]) |
| 866 | break; |
| 867 | decimal[cnt] == '\0'; }) |
| 868 | #endif |
| 869 | ) |
| 870 | { |
| 871 | cp += decimal_len; |
| 872 | c = *cp; |
| 873 | while ((c >= L_('0') && c <= L_('9')) || |
| 874 | (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c); |
| 875 | lo >= L_('a') && lo <= L_('f'); }))) |
| 876 | { |
| 877 | if (c != L_('0') && lead_zero == (size_t) -1) |
| 878 | lead_zero = dig_no - int_no; |
| 879 | ++dig_no; |
| 880 | c = *++cp; |
| 881 | } |
| 882 | } |
| 883 | assert (dig_no <= (uintmax_t) INTMAX_MAX); |
| 884 | |
| 885 | /* Remember start of exponent (if any). */ |
| 886 | expp = cp; |
| 887 | |
| 888 | /* Read exponent. */ |
| 889 | lowc = TOLOWER (c); |
| 890 | if ((base == 16 && lowc == L_('p')) |
| 891 | || (base != 16 && lowc == L_('e'))) |
| 892 | { |
| 893 | int exp_negative = 0; |
| 894 | |
| 895 | c = *++cp; |
| 896 | if (c == L_('-')) |
| 897 | { |
| 898 | exp_negative = 1; |
| 899 | c = *++cp; |
| 900 | } |
| 901 | else if (c == L_('+')) |
| 902 | c = *++cp; |
| 903 | |
| 904 | if (c >= L_('0') && c <= L_('9')) |
| 905 | { |
| 906 | intmax_t exp_limit; |
| 907 | |
| 908 | /* Get the exponent limit. */ |
| 909 | if (base == 16) |
| 910 | { |
| 911 | if (exp_negative) |
| 912 | { |
| 913 | assert (int_no <= (uintmax_t) (INTMAX_MAX |
| 914 | + MIN_EXP - MANT_DIG) / 4); |
| 915 | exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no; |
| 916 | } |
| 917 | else |
| 918 | { |
| 919 | if (int_no) |
| 920 | { |
| 921 | assert (lead_zero == 0 |
| 922 | && int_no <= (uintmax_t) INTMAX_MAX / 4); |
| 923 | exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3; |
| 924 | } |
| 925 | else if (lead_zero == (size_t) -1) |
| 926 | { |
| 927 | /* The number is zero and this limit is |
| 928 | arbitrary. */ |
| 929 | exp_limit = MAX_EXP + 3; |
| 930 | } |
| 931 | else |
| 932 | { |
| 933 | assert (lead_zero |
| 934 | <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4); |
| 935 | exp_limit = (MAX_EXP |
| 936 | + 4 * (intmax_t) lead_zero |
| 937 | + 3); |
| 938 | } |
| 939 | } |
| 940 | } |
| 941 | else |
| 942 | { |
| 943 | if (exp_negative) |
| 944 | { |
| 945 | assert (int_no |
| 946 | <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG)); |
| 947 | exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no; |
| 948 | } |
| 949 | else |
| 950 | { |
| 951 | if (int_no) |
| 952 | { |
| 953 | assert (lead_zero == 0 |
| 954 | && int_no <= (uintmax_t) INTMAX_MAX); |
| 955 | exp_limit = MAX_10_EXP - (intmax_t) int_no + 1; |
| 956 | } |
| 957 | else if (lead_zero == (size_t) -1) |
| 958 | { |
| 959 | /* The number is zero and this limit is |
| 960 | arbitrary. */ |
| 961 | exp_limit = MAX_10_EXP + 1; |
| 962 | } |
| 963 | else |
| 964 | { |
| 965 | assert (lead_zero |
| 966 | <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1)); |
| 967 | exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1; |
| 968 | } |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | if (exp_limit < 0) |
| 973 | exp_limit = 0; |
| 974 | |
| 975 | do |
| 976 | { |
| 977 | if (__builtin_expect ((exponent > exp_limit / 10 |
| 978 | || (exponent == exp_limit / 10 |
| 979 | && c - L_('0') > exp_limit % 10)), 0)) |
| 980 | /* The exponent is too large/small to represent a valid |
| 981 | number. */ |
| 982 | { |
| 983 | FLOAT result; |
| 984 | |
| 985 | /* We have to take care for special situation: a joker |
| 986 | might have written "0.0e100000" which is in fact |
| 987 | zero. */ |
| 988 | if (lead_zero == (size_t) -1) |
| 989 | result = negative ? -0.0 : 0.0; |
| 990 | else |
| 991 | { |
| 992 | /* Overflow or underflow. */ |
| 993 | result = (exp_negative |
| 994 | ? underflow_value (negative) |
| 995 | : overflow_value (negative)); |
| 996 | } |
| 997 | |
| 998 | /* Accept all following digits as part of the exponent. */ |
| 999 | do |
| 1000 | ++cp; |
| 1001 | while (*cp >= L_('0') && *cp <= L_('9')); |
| 1002 | |
| 1003 | RETURN (result, cp); |
| 1004 | /* NOTREACHED */ |
| 1005 | } |
| 1006 | |
| 1007 | exponent *= 10; |
| 1008 | exponent += c - L_('0'); |
| 1009 | |
| 1010 | c = *++cp; |
| 1011 | } |
| 1012 | while (c >= L_('0') && c <= L_('9')); |
| 1013 | |
| 1014 | if (exp_negative) |
| 1015 | exponent = -exponent; |
| 1016 | } |
| 1017 | else |
| 1018 | cp = expp; |
| 1019 | } |
| 1020 | |
| 1021 | /* We don't want to have to work with trailing zeroes after the radix. */ |
| 1022 | if (dig_no > int_no) |
| 1023 | { |
| 1024 | while (expp[-1] == L_('0')) |
| 1025 | { |
| 1026 | --expp; |
| 1027 | --dig_no; |
| 1028 | } |
| 1029 | assert (dig_no >= int_no); |
| 1030 | } |
| 1031 | |
| 1032 | if (dig_no == int_no && dig_no > 0 && exponent < 0) |
| 1033 | do |
| 1034 | { |
| 1035 | while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1]))) |
| 1036 | --expp; |
| 1037 | |
| 1038 | if (expp[-1] != L_('0')) |
| 1039 | break; |
| 1040 | |
| 1041 | --expp; |
| 1042 | --dig_no; |
| 1043 | --int_no; |
| 1044 | exponent += base == 16 ? 4 : 1; |
| 1045 | } |
| 1046 | while (dig_no > 0 && exponent < 0); |
| 1047 | |
| 1048 | number_parsed: |
| 1049 | |
| 1050 | /* The whole string is parsed. Store the address of the next character. */ |
| 1051 | if (endptr) |
| 1052 | *endptr = (STRING_TYPE *) cp; |
| 1053 | |
| 1054 | if (dig_no == 0) |
| 1055 | return negative ? -0.0 : 0.0; |
| 1056 | |
| 1057 | if (lead_zero) |
| 1058 | { |
| 1059 | /* Find the decimal point */ |
| 1060 | #ifdef USE_WIDE_CHAR |
| 1061 | while (*startp != decimal) |
| 1062 | ++startp; |
| 1063 | #else |
| 1064 | while (1) |
| 1065 | { |
| 1066 | if (*startp == decimal[0]) |
| 1067 | { |
| 1068 | for (cnt = 1; decimal[cnt] != '\0'; ++cnt) |
| 1069 | if (decimal[cnt] != startp[cnt]) |
| 1070 | break; |
| 1071 | if (decimal[cnt] == '\0') |
| 1072 | break; |
| 1073 | } |
| 1074 | ++startp; |
| 1075 | } |
| 1076 | #endif |
| 1077 | startp += lead_zero + decimal_len; |
| 1078 | assert (lead_zero <= (base == 16 |
| 1079 | ? (uintmax_t) INTMAX_MAX / 4 |
| 1080 | : (uintmax_t) INTMAX_MAX)); |
| 1081 | assert (lead_zero <= (base == 16 |
| 1082 | ? ((uintmax_t) exponent |
| 1083 | - (uintmax_t) INTMAX_MIN) / 4 |
| 1084 | : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN))); |
| 1085 | exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero; |
| 1086 | dig_no -= lead_zero; |
| 1087 | } |
| 1088 | |
| 1089 | /* If the BASE is 16 we can use a simpler algorithm. */ |
| 1090 | if (base == 16) |
| 1091 | { |
| 1092 | static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3, |
| 1093 | 4, 4, 4, 4, 4, 4, 4, 4 }; |
| 1094 | int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB; |
| 1095 | int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB; |
| 1096 | mp_limb_t val; |
| 1097 | |
| 1098 | while (!ISXDIGIT (*startp)) |
| 1099 | ++startp; |
| 1100 | while (*startp == L_('0')) |
| 1101 | ++startp; |
| 1102 | if (ISDIGIT (*startp)) |
| 1103 | val = *startp++ - L_('0'); |
| 1104 | else |
| 1105 | val = 10 + TOLOWER (*startp++) - L_('a'); |
| 1106 | bits = nbits[val]; |
| 1107 | /* We cannot have a leading zero. */ |
| 1108 | assert (bits != 0); |
| 1109 | |
| 1110 | if (pos + 1 >= 4 || pos + 1 >= bits) |
| 1111 | { |
| 1112 | /* We don't have to care for wrapping. This is the normal |
| 1113 | case so we add the first clause in the `if' expression as |
| 1114 | an optimization. It is a compile-time constant and so does |
| 1115 | not cost anything. */ |
| 1116 | retval[idx] = val << (pos - bits + 1); |
| 1117 | pos -= bits; |
| 1118 | } |
| 1119 | else |
| 1120 | { |
| 1121 | retval[idx--] = val >> (bits - pos - 1); |
| 1122 | retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1)); |
| 1123 | pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1); |
| 1124 | } |
| 1125 | |
| 1126 | /* Adjust the exponent for the bits we are shifting in. */ |
| 1127 | assert (int_no <= (uintmax_t) (exponent < 0 |
| 1128 | ? (INTMAX_MAX - bits + 1) / 4 |
| 1129 | : (INTMAX_MAX - exponent - bits + 1) / 4)); |
| 1130 | exponent += bits - 1 + ((intmax_t) int_no - 1) * 4; |
| 1131 | |
| 1132 | while (--dig_no > 0 && idx >= 0) |
| 1133 | { |
| 1134 | if (!ISXDIGIT (*startp)) |
| 1135 | startp += decimal_len; |
| 1136 | if (ISDIGIT (*startp)) |
| 1137 | val = *startp++ - L_('0'); |
| 1138 | else |
| 1139 | val = 10 + TOLOWER (*startp++) - L_('a'); |
| 1140 | |
| 1141 | if (pos + 1 >= 4) |
| 1142 | { |
| 1143 | retval[idx] |= val << (pos - 4 + 1); |
| 1144 | pos -= 4; |
| 1145 | } |
| 1146 | else |
| 1147 | { |
| 1148 | retval[idx--] |= val >> (4 - pos - 1); |
| 1149 | val <<= BITS_PER_MP_LIMB - (4 - pos - 1); |
| 1150 | if (idx < 0) |
| 1151 | { |
| 1152 | int rest_nonzero = 0; |
| 1153 | while (--dig_no > 0) |
| 1154 | { |
| 1155 | if (*startp != L_('0')) |
| 1156 | { |
| 1157 | rest_nonzero = 1; |
| 1158 | break; |
| 1159 | } |
| 1160 | startp++; |
| 1161 | } |
| 1162 | return round_and_return (retval, exponent, negative, val, |
| 1163 | BITS_PER_MP_LIMB - 1, rest_nonzero); |
| 1164 | } |
| 1165 | |
| 1166 | retval[idx] = val; |
| 1167 | pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1); |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | /* We ran out of digits. */ |
| 1172 | MPN_ZERO (retval, idx); |
| 1173 | |
| 1174 | return round_and_return (retval, exponent, negative, 0, 0, 0); |
| 1175 | } |
| 1176 | |
| 1177 | /* Now we have the number of digits in total and the integer digits as well |
| 1178 | as the exponent and its sign. We can decide whether the read digits are |
| 1179 | really integer digits or belong to the fractional part; i.e. we normalize |
| 1180 | 123e-2 to 1.23. */ |
| 1181 | { |
| 1182 | intmax_t incr = (exponent < 0 |
| 1183 | ? MAX (-(intmax_t) int_no, exponent) |
| 1184 | : MIN ((intmax_t) dig_no - (intmax_t) int_no, exponent)); |
| 1185 | int_no += incr; |
| 1186 | exponent -= incr; |
| 1187 | } |
| 1188 | |
| 1189 | if (__glibc_unlikely (exponent > MAX_10_EXP + 1 - (intmax_t) int_no)) |
| 1190 | return overflow_value (negative); |
| 1191 | |
| 1192 | /* 10^(MIN_10_EXP-1) is not normal. Thus, 10^(MIN_10_EXP-1) / |
| 1193 | 2^MANT_DIG is below half the least subnormal, so anything with a |
| 1194 | base-10 exponent less than the base-10 exponent (which is |
| 1195 | MIN_10_EXP - 1 - ceil(MANT_DIG*log10(2))) of that value |
| 1196 | underflows. DIG is floor((MANT_DIG-1)log10(2)), so an exponent |
| 1197 | below MIN_10_EXP - (DIG + 3) underflows. But EXPONENT is |
| 1198 | actually an exponent multiplied only by a fractional part, not an |
| 1199 | integer part, so an exponent below MIN_10_EXP - (DIG + 2) |
| 1200 | underflows. */ |
| 1201 | if (__glibc_unlikely (exponent < MIN_10_EXP - (DIG + 2))) |
| 1202 | return underflow_value (negative); |
| 1203 | |
| 1204 | if (int_no > 0) |
| 1205 | { |
| 1206 | /* Read the integer part as a multi-precision number to NUM. */ |
| 1207 | startp = str_to_mpn (startp, int_no, num, &numsize, &exponent |
| 1208 | #ifndef USE_WIDE_CHAR |
| 1209 | , decimal, decimal_len, thousands |
| 1210 | #endif |
| 1211 | ); |
| 1212 | |
| 1213 | if (exponent > 0) |
| 1214 | { |
| 1215 | /* We now multiply the gained number by the given power of ten. */ |
| 1216 | mp_limb_t *psrc = num; |
| 1217 | mp_limb_t *pdest = den; |
| 1218 | int expbit = 1; |
| 1219 | const struct mp_power *ttab = &_fpioconst_pow10[0]; |
| 1220 | |
| 1221 | do |
| 1222 | { |
| 1223 | if ((exponent & expbit) != 0) |
| 1224 | { |
| 1225 | size_t size = ttab->arraysize - _FPIO_CONST_OFFSET; |
| 1226 | mp_limb_t cy; |
| 1227 | exponent ^= expbit; |
| 1228 | |
| 1229 | /* FIXME: not the whole multiplication has to be |
| 1230 | done. If we have the needed number of bits we |
| 1231 | only need the information whether more non-zero |
| 1232 | bits follow. */ |
| 1233 | if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET) |
| 1234 | cy = __mpn_mul (pdest, psrc, numsize, |
| 1235 | &__tens[ttab->arrayoff |
| 1236 | + _FPIO_CONST_OFFSET], |
| 1237 | size); |
| 1238 | else |
| 1239 | cy = __mpn_mul (pdest, &__tens[ttab->arrayoff |
| 1240 | + _FPIO_CONST_OFFSET], |
| 1241 | size, psrc, numsize); |
| 1242 | numsize += size; |
| 1243 | if (cy == 0) |
| 1244 | --numsize; |
| 1245 | (void) SWAP (psrc, pdest); |
| 1246 | } |
| 1247 | expbit <<= 1; |
| 1248 | ++ttab; |
| 1249 | } |
| 1250 | while (exponent != 0); |
| 1251 | |
| 1252 | if (psrc == den) |
| 1253 | memcpy (num, den, numsize * sizeof (mp_limb_t)); |
| 1254 | } |
| 1255 | |
| 1256 | /* Determine how many bits of the result we already have. */ |
| 1257 | count_leading_zeros (bits, num[numsize - 1]); |
| 1258 | bits = numsize * BITS_PER_MP_LIMB - bits; |
| 1259 | |
| 1260 | /* Now we know the exponent of the number in base two. |
| 1261 | Check it against the maximum possible exponent. */ |
| 1262 | if (__glibc_unlikely (bits > MAX_EXP)) |
| 1263 | return overflow_value (negative); |
| 1264 | |
| 1265 | /* We have already the first BITS bits of the result. Together with |
| 1266 | the information whether more non-zero bits follow this is enough |
| 1267 | to determine the result. */ |
| 1268 | if (bits > MANT_DIG) |
| 1269 | { |
| 1270 | int i; |
| 1271 | const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB; |
| 1272 | const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB; |
| 1273 | const mp_size_t round_idx = least_bit == 0 ? least_idx - 1 |
| 1274 | : least_idx; |
| 1275 | const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1 |
| 1276 | : least_bit - 1; |
| 1277 | |
| 1278 | if (least_bit == 0) |
| 1279 | memcpy (retval, &num[least_idx], |
| 1280 | RETURN_LIMB_SIZE * sizeof (mp_limb_t)); |
| 1281 | else |
| 1282 | { |
| 1283 | for (i = least_idx; i < numsize - 1; ++i) |
| 1284 | retval[i - least_idx] = (num[i] >> least_bit) |
| 1285 | | (num[i + 1] |
| 1286 | << (BITS_PER_MP_LIMB - least_bit)); |
| 1287 | if (i - least_idx < RETURN_LIMB_SIZE) |
| 1288 | retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit; |
| 1289 | } |
| 1290 | |
| 1291 | /* Check whether any limb beside the ones in RETVAL are non-zero. */ |
| 1292 | for (i = 0; num[i] == 0; ++i) |
| 1293 | ; |
| 1294 | |
| 1295 | return round_and_return (retval, bits - 1, negative, |
| 1296 | num[round_idx], round_bit, |
| 1297 | int_no < dig_no || i < round_idx); |
| 1298 | /* NOTREACHED */ |
| 1299 | } |
| 1300 | else if (dig_no == int_no) |
| 1301 | { |
| 1302 | const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB; |
| 1303 | const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB; |
| 1304 | |
| 1305 | if (target_bit == is_bit) |
| 1306 | { |
| 1307 | memcpy (&retval[RETURN_LIMB_SIZE - numsize], num, |
| 1308 | numsize * sizeof (mp_limb_t)); |
| 1309 | /* FIXME: the following loop can be avoided if we assume a |
| 1310 | maximal MANT_DIG value. */ |
| 1311 | MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize); |
| 1312 | } |
| 1313 | else if (target_bit > is_bit) |
| 1314 | { |
| 1315 | (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize], |
| 1316 | num, numsize, target_bit - is_bit); |
| 1317 | /* FIXME: the following loop can be avoided if we assume a |
| 1318 | maximal MANT_DIG value. */ |
| 1319 | MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize); |
| 1320 | } |
| 1321 | else |
| 1322 | { |
| 1323 | mp_limb_t cy; |
| 1324 | assert (numsize < RETURN_LIMB_SIZE); |
| 1325 | |
| 1326 | cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize], |
| 1327 | num, numsize, is_bit - target_bit); |
| 1328 | retval[RETURN_LIMB_SIZE - numsize - 1] = cy; |
| 1329 | /* FIXME: the following loop can be avoided if we assume a |
| 1330 | maximal MANT_DIG value. */ |
| 1331 | MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1); |
| 1332 | } |
| 1333 | |
| 1334 | return round_and_return (retval, bits - 1, negative, 0, 0, 0); |
| 1335 | /* NOTREACHED */ |
| 1336 | } |
| 1337 | |
| 1338 | /* Store the bits we already have. */ |
| 1339 | memcpy (retval, num, numsize * sizeof (mp_limb_t)); |
| 1340 | #if RETURN_LIMB_SIZE > 1 |
| 1341 | if (numsize < RETURN_LIMB_SIZE) |
| 1342 | # if RETURN_LIMB_SIZE == 2 |
| 1343 | retval[numsize] = 0; |
| 1344 | # else |
| 1345 | MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize); |
| 1346 | # endif |
| 1347 | #endif |
| 1348 | } |
| 1349 | |
| 1350 | /* We have to compute at least some of the fractional digits. */ |
| 1351 | { |
| 1352 | /* We construct a fraction and the result of the division gives us |
| 1353 | the needed digits. The denominator is 1.0 multiplied by the |
| 1354 | exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and |
| 1355 | 123e-6 gives 123 / 1000000. */ |
| 1356 | |
| 1357 | int expbit; |
| 1358 | int neg_exp; |
| 1359 | int more_bits; |
| 1360 | int need_frac_digits; |
| 1361 | mp_limb_t cy; |
| 1362 | mp_limb_t *psrc = den; |
| 1363 | mp_limb_t *pdest = num; |
| 1364 | const struct mp_power *ttab = &_fpioconst_pow10[0]; |
| 1365 | |
| 1366 | assert (dig_no > int_no |
| 1367 | && exponent <= 0 |
| 1368 | && exponent >= MIN_10_EXP - (DIG + 2)); |
| 1369 | |
| 1370 | /* We need to compute MANT_DIG - BITS fractional bits that lie |
| 1371 | within the mantissa of the result, the following bit for |
| 1372 | rounding, and to know whether any subsequent bit is 0. |
| 1373 | Computing a bit with value 2^-n means looking at n digits after |
| 1374 | the decimal point. */ |
| 1375 | if (bits > 0) |
| 1376 | { |
| 1377 | /* The bits required are those immediately after the point. */ |
| 1378 | assert (int_no > 0 && exponent == 0); |
| 1379 | need_frac_digits = 1 + MANT_DIG - bits; |
| 1380 | } |
| 1381 | else |
| 1382 | { |
| 1383 | /* The number is in the form .123eEXPONENT. */ |
| 1384 | assert (int_no == 0 && *startp != L_('0')); |
| 1385 | /* The number is at least 10^(EXPONENT-1), and 10^3 < |
| 1386 | 2^10. */ |
| 1387 | int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1; |
| 1388 | /* The number is at least 2^-NEG_EXP_2. We need up to |
| 1389 | MANT_DIG bits following that bit. */ |
| 1390 | need_frac_digits = neg_exp_2 + MANT_DIG; |
| 1391 | /* However, we never need bits beyond 1/4 ulp of the smallest |
| 1392 | representable value. (That 1/4 ulp bit is only needed to |
| 1393 | determine tinyness on machines where tinyness is determined |
| 1394 | after rounding.) */ |
| 1395 | if (need_frac_digits > MANT_DIG - MIN_EXP + 2) |
| 1396 | need_frac_digits = MANT_DIG - MIN_EXP + 2; |
| 1397 | /* At this point, NEED_FRAC_DIGITS is the total number of |
| 1398 | digits needed after the point, but some of those may be |
| 1399 | leading 0s. */ |
| 1400 | need_frac_digits += exponent; |
| 1401 | /* Any cases underflowing enough that none of the fractional |
| 1402 | digits are needed should have been caught earlier (such |
| 1403 | cases are on the order of 10^-n or smaller where 2^-n is |
| 1404 | the least subnormal). */ |
| 1405 | assert (need_frac_digits > 0); |
| 1406 | } |
| 1407 | |
| 1408 | if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no) |
| 1409 | need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no; |
| 1410 | |
| 1411 | if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits) |
| 1412 | { |
| 1413 | dig_no = int_no + need_frac_digits; |
| 1414 | more_bits = 1; |
| 1415 | } |
| 1416 | else |
| 1417 | more_bits = 0; |
| 1418 | |
| 1419 | neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent; |
| 1420 | |
| 1421 | /* Construct the denominator. */ |
| 1422 | densize = 0; |
| 1423 | expbit = 1; |
| 1424 | do |
| 1425 | { |
| 1426 | if ((neg_exp & expbit) != 0) |
| 1427 | { |
| 1428 | mp_limb_t cy; |
| 1429 | neg_exp ^= expbit; |
| 1430 | |
| 1431 | if (densize == 0) |
| 1432 | { |
| 1433 | densize = ttab->arraysize - _FPIO_CONST_OFFSET; |
| 1434 | memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET], |
| 1435 | densize * sizeof (mp_limb_t)); |
| 1436 | } |
| 1437 | else |
| 1438 | { |
| 1439 | cy = __mpn_mul (pdest, &__tens[ttab->arrayoff |
| 1440 | + _FPIO_CONST_OFFSET], |
| 1441 | ttab->arraysize - _FPIO_CONST_OFFSET, |
| 1442 | psrc, densize); |
| 1443 | densize += ttab->arraysize - _FPIO_CONST_OFFSET; |
| 1444 | if (cy == 0) |
| 1445 | --densize; |
| 1446 | (void) SWAP (psrc, pdest); |
| 1447 | } |
| 1448 | } |
| 1449 | expbit <<= 1; |
| 1450 | ++ttab; |
| 1451 | } |
| 1452 | while (neg_exp != 0); |
| 1453 | |
| 1454 | if (psrc == num) |
| 1455 | memcpy (den, num, densize * sizeof (mp_limb_t)); |
| 1456 | |
| 1457 | /* Read the fractional digits from the string. */ |
| 1458 | (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent |
| 1459 | #ifndef USE_WIDE_CHAR |
| 1460 | , decimal, decimal_len, thousands |
| 1461 | #endif |
| 1462 | ); |
| 1463 | |
| 1464 | /* We now have to shift both numbers so that the highest bit in the |
| 1465 | denominator is set. In the same process we copy the numerator to |
| 1466 | a high place in the array so that the division constructs the wanted |
| 1467 | digits. This is done by a "quasi fix point" number representation. |
| 1468 | |
| 1469 | num: ddddddddddd . 0000000000000000000000 |
| 1470 | |--- m ---| |
| 1471 | den: ddddddddddd n >= m |
| 1472 | |--- n ---| |
| 1473 | */ |
| 1474 | |
| 1475 | count_leading_zeros (cnt, den[densize - 1]); |
| 1476 | |
| 1477 | if (cnt > 0) |
| 1478 | { |
| 1479 | /* Don't call `mpn_shift' with a count of zero since the specification |
| 1480 | does not allow this. */ |
| 1481 | (void) __mpn_lshift (den, den, densize, cnt); |
| 1482 | cy = __mpn_lshift (num, num, numsize, cnt); |
| 1483 | if (cy != 0) |
| 1484 | num[numsize++] = cy; |
| 1485 | } |
| 1486 | |
| 1487 | /* Now we are ready for the division. But it is not necessary to |
| 1488 | do a full multi-precision division because we only need a small |
| 1489 | number of bits for the result. So we do not use __mpn_divmod |
| 1490 | here but instead do the division here by hand and stop whenever |
| 1491 | the needed number of bits is reached. The code itself comes |
| 1492 | from the GNU MP Library by Torbj\"orn Granlund. */ |
| 1493 | |
| 1494 | exponent = bits; |
| 1495 | |
| 1496 | switch (densize) |
| 1497 | { |
| 1498 | case 1: |
| 1499 | { |
| 1500 | mp_limb_t d, n, quot; |
| 1501 | int used = 0; |
| 1502 | |
| 1503 | n = num[0]; |
| 1504 | d = den[0]; |
| 1505 | assert (numsize == 1 && n < d); |
| 1506 | |
| 1507 | do |
| 1508 | { |
| 1509 | udiv_qrnnd (quot, n, n, 0, d); |
| 1510 | |
| 1511 | #define got_limb \ |
| 1512 | if (bits == 0) \ |
| 1513 | { \ |
| 1514 | int cnt; \ |
| 1515 | if (quot == 0) \ |
| 1516 | cnt = BITS_PER_MP_LIMB; \ |
| 1517 | else \ |
| 1518 | count_leading_zeros (cnt, quot); \ |
| 1519 | exponent -= cnt; \ |
| 1520 | if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \ |
| 1521 | { \ |
| 1522 | used = MANT_DIG + cnt; \ |
| 1523 | retval[0] = quot >> (BITS_PER_MP_LIMB - used); \ |
| 1524 | bits = MANT_DIG + 1; \ |
| 1525 | } \ |
| 1526 | else \ |
| 1527 | { \ |
| 1528 | /* Note that we only clear the second element. */ \ |
| 1529 | /* The conditional is determined at compile time. */ \ |
| 1530 | if (RETURN_LIMB_SIZE > 1) \ |
| 1531 | retval[1] = 0; \ |
| 1532 | retval[0] = quot; \ |
| 1533 | bits = -cnt; \ |
| 1534 | } \ |
| 1535 | } \ |
| 1536 | else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \ |
| 1537 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \ |
| 1538 | quot); \ |
| 1539 | else \ |
| 1540 | { \ |
| 1541 | used = MANT_DIG - bits; \ |
| 1542 | if (used > 0) \ |
| 1543 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \ |
| 1544 | } \ |
| 1545 | bits += BITS_PER_MP_LIMB |
| 1546 | |
| 1547 | got_limb; |
| 1548 | } |
| 1549 | while (bits <= MANT_DIG); |
| 1550 | |
| 1551 | return round_and_return (retval, exponent - 1, negative, |
| 1552 | quot, BITS_PER_MP_LIMB - 1 - used, |
| 1553 | more_bits || n != 0); |
| 1554 | } |
| 1555 | case 2: |
| 1556 | { |
| 1557 | mp_limb_t d0, d1, n0, n1; |
| 1558 | mp_limb_t quot = 0; |
| 1559 | int used = 0; |
| 1560 | |
| 1561 | d0 = den[0]; |
| 1562 | d1 = den[1]; |
| 1563 | |
| 1564 | if (numsize < densize) |
| 1565 | { |
| 1566 | if (num[0] >= d1) |
| 1567 | { |
| 1568 | /* The numerator of the number occupies fewer bits than |
| 1569 | the denominator but the one limb is bigger than the |
| 1570 | high limb of the numerator. */ |
| 1571 | n1 = 0; |
| 1572 | n0 = num[0]; |
| 1573 | } |
| 1574 | else |
| 1575 | { |
| 1576 | if (bits <= 0) |
| 1577 | exponent -= BITS_PER_MP_LIMB; |
| 1578 | else |
| 1579 | { |
| 1580 | if (bits + BITS_PER_MP_LIMB <= MANT_DIG) |
| 1581 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, |
| 1582 | BITS_PER_MP_LIMB, 0); |
| 1583 | else |
| 1584 | { |
| 1585 | used = MANT_DIG - bits; |
| 1586 | if (used > 0) |
| 1587 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0); |
| 1588 | } |
| 1589 | bits += BITS_PER_MP_LIMB; |
| 1590 | } |
| 1591 | n1 = num[0]; |
| 1592 | n0 = 0; |
| 1593 | } |
| 1594 | } |
| 1595 | else |
| 1596 | { |
| 1597 | n1 = num[1]; |
| 1598 | n0 = num[0]; |
| 1599 | } |
| 1600 | |
| 1601 | while (bits <= MANT_DIG) |
| 1602 | { |
| 1603 | mp_limb_t r; |
| 1604 | |
| 1605 | if (n1 == d1) |
| 1606 | { |
| 1607 | /* QUOT should be either 111..111 or 111..110. We need |
| 1608 | special treatment of this rare case as normal division |
| 1609 | would give overflow. */ |
| 1610 | quot = ~(mp_limb_t) 0; |
| 1611 | |
| 1612 | r = n0 + d1; |
| 1613 | if (r < d1) /* Carry in the addition? */ |
| 1614 | { |
| 1615 | add_ssaaaa (n1, n0, r - d0, 0, 0, d0); |
| 1616 | goto have_quot; |
| 1617 | } |
| 1618 | n1 = d0 - (d0 != 0); |
| 1619 | n0 = -d0; |
| 1620 | } |
| 1621 | else |
| 1622 | { |
| 1623 | udiv_qrnnd (quot, r, n1, n0, d1); |
| 1624 | umul_ppmm (n1, n0, d0, quot); |
| 1625 | } |
| 1626 | |
| 1627 | q_test: |
| 1628 | if (n1 > r || (n1 == r && n0 > 0)) |
| 1629 | { |
| 1630 | /* The estimated QUOT was too large. */ |
| 1631 | --quot; |
| 1632 | |
| 1633 | sub_ddmmss (n1, n0, n1, n0, 0, d0); |
| 1634 | r += d1; |
| 1635 | if (r >= d1) /* If not carry, test QUOT again. */ |
| 1636 | goto q_test; |
| 1637 | } |
| 1638 | sub_ddmmss (n1, n0, r, 0, n1, n0); |
| 1639 | |
| 1640 | have_quot: |
| 1641 | got_limb; |
| 1642 | } |
| 1643 | |
| 1644 | return round_and_return (retval, exponent - 1, negative, |
| 1645 | quot, BITS_PER_MP_LIMB - 1 - used, |
| 1646 | more_bits || n1 != 0 || n0 != 0); |
| 1647 | } |
| 1648 | default: |
| 1649 | { |
| 1650 | int i; |
| 1651 | mp_limb_t cy, dX, d1, n0, n1; |
| 1652 | mp_limb_t quot = 0; |
| 1653 | int used = 0; |
| 1654 | |
| 1655 | dX = den[densize - 1]; |
| 1656 | d1 = den[densize - 2]; |
| 1657 | |
| 1658 | /* The division does not work if the upper limb of the two-limb |
| 1659 | numerator is greater than the denominator. */ |
| 1660 | if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0) |
| 1661 | num[numsize++] = 0; |
| 1662 | |
| 1663 | if (numsize < densize) |
| 1664 | { |
| 1665 | mp_size_t empty = densize - numsize; |
| 1666 | int i; |
| 1667 | |
| 1668 | if (bits <= 0) |
| 1669 | exponent -= empty * BITS_PER_MP_LIMB; |
| 1670 | else |
| 1671 | { |
| 1672 | if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG) |
| 1673 | { |
| 1674 | /* We make a difference here because the compiler |
| 1675 | cannot optimize the `else' case that good and |
| 1676 | this reflects all currently used FLOAT types |
| 1677 | and GMP implementations. */ |
| 1678 | #if RETURN_LIMB_SIZE <= 2 |
| 1679 | assert (empty == 1); |
| 1680 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, |
| 1681 | BITS_PER_MP_LIMB, 0); |
| 1682 | #else |
| 1683 | for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i) |
| 1684 | retval[i] = retval[i - empty]; |
| 1685 | while (i >= 0) |
| 1686 | retval[i--] = 0; |
| 1687 | #endif |
| 1688 | } |
| 1689 | else |
| 1690 | { |
| 1691 | used = MANT_DIG - bits; |
| 1692 | if (used >= BITS_PER_MP_LIMB) |
| 1693 | { |
| 1694 | int i; |
| 1695 | (void) __mpn_lshift (&retval[used |
| 1696 | / BITS_PER_MP_LIMB], |
| 1697 | retval, |
| 1698 | (RETURN_LIMB_SIZE |
| 1699 | - used / BITS_PER_MP_LIMB), |
| 1700 | used % BITS_PER_MP_LIMB); |
| 1701 | for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i) |
| 1702 | retval[i] = 0; |
| 1703 | } |
| 1704 | else if (used > 0) |
| 1705 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0); |
| 1706 | } |
| 1707 | bits += empty * BITS_PER_MP_LIMB; |
| 1708 | } |
| 1709 | for (i = numsize; i > 0; --i) |
| 1710 | num[i + empty] = num[i - 1]; |
| 1711 | MPN_ZERO (num, empty + 1); |
| 1712 | } |
| 1713 | else |
| 1714 | { |
| 1715 | int i; |
| 1716 | assert (numsize == densize); |
| 1717 | for (i = numsize; i > 0; --i) |
| 1718 | num[i] = num[i - 1]; |
| 1719 | num[0] = 0; |
| 1720 | } |
| 1721 | |
| 1722 | den[densize] = 0; |
| 1723 | n0 = num[densize]; |
| 1724 | |
| 1725 | while (bits <= MANT_DIG) |
| 1726 | { |
| 1727 | if (n0 == dX) |
| 1728 | /* This might over-estimate QUOT, but it's probably not |
| 1729 | worth the extra code here to find out. */ |
| 1730 | quot = ~(mp_limb_t) 0; |
| 1731 | else |
| 1732 | { |
| 1733 | mp_limb_t r; |
| 1734 | |
| 1735 | udiv_qrnnd (quot, r, n0, num[densize - 1], dX); |
| 1736 | umul_ppmm (n1, n0, d1, quot); |
| 1737 | |
| 1738 | while (n1 > r || (n1 == r && n0 > num[densize - 2])) |
| 1739 | { |
| 1740 | --quot; |
| 1741 | r += dX; |
| 1742 | if (r < dX) /* I.e. "carry in previous addition?" */ |
| 1743 | break; |
| 1744 | n1 -= n0 < d1; |
| 1745 | n0 -= d1; |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | /* Possible optimization: We already have (q * n0) and (1 * n1) |
| 1750 | after the calculation of QUOT. Taking advantage of this, we |
| 1751 | could make this loop make two iterations less. */ |
| 1752 | |
| 1753 | cy = __mpn_submul_1 (num, den, densize + 1, quot); |
| 1754 | |
| 1755 | if (num[densize] != cy) |
| 1756 | { |
| 1757 | cy = __mpn_add_n (num, num, den, densize); |
| 1758 | assert (cy != 0); |
| 1759 | --quot; |
| 1760 | } |
| 1761 | n0 = num[densize] = num[densize - 1]; |
| 1762 | for (i = densize - 1; i > 0; --i) |
| 1763 | num[i] = num[i - 1]; |
| 1764 | num[0] = 0; |
| 1765 | |
| 1766 | got_limb; |
| 1767 | } |
| 1768 | |
| 1769 | for (i = densize; i >= 0 && num[i] == 0; --i) |
| 1770 | ; |
| 1771 | return round_and_return (retval, exponent - 1, negative, |
| 1772 | quot, BITS_PER_MP_LIMB - 1 - used, |
| 1773 | more_bits || i >= 0); |
| 1774 | } |
| 1775 | } |
| 1776 | } |
| 1777 | |
| 1778 | /* NOTREACHED */ |
| 1779 | } |
| 1780 | #if defined _LIBC && !defined USE_WIDE_CHAR |
| 1781 | libc_hidden_def (____STRTOF_INTERNAL) |
| 1782 | #endif |
| 1783 | |
| 1784 | /* External user entry point. */ |
| 1785 | |
| 1786 | FLOAT |
| 1787 | #ifdef weak_function |
| 1788 | weak_function |
| 1789 | #endif |
| 1790 | __STRTOF (nptr, endptr, loc) |
| 1791 | const STRING_TYPE *nptr; |
| 1792 | STRING_TYPE **endptr; |
| 1793 | __locale_t loc; |
| 1794 | { |
| 1795 | return ____STRTOF_INTERNAL (nptr, endptr, 0, loc); |
| 1796 | } |
| 1797 | #if defined _LIBC |
| 1798 | libc_hidden_def (__STRTOF) |
| 1799 | libc_hidden_ver (__STRTOF, STRTOF) |
| 1800 | #endif |
| 1801 | weak_alias (__STRTOF, STRTOF) |
| 1802 | |
| 1803 | #ifdef LONG_DOUBLE_COMPAT |
| 1804 | # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1) |
| 1805 | # ifdef USE_WIDE_CHAR |
| 1806 | compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1); |
| 1807 | # else |
| 1808 | compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1); |
| 1809 | # endif |
| 1810 | # endif |
| 1811 | # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3) |
| 1812 | # ifdef USE_WIDE_CHAR |
| 1813 | compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3); |
| 1814 | # else |
| 1815 | compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3); |
| 1816 | # endif |
| 1817 | # endif |
| 1818 | #endif |