blob: 232730b8c3fad5d35004555686e708b28a5723aa [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5float: 1
6ifloat: 1
7
8Function: "acos_downward":
9float: 1
10ifloat: 1
11ildouble: 1
12ldouble: 1
13
14Function: "acos_towardzero":
15double: 1
16float: 1
17idouble: 1
18ifloat: 1
19ildouble: 1
20ldouble: 1
21
22Function: "acos_upward":
23double: 1
24float: 1
25idouble: 1
26ifloat: 1
27ildouble: 1
28ldouble: 1
29
30Function: "acosh":
31double: 1
32float: 2
33idouble: 1
34ifloat: 2
35ildouble: 1
36ldouble: 1
37
38Function: "acosh_downward":
39double: 1
40float: 1
41idouble: 1
42ifloat: 1
43ildouble: 2
44ldouble: 2
45
46Function: "acosh_towardzero":
47double: 2
48float: 1
49idouble: 2
50ifloat: 1
51ildouble: 1
52ldouble: 1
53
54Function: "acosh_upward":
55double: 2
56float: 1
57idouble: 2
58ifloat: 1
59ildouble: 2
60ldouble: 2
61
62Function: "asin":
63float: 1
64ifloat: 1
65ildouble: 1
66ldouble: 1
67
68Function: "asin_downward":
69double: 1
70float: 1
71idouble: 1
72ifloat: 1
73ildouble: 1
74ldouble: 1
75
76Function: "asin_towardzero":
77float: 1
78ifloat: 1
79ildouble: 1
80ldouble: 1
81
82Function: "asin_upward":
83double: 1
84float: 1
85idouble: 1
86ifloat: 1
87ildouble: 1
88ldouble: 1
89
90Function: "asinh":
91double: 1
92float: 1
93idouble: 1
94ifloat: 1
95ildouble: 1
96ldouble: 1
97
98Function: "asinh_downward":
99double: 3
100float: 3
101idouble: 3
102ifloat: 3
103ildouble: 3
104ldouble: 3
105
106Function: "asinh_towardzero":
107double: 2
108float: 2
109idouble: 2
110ifloat: 2
111ildouble: 2
112ldouble: 2
113
114Function: "asinh_upward":
115double: 3
116float: 3
117idouble: 3
118ifloat: 3
119ildouble: 3
120ldouble: 3
121
122Function: "atan":
123double: 1
124float: 1
125idouble: 1
126ifloat: 1
127ildouble: 1
128ldouble: 1
129
130Function: "atan2":
131float: 1
132ifloat: 1
133ildouble: 1
134ldouble: 1
135
136Function: "atan2_downward":
137double: 1
138float: 2
139idouble: 1
140ifloat: 2
141ildouble: 1
142ldouble: 1
143
144Function: "atan2_towardzero":
145double: 1
146float: 2
147idouble: 1
148ifloat: 2
149ildouble: 2
150ldouble: 2
151
152Function: "atan2_upward":
153double: 1
154float: 1
155idouble: 1
156ifloat: 1
157ildouble: 2
158ldouble: 2
159
160Function: "atan_downward":
161double: 1
162float: 2
163idouble: 1
164ifloat: 2
165ildouble: 2
166ldouble: 2
167
168Function: "atan_towardzero":
169double: 1
170float: 1
171idouble: 1
172ifloat: 1
173ildouble: 1
174ldouble: 1
175
176Function: "atan_upward":
177double: 1
178float: 2
179idouble: 1
180ifloat: 2
181ildouble: 1
182ldouble: 1
183
184Function: "atanh":
185double: 1
186float: 2
187idouble: 1
188ifloat: 2
189ildouble: 2
190ldouble: 2
191
192Function: "atanh_downward":
193double: 3
194float: 2
195idouble: 3
196ifloat: 2
197ildouble: 3
198ldouble: 3
199
200Function: "atanh_towardzero":
201double: 2
202float: 2
203idouble: 2
204ifloat: 2
205ildouble: 2
206ldouble: 2
207
208Function: "atanh_upward":
209double: 2
210float: 3
211idouble: 2
212ifloat: 3
213ildouble: 3
214ldouble: 3
215
216Function: "cabs":
217double: 1
218idouble: 1
219
220Function: "cabs_downward":
221double: 1
222idouble: 1
223
224Function: "cabs_towardzero":
225double: 1
226idouble: 1
227
228Function: "cabs_upward":
229double: 1
230idouble: 1
231
232Function: Real part of "cacos":
233double: 1
234float: 2
235idouble: 1
236ifloat: 2
237ildouble: 2
238ldouble: 2
239
240Function: Imaginary part of "cacos":
241double: 1
242float: 2
243idouble: 1
244ifloat: 2
245ildouble: 2
246ldouble: 2
247
248Function: Real part of "cacos_downward":
249double: 2
250float: 2
251idouble: 2
252ifloat: 2
253ildouble: 2
254ldouble: 2
255
256Function: Imaginary part of "cacos_downward":
257double: 5
258float: 3
259idouble: 5
260ifloat: 3
261ildouble: 5
262ldouble: 5
263
264Function: Real part of "cacos_towardzero":
265double: 2
266float: 2
267idouble: 2
268ifloat: 2
269ildouble: 2
270ldouble: 2
271
272Function: Imaginary part of "cacos_towardzero":
273double: 5
274float: 3
275idouble: 5
276ifloat: 3
277ildouble: 5
278ldouble: 5
279
280Function: Real part of "cacos_upward":
281double: 2
282float: 2
283idouble: 2
284ifloat: 2
285ildouble: 3
286ldouble: 3
287
288Function: Imaginary part of "cacos_upward":
289double: 4
290float: 4
291idouble: 4
292ifloat: 4
293ildouble: 5
294ldouble: 5
295
296Function: Real part of "cacosh":
297double: 1
298float: 2
299idouble: 1
300ifloat: 2
301ildouble: 2
302ldouble: 2
303
304Function: Imaginary part of "cacosh":
305double: 1
306float: 2
307idouble: 1
308ifloat: 2
309ildouble: 2
310ldouble: 2
311
312Function: Real part of "cacosh_downward":
313double: 5
314float: 3
315idouble: 5
316ifloat: 3
317ildouble: 5
318ldouble: 5
319
320Function: Imaginary part of "cacosh_downward":
321double: 2
322float: 2
323idouble: 2
324ifloat: 2
325ildouble: 2
326ldouble: 2
327
328Function: Real part of "cacosh_towardzero":
329double: 5
330float: 3
331idouble: 5
332ifloat: 3
333ildouble: 5
334ldouble: 5
335
336Function: Imaginary part of "cacosh_towardzero":
337double: 2
338float: 2
339idouble: 2
340ifloat: 2
341ildouble: 2
342ldouble: 2
343
344Function: Real part of "cacosh_upward":
345double: 4
346float: 4
347idouble: 4
348ifloat: 4
349ildouble: 5
350ldouble: 5
351
352Function: Imaginary part of "cacosh_upward":
353double: 2
354float: 2
355idouble: 2
356ifloat: 2
357ildouble: 3
358ldouble: 3
359
360Function: "carg":
361float: 1
362ifloat: 1
363ildouble: 1
364ldouble: 1
365
366Function: "carg_downward":
367double: 1
368float: 1
369idouble: 1
370ifloat: 1
371ildouble: 1
372ldouble: 1
373
374Function: "carg_towardzero":
375double: 1
376float: 2
377idouble: 1
378ifloat: 2
379ildouble: 2
380ldouble: 2
381
382Function: "carg_upward":
383double: 1
384float: 1
385idouble: 1
386ifloat: 1
387ildouble: 1
388ldouble: 1
389
390Function: Real part of "casin":
391double: 1
392float: 1
393idouble: 1
394ifloat: 1
395ildouble: 2
396ldouble: 2
397
398Function: Imaginary part of "casin":
399double: 1
400float: 2
401idouble: 1
402ifloat: 2
403ildouble: 2
404ldouble: 2
405
406Function: Real part of "casin_downward":
407double: 3
408float: 1
409idouble: 3
410ifloat: 1
411ildouble: 3
412ldouble: 3
413
414Function: Imaginary part of "casin_downward":
415double: 5
416float: 3
417idouble: 5
418ifloat: 3
419ildouble: 5
420ldouble: 5
421
422Function: Real part of "casin_towardzero":
423double: 3
424float: 1
425idouble: 3
426ifloat: 1
427ildouble: 3
428ldouble: 3
429
430Function: Imaginary part of "casin_towardzero":
431double: 5
432float: 3
433idouble: 5
434ifloat: 3
435ildouble: 5
436ldouble: 5
437
438Function: Real part of "casin_upward":
439double: 2
440float: 1
441idouble: 2
442ifloat: 1
443ildouble: 3
444ldouble: 3
445
446Function: Imaginary part of "casin_upward":
447double: 4
448float: 4
449idouble: 4
450ifloat: 4
451ildouble: 5
452ldouble: 5
453
454Function: Real part of "casinh":
455double: 1
456float: 2
457idouble: 1
458ifloat: 2
459ildouble: 2
460ldouble: 2
461
462Function: Imaginary part of "casinh":
463double: 1
464float: 1
465idouble: 1
466ifloat: 1
467ildouble: 2
468ldouble: 2
469
470Function: Real part of "casinh_downward":
471double: 5
472float: 3
473idouble: 5
474ifloat: 3
475ildouble: 5
476ldouble: 5
477
478Function: Imaginary part of "casinh_downward":
479double: 3
480float: 1
481idouble: 3
482ifloat: 1
483ildouble: 3
484ldouble: 3
485
486Function: Real part of "casinh_towardzero":
487double: 5
488float: 3
489idouble: 5
490ifloat: 3
491ildouble: 5
492ldouble: 5
493
494Function: Imaginary part of "casinh_towardzero":
495double: 3
496float: 1
497idouble: 3
498ifloat: 1
499ildouble: 3
500ldouble: 3
501
502Function: Real part of "casinh_upward":
503double: 4
504float: 4
505idouble: 4
506ifloat: 4
507ildouble: 5
508ldouble: 5
509
510Function: Imaginary part of "casinh_upward":
511double: 2
512float: 2
513idouble: 2
514ifloat: 2
515ildouble: 3
516ldouble: 3
517
518Function: Real part of "catan":
519float: 1
520ifloat: 1
521ildouble: 1
522ldouble: 1
523
524Function: Imaginary part of "catan":
525double: 1
526float: 1
527idouble: 1
528ifloat: 1
529ildouble: 1
530ldouble: 1
531
532Function: Real part of "catan_downward":
533double: 1
534float: 1
535idouble: 1
536ifloat: 1
537ildouble: 2
538ldouble: 2
539
540Function: Imaginary part of "catan_downward":
541double: 2
542float: 2
543idouble: 2
544ifloat: 2
545ildouble: 3
546ldouble: 3
547
548Function: Real part of "catan_towardzero":
549double: 1
550float: 1
551idouble: 1
552ifloat: 1
553ildouble: 2
554ldouble: 2
555
556Function: Imaginary part of "catan_towardzero":
557double: 2
558float: 1
559idouble: 2
560ifloat: 1
561ildouble: 3
562ldouble: 3
563
564Function: Real part of "catan_upward":
565float: 1
566ifloat: 1
567ildouble: 1
568ldouble: 1
569
570Function: Imaginary part of "catan_upward":
571double: 3
572float: 3
573idouble: 3
574ifloat: 3
575ildouble: 3
576ldouble: 3
577
578Function: Real part of "catanh":
579double: 1
580float: 1
581idouble: 1
582ifloat: 1
583ildouble: 1
584ldouble: 1
585
586Function: Imaginary part of "catanh":
587float: 1
588ifloat: 1
589ildouble: 1
590ldouble: 1
591
592Function: Real part of "catanh_downward":
593double: 2
594float: 2
595idouble: 2
596ifloat: 2
597ildouble: 3
598ldouble: 3
599
600Function: Imaginary part of "catanh_downward":
601double: 1
602float: 2
603idouble: 1
604ifloat: 2
605ildouble: 2
606ldouble: 2
607
608Function: Real part of "catanh_towardzero":
609double: 2
610float: 1
611idouble: 2
612ifloat: 1
613ildouble: 3
614ldouble: 3
615
616Function: Imaginary part of "catanh_towardzero":
617double: 1
618float: 2
619idouble: 1
620ifloat: 2
621ildouble: 2
622ldouble: 2
623
624Function: Real part of "catanh_upward":
625double: 4
626float: 3
627idouble: 4
628ifloat: 3
629ildouble: 4
630ldouble: 4
631
632Function: Imaginary part of "catanh_upward":
633float: 1
634ifloat: 1
635ildouble: 1
636ldouble: 1
637
638Function: "cbrt":
639double: 3
640float: 1
641idouble: 3
642ifloat: 1
643ildouble: 1
644ldouble: 1
645
646Function: "cbrt_downward":
647double: 4
648float: 1
649idouble: 4
650ifloat: 1
651ildouble: 1
652ldouble: 1
653
654Function: "cbrt_towardzero":
655double: 2
656float: 1
657idouble: 2
658ifloat: 1
659ildouble: 1
660ldouble: 1
661
662Function: "cbrt_upward":
663double: 4
664float: 1
665idouble: 4
666ifloat: 1
667ildouble: 1
668ldouble: 1
669
670Function: Real part of "ccos":
671double: 1
672float: 1
673idouble: 1
674ifloat: 1
675ildouble: 1
676ldouble: 1
677
678Function: Imaginary part of "ccos":
679double: 1
680float: 1
681idouble: 1
682ifloat: 1
683ildouble: 1
684ldouble: 1
685
686Function: Real part of "ccos_downward":
687double: 1
688float: 1
689idouble: 1
690ifloat: 1
691ildouble: 2
692ldouble: 2
693
694Function: Imaginary part of "ccos_downward":
695double: 2
696float: 3
697idouble: 2
698ifloat: 3
699ildouble: 2
700ldouble: 2
701
702Function: Real part of "ccos_towardzero":
703double: 1
704float: 2
705idouble: 1
706ifloat: 2
707ildouble: 2
708ldouble: 2
709
710Function: Imaginary part of "ccos_towardzero":
711double: 2
712float: 3
713idouble: 2
714ifloat: 3
715ildouble: 2
716ldouble: 2
717
718Function: Real part of "ccos_upward":
719double: 1
720float: 2
721idouble: 1
722ifloat: 2
723ildouble: 3
724ldouble: 3
725
726Function: Imaginary part of "ccos_upward":
727double: 2
728float: 2
729idouble: 2
730ifloat: 2
731ildouble: 2
732ldouble: 2
733
734Function: Real part of "ccosh":
735double: 1
736float: 1
737idouble: 1
738ifloat: 1
739ildouble: 1
740ldouble: 1
741
742Function: Imaginary part of "ccosh":
743double: 1
744float: 1
745idouble: 1
746ifloat: 1
747ildouble: 1
748ldouble: 1
749
750Function: Real part of "ccosh_downward":
751double: 1
752float: 3
753idouble: 1
754ifloat: 3
755ildouble: 2
756ldouble: 2
757
758Function: Imaginary part of "ccosh_downward":
759double: 2
760float: 3
761idouble: 2
762ifloat: 3
763ildouble: 2
764ldouble: 2
765
766Function: Real part of "ccosh_towardzero":
767double: 1
768float: 3
769idouble: 1
770ifloat: 3
771ildouble: 2
772ldouble: 2
773
774Function: Imaginary part of "ccosh_towardzero":
775double: 2
776float: 3
777idouble: 2
778ifloat: 3
779ildouble: 2
780ldouble: 2
781
782Function: Real part of "ccosh_upward":
783double: 1
784float: 2
785idouble: 1
786ifloat: 2
787ildouble: 3
788ldouble: 3
789
790Function: Imaginary part of "ccosh_upward":
791double: 2
792float: 2
793idouble: 2
794ifloat: 2
795ildouble: 2
796ldouble: 2
797
798Function: Real part of "cexp":
799double: 2
800float: 1
801idouble: 2
802ifloat: 1
803ildouble: 1
804ldouble: 1
805
806Function: Imaginary part of "cexp":
807double: 1
808float: 2
809idouble: 1
810ifloat: 2
811ildouble: 1
812ldouble: 1
813
814Function: Real part of "cexp_downward":
815double: 1
816float: 2
817idouble: 1
818ifloat: 2
819ildouble: 2
820ldouble: 2
821
822Function: Imaginary part of "cexp_downward":
823double: 1
824float: 3
825idouble: 1
826ifloat: 3
827ildouble: 2
828ldouble: 2
829
830Function: Real part of "cexp_towardzero":
831double: 1
832float: 2
833idouble: 1
834ifloat: 2
835ildouble: 2
836ldouble: 2
837
838Function: Imaginary part of "cexp_towardzero":
839double: 1
840float: 3
841idouble: 1
842ifloat: 3
843ildouble: 2
844ldouble: 2
845
846Function: Real part of "cexp_upward":
847double: 1
848float: 2
849idouble: 1
850ifloat: 2
851ildouble: 3
852ldouble: 3
853
854Function: Imaginary part of "cexp_upward":
855double: 1
856float: 2
857idouble: 1
858ifloat: 2
859ildouble: 3
860ldouble: 3
861
862Function: Real part of "clog":
863double: 3
864float: 3
865idouble: 3
866ifloat: 3
867ildouble: 4
868ldouble: 4
869
870Function: Imaginary part of "clog":
871double: 1
872float: 1
873idouble: 1
874ifloat: 1
875ildouble: 1
876ldouble: 1
877
878Function: Real part of "clog10":
879double: 3
880float: 3
881idouble: 3
882ifloat: 3
883ildouble: 4
884ldouble: 4
885
886Function: Imaginary part of "clog10":
887double: 1
888float: 2
889idouble: 1
890ifloat: 2
891ildouble: 2
892ldouble: 2
893
894Function: Real part of "clog10_downward":
895double: 6
896float: 6
897idouble: 6
898ifloat: 6
899ildouble: 5
900ldouble: 5
901
902Function: Imaginary part of "clog10_downward":
903double: 2
904float: 4
905idouble: 2
906ifloat: 4
907ildouble: 3
908ldouble: 3
909
910Function: Real part of "clog10_towardzero":
911double: 5
912float: 4
913idouble: 5
914ifloat: 4
915ildouble: 6
916ldouble: 6
917
918Function: Imaginary part of "clog10_towardzero":
919double: 2
920float: 4
921idouble: 2
922ifloat: 4
923ildouble: 3
924ldouble: 3
925
926Function: Real part of "clog10_upward":
927double: 8
928float: 5
929idouble: 8
930ifloat: 5
931ildouble: 5
932ldouble: 5
933
934Function: Imaginary part of "clog10_upward":
935double: 2
936float: 3
937idouble: 2
938ifloat: 3
939ildouble: 3
940ldouble: 3
941
942Function: Real part of "clog_downward":
943double: 7
944float: 5
945idouble: 7
946ifloat: 5
947ildouble: 6
948ldouble: 6
949
950Function: Imaginary part of "clog_downward":
951double: 1
952float: 2
953idouble: 1
954ifloat: 2
955ildouble: 2
956ldouble: 2
957
958Function: Real part of "clog_towardzero":
959double: 7
960float: 5
961idouble: 7
962ifloat: 5
963ildouble: 6
964ldouble: 6
965
966Function: Imaginary part of "clog_towardzero":
967double: 1
968float: 2
969idouble: 1
970ifloat: 2
971ildouble: 2
972ldouble: 2
973
974Function: Real part of "clog_upward":
975double: 8
976float: 5
977idouble: 8
978ifloat: 5
979ildouble: 6
980ldouble: 6
981
982Function: Imaginary part of "clog_upward":
983double: 1
984float: 2
985idouble: 1
986ifloat: 2
987ildouble: 2
988ldouble: 2
989
990Function: "cos":
991float: 1
992ifloat: 1
993ildouble: 1
994ldouble: 1
995
996Function: "cos_downward":
997double: 1
998float: 2
999idouble: 1
1000ifloat: 2
1001ildouble: 3
1002ldouble: 3
1003
1004Function: "cos_towardzero":
1005double: 1
1006float: 1
1007idouble: 1
1008ifloat: 1
1009ildouble: 1
1010ldouble: 1
1011
1012Function: "cos_upward":
1013double: 1
1014float: 2
1015idouble: 1
1016ifloat: 2
1017ildouble: 2
1018ldouble: 2
1019
1020Function: "cosh":
1021double: 1
1022float: 1
1023idouble: 1
1024ifloat: 1
1025ildouble: 1
1026ldouble: 1
1027
1028Function: "cosh_downward":
1029double: 1
1030float: 1
1031idouble: 1
1032ifloat: 1
1033ildouble: 1
1034ldouble: 2
1035
1036Function: "cosh_towardzero":
1037double: 1
1038float: 1
1039idouble: 1
1040ifloat: 1
1041ildouble: 1
1042ldouble: 2
1043
1044Function: "cosh_upward":
1045double: 1
1046float: 2
1047idouble: 1
1048ifloat: 2
1049ildouble: 1
1050ldouble: 3
1051
1052Function: Real part of "cpow":
1053double: 2
1054float: 5
1055idouble: 2
1056ifloat: 5
1057ildouble: 4
1058ldouble: 4
1059
1060Function: Imaginary part of "cpow":
1061float: 2
1062ifloat: 2
1063ildouble: 1
1064ldouble: 1
1065
1066Function: Real part of "cpow_downward":
1067double: 4
1068float: 8
1069idouble: 4
1070ifloat: 8
1071ildouble: 6
1072ldouble: 6
1073
1074Function: Imaginary part of "cpow_downward":
1075double: 1
1076float: 2
1077idouble: 1
1078ifloat: 2
1079ildouble: 2
1080ldouble: 2
1081
1082Function: Real part of "cpow_towardzero":
1083double: 4
1084float: 8
1085idouble: 4
1086ifloat: 8
1087ildouble: 6
1088ldouble: 6
1089
1090Function: Imaginary part of "cpow_towardzero":
1091double: 1
1092float: 2
1093idouble: 1
1094ifloat: 2
1095ildouble: 2
1096ldouble: 2
1097
1098Function: Real part of "cpow_upward":
1099double: 4
1100float: 1
1101idouble: 4
1102ifloat: 1
1103ildouble: 3
1104ldouble: 3
1105
1106Function: Imaginary part of "cpow_upward":
1107double: 1
1108float: 2
1109idouble: 1
1110ifloat: 2
1111ildouble: 2
1112ldouble: 2
1113
1114Function: Real part of "csin":
1115double: 1
1116float: 1
1117idouble: 1
1118ifloat: 1
1119ildouble: 1
1120ldouble: 1
1121
1122Function: Imaginary part of "csin":
1123ildouble: 1
1124ldouble: 1
1125
1126Function: Real part of "csin_downward":
1127double: 2
1128float: 3
1129idouble: 2
1130ifloat: 3
1131ildouble: 2
1132ldouble: 2
1133
1134Function: Imaginary part of "csin_downward":
1135double: 1
1136float: 1
1137idouble: 1
1138ifloat: 1
1139ildouble: 2
1140ldouble: 2
1141
1142Function: Real part of "csin_towardzero":
1143double: 2
1144float: 3
1145idouble: 2
1146ifloat: 3
1147ildouble: 2
1148ldouble: 2
1149
1150Function: Imaginary part of "csin_towardzero":
1151double: 1
1152float: 1
1153idouble: 1
1154ifloat: 1
1155ildouble: 2
1156ldouble: 2
1157
1158Function: Real part of "csin_upward":
1159double: 2
1160float: 2
1161idouble: 2
1162ifloat: 2
1163ildouble: 2
1164ldouble: 2
1165
1166Function: Imaginary part of "csin_upward":
1167double: 1
1168float: 2
1169idouble: 1
1170ifloat: 2
1171ildouble: 3
1172ldouble: 3
1173
1174Function: Real part of "csinh":
1175float: 1
1176ifloat: 1
1177ildouble: 1
1178ldouble: 1
1179
1180Function: Imaginary part of "csinh":
1181double: 1
1182float: 1
1183idouble: 1
1184ifloat: 1
1185ildouble: 1
1186ldouble: 1
1187
1188Function: Real part of "csinh_downward":
1189double: 2
1190float: 2
1191idouble: 2
1192ifloat: 2
1193ildouble: 2
1194ldouble: 2
1195
1196Function: Imaginary part of "csinh_downward":
1197double: 2
1198float: 3
1199idouble: 2
1200ifloat: 3
1201ildouble: 2
1202ldouble: 2
1203
1204Function: Real part of "csinh_towardzero":
1205double: 2
1206float: 2
1207idouble: 2
1208ifloat: 2
1209ildouble: 2
1210ldouble: 2
1211
1212Function: Imaginary part of "csinh_towardzero":
1213double: 2
1214float: 3
1215idouble: 2
1216ifloat: 3
1217ildouble: 2
1218ldouble: 2
1219
1220Function: Real part of "csinh_upward":
1221double: 1
1222float: 2
1223idouble: 1
1224ifloat: 2
1225ildouble: 3
1226ldouble: 3
1227
1228Function: Imaginary part of "csinh_upward":
1229double: 2
1230float: 2
1231idouble: 2
1232ifloat: 2
1233ildouble: 2
1234ldouble: 2
1235
1236Function: Real part of "csqrt":
1237double: 2
1238float: 2
1239idouble: 2
1240ifloat: 2
1241ildouble: 1
1242ldouble: 1
1243
1244Function: Imaginary part of "csqrt":
1245double: 2
1246float: 2
1247idouble: 2
1248ifloat: 2
1249ildouble: 1
1250ldouble: 1
1251
1252Function: Real part of "csqrt_downward":
1253double: 4
1254float: 4
1255idouble: 4
1256ifloat: 4
1257ildouble: 3
1258ldouble: 3
1259
1260Function: Imaginary part of "csqrt_downward":
1261double: 4
1262float: 3
1263idouble: 4
1264ifloat: 3
1265ildouble: 2
1266ldouble: 2
1267
1268Function: Real part of "csqrt_towardzero":
1269double: 3
1270float: 3
1271idouble: 3
1272ifloat: 3
1273ildouble: 2
1274ldouble: 2
1275
1276Function: Imaginary part of "csqrt_towardzero":
1277double: 4
1278float: 3
1279idouble: 4
1280ifloat: 3
1281ildouble: 2
1282ldouble: 2
1283
1284Function: Real part of "csqrt_upward":
1285double: 5
1286float: 4
1287idouble: 5
1288ifloat: 4
1289ildouble: 3
1290ldouble: 3
1291
1292Function: Imaginary part of "csqrt_upward":
1293double: 3
1294float: 3
1295idouble: 3
1296ifloat: 3
1297ildouble: 2
1298ldouble: 2
1299
1300Function: Real part of "ctan":
1301double: 1
1302float: 1
1303idouble: 1
1304ifloat: 1
1305ildouble: 3
1306ldouble: 3
1307
1308Function: Imaginary part of "ctan":
1309double: 2
1310float: 1
1311idouble: 2
1312ifloat: 1
1313ildouble: 3
1314ldouble: 3
1315
1316Function: Real part of "ctan_downward":
1317double: 6
1318float: 5
1319idouble: 6
1320ifloat: 5
1321ildouble: 4
1322ldouble: 4
1323
1324Function: Imaginary part of "ctan_downward":
1325double: 2
1326float: 1
1327idouble: 2
1328ifloat: 1
1329ildouble: 5
1330ldouble: 5
1331
1332Function: Real part of "ctan_towardzero":
1333double: 5
1334float: 3
1335idouble: 5
1336ifloat: 3
1337ildouble: 4
1338ldouble: 4
1339
1340Function: Imaginary part of "ctan_towardzero":
1341double: 2
1342float: 2
1343idouble: 2
1344ifloat: 2
1345ildouble: 5
1346ldouble: 5
1347
1348Function: Real part of "ctan_upward":
1349double: 2
1350float: 3
1351idouble: 2
1352ifloat: 3
1353ildouble: 5
1354ldouble: 5
1355
1356Function: Imaginary part of "ctan_upward":
1357double: 2
1358float: 3
1359idouble: 2
1360ifloat: 3
1361ildouble: 5
1362ldouble: 5
1363
1364Function: Real part of "ctanh":
1365double: 2
1366float: 2
1367idouble: 2
1368ifloat: 2
1369ildouble: 3
1370ldouble: 3
1371
1372Function: Imaginary part of "ctanh":
1373double: 2
1374float: 1
1375idouble: 2
1376ifloat: 1
1377ildouble: 3
1378ldouble: 3
1379
1380Function: Real part of "ctanh_downward":
1381double: 4
1382float: 1
1383idouble: 4
1384ifloat: 1
1385ildouble: 5
1386ldouble: 5
1387
1388Function: Imaginary part of "ctanh_downward":
1389double: 6
1390float: 5
1391idouble: 6
1392ifloat: 5
1393ildouble: 4
1394ldouble: 4
1395
1396Function: Real part of "ctanh_towardzero":
1397double: 2
1398float: 2
1399idouble: 2
1400ifloat: 2
1401ildouble: 5
1402ldouble: 5
1403
1404Function: Imaginary part of "ctanh_towardzero":
1405double: 5
1406float: 2
1407idouble: 5
1408ifloat: 2
1409ildouble: 3
1410ldouble: 3
1411
1412Function: Real part of "ctanh_upward":
1413double: 2
1414float: 3
1415idouble: 2
1416ifloat: 3
1417ildouble: 5
1418ldouble: 5
1419
1420Function: Imaginary part of "ctanh_upward":
1421double: 2
1422float: 3
1423idouble: 2
1424ifloat: 3
1425ildouble: 5
1426ldouble: 5
1427
1428Function: "erf":
1429double: 1
1430float: 1
1431idouble: 1
1432ifloat: 1
1433ildouble: 1
1434ldouble: 1
1435
1436Function: "erf_downward":
1437double: 1
1438float: 1
1439idouble: 1
1440ifloat: 1
1441ildouble: 2
1442ldouble: 2
1443
1444Function: "erf_towardzero":
1445double: 1
1446float: 1
1447idouble: 1
1448ifloat: 1
1449ildouble: 1
1450ldouble: 1
1451
1452Function: "erf_upward":
1453float: 1
1454ifloat: 1
1455ildouble: 2
1456ldouble: 2
1457
1458Function: "erfc":
1459double: 2
1460float: 2
1461idouble: 2
1462ifloat: 2
1463ildouble: 2
1464ldouble: 2
1465
1466Function: "erfc_downward":
1467double: 3
1468float: 4
1469idouble: 3
1470ifloat: 4
1471ildouble: 3
1472ldouble: 3
1473
1474Function: "erfc_towardzero":
1475double: 3
1476float: 3
1477idouble: 3
1478ifloat: 3
1479ildouble: 3
1480ldouble: 3
1481
1482Function: "erfc_upward":
1483double: 3
1484float: 4
1485idouble: 3
1486ifloat: 4
1487ildouble: 3
1488ldouble: 3
1489
1490Function: "exp10":
1491double: 2
1492idouble: 2
1493ildouble: 1
1494ldouble: 1
1495
1496Function: "exp10_downward":
1497double: 2
1498float: 1
1499idouble: 2
1500ifloat: 1
1501ildouble: 3
1502ldouble: 3
1503
1504Function: "exp10_towardzero":
1505double: 2
1506float: 1
1507idouble: 2
1508ifloat: 1
1509ildouble: 3
1510ldouble: 3
1511
1512Function: "exp10_upward":
1513double: 2
1514float: 1
1515idouble: 2
1516ifloat: 1
1517ildouble: 2
1518ldouble: 2
1519
1520Function: "exp2":
1521double: 1
1522idouble: 1
1523ildouble: 1
1524ldouble: 1
1525
1526Function: "exp2_downward":
1527double: 1
1528float: 1
1529idouble: 1
1530ifloat: 1
1531ildouble: 1
1532ldouble: 1
1533
1534Function: "exp2_towardzero":
1535double: 1
1536float: 1
1537idouble: 1
1538ifloat: 1
1539ildouble: 1
1540ldouble: 1
1541
1542Function: "exp2_upward":
1543double: 1
1544float: 1
1545idouble: 1
1546ifloat: 1
1547ildouble: 1
1548ldouble: 1
1549
1550Function: "exp_downward":
1551double: 1
1552idouble: 1
1553
1554Function: "exp_towardzero":
1555double: 1
1556idouble: 1
1557
1558Function: "exp_upward":
1559double: 1
1560idouble: 1
1561
1562Function: "expm1":
1563double: 1
1564float: 1
1565idouble: 1
1566ifloat: 1
1567ildouble: 1
1568ldouble: 1
1569
1570Function: "expm1_downward":
1571double: 1
1572float: 1
1573idouble: 1
1574ifloat: 1
1575ildouble: 2
1576ldouble: 2
1577
1578Function: "expm1_towardzero":
1579double: 1
1580float: 1
1581idouble: 1
1582ifloat: 1
1583ildouble: 3
1584ldouble: 3
1585
1586Function: "expm1_upward":
1587double: 1
1588float: 1
1589idouble: 1
1590ifloat: 1
1591ildouble: 3
1592ldouble: 3
1593
1594Function: "gamma":
1595double: 1
1596float: 1
1597idouble: 1
1598ifloat: 1
1599ildouble: 1
1600ldouble: 1
1601
1602Function: "gamma_downward":
1603double: 3
1604float: 3
1605idouble: 3
1606ifloat: 3
1607ildouble: 2
1608ldouble: 2
1609
1610Function: "gamma_towardzero":
1611double: 3
1612float: 3
1613idouble: 3
1614ifloat: 3
1615ildouble: 2
1616ldouble: 2
1617
1618Function: "gamma_upward":
1619double: 3
1620float: 3
1621idouble: 3
1622ifloat: 3
1623ildouble: 3
1624ldouble: 3
1625
1626Function: "hypot":
1627double: 1
1628idouble: 1
1629ildouble: 1
1630ldouble: 1
1631
1632Function: "hypot_downward":
1633double: 1
1634idouble: 1
1635ildouble: 1
1636ldouble: 1
1637
1638Function: "hypot_towardzero":
1639double: 1
1640idouble: 1
1641ildouble: 1
1642ldouble: 1
1643
1644Function: "hypot_upward":
1645double: 1
1646idouble: 1
1647ildouble: 1
1648ldouble: 1
1649
1650Function: "j0":
1651double: 2
1652float: 2
1653idouble: 2
1654ifloat: 2
1655ildouble: 2
1656ldouble: 2
1657
1658Function: "j0_downward":
1659double: 2
1660float: 3
1661idouble: 2
1662ifloat: 3
1663ildouble: 4
1664ldouble: 4
1665
1666Function: "j0_towardzero":
1667double: 2
1668float: 1
1669idouble: 2
1670ifloat: 1
1671ildouble: 2
1672ldouble: 2
1673
1674Function: "j0_upward":
1675double: 3
1676float: 2
1677idouble: 3
1678ifloat: 2
1679ildouble: 5
1680ldouble: 5
1681
1682Function: "j1":
1683double: 1
1684float: 2
1685idouble: 1
1686ifloat: 2
1687ildouble: 4
1688ldouble: 4
1689
1690Function: "j1_downward":
1691double: 3
1692float: 2
1693idouble: 3
1694ifloat: 2
1695ildouble: 4
1696ldouble: 4
1697
1698Function: "j1_towardzero":
1699double: 3
1700float: 2
1701idouble: 3
1702ifloat: 2
1703ildouble: 4
1704ldouble: 4
1705
1706Function: "j1_upward":
1707double: 3
1708float: 4
1709idouble: 3
1710ifloat: 4
1711ildouble: 3
1712ldouble: 3
1713
1714Function: "jn":
1715double: 4
1716float: 4
1717idouble: 4
1718ifloat: 4
1719ildouble: 7
1720ldouble: 7
1721
1722Function: "jn_downward":
1723double: 4
1724float: 5
1725idouble: 4
1726ifloat: 5
1727ildouble: 8
1728ldouble: 8
1729
1730Function: "jn_towardzero":
1731double: 4
1732float: 5
1733idouble: 4
1734ifloat: 5
1735ildouble: 8
1736ldouble: 8
1737
1738Function: "jn_upward":
1739double: 5
1740float: 4
1741idouble: 5
1742ifloat: 4
1743ildouble: 7
1744ldouble: 7
1745
1746Function: "lgamma":
1747double: 1
1748float: 1
1749idouble: 1
1750ifloat: 1
1751ildouble: 1
1752ldouble: 1
1753
1754Function: "lgamma_downward":
1755double: 3
1756float: 3
1757idouble: 3
1758ifloat: 3
1759ildouble: 2
1760ldouble: 2
1761
1762Function: "lgamma_towardzero":
1763double: 3
1764float: 3
1765idouble: 3
1766ifloat: 3
1767ildouble: 2
1768ldouble: 2
1769
1770Function: "lgamma_upward":
1771double: 3
1772float: 3
1773idouble: 3
1774ifloat: 3
1775ildouble: 3
1776ldouble: 3
1777
1778Function: "log":
1779float: 1
1780ifloat: 1
1781ildouble: 1
1782ldouble: 1
1783
1784Function: "log10":
1785double: 2
1786float: 2
1787idouble: 2
1788ifloat: 2
1789ildouble: 1
1790ldouble: 1
1791
1792Function: "log10_downward":
1793double: 2
1794float: 3
1795idouble: 2
1796ifloat: 3
1797ildouble: 1
1798ldouble: 1
1799
1800Function: "log10_towardzero":
1801double: 2
1802float: 2
1803idouble: 2
1804ifloat: 2
1805ildouble: 1
1806ldouble: 1
1807
1808Function: "log10_upward":
1809double: 2
1810float: 2
1811idouble: 2
1812ifloat: 2
1813ildouble: 1
1814ldouble: 1
1815
1816Function: "log1p":
1817double: 1
1818float: 1
1819idouble: 1
1820ifloat: 1
1821ildouble: 1
1822ldouble: 1
1823
1824Function: "log1p_downward":
1825double: 1
1826float: 2
1827idouble: 1
1828ifloat: 2
1829ildouble: 1
1830ldouble: 1
1831
1832Function: "log1p_towardzero":
1833double: 2
1834float: 2
1835idouble: 2
1836ifloat: 2
1837ildouble: 1
1838ldouble: 1
1839
1840Function: "log1p_upward":
1841double: 2
1842float: 2
1843idouble: 2
1844ifloat: 2
1845ildouble: 1
1846ldouble: 1
1847
1848Function: "log2":
1849double: 1
1850float: 1
1851idouble: 1
1852ifloat: 1
1853ildouble: 1
1854ldouble: 1
1855
1856Function: "log2_downward":
1857double: 3
1858float: 3
1859idouble: 3
1860ifloat: 3
1861ildouble: 1
1862ldouble: 1
1863
1864Function: "log2_towardzero":
1865double: 2
1866float: 2
1867idouble: 2
1868ifloat: 2
1869ildouble: 1
1870ldouble: 1
1871
1872Function: "log2_upward":
1873double: 3
1874float: 3
1875idouble: 3
1876ifloat: 3
1877ildouble: 1
1878ldouble: 1
1879
1880Function: "log_downward":
1881float: 2
1882ifloat: 2
1883ildouble: 1
1884ldouble: 1
1885
1886Function: "log_towardzero":
1887float: 1
1888ifloat: 1
1889ildouble: 1
1890ldouble: 1
1891
1892Function: "log_upward":
1893float: 1
1894ifloat: 1
1895ildouble: 1
1896ldouble: 1
1897
1898Function: "pow":
1899float: 1
1900ifloat: 1
1901ildouble: 1
1902ldouble: 1
1903
1904Function: "pow10":
1905double: 2
1906idouble: 2
1907ildouble: 1
1908ldouble: 1
1909
1910Function: "pow10_downward":
1911double: 2
1912float: 1
1913idouble: 2
1914ifloat: 1
1915ildouble: 3
1916ldouble: 3
1917
1918Function: "pow10_towardzero":
1919double: 2
1920float: 1
1921idouble: 2
1922ifloat: 1
1923ildouble: 3
1924ldouble: 3
1925
1926Function: "pow10_upward":
1927double: 2
1928float: 1
1929idouble: 2
1930ifloat: 1
1931ildouble: 2
1932ldouble: 2
1933
1934Function: "pow_downward":
1935double: 1
1936float: 1
1937idouble: 1
1938ifloat: 1
1939ildouble: 1
1940ldouble: 1
1941
1942Function: "pow_towardzero":
1943double: 1
1944float: 1
1945idouble: 1
1946ifloat: 1
1947ildouble: 1
1948ldouble: 1
1949
1950Function: "pow_upward":
1951double: 1
1952float: 1
1953idouble: 1
1954ifloat: 1
1955ildouble: 2
1956ldouble: 2
1957
1958Function: "sin":
1959float: 1
1960ifloat: 1
1961ildouble: 1
1962ldouble: 1
1963
1964Function: "sin_downward":
1965double: 1
1966float: 2
1967idouble: 1
1968ifloat: 2
1969ildouble: 3
1970ldouble: 3
1971
1972Function: "sin_towardzero":
1973double: 1
1974float: 1
1975idouble: 1
1976ifloat: 1
1977ildouble: 2
1978ldouble: 2
1979
1980Function: "sin_upward":
1981double: 1
1982float: 2
1983idouble: 1
1984ifloat: 2
1985ildouble: 2
1986ldouble: 2
1987
1988Function: "sincos":
1989float: 1
1990ifloat: 1
1991ildouble: 1
1992ldouble: 1
1993
1994Function: "sincos_downward":
1995double: 1
1996float: 2
1997idouble: 1
1998ifloat: 2
1999ildouble: 3
2000ldouble: 3
2001
2002Function: "sincos_towardzero":
2003double: 1
2004float: 1
2005idouble: 1
2006ifloat: 1
2007ildouble: 2
2008ldouble: 2
2009
2010Function: "sincos_upward":
2011double: 1
2012float: 1
2013idouble: 1
2014ifloat: 1
2015ildouble: 2
2016ldouble: 2
2017
2018Function: "sinh":
2019double: 2
2020float: 2
2021idouble: 2
2022ifloat: 2
2023ildouble: 1
2024ldouble: 1
2025
2026Function: "sinh_downward":
2027double: 3
2028float: 3
2029idouble: 3
2030ifloat: 3
2031ildouble: 2
2032ldouble: 2
2033
2034Function: "sinh_towardzero":
2035double: 2
2036float: 2
2037idouble: 2
2038ifloat: 2
2039ildouble: 2
2040ldouble: 2
2041
2042Function: "sinh_upward":
2043double: 3
2044float: 3
2045idouble: 3
2046ifloat: 3
2047ildouble: 2
2048ldouble: 2
2049
2050Function: "tan":
2051float: 1
2052ifloat: 1
2053
2054Function: "tan_downward":
2055double: 1
2056float: 2
2057idouble: 1
2058ifloat: 2
2059ildouble: 1
2060ldouble: 1
2061
2062Function: "tan_towardzero":
2063double: 1
2064float: 1
2065idouble: 1
2066ifloat: 1
2067ildouble: 1
2068ldouble: 1
2069
2070Function: "tan_upward":
2071double: 1
2072float: 1
2073idouble: 1
2074ifloat: 1
2075ildouble: 1
2076ldouble: 1
2077
2078Function: "tanh":
2079double: 2
2080float: 2
2081idouble: 2
2082ifloat: 2
2083ildouble: 1
2084ldouble: 1
2085
2086Function: "tanh_downward":
2087double: 3
2088float: 3
2089idouble: 3
2090ifloat: 3
2091ildouble: 2
2092ldouble: 2
2093
2094Function: "tanh_towardzero":
2095double: 2
2096float: 2
2097idouble: 2
2098ifloat: 2
2099ildouble: 2
2100ldouble: 2
2101
2102Function: "tanh_upward":
2103double: 3
2104float: 3
2105idouble: 3
2106ifloat: 3
2107ildouble: 3
2108ldouble: 3
2109
2110Function: "tgamma":
2111double: 3
2112float: 3
2113idouble: 3
2114ifloat: 3
2115ildouble: 4
2116ldouble: 4
2117
2118Function: "tgamma_downward":
2119double: 3
2120float: 3
2121idouble: 3
2122ifloat: 3
2123ildouble: 5
2124ldouble: 5
2125
2126Function: "tgamma_towardzero":
2127double: 3
2128float: 3
2129idouble: 3
2130ifloat: 3
2131ildouble: 5
2132ldouble: 5
2133
2134Function: "tgamma_upward":
2135double: 3
2136float: 3
2137idouble: 3
2138ifloat: 3
2139ildouble: 4
2140ldouble: 4
2141
2142Function: "y0":
2143double: 2
2144float: 1
2145idouble: 2
2146ifloat: 1
2147ildouble: 3
2148ldouble: 3
2149
2150Function: "y0_downward":
2151double: 3
2152float: 2
2153idouble: 3
2154ifloat: 2
2155ildouble: 4
2156ldouble: 4
2157
2158Function: "y0_towardzero":
2159double: 3
2160float: 3
2161idouble: 3
2162ifloat: 3
2163ildouble: 3
2164ldouble: 3
2165
2166Function: "y0_upward":
2167double: 2
2168float: 3
2169idouble: 2
2170ifloat: 3
2171ildouble: 3
2172ldouble: 3
2173
2174Function: "y1":
2175double: 3
2176float: 2
2177idouble: 3
2178ifloat: 2
2179ildouble: 2
2180ldouble: 2
2181
2182Function: "y1_downward":
2183double: 3
2184float: 2
2185idouble: 3
2186ifloat: 2
2187ildouble: 4
2188ldouble: 4
2189
2190Function: "y1_towardzero":
2191double: 3
2192float: 2
2193idouble: 3
2194ifloat: 2
2195ildouble: 2
2196ldouble: 2
2197
2198Function: "y1_upward":
2199double: 5
2200float: 2
2201idouble: 5
2202ifloat: 2
2203ildouble: 5
2204ldouble: 5
2205
2206Function: "yn":
2207double: 3
2208float: 2
2209idouble: 3
2210ifloat: 2
2211ildouble: 5
2212ldouble: 5
2213
2214Function: "yn_downward":
2215double: 3
2216float: 2
2217idouble: 3
2218ifloat: 2
2219ildouble: 5
2220ldouble: 5
2221
2222Function: "yn_towardzero":
2223double: 3
2224float: 3
2225idouble: 3
2226ifloat: 3
2227ildouble: 5
2228ldouble: 5
2229
2230Function: "yn_upward":
2231double: 4
2232float: 3
2233idouble: 4
2234ifloat: 3
2235ildouble: 5
2236ldouble: 5
2237
2238# end of automatic generation