blob: e38d37fe470834b599dc9a79ff819225e20aaf16 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5float: 1
6ifloat: 1
7
8Function: "acos_downward":
9double: 1
10float: 1
11idouble: 1
12ifloat: 1
13
14Function: "acos_towardzero":
15double: 1
16float: 1
17idouble: 1
18ifloat: 1
19
20Function: "acos_upward":
21double: 1
22float: 1
23idouble: 1
24ifloat: 1
25
26Function: "acosh":
27double: 1
28float: 2
29idouble: 1
30ifloat: 2
31
32Function: "acosh_downward":
33double: 1
34float: 1
35idouble: 1
36ifloat: 1
37
38Function: "acosh_towardzero":
39double: 2
40float: 1
41idouble: 2
42ifloat: 1
43
44Function: "acosh_upward":
45double: 2
46float: 1
47idouble: 2
48ifloat: 1
49
50Function: "asin":
51float: 1
52ifloat: 1
53
54Function: "asin_downward":
55double: 1
56float: 1
57idouble: 1
58ifloat: 1
59
60Function: "asin_towardzero":
61double: 1
62float: 1
63idouble: 1
64ifloat: 1
65
66Function: "asin_upward":
67double: 1
68float: 1
69idouble: 1
70ifloat: 1
71
72Function: "asinh":
73double: 1
74float: 1
75idouble: 1
76ifloat: 1
77
78Function: "asinh_downward":
79double: 3
80float: 3
81idouble: 3
82ifloat: 3
83
84Function: "asinh_towardzero":
85double: 2
86float: 2
87idouble: 2
88ifloat: 2
89
90Function: "asinh_upward":
91double: 3
92float: 3
93idouble: 3
94ifloat: 3
95
96Function: "atan":
97float: 1
98ifloat: 1
99
100Function: "atan2":
101float: 1
102ifloat: 1
103
104Function: "atan2_downward":
105double: 1
106float: 2
107idouble: 1
108ifloat: 2
109
110Function: "atan2_towardzero":
111double: 1
112float: 2
113idouble: 1
114ifloat: 2
115
116Function: "atan2_upward":
117double: 1
118float: 2
119idouble: 1
120ifloat: 2
121
122Function: "atan_downward":
123double: 1
124float: 2
125idouble: 1
126ifloat: 2
127
128Function: "atan_towardzero":
129double: 1
130float: 1
131idouble: 1
132ifloat: 1
133
134Function: "atan_upward":
135double: 1
136float: 2
137idouble: 1
138ifloat: 2
139
140Function: "atanh":
141double: 1
142float: 2
143idouble: 1
144ifloat: 2
145
146Function: "atanh_downward":
147double: 3
148float: 2
149idouble: 3
150ifloat: 2
151
152Function: "atanh_towardzero":
153double: 2
154float: 2
155idouble: 2
156ifloat: 2
157
158Function: "atanh_upward":
159double: 2
160float: 3
161idouble: 2
162ifloat: 3
163
164Function: "cabs":
165double: 1
166idouble: 1
167
168Function: "cabs_downward":
169double: 1
170idouble: 1
171
172Function: "cabs_towardzero":
173double: 1
174idouble: 1
175
176Function: "cabs_upward":
177double: 1
178idouble: 1
179
180Function: Real part of "cacos":
181double: 1
182float: 2
183idouble: 1
184ifloat: 2
185
186Function: Imaginary part of "cacos":
187double: 1
188float: 2
189idouble: 1
190ifloat: 2
191
192Function: Real part of "cacos_downward":
193double: 2
194float: 2
195idouble: 2
196ifloat: 2
197
198Function: Imaginary part of "cacos_downward":
199double: 5
200float: 3
201idouble: 5
202ifloat: 3
203
204Function: Real part of "cacos_towardzero":
205double: 2
206float: 2
207idouble: 2
208ifloat: 2
209
210Function: Imaginary part of "cacos_towardzero":
211double: 5
212float: 3
213idouble: 5
214ifloat: 3
215
216Function: Real part of "cacos_upward":
217double: 2
218float: 2
219idouble: 2
220ifloat: 2
221
222Function: Imaginary part of "cacos_upward":
223double: 4
224float: 4
225idouble: 4
226ifloat: 4
227
228Function: Real part of "cacosh":
229double: 1
230float: 2
231idouble: 1
232ifloat: 2
233
234Function: Imaginary part of "cacosh":
235double: 1
236float: 2
237idouble: 1
238ifloat: 2
239
240Function: Real part of "cacosh_downward":
241double: 5
242float: 3
243idouble: 5
244ifloat: 3
245
246Function: Imaginary part of "cacosh_downward":
247double: 2
248float: 2
249idouble: 2
250ifloat: 2
251
252Function: Real part of "cacosh_towardzero":
253double: 5
254float: 3
255idouble: 5
256ifloat: 3
257
258Function: Imaginary part of "cacosh_towardzero":
259double: 2
260float: 2
261idouble: 2
262ifloat: 2
263
264Function: Real part of "cacosh_upward":
265double: 4
266float: 4
267idouble: 4
268ifloat: 4
269
270Function: Imaginary part of "cacosh_upward":
271double: 2
272float: 2
273idouble: 2
274ifloat: 2
275
276Function: "carg":
277float: 1
278ifloat: 1
279
280Function: "carg_downward":
281double: 1
282float: 2
283idouble: 1
284ifloat: 2
285
286Function: "carg_towardzero":
287double: 1
288float: 2
289idouble: 1
290ifloat: 2
291
292Function: "carg_upward":
293double: 1
294float: 2
295idouble: 1
296ifloat: 2
297
298Function: Real part of "casin":
299double: 1
300float: 1
301idouble: 1
302ifloat: 1
303
304Function: Imaginary part of "casin":
305double: 1
306float: 2
307idouble: 1
308ifloat: 2
309
310Function: Real part of "casin_downward":
311double: 3
312float: 1
313idouble: 3
314ifloat: 1
315
316Function: Imaginary part of "casin_downward":
317double: 5
318float: 3
319idouble: 5
320ifloat: 3
321
322Function: Real part of "casin_towardzero":
323double: 3
324float: 1
325idouble: 3
326ifloat: 1
327
328Function: Imaginary part of "casin_towardzero":
329double: 5
330float: 3
331idouble: 5
332ifloat: 3
333
334Function: Real part of "casin_upward":
335double: 2
336float: 1
337idouble: 2
338ifloat: 1
339
340Function: Imaginary part of "casin_upward":
341double: 4
342float: 4
343idouble: 4
344ifloat: 4
345
346Function: Real part of "casinh":
347double: 1
348float: 2
349idouble: 1
350ifloat: 2
351
352Function: Imaginary part of "casinh":
353double: 1
354float: 1
355idouble: 1
356ifloat: 1
357
358Function: Real part of "casinh_downward":
359double: 5
360float: 3
361idouble: 5
362ifloat: 3
363
364Function: Imaginary part of "casinh_downward":
365double: 3
366float: 1
367idouble: 3
368ifloat: 1
369
370Function: Real part of "casinh_towardzero":
371double: 5
372float: 3
373idouble: 5
374ifloat: 3
375
376Function: Imaginary part of "casinh_towardzero":
377double: 3
378float: 1
379idouble: 3
380ifloat: 1
381
382Function: Real part of "casinh_upward":
383double: 4
384float: 4
385idouble: 4
386ifloat: 4
387
388Function: Imaginary part of "casinh_upward":
389double: 2
390float: 2
391idouble: 2
392ifloat: 2
393
394Function: Real part of "catan":
395float: 1
396ifloat: 1
397
398Function: Imaginary part of "catan":
399double: 1
400float: 1
401idouble: 1
402ifloat: 1
403
404Function: Real part of "catan_downward":
405double: 1
406float: 1
407idouble: 1
408ifloat: 1
409
410Function: Imaginary part of "catan_downward":
411double: 2
412float: 2
413idouble: 2
414ifloat: 2
415
416Function: Real part of "catan_towardzero":
417double: 1
418float: 1
419idouble: 1
420ifloat: 1
421
422Function: Imaginary part of "catan_towardzero":
423double: 2
424float: 1
425idouble: 2
426ifloat: 1
427
428Function: Real part of "catan_upward":
429float: 1
430ifloat: 1
431
432Function: Imaginary part of "catan_upward":
433double: 3
434float: 3
435idouble: 3
436ifloat: 3
437
438Function: Real part of "catanh":
439double: 1
440float: 1
441idouble: 1
442ifloat: 1
443
444Function: Imaginary part of "catanh":
445float: 1
446ifloat: 1
447
448Function: Real part of "catanh_downward":
449double: 2
450float: 2
451idouble: 2
452ifloat: 2
453
454Function: Imaginary part of "catanh_downward":
455double: 1
456float: 2
457idouble: 1
458ifloat: 2
459
460Function: Real part of "catanh_towardzero":
461double: 2
462float: 1
463idouble: 2
464ifloat: 1
465
466Function: Imaginary part of "catanh_towardzero":
467double: 1
468float: 2
469idouble: 1
470ifloat: 2
471
472Function: Real part of "catanh_upward":
473double: 4
474float: 3
475idouble: 4
476ifloat: 3
477
478Function: Imaginary part of "catanh_upward":
479float: 1
480ifloat: 1
481
482Function: "cbrt":
483double: 3
484float: 1
485idouble: 3
486ifloat: 1
487
488Function: "cbrt_downward":
489double: 4
490float: 1
491idouble: 4
492ifloat: 1
493
494Function: "cbrt_towardzero":
495double: 3
496float: 1
497idouble: 3
498ifloat: 1
499
500Function: "cbrt_upward":
501double: 4
502float: 1
503idouble: 4
504ifloat: 1
505
506Function: Real part of "ccos":
507double: 1
508float: 1
509idouble: 1
510ifloat: 1
511
512Function: Imaginary part of "ccos":
513double: 1
514float: 1
515idouble: 1
516ifloat: 1
517
518Function: Real part of "ccos_downward":
519double: 1
520float: 1
521idouble: 1
522ifloat: 1
523
524Function: Imaginary part of "ccos_downward":
525double: 2
526float: 3
527idouble: 2
528ifloat: 3
529
530Function: Real part of "ccos_towardzero":
531double: 1
532float: 2
533idouble: 1
534ifloat: 2
535
536Function: Imaginary part of "ccos_towardzero":
537double: 2
538float: 3
539idouble: 2
540ifloat: 3
541
542Function: Real part of "ccos_upward":
543double: 1
544float: 2
545idouble: 1
546ifloat: 2
547
548Function: Imaginary part of "ccos_upward":
549double: 2
550float: 2
551idouble: 2
552ifloat: 2
553
554Function: Real part of "ccosh":
555double: 1
556float: 1
557idouble: 1
558ifloat: 1
559
560Function: Imaginary part of "ccosh":
561double: 1
562float: 1
563idouble: 1
564ifloat: 1
565
566Function: Real part of "ccosh_downward":
567double: 1
568float: 3
569idouble: 1
570ifloat: 3
571
572Function: Imaginary part of "ccosh_downward":
573double: 2
574float: 3
575idouble: 2
576ifloat: 3
577
578Function: Real part of "ccosh_towardzero":
579double: 1
580float: 3
581idouble: 1
582ifloat: 3
583
584Function: Imaginary part of "ccosh_towardzero":
585double: 2
586float: 3
587idouble: 2
588ifloat: 3
589
590Function: Real part of "ccosh_upward":
591double: 1
592float: 2
593idouble: 1
594ifloat: 2
595
596Function: Imaginary part of "ccosh_upward":
597double: 2
598float: 2
599idouble: 2
600ifloat: 2
601
602Function: Real part of "cexp":
603double: 2
604float: 1
605idouble: 2
606ifloat: 1
607
608Function: Imaginary part of "cexp":
609double: 1
610float: 2
611idouble: 1
612ifloat: 2
613
614Function: Real part of "cexp_downward":
615double: 1
616float: 2
617idouble: 1
618ifloat: 2
619
620Function: Imaginary part of "cexp_downward":
621double: 1
622float: 3
623idouble: 1
624ifloat: 3
625
626Function: Real part of "cexp_towardzero":
627double: 1
628float: 2
629idouble: 1
630ifloat: 2
631
632Function: Imaginary part of "cexp_towardzero":
633double: 1
634float: 3
635idouble: 1
636ifloat: 3
637
638Function: Real part of "cexp_upward":
639double: 1
640float: 2
641idouble: 1
642ifloat: 2
643
644Function: Imaginary part of "cexp_upward":
645double: 1
646float: 2
647idouble: 1
648ifloat: 2
649
650Function: Real part of "clog":
651double: 3
652float: 2
653idouble: 3
654ifloat: 2
655
656Function: Imaginary part of "clog":
657float: 1
658ifloat: 1
659
660Function: Real part of "clog10":
661double: 3
662float: 3
663idouble: 3
664ifloat: 3
665
666Function: Imaginary part of "clog10":
667double: 2
668float: 2
669idouble: 2
670ifloat: 2
671
672Function: Real part of "clog10_downward":
673double: 6
674float: 6
675idouble: 6
676ifloat: 6
677
678Function: Imaginary part of "clog10_downward":
679double: 2
680float: 4
681idouble: 2
682ifloat: 4
683
684Function: Real part of "clog10_towardzero":
685double: 5
686float: 4
687idouble: 5
688ifloat: 4
689
690Function: Imaginary part of "clog10_towardzero":
691double: 2
692float: 4
693idouble: 2
694ifloat: 4
695
696Function: Real part of "clog10_upward":
697double: 8
698float: 5
699idouble: 8
700ifloat: 5
701
702Function: Imaginary part of "clog10_upward":
703double: 2
704float: 3
705idouble: 2
706ifloat: 3
707
708Function: Real part of "clog_downward":
709double: 7
710float: 5
711idouble: 7
712ifloat: 5
713
714Function: Imaginary part of "clog_downward":
715double: 1
716float: 2
717idouble: 1
718ifloat: 2
719
720Function: Real part of "clog_towardzero":
721double: 7
722float: 5
723idouble: 7
724ifloat: 5
725
726Function: Imaginary part of "clog_towardzero":
727double: 1
728float: 2
729idouble: 1
730ifloat: 2
731
732Function: Real part of "clog_upward":
733double: 8
734float: 5
735idouble: 8
736ifloat: 5
737
738Function: Imaginary part of "clog_upward":
739double: 1
740float: 2
741idouble: 1
742ifloat: 2
743
744Function: "cos":
745float: 1
746ifloat: 1
747
748Function: "cos_downward":
749double: 1
750float: 2
751idouble: 1
752ifloat: 2
753
754Function: "cos_towardzero":
755double: 1
756float: 1
757idouble: 1
758ifloat: 1
759
760Function: "cos_upward":
761double: 1
762float: 2
763idouble: 1
764ifloat: 2
765
766Function: "cosh":
767double: 1
768float: 1
769idouble: 1
770ifloat: 1
771
772Function: "cosh_downward":
773double: 1
774float: 1
775idouble: 1
776ifloat: 1
777
778Function: "cosh_towardzero":
779double: 1
780float: 1
781idouble: 1
782ifloat: 1
783
784Function: "cosh_upward":
785double: 1
786float: 2
787idouble: 1
788ifloat: 2
789
790Function: Real part of "cpow":
791double: 2
792float: 4
793idouble: 2
794ifloat: 4
795
796Function: Imaginary part of "cpow":
797float: 2
798ifloat: 2
799
800Function: Real part of "cpow_downward":
801double: 4
802float: 8
803idouble: 4
804ifloat: 8
805
806Function: Imaginary part of "cpow_downward":
807double: 1
808float: 2
809idouble: 1
810ifloat: 2
811
812Function: Real part of "cpow_towardzero":
813double: 4
814float: 8
815idouble: 4
816ifloat: 8
817
818Function: Imaginary part of "cpow_towardzero":
819double: 1
820float: 2
821idouble: 1
822ifloat: 2
823
824Function: Real part of "cpow_upward":
825double: 4
826float: 1
827idouble: 4
828ifloat: 1
829
830Function: Imaginary part of "cpow_upward":
831double: 1
832float: 2
833idouble: 1
834ifloat: 2
835
836Function: Real part of "csin":
837double: 1
838float: 1
839idouble: 1
840ifloat: 1
841
842Function: Real part of "csin_downward":
843double: 2
844float: 3
845idouble: 2
846ifloat: 3
847
848Function: Imaginary part of "csin_downward":
849double: 1
850float: 1
851idouble: 1
852ifloat: 1
853
854Function: Real part of "csin_towardzero":
855double: 2
856float: 3
857idouble: 2
858ifloat: 3
859
860Function: Imaginary part of "csin_towardzero":
861double: 1
862float: 1
863idouble: 1
864ifloat: 1
865
866Function: Real part of "csin_upward":
867double: 2
868float: 2
869idouble: 2
870ifloat: 2
871
872Function: Imaginary part of "csin_upward":
873double: 1
874float: 2
875idouble: 1
876ifloat: 2
877
878Function: Real part of "csinh":
879float: 1
880ifloat: 1
881
882Function: Imaginary part of "csinh":
883double: 1
884float: 1
885idouble: 1
886ifloat: 1
887
888Function: Real part of "csinh_downward":
889double: 2
890float: 2
891idouble: 2
892ifloat: 2
893
894Function: Imaginary part of "csinh_downward":
895double: 2
896float: 3
897idouble: 2
898ifloat: 3
899
900Function: Real part of "csinh_towardzero":
901double: 2
902float: 2
903idouble: 2
904ifloat: 2
905
906Function: Imaginary part of "csinh_towardzero":
907double: 2
908float: 3
909idouble: 2
910ifloat: 3
911
912Function: Real part of "csinh_upward":
913double: 1
914float: 2
915idouble: 1
916ifloat: 2
917
918Function: Imaginary part of "csinh_upward":
919double: 2
920float: 2
921idouble: 2
922ifloat: 2
923
924Function: Real part of "csqrt":
925double: 2
926float: 2
927idouble: 2
928ifloat: 2
929
930Function: Imaginary part of "csqrt":
931double: 2
932float: 2
933idouble: 2
934ifloat: 2
935
936Function: Real part of "csqrt_downward":
937double: 4
938float: 4
939idouble: 4
940ifloat: 4
941
942Function: Imaginary part of "csqrt_downward":
943double: 4
944float: 3
945idouble: 4
946ifloat: 3
947
948Function: Real part of "csqrt_towardzero":
949double: 3
950float: 3
951idouble: 3
952ifloat: 3
953
954Function: Imaginary part of "csqrt_towardzero":
955double: 4
956float: 3
957idouble: 4
958ifloat: 3
959
960Function: Real part of "csqrt_upward":
961double: 5
962float: 4
963idouble: 5
964ifloat: 4
965
966Function: Imaginary part of "csqrt_upward":
967double: 3
968float: 3
969idouble: 3
970ifloat: 3
971
972Function: Real part of "ctan":
973double: 1
974float: 1
975idouble: 1
976ifloat: 1
977
978Function: Imaginary part of "ctan":
979double: 2
980float: 1
981idouble: 2
982ifloat: 1
983
984Function: Real part of "ctan_downward":
985double: 6
986float: 5
987idouble: 6
988ifloat: 5
989
990Function: Imaginary part of "ctan_downward":
991double: 2
992float: 1
993idouble: 2
994ifloat: 1
995
996Function: Real part of "ctan_towardzero":
997double: 5
998float: 3
999idouble: 5
1000ifloat: 3
1001
1002Function: Imaginary part of "ctan_towardzero":
1003double: 2
1004float: 2
1005idouble: 2
1006ifloat: 2
1007
1008Function: Real part of "ctan_upward":
1009double: 2
1010float: 3
1011idouble: 2
1012ifloat: 3
1013
1014Function: Imaginary part of "ctan_upward":
1015double: 2
1016float: 3
1017idouble: 2
1018ifloat: 3
1019
1020Function: Real part of "ctanh":
1021double: 2
1022float: 1
1023idouble: 2
1024ifloat: 1
1025
1026Function: Imaginary part of "ctanh":
1027double: 2
1028float: 2
1029idouble: 2
1030ifloat: 2
1031
1032Function: Real part of "ctanh_downward":
1033double: 4
1034float: 1
1035idouble: 4
1036ifloat: 1
1037
1038Function: Imaginary part of "ctanh_downward":
1039double: 6
1040float: 5
1041idouble: 6
1042ifloat: 5
1043
1044Function: Real part of "ctanh_towardzero":
1045double: 2
1046float: 2
1047idouble: 2
1048ifloat: 2
1049
1050Function: Imaginary part of "ctanh_towardzero":
1051double: 5
1052float: 3
1053idouble: 5
1054ifloat: 3
1055
1056Function: Real part of "ctanh_upward":
1057double: 2
1058float: 3
1059idouble: 2
1060ifloat: 3
1061
1062Function: Imaginary part of "ctanh_upward":
1063double: 2
1064float: 3
1065idouble: 2
1066ifloat: 3
1067
1068Function: "erf":
1069double: 1
1070float: 1
1071idouble: 1
1072ifloat: 1
1073
1074Function: "erf_downward":
1075double: 1
1076float: 1
1077idouble: 1
1078ifloat: 1
1079
1080Function: "erf_towardzero":
1081double: 1
1082float: 1
1083idouble: 1
1084ifloat: 1
1085
1086Function: "erf_upward":
1087double: 1
1088float: 1
1089idouble: 1
1090ifloat: 1
1091
1092Function: "erfc":
1093double: 2
1094float: 2
1095idouble: 2
1096ifloat: 2
1097
1098Function: "erfc_downward":
1099double: 4
1100float: 6
1101idouble: 4
1102ifloat: 6
1103
1104Function: "erfc_towardzero":
1105double: 3
1106float: 4
1107idouble: 3
1108ifloat: 4
1109
1110Function: "erfc_upward":
1111double: 4
1112float: 6
1113idouble: 4
1114ifloat: 6
1115
1116Function: "exp10":
1117double: 2
1118idouble: 2
1119
1120Function: "exp10_downward":
1121double: 2
1122float: 1
1123idouble: 2
1124ifloat: 1
1125
1126Function: "exp10_towardzero":
1127double: 2
1128float: 1
1129idouble: 2
1130ifloat: 1
1131
1132Function: "exp10_upward":
1133double: 2
1134float: 1
1135idouble: 2
1136ifloat: 1
1137
1138Function: "exp2":
1139double: 1
1140float: 1
1141idouble: 1
1142ifloat: 1
1143
1144Function: "exp2_downward":
1145double: 1
1146float: 1
1147idouble: 1
1148ifloat: 1
1149
1150Function: "exp2_towardzero":
1151double: 1
1152float: 1
1153idouble: 1
1154ifloat: 1
1155
1156Function: "exp2_upward":
1157double: 1
1158float: 1
1159idouble: 1
1160ifloat: 1
1161
1162Function: "exp_downward":
1163double: 1
1164idouble: 1
1165
1166Function: "exp_towardzero":
1167double: 1
1168idouble: 1
1169
1170Function: "exp_upward":
1171double: 1
1172idouble: 1
1173
1174Function: "expm1":
1175double: 1
1176float: 1
1177idouble: 1
1178ifloat: 1
1179
1180Function: "expm1_downward":
1181double: 1
1182float: 1
1183idouble: 1
1184ifloat: 1
1185
1186Function: "expm1_towardzero":
1187double: 1
1188float: 1
1189idouble: 1
1190ifloat: 1
1191
1192Function: "expm1_upward":
1193double: 1
1194float: 1
1195idouble: 1
1196ifloat: 1
1197
1198Function: "gamma":
1199double: 2
1200float: 2
1201idouble: 2
1202ifloat: 2
1203
1204Function: "gamma_downward":
1205double: 4
1206float: 3
1207idouble: 4
1208ifloat: 3
1209
1210Function: "gamma_towardzero":
1211double: 4
1212float: 3
1213idouble: 4
1214ifloat: 3
1215
1216Function: "gamma_upward":
1217double: 4
1218float: 3
1219idouble: 4
1220ifloat: 3
1221
1222Function: "hypot":
1223double: 1
1224idouble: 1
1225
1226Function: "hypot_downward":
1227double: 1
1228idouble: 1
1229
1230Function: "hypot_towardzero":
1231double: 1
1232idouble: 1
1233
1234Function: "hypot_upward":
1235double: 1
1236idouble: 1
1237
1238Function: "j0":
1239double: 2
1240float: 2
1241idouble: 2
1242ifloat: 2
1243
1244Function: "j0_downward":
1245double: 2
1246float: 3
1247idouble: 2
1248ifloat: 3
1249
1250Function: "j0_towardzero":
1251double: 3
1252float: 2
1253idouble: 3
1254ifloat: 2
1255
1256Function: "j0_upward":
1257double: 3
1258float: 2
1259idouble: 3
1260ifloat: 2
1261
1262Function: "j1":
1263double: 1
1264float: 2
1265idouble: 1
1266ifloat: 2
1267
1268Function: "j1_downward":
1269double: 3
1270float: 2
1271idouble: 3
1272ifloat: 2
1273
1274Function: "j1_towardzero":
1275double: 3
1276float: 2
1277idouble: 3
1278ifloat: 2
1279
1280Function: "j1_upward":
1281double: 3
1282float: 5
1283idouble: 3
1284ifloat: 5
1285
1286Function: "jn":
1287double: 4
1288float: 4
1289idouble: 4
1290ifloat: 4
1291
1292Function: "jn_downward":
1293double: 5
1294float: 5
1295idouble: 5
1296ifloat: 5
1297
1298Function: "jn_towardzero":
1299double: 5
1300float: 5
1301idouble: 5
1302ifloat: 5
1303
1304Function: "jn_upward":
1305double: 5
1306float: 5
1307idouble: 5
1308ifloat: 5
1309
1310Function: "lgamma":
1311double: 2
1312float: 2
1313idouble: 2
1314ifloat: 2
1315
1316Function: "lgamma_downward":
1317double: 4
1318float: 3
1319idouble: 4
1320ifloat: 3
1321
1322Function: "lgamma_towardzero":
1323double: 4
1324float: 3
1325idouble: 4
1326ifloat: 3
1327
1328Function: "lgamma_upward":
1329double: 4
1330float: 3
1331idouble: 4
1332ifloat: 3
1333
1334Function: "log":
1335float: 1
1336ifloat: 1
1337
1338Function: "log10":
1339double: 2
1340float: 2
1341idouble: 2
1342ifloat: 2
1343
1344Function: "log10_downward":
1345double: 2
1346float: 3
1347idouble: 2
1348ifloat: 3
1349
1350Function: "log10_towardzero":
1351double: 2
1352float: 2
1353idouble: 2
1354ifloat: 2
1355
1356Function: "log10_upward":
1357double: 2
1358float: 2
1359idouble: 2
1360ifloat: 2
1361
1362Function: "log1p":
1363double: 1
1364float: 1
1365idouble: 1
1366ifloat: 1
1367
1368Function: "log1p_downward":
1369double: 2
1370float: 2
1371idouble: 2
1372ifloat: 2
1373
1374Function: "log1p_towardzero":
1375double: 2
1376float: 2
1377idouble: 2
1378ifloat: 2
1379
1380Function: "log1p_upward":
1381double: 2
1382float: 2
1383idouble: 2
1384ifloat: 2
1385
1386Function: "log2":
1387double: 2
1388float: 1
1389idouble: 2
1390ifloat: 1
1391
1392Function: "log2_downward":
1393double: 3
1394float: 3
1395idouble: 3
1396ifloat: 3
1397
1398Function: "log2_towardzero":
1399double: 2
1400float: 2
1401idouble: 2
1402ifloat: 2
1403
1404Function: "log2_upward":
1405double: 3
1406float: 3
1407idouble: 3
1408ifloat: 3
1409
1410Function: "log_downward":
1411float: 2
1412ifloat: 2
1413
1414Function: "log_towardzero":
1415float: 2
1416ifloat: 2
1417
1418Function: "log_upward":
1419float: 2
1420ifloat: 2
1421
1422Function: "pow":
1423float: 3
1424ifloat: 3
1425
1426Function: "pow10":
1427double: 2
1428idouble: 2
1429
1430Function: "pow10_downward":
1431double: 2
1432float: 1
1433idouble: 2
1434ifloat: 1
1435
1436Function: "pow10_towardzero":
1437double: 2
1438float: 1
1439idouble: 2
1440ifloat: 1
1441
1442Function: "pow10_upward":
1443double: 2
1444float: 1
1445idouble: 2
1446ifloat: 1
1447
1448Function: "pow_downward":
1449double: 1
1450float: 3
1451idouble: 1
1452ifloat: 3
1453
1454Function: "pow_towardzero":
1455double: 1
1456float: 4
1457idouble: 1
1458ifloat: 4
1459
1460Function: "pow_upward":
1461double: 1
1462float: 4
1463idouble: 1
1464ifloat: 4
1465
1466Function: "sin":
1467float: 1
1468ifloat: 1
1469
1470Function: "sin_downward":
1471double: 1
1472float: 2
1473idouble: 1
1474ifloat: 2
1475
1476Function: "sin_towardzero":
1477double: 1
1478float: 1
1479idouble: 1
1480ifloat: 1
1481
1482Function: "sin_upward":
1483double: 1
1484float: 2
1485idouble: 1
1486ifloat: 2
1487
1488Function: "sincos":
1489float: 1
1490ifloat: 1
1491
1492Function: "sincos_downward":
1493double: 1
1494float: 2
1495idouble: 1
1496ifloat: 2
1497
1498Function: "sincos_towardzero":
1499double: 1
1500float: 1
1501idouble: 1
1502ifloat: 1
1503
1504Function: "sincos_upward":
1505double: 1
1506float: 1
1507idouble: 1
1508ifloat: 1
1509
1510Function: "sinh":
1511double: 2
1512float: 2
1513idouble: 2
1514ifloat: 2
1515
1516Function: "sinh_downward":
1517double: 3
1518float: 3
1519idouble: 3
1520ifloat: 3
1521
1522Function: "sinh_towardzero":
1523double: 2
1524float: 2
1525idouble: 2
1526ifloat: 2
1527
1528Function: "sinh_upward":
1529double: 3
1530float: 3
1531idouble: 3
1532ifloat: 3
1533
1534Function: "tan":
1535float: 1
1536ifloat: 1
1537
1538Function: "tan_downward":
1539double: 1
1540float: 2
1541idouble: 1
1542ifloat: 2
1543
1544Function: "tan_towardzero":
1545double: 1
1546float: 1
1547idouble: 1
1548ifloat: 1
1549
1550Function: "tan_upward":
1551double: 1
1552float: 1
1553idouble: 1
1554ifloat: 1
1555
1556Function: "tanh":
1557double: 2
1558float: 2
1559idouble: 2
1560ifloat: 2
1561
1562Function: "tanh_downward":
1563double: 3
1564float: 3
1565idouble: 3
1566ifloat: 3
1567
1568Function: "tanh_towardzero":
1569double: 2
1570float: 2
1571idouble: 2
1572ifloat: 2
1573
1574Function: "tanh_upward":
1575double: 3
1576float: 3
1577idouble: 3
1578ifloat: 3
1579
1580Function: "tgamma":
1581double: 3
1582float: 5
1583idouble: 3
1584ifloat: 5
1585
1586Function: "tgamma_downward":
1587double: 3
1588float: 4
1589idouble: 3
1590ifloat: 4
1591
1592Function: "tgamma_towardzero":
1593double: 3
1594float: 5
1595idouble: 3
1596ifloat: 5
1597
1598Function: "tgamma_upward":
1599double: 3
1600float: 5
1601idouble: 3
1602ifloat: 5
1603
1604Function: "y0":
1605double: 2
1606float: 1
1607idouble: 2
1608ifloat: 1
1609
1610Function: "y0_downward":
1611double: 3
1612float: 2
1613idouble: 3
1614ifloat: 2
1615
1616Function: "y0_towardzero":
1617double: 3
1618float: 3
1619idouble: 3
1620ifloat: 3
1621
1622Function: "y0_upward":
1623double: 3
1624float: 4
1625idouble: 3
1626ifloat: 4
1627
1628Function: "y1":
1629double: 3
1630float: 2
1631idouble: 3
1632ifloat: 2
1633
1634Function: "y1_downward":
1635double: 3
1636float: 2
1637idouble: 3
1638ifloat: 2
1639
1640Function: "y1_towardzero":
1641double: 3
1642float: 2
1643idouble: 3
1644ifloat: 2
1645
1646Function: "y1_upward":
1647double: 7
1648float: 2
1649idouble: 7
1650ifloat: 2
1651
1652Function: "yn":
1653double: 3
1654float: 2
1655idouble: 3
1656ifloat: 2
1657
1658Function: "yn_downward":
1659double: 3
1660float: 2
1661idouble: 3
1662ifloat: 2
1663
1664Function: "yn_towardzero":
1665double: 3
1666float: 3
1667idouble: 3
1668ifloat: 3
1669
1670Function: "yn_upward":
1671double: 4
1672float: 4
1673idouble: 4
1674ifloat: 4
1675
1676# end of automatic generation