lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* Manage TLS descriptors. i386 version. |
| 2 | Copyright (C) 2005-2015 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <http://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <link.h> |
| 20 | #include <ldsodefs.h> |
| 21 | #include <elf/dynamic-link.h> |
| 22 | #include <tls.h> |
| 23 | #include <dl-tlsdesc.h> |
| 24 | #include <dl-unmap-segments.h> |
| 25 | #include <tlsdeschtab.h> |
| 26 | |
| 27 | /* The following 4 functions take an entry_check_offset argument. |
| 28 | It's computed by the caller as an offset between its entry point |
| 29 | and the call site, such that by adding the built-in return address |
| 30 | that is implicitly passed to the function with this offset, we can |
| 31 | easily obtain the caller's entry point to compare with the entry |
| 32 | point given in the TLS descriptor. If it's changed, we want to |
| 33 | return immediately. */ |
| 34 | |
| 35 | /* This function is used to lazily resolve TLS_DESC REL relocations |
| 36 | that reference the *ABS* segment in their own link maps. The |
| 37 | argument is the addend originally stored there. */ |
| 38 | |
| 39 | void |
| 40 | __attribute__ ((regparm (3))) attribute_hidden |
| 41 | _dl_tlsdesc_resolve_abs_plus_addend_fixup (struct tlsdesc volatile *td, |
| 42 | struct link_map *l, |
| 43 | ptrdiff_t entry_check_offset) |
| 44 | { |
| 45 | ptrdiff_t addend = (ptrdiff_t) td->arg; |
| 46 | |
| 47 | if (_dl_tlsdesc_resolve_early_return_p (td, __builtin_return_address (0) |
| 48 | - entry_check_offset)) |
| 49 | return; |
| 50 | |
| 51 | #ifndef SHARED |
| 52 | CHECK_STATIC_TLS (l, l); |
| 53 | #else |
| 54 | if (!TRY_STATIC_TLS (l, l)) |
| 55 | { |
| 56 | td->arg = _dl_make_tlsdesc_dynamic (l, addend); |
| 57 | td->entry = _dl_tlsdesc_dynamic; |
| 58 | } |
| 59 | else |
| 60 | #endif |
| 61 | { |
| 62 | td->arg = (void*) (addend - l->l_tls_offset); |
| 63 | td->entry = _dl_tlsdesc_return; |
| 64 | } |
| 65 | |
| 66 | _dl_tlsdesc_wake_up_held_fixups (); |
| 67 | } |
| 68 | |
| 69 | /* This function is used to lazily resolve TLS_DESC REL relocations |
| 70 | that originally had zero addends. The argument location, that |
| 71 | originally held the addend, is used to hold a pointer to the |
| 72 | relocation, but it has to be restored before we call the function |
| 73 | that applies relocations. */ |
| 74 | |
| 75 | void |
| 76 | __attribute__ ((regparm (3))) attribute_hidden |
| 77 | _dl_tlsdesc_resolve_rel_fixup (struct tlsdesc volatile *td, |
| 78 | struct link_map *l, |
| 79 | ptrdiff_t entry_check_offset) |
| 80 | { |
| 81 | const ElfW(Rel) *reloc = td->arg; |
| 82 | |
| 83 | if (_dl_tlsdesc_resolve_early_return_p (td, __builtin_return_address (0) |
| 84 | - entry_check_offset)) |
| 85 | return; |
| 86 | |
| 87 | /* The code below was borrowed from _dl_fixup(), |
| 88 | except for checking for STB_LOCAL. */ |
| 89 | const ElfW(Sym) *const symtab |
| 90 | = (const void *) D_PTR (l, l_info[DT_SYMTAB]); |
| 91 | const char *strtab = (const void *) D_PTR (l, l_info[DT_STRTAB]); |
| 92 | const ElfW(Sym) *sym = &symtab[ELFW(R_SYM) (reloc->r_info)]; |
| 93 | lookup_t result; |
| 94 | |
| 95 | /* Look up the target symbol. If the normal lookup rules are not |
| 96 | used don't look in the global scope. */ |
| 97 | if (ELFW(ST_BIND) (sym->st_info) != STB_LOCAL |
| 98 | && __builtin_expect (ELFW(ST_VISIBILITY) (sym->st_other), 0) == 0) |
| 99 | { |
| 100 | const struct r_found_version *version = NULL; |
| 101 | |
| 102 | if (l->l_info[VERSYMIDX (DT_VERSYM)] != NULL) |
| 103 | { |
| 104 | const ElfW(Half) *vernum = |
| 105 | (const void *) D_PTR (l, l_info[VERSYMIDX (DT_VERSYM)]); |
| 106 | ElfW(Half) ndx = vernum[ELFW(R_SYM) (reloc->r_info)] & 0x7fff; |
| 107 | version = &l->l_versions[ndx]; |
| 108 | if (version->hash == 0) |
| 109 | version = NULL; |
| 110 | } |
| 111 | |
| 112 | result = _dl_lookup_symbol_x (strtab + sym->st_name, l, &sym, |
| 113 | l->l_scope, version, ELF_RTYPE_CLASS_PLT, |
| 114 | DL_LOOKUP_ADD_DEPENDENCY, NULL); |
| 115 | } |
| 116 | else |
| 117 | { |
| 118 | /* We already found the symbol. The module (and therefore its load |
| 119 | address) is also known. */ |
| 120 | result = l; |
| 121 | } |
| 122 | |
| 123 | if (!sym) |
| 124 | { |
| 125 | td->arg = 0; |
| 126 | td->entry = _dl_tlsdesc_undefweak; |
| 127 | } |
| 128 | else |
| 129 | { |
| 130 | # ifndef SHARED |
| 131 | CHECK_STATIC_TLS (l, result); |
| 132 | # else |
| 133 | if (!TRY_STATIC_TLS (l, result)) |
| 134 | { |
| 135 | td->arg = _dl_make_tlsdesc_dynamic (result, sym->st_value); |
| 136 | td->entry = _dl_tlsdesc_dynamic; |
| 137 | } |
| 138 | else |
| 139 | # endif |
| 140 | { |
| 141 | td->arg = (void*)(sym->st_value - result->l_tls_offset); |
| 142 | td->entry = _dl_tlsdesc_return; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | _dl_tlsdesc_wake_up_held_fixups (); |
| 147 | } |
| 148 | |
| 149 | /* This function is used to lazily resolve TLS_DESC RELA relocations. |
| 150 | The argument location is used to hold a pointer to the relocation. */ |
| 151 | |
| 152 | void |
| 153 | __attribute__ ((regparm (3))) attribute_hidden |
| 154 | _dl_tlsdesc_resolve_rela_fixup (struct tlsdesc volatile *td, |
| 155 | struct link_map *l, |
| 156 | ptrdiff_t entry_check_offset) |
| 157 | { |
| 158 | const ElfW(Rela) *reloc = td->arg; |
| 159 | |
| 160 | if (_dl_tlsdesc_resolve_early_return_p (td, __builtin_return_address (0) |
| 161 | - entry_check_offset)) |
| 162 | return; |
| 163 | |
| 164 | /* The code below was borrowed from _dl_fixup(), |
| 165 | except for checking for STB_LOCAL. */ |
| 166 | const ElfW(Sym) *const symtab |
| 167 | = (const void *) D_PTR (l, l_info[DT_SYMTAB]); |
| 168 | const char *strtab = (const void *) D_PTR (l, l_info[DT_STRTAB]); |
| 169 | const ElfW(Sym) *sym = &symtab[ELFW(R_SYM) (reloc->r_info)]; |
| 170 | lookup_t result; |
| 171 | |
| 172 | /* Look up the target symbol. If the normal lookup rules are not |
| 173 | used don't look in the global scope. */ |
| 174 | if (ELFW(ST_BIND) (sym->st_info) != STB_LOCAL |
| 175 | && __builtin_expect (ELFW(ST_VISIBILITY) (sym->st_other), 0) == 0) |
| 176 | { |
| 177 | const struct r_found_version *version = NULL; |
| 178 | |
| 179 | if (l->l_info[VERSYMIDX (DT_VERSYM)] != NULL) |
| 180 | { |
| 181 | const ElfW(Half) *vernum = |
| 182 | (const void *) D_PTR (l, l_info[VERSYMIDX (DT_VERSYM)]); |
| 183 | ElfW(Half) ndx = vernum[ELFW(R_SYM) (reloc->r_info)] & 0x7fff; |
| 184 | version = &l->l_versions[ndx]; |
| 185 | if (version->hash == 0) |
| 186 | version = NULL; |
| 187 | } |
| 188 | |
| 189 | result = _dl_lookup_symbol_x (strtab + sym->st_name, l, &sym, |
| 190 | l->l_scope, version, ELF_RTYPE_CLASS_PLT, |
| 191 | DL_LOOKUP_ADD_DEPENDENCY, NULL); |
| 192 | } |
| 193 | else |
| 194 | { |
| 195 | /* We already found the symbol. The module (and therefore its load |
| 196 | address) is also known. */ |
| 197 | result = l; |
| 198 | } |
| 199 | |
| 200 | if (!sym) |
| 201 | { |
| 202 | td->arg = (void*) reloc->r_addend; |
| 203 | td->entry = _dl_tlsdesc_undefweak; |
| 204 | } |
| 205 | else |
| 206 | { |
| 207 | # ifndef SHARED |
| 208 | CHECK_STATIC_TLS (l, result); |
| 209 | # else |
| 210 | if (!TRY_STATIC_TLS (l, result)) |
| 211 | { |
| 212 | td->arg = _dl_make_tlsdesc_dynamic (result, sym->st_value |
| 213 | + reloc->r_addend); |
| 214 | td->entry = _dl_tlsdesc_dynamic; |
| 215 | } |
| 216 | else |
| 217 | # endif |
| 218 | { |
| 219 | td->arg = (void*) (sym->st_value - result->l_tls_offset |
| 220 | + reloc->r_addend); |
| 221 | td->entry = _dl_tlsdesc_return; |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | _dl_tlsdesc_wake_up_held_fixups (); |
| 226 | } |
| 227 | |
| 228 | /* This function is used to avoid busy waiting for other threads to |
| 229 | complete the lazy relocation. Once another thread wins the race to |
| 230 | relocate a TLS descriptor, it sets the descriptor up such that this |
| 231 | function is called to wait until the resolver releases the |
| 232 | lock. */ |
| 233 | |
| 234 | void |
| 235 | __attribute__ ((regparm (3))) attribute_hidden |
| 236 | _dl_tlsdesc_resolve_hold_fixup (struct tlsdesc volatile *td, |
| 237 | struct link_map *l __attribute__((__unused__)), |
| 238 | ptrdiff_t entry_check_offset) |
| 239 | { |
| 240 | /* Maybe we're lucky and can return early. */ |
| 241 | if (__builtin_return_address (0) - entry_check_offset != td->entry) |
| 242 | return; |
| 243 | |
| 244 | /* Locking here will stop execution until the running resolver runs |
| 245 | _dl_tlsdesc_wake_up_held_fixups(), releasing the lock. |
| 246 | |
| 247 | FIXME: We'd be better off waiting on a condition variable, such |
| 248 | that we didn't have to hold the lock throughout the relocation |
| 249 | processing. */ |
| 250 | __rtld_lock_lock_recursive (GL(dl_load_lock)); |
| 251 | __rtld_lock_unlock_recursive (GL(dl_load_lock)); |
| 252 | } |
| 253 | |
| 254 | |
| 255 | /* Unmap the dynamic object, but also release its TLS descriptor table |
| 256 | if there is one. */ |
| 257 | |
| 258 | void |
| 259 | internal_function |
| 260 | _dl_unmap (struct link_map *map) |
| 261 | { |
| 262 | _dl_unmap_segments (map); |
| 263 | |
| 264 | #ifdef SHARED |
| 265 | if (map->l_mach.tlsdesc_table) |
| 266 | htab_delete (map->l_mach.tlsdesc_table); |
| 267 | #endif |
| 268 | } |