blob: c1de4c3a3fe72111957b1657d3004e453f0c1b22 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bitops.h>
22#include <linux/bug.h>
23#include <linux/compiler.h>
24#include <linux/delay.h>
25#include <linux/device.h>
26#include <linux/dma-mapping.h>
27#include <linux/firewire.h>
28#include <linux/firewire-constants.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/io.h>
32#include <linux/kernel.h>
33#include <linux/list.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/mutex.h>
38#include <linux/pci.h>
39#include <linux/pci_ids.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
43#include <linux/time.h>
44#include <linux/vmalloc.h>
45#include <linux/workqueue.h>
46
47#include <asm/byteorder.h>
48#include <asm/page.h>
49
50#ifdef CONFIG_PPC_PMAC
51#include <asm/pmac_feature.h>
52#endif
53
54#include "core.h"
55#include "ohci.h"
56
57#define DESCRIPTOR_OUTPUT_MORE 0
58#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59#define DESCRIPTOR_INPUT_MORE (2 << 12)
60#define DESCRIPTOR_INPUT_LAST (3 << 12)
61#define DESCRIPTOR_STATUS (1 << 11)
62#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63#define DESCRIPTOR_PING (1 << 7)
64#define DESCRIPTOR_YY (1 << 6)
65#define DESCRIPTOR_NO_IRQ (0 << 4)
66#define DESCRIPTOR_IRQ_ERROR (1 << 4)
67#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69#define DESCRIPTOR_WAIT (3 << 0)
70
71struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78} __attribute__((aligned(16)));
79
80#define CONTROL_SET(regs) (regs)
81#define CONTROL_CLEAR(regs) ((regs) + 4)
82#define COMMAND_PTR(regs) ((regs) + 12)
83#define CONTEXT_MATCH(regs) ((regs) + 16)
84
85#define AR_BUFFER_SIZE (32*1024)
86#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87/* we need at least two pages for proper list management */
88#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90#define MAX_ASYNC_PAYLOAD 4096
91#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
104};
105
106struct context;
107
108typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
111
112/*
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
115 */
116struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
122};
123
124struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 u32 current_bus;
129 bool running;
130 bool flushing;
131
132 /*
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
135 * free buffers.
136 */
137 struct list_head buffer_list;
138
139 /*
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
142 */
143 struct descriptor_buffer *buffer_tail;
144
145 /*
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
148 */
149 struct descriptor *last;
150
151 /*
152 * The last descriptor in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
154 */
155 struct descriptor *prev;
156
157 descriptor_callback_t callback;
158
159 struct tasklet_struct tasklet;
160};
161
162#define IT_HEADER_SY(v) ((v) << 0)
163#define IT_HEADER_TCODE(v) ((v) << 4)
164#define IT_HEADER_CHANNEL(v) ((v) << 8)
165#define IT_HEADER_TAG(v) ((v) << 14)
166#define IT_HEADER_SPEED(v) ((v) << 16)
167#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168
169struct iso_context {
170 struct fw_iso_context base;
171 struct context context;
172 void *header;
173 size_t header_length;
174 unsigned long flushing_completions;
175 u32 mc_buffer_bus;
176 u16 mc_completed;
177 u16 last_timestamp;
178 u8 sync;
179 u8 tags;
180};
181
182#define CONFIG_ROM_SIZE 1024
183
184struct fw_ohci {
185 struct fw_card card;
186
187 __iomem char *registers;
188 int node_id;
189 int generation;
190 int request_generation; /* for timestamping incoming requests */
191 unsigned quirks;
192 unsigned int pri_req_max;
193 u32 bus_time;
194 bool is_root;
195 bool csr_state_setclear_abdicate;
196 int n_ir;
197 int n_it;
198 /*
199 * Spinlock for accessing fw_ohci data. Never call out of
200 * this driver with this lock held.
201 */
202 spinlock_t lock;
203
204 struct mutex phy_reg_mutex;
205
206 void *misc_buffer;
207 dma_addr_t misc_buffer_bus;
208
209 struct ar_context ar_request_ctx;
210 struct ar_context ar_response_ctx;
211 struct context at_request_ctx;
212 struct context at_response_ctx;
213
214 u32 it_context_support;
215 u32 it_context_mask; /* unoccupied IT contexts */
216 struct iso_context *it_context_list;
217 u64 ir_context_channels; /* unoccupied channels */
218 u32 ir_context_support;
219 u32 ir_context_mask; /* unoccupied IR contexts */
220 struct iso_context *ir_context_list;
221 u64 mc_channels; /* channels in use by the multichannel IR context */
222 bool mc_allocated;
223
224 __be32 *config_rom;
225 dma_addr_t config_rom_bus;
226 __be32 *next_config_rom;
227 dma_addr_t next_config_rom_bus;
228 __be32 next_header;
229
230 __le32 *self_id_cpu;
231 dma_addr_t self_id_bus;
232 struct work_struct bus_reset_work;
233
234 u32 self_id_buffer[512];
235};
236
237static inline struct fw_ohci *fw_ohci(struct fw_card *card)
238{
239 return container_of(card, struct fw_ohci, card);
240}
241
242#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
243#define IR_CONTEXT_BUFFER_FILL 0x80000000
244#define IR_CONTEXT_ISOCH_HEADER 0x40000000
245#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
246#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
247#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
248
249#define CONTEXT_RUN 0x8000
250#define CONTEXT_WAKE 0x1000
251#define CONTEXT_DEAD 0x0800
252#define CONTEXT_ACTIVE 0x0400
253
254#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
255#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
256#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
257
258#define OHCI1394_REGISTER_SIZE 0x800
259#define OHCI1394_PCI_HCI_Control 0x40
260#define SELF_ID_BUF_SIZE 0x800
261#define OHCI_TCODE_PHY_PACKET 0x0e
262#define OHCI_VERSION_1_1 0x010010
263
264static char ohci_driver_name[] = KBUILD_MODNAME;
265
266#define PCI_DEVICE_ID_AGERE_FW643 0x5901
267#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
268#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
269#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
270#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
271#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
272#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
273
274#define QUIRK_CYCLE_TIMER 1
275#define QUIRK_RESET_PACKET 2
276#define QUIRK_BE_HEADERS 4
277#define QUIRK_NO_1394A 8
278#define QUIRK_NO_MSI 16
279#define QUIRK_TI_SLLZ059 32
280
281/* In case of multiple matches in ohci_quirks[], only the first one is used. */
282static const struct {
283 unsigned short vendor, device, revision, flags;
284} ohci_quirks[] = {
285 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
286 QUIRK_CYCLE_TIMER},
287
288 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
289 QUIRK_BE_HEADERS},
290
291 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
292 QUIRK_NO_MSI},
293
294 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
295 QUIRK_RESET_PACKET},
296
297 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
298 QUIRK_NO_MSI},
299
300 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
301 QUIRK_CYCLE_TIMER},
302
303 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
304 QUIRK_NO_MSI},
305
306 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
307 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
308
309 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
310 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
311
312 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
313 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
314
315 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
316 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
317
318 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
319 QUIRK_RESET_PACKET},
320
321 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
322 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
323};
324
325/* This overrides anything that was found in ohci_quirks[]. */
326static int param_quirks;
327module_param_named(quirks, param_quirks, int, 0644);
328MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
329 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
330 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
331 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
332 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
333 ", disable MSI = " __stringify(QUIRK_NO_MSI)
334 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
335 ")");
336
337#define OHCI_PARAM_DEBUG_AT_AR 1
338#define OHCI_PARAM_DEBUG_SELFIDS 2
339#define OHCI_PARAM_DEBUG_IRQS 4
340#define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
341
342static int param_debug;
343module_param_named(debug, param_debug, int, 0644);
344MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
345 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
346 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
347 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
348 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
349 ", or a combination, or all = -1)");
350
351static void log_irqs(struct fw_ohci *ohci, u32 evt)
352{
353 if (likely(!(param_debug &
354 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
355 return;
356
357 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
358 !(evt & OHCI1394_busReset))
359 return;
360
361 dev_notice(ohci->card.device,
362 "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
363 evt & OHCI1394_selfIDComplete ? " selfID" : "",
364 evt & OHCI1394_RQPkt ? " AR_req" : "",
365 evt & OHCI1394_RSPkt ? " AR_resp" : "",
366 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
367 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
368 evt & OHCI1394_isochRx ? " IR" : "",
369 evt & OHCI1394_isochTx ? " IT" : "",
370 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
371 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
372 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
373 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
374 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
375 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
376 evt & OHCI1394_busReset ? " busReset" : "",
377 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
378 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
379 OHCI1394_respTxComplete | OHCI1394_isochRx |
380 OHCI1394_isochTx | OHCI1394_postedWriteErr |
381 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
382 OHCI1394_cycleInconsistent |
383 OHCI1394_regAccessFail | OHCI1394_busReset)
384 ? " ?" : "");
385}
386
387static const char *speed[] = {
388 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
389};
390static const char *power[] = {
391 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
392 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
393};
394static const char port[] = { '.', '-', 'p', 'c', };
395
396static char _p(u32 *s, int shift)
397{
398 return port[*s >> shift & 3];
399}
400
401static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
402{
403 u32 *s;
404
405 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
406 return;
407
408 dev_notice(ohci->card.device,
409 "%d selfIDs, generation %d, local node ID %04x\n",
410 self_id_count, generation, ohci->node_id);
411
412 for (s = ohci->self_id_buffer; self_id_count--; ++s)
413 if ((*s & 1 << 23) == 0)
414 dev_notice(ohci->card.device,
415 "selfID 0: %08x, phy %d [%c%c%c] "
416 "%s gc=%d %s %s%s%s\n",
417 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
418 speed[*s >> 14 & 3], *s >> 16 & 63,
419 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
420 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
421 else
422 dev_notice(ohci->card.device,
423 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
424 *s, *s >> 24 & 63,
425 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
426 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
427}
428
429static const char *evts[] = {
430 [0x00] = "evt_no_status", [0x01] = "-reserved-",
431 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
432 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
433 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
434 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
435 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
436 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
437 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
438 [0x10] = "-reserved-", [0x11] = "ack_complete",
439 [0x12] = "ack_pending ", [0x13] = "-reserved-",
440 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
441 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
442 [0x18] = "-reserved-", [0x19] = "-reserved-",
443 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
444 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
445 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
446 [0x20] = "pending/cancelled",
447};
448static const char *tcodes[] = {
449 [0x0] = "QW req", [0x1] = "BW req",
450 [0x2] = "W resp", [0x3] = "-reserved-",
451 [0x4] = "QR req", [0x5] = "BR req",
452 [0x6] = "QR resp", [0x7] = "BR resp",
453 [0x8] = "cycle start", [0x9] = "Lk req",
454 [0xa] = "async stream packet", [0xb] = "Lk resp",
455 [0xc] = "-reserved-", [0xd] = "-reserved-",
456 [0xe] = "link internal", [0xf] = "-reserved-",
457};
458
459static void log_ar_at_event(struct fw_ohci *ohci,
460 char dir, int speed, u32 *header, int evt)
461{
462 int tcode = header[0] >> 4 & 0xf;
463 char specific[12];
464
465 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
466 return;
467
468 if (unlikely(evt >= ARRAY_SIZE(evts)))
469 evt = 0x1f;
470
471 if (evt == OHCI1394_evt_bus_reset) {
472 dev_notice(ohci->card.device,
473 "A%c evt_bus_reset, generation %d\n",
474 dir, (header[2] >> 16) & 0xff);
475 return;
476 }
477
478 switch (tcode) {
479 case 0x0: case 0x6: case 0x8:
480 snprintf(specific, sizeof(specific), " = %08x",
481 be32_to_cpu((__force __be32)header[3]));
482 break;
483 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
484 snprintf(specific, sizeof(specific), " %x,%x",
485 header[3] >> 16, header[3] & 0xffff);
486 break;
487 default:
488 specific[0] = '\0';
489 }
490
491 switch (tcode) {
492 case 0xa:
493 dev_notice(ohci->card.device,
494 "A%c %s, %s\n",
495 dir, evts[evt], tcodes[tcode]);
496 break;
497 case 0xe:
498 dev_notice(ohci->card.device,
499 "A%c %s, PHY %08x %08x\n",
500 dir, evts[evt], header[1], header[2]);
501 break;
502 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
503 dev_notice(ohci->card.device,
504 "A%c spd %x tl %02x, "
505 "%04x -> %04x, %s, "
506 "%s, %04x%08x%s\n",
507 dir, speed, header[0] >> 10 & 0x3f,
508 header[1] >> 16, header[0] >> 16, evts[evt],
509 tcodes[tcode], header[1] & 0xffff, header[2], specific);
510 break;
511 default:
512 dev_notice(ohci->card.device,
513 "A%c spd %x tl %02x, "
514 "%04x -> %04x, %s, "
515 "%s%s\n",
516 dir, speed, header[0] >> 10 & 0x3f,
517 header[1] >> 16, header[0] >> 16, evts[evt],
518 tcodes[tcode], specific);
519 }
520}
521
522static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
523{
524 writel(data, ohci->registers + offset);
525}
526
527static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
528{
529 return readl(ohci->registers + offset);
530}
531
532static inline void flush_writes(const struct fw_ohci *ohci)
533{
534 /* Do a dummy read to flush writes. */
535 reg_read(ohci, OHCI1394_Version);
536}
537
538/*
539 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
540 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
541 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
542 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
543 */
544static int read_phy_reg(struct fw_ohci *ohci, int addr)
545{
546 u32 val;
547 int i;
548
549 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
550 for (i = 0; i < 3 + 100; i++) {
551 val = reg_read(ohci, OHCI1394_PhyControl);
552 if (!~val)
553 return -ENODEV; /* Card was ejected. */
554
555 if (val & OHCI1394_PhyControl_ReadDone)
556 return OHCI1394_PhyControl_ReadData(val);
557
558 /*
559 * Try a few times without waiting. Sleeping is necessary
560 * only when the link/PHY interface is busy.
561 */
562 if (i >= 3)
563 msleep(1);
564 }
565 dev_err(ohci->card.device, "failed to read phy reg\n");
566
567 return -EBUSY;
568}
569
570static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
571{
572 int i;
573
574 reg_write(ohci, OHCI1394_PhyControl,
575 OHCI1394_PhyControl_Write(addr, val));
576 for (i = 0; i < 3 + 100; i++) {
577 val = reg_read(ohci, OHCI1394_PhyControl);
578 if (!~val)
579 return -ENODEV; /* Card was ejected. */
580
581 if (!(val & OHCI1394_PhyControl_WritePending))
582 return 0;
583
584 if (i >= 3)
585 msleep(1);
586 }
587 dev_err(ohci->card.device, "failed to write phy reg\n");
588
589 return -EBUSY;
590}
591
592static int update_phy_reg(struct fw_ohci *ohci, int addr,
593 int clear_bits, int set_bits)
594{
595 int ret = read_phy_reg(ohci, addr);
596 if (ret < 0)
597 return ret;
598
599 /*
600 * The interrupt status bits are cleared by writing a one bit.
601 * Avoid clearing them unless explicitly requested in set_bits.
602 */
603 if (addr == 5)
604 clear_bits |= PHY_INT_STATUS_BITS;
605
606 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
607}
608
609static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
610{
611 int ret;
612
613 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
614 if (ret < 0)
615 return ret;
616
617 return read_phy_reg(ohci, addr);
618}
619
620static int ohci_read_phy_reg(struct fw_card *card, int addr)
621{
622 struct fw_ohci *ohci = fw_ohci(card);
623 int ret;
624
625 mutex_lock(&ohci->phy_reg_mutex);
626 ret = read_phy_reg(ohci, addr);
627 mutex_unlock(&ohci->phy_reg_mutex);
628
629 return ret;
630}
631
632static int ohci_update_phy_reg(struct fw_card *card, int addr,
633 int clear_bits, int set_bits)
634{
635 struct fw_ohci *ohci = fw_ohci(card);
636 int ret;
637
638 mutex_lock(&ohci->phy_reg_mutex);
639 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
640 mutex_unlock(&ohci->phy_reg_mutex);
641
642 return ret;
643}
644
645static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
646{
647 return page_private(ctx->pages[i]);
648}
649
650static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
651{
652 struct descriptor *d;
653
654 d = &ctx->descriptors[index];
655 d->branch_address &= cpu_to_le32(~0xf);
656 d->res_count = cpu_to_le16(PAGE_SIZE);
657 d->transfer_status = 0;
658
659 wmb(); /* finish init of new descriptors before branch_address update */
660 d = &ctx->descriptors[ctx->last_buffer_index];
661 d->branch_address |= cpu_to_le32(1);
662
663 ctx->last_buffer_index = index;
664
665 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
666}
667
668static void ar_context_release(struct ar_context *ctx)
669{
670 unsigned int i;
671
672 if (ctx->buffer)
673 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
674
675 for (i = 0; i < AR_BUFFERS; i++)
676 if (ctx->pages[i]) {
677 dma_unmap_page(ctx->ohci->card.device,
678 ar_buffer_bus(ctx, i),
679 PAGE_SIZE, DMA_FROM_DEVICE);
680 __free_page(ctx->pages[i]);
681 }
682}
683
684static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
685{
686 struct fw_ohci *ohci = ctx->ohci;
687
688 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
689 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
690 flush_writes(ohci);
691
692 dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
693 error_msg);
694 }
695 /* FIXME: restart? */
696}
697
698static inline unsigned int ar_next_buffer_index(unsigned int index)
699{
700 return (index + 1) % AR_BUFFERS;
701}
702
703static inline unsigned int ar_prev_buffer_index(unsigned int index)
704{
705 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
706}
707
708static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
709{
710 return ar_next_buffer_index(ctx->last_buffer_index);
711}
712
713/*
714 * We search for the buffer that contains the last AR packet DMA data written
715 * by the controller.
716 */
717static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
718 unsigned int *buffer_offset)
719{
720 unsigned int i, next_i, last = ctx->last_buffer_index;
721 __le16 res_count, next_res_count;
722
723 i = ar_first_buffer_index(ctx);
724 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
725
726 /* A buffer that is not yet completely filled must be the last one. */
727 while (i != last && res_count == 0) {
728
729 /* Peek at the next descriptor. */
730 next_i = ar_next_buffer_index(i);
731 rmb(); /* read descriptors in order */
732 next_res_count = ACCESS_ONCE(
733 ctx->descriptors[next_i].res_count);
734 /*
735 * If the next descriptor is still empty, we must stop at this
736 * descriptor.
737 */
738 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
739 /*
740 * The exception is when the DMA data for one packet is
741 * split over three buffers; in this case, the middle
742 * buffer's descriptor might be never updated by the
743 * controller and look still empty, and we have to peek
744 * at the third one.
745 */
746 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
747 next_i = ar_next_buffer_index(next_i);
748 rmb();
749 next_res_count = ACCESS_ONCE(
750 ctx->descriptors[next_i].res_count);
751 if (next_res_count != cpu_to_le16(PAGE_SIZE))
752 goto next_buffer_is_active;
753 }
754
755 break;
756 }
757
758next_buffer_is_active:
759 i = next_i;
760 res_count = next_res_count;
761 }
762
763 rmb(); /* read res_count before the DMA data */
764
765 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
766 if (*buffer_offset > PAGE_SIZE) {
767 *buffer_offset = 0;
768 ar_context_abort(ctx, "corrupted descriptor");
769 }
770
771 return i;
772}
773
774static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
775 unsigned int end_buffer_index,
776 unsigned int end_buffer_offset)
777{
778 unsigned int i;
779
780 i = ar_first_buffer_index(ctx);
781 while (i != end_buffer_index) {
782 dma_sync_single_for_cpu(ctx->ohci->card.device,
783 ar_buffer_bus(ctx, i),
784 PAGE_SIZE, DMA_FROM_DEVICE);
785 i = ar_next_buffer_index(i);
786 }
787 if (end_buffer_offset > 0)
788 dma_sync_single_for_cpu(ctx->ohci->card.device,
789 ar_buffer_bus(ctx, i),
790 end_buffer_offset, DMA_FROM_DEVICE);
791}
792
793#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
794#define cond_le32_to_cpu(v) \
795 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
796#else
797#define cond_le32_to_cpu(v) le32_to_cpu(v)
798#endif
799
800static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
801{
802 struct fw_ohci *ohci = ctx->ohci;
803 struct fw_packet p;
804 u32 status, length, tcode;
805 int evt;
806
807 p.header[0] = cond_le32_to_cpu(buffer[0]);
808 p.header[1] = cond_le32_to_cpu(buffer[1]);
809 p.header[2] = cond_le32_to_cpu(buffer[2]);
810
811 tcode = (p.header[0] >> 4) & 0x0f;
812 switch (tcode) {
813 case TCODE_WRITE_QUADLET_REQUEST:
814 case TCODE_READ_QUADLET_RESPONSE:
815 p.header[3] = (__force __u32) buffer[3];
816 p.header_length = 16;
817 p.payload_length = 0;
818 break;
819
820 case TCODE_READ_BLOCK_REQUEST :
821 p.header[3] = cond_le32_to_cpu(buffer[3]);
822 p.header_length = 16;
823 p.payload_length = 0;
824 break;
825
826 case TCODE_WRITE_BLOCK_REQUEST:
827 case TCODE_READ_BLOCK_RESPONSE:
828 case TCODE_LOCK_REQUEST:
829 case TCODE_LOCK_RESPONSE:
830 p.header[3] = cond_le32_to_cpu(buffer[3]);
831 p.header_length = 16;
832 p.payload_length = p.header[3] >> 16;
833 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
834 ar_context_abort(ctx, "invalid packet length");
835 return NULL;
836 }
837 break;
838
839 case TCODE_WRITE_RESPONSE:
840 case TCODE_READ_QUADLET_REQUEST:
841 case OHCI_TCODE_PHY_PACKET:
842 p.header_length = 12;
843 p.payload_length = 0;
844 break;
845
846 default:
847 ar_context_abort(ctx, "invalid tcode");
848 return NULL;
849 }
850
851 p.payload = (void *) buffer + p.header_length;
852
853 /* FIXME: What to do about evt_* errors? */
854 length = (p.header_length + p.payload_length + 3) / 4;
855 status = cond_le32_to_cpu(buffer[length]);
856 evt = (status >> 16) & 0x1f;
857
858 p.ack = evt - 16;
859 p.speed = (status >> 21) & 0x7;
860 p.timestamp = status & 0xffff;
861 p.generation = ohci->request_generation;
862
863 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
864
865 /*
866 * Several controllers, notably from NEC and VIA, forget to
867 * write ack_complete status at PHY packet reception.
868 */
869 if (evt == OHCI1394_evt_no_status &&
870 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
871 p.ack = ACK_COMPLETE;
872
873 /*
874 * The OHCI bus reset handler synthesizes a PHY packet with
875 * the new generation number when a bus reset happens (see
876 * section 8.4.2.3). This helps us determine when a request
877 * was received and make sure we send the response in the same
878 * generation. We only need this for requests; for responses
879 * we use the unique tlabel for finding the matching
880 * request.
881 *
882 * Alas some chips sometimes emit bus reset packets with a
883 * wrong generation. We set the correct generation for these
884 * at a slightly incorrect time (in bus_reset_work).
885 */
886 if (evt == OHCI1394_evt_bus_reset) {
887 if (!(ohci->quirks & QUIRK_RESET_PACKET))
888 ohci->request_generation = (p.header[2] >> 16) & 0xff;
889 } else if (ctx == &ohci->ar_request_ctx) {
890 fw_core_handle_request(&ohci->card, &p);
891 } else {
892 fw_core_handle_response(&ohci->card, &p);
893 }
894
895 return buffer + length + 1;
896}
897
898static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
899{
900 void *next;
901
902 while (p < end) {
903 next = handle_ar_packet(ctx, p);
904 if (!next)
905 return p;
906 p = next;
907 }
908
909 return p;
910}
911
912static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
913{
914 unsigned int i;
915
916 i = ar_first_buffer_index(ctx);
917 while (i != end_buffer) {
918 dma_sync_single_for_device(ctx->ohci->card.device,
919 ar_buffer_bus(ctx, i),
920 PAGE_SIZE, DMA_FROM_DEVICE);
921 ar_context_link_page(ctx, i);
922 i = ar_next_buffer_index(i);
923 }
924}
925
926static void ar_context_tasklet(unsigned long data)
927{
928 struct ar_context *ctx = (struct ar_context *)data;
929 unsigned int end_buffer_index, end_buffer_offset;
930 void *p, *end;
931
932 p = ctx->pointer;
933 if (!p)
934 return;
935
936 end_buffer_index = ar_search_last_active_buffer(ctx,
937 &end_buffer_offset);
938 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
939 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
940
941 if (end_buffer_index < ar_first_buffer_index(ctx)) {
942 /*
943 * The filled part of the overall buffer wraps around; handle
944 * all packets up to the buffer end here. If the last packet
945 * wraps around, its tail will be visible after the buffer end
946 * because the buffer start pages are mapped there again.
947 */
948 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
949 p = handle_ar_packets(ctx, p, buffer_end);
950 if (p < buffer_end)
951 goto error;
952 /* adjust p to point back into the actual buffer */
953 p -= AR_BUFFERS * PAGE_SIZE;
954 }
955
956 p = handle_ar_packets(ctx, p, end);
957 if (p != end) {
958 if (p > end)
959 ar_context_abort(ctx, "inconsistent descriptor");
960 goto error;
961 }
962
963 ctx->pointer = p;
964 ar_recycle_buffers(ctx, end_buffer_index);
965
966 return;
967
968error:
969 ctx->pointer = NULL;
970}
971
972static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
973 unsigned int descriptors_offset, u32 regs)
974{
975 unsigned int i;
976 dma_addr_t dma_addr;
977 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
978 struct descriptor *d;
979
980 ctx->regs = regs;
981 ctx->ohci = ohci;
982 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
983
984 for (i = 0; i < AR_BUFFERS; i++) {
985 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
986 if (!ctx->pages[i])
987 goto out_of_memory;
988 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
989 0, PAGE_SIZE, DMA_FROM_DEVICE);
990 if (dma_mapping_error(ohci->card.device, dma_addr)) {
991 __free_page(ctx->pages[i]);
992 ctx->pages[i] = NULL;
993 goto out_of_memory;
994 }
995 set_page_private(ctx->pages[i], dma_addr);
996 }
997
998 for (i = 0; i < AR_BUFFERS; i++)
999 pages[i] = ctx->pages[i];
1000 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1001 pages[AR_BUFFERS + i] = ctx->pages[i];
1002 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1003 -1, PAGE_KERNEL);
1004 if (!ctx->buffer)
1005 goto out_of_memory;
1006
1007 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1008 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1009
1010 for (i = 0; i < AR_BUFFERS; i++) {
1011 d = &ctx->descriptors[i];
1012 d->req_count = cpu_to_le16(PAGE_SIZE);
1013 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1014 DESCRIPTOR_STATUS |
1015 DESCRIPTOR_BRANCH_ALWAYS);
1016 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1017 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1018 ar_next_buffer_index(i) * sizeof(struct descriptor));
1019 }
1020
1021 return 0;
1022
1023out_of_memory:
1024 ar_context_release(ctx);
1025
1026 return -ENOMEM;
1027}
1028
1029static void ar_context_run(struct ar_context *ctx)
1030{
1031 unsigned int i;
1032
1033 for (i = 0; i < AR_BUFFERS; i++)
1034 ar_context_link_page(ctx, i);
1035
1036 ctx->pointer = ctx->buffer;
1037
1038 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1039 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1040}
1041
1042static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1043{
1044 __le16 branch;
1045
1046 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1047
1048 /* figure out which descriptor the branch address goes in */
1049 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1050 return d;
1051 else
1052 return d + z - 1;
1053}
1054
1055static void context_tasklet(unsigned long data)
1056{
1057 struct context *ctx = (struct context *) data;
1058 struct descriptor *d, *last;
1059 u32 address;
1060 int z;
1061 struct descriptor_buffer *desc;
1062
1063 desc = list_entry(ctx->buffer_list.next,
1064 struct descriptor_buffer, list);
1065 last = ctx->last;
1066 while (last->branch_address != 0) {
1067 struct descriptor_buffer *old_desc = desc;
1068 address = le32_to_cpu(last->branch_address);
1069 z = address & 0xf;
1070 address &= ~0xf;
1071 ctx->current_bus = address;
1072
1073 /* If the branch address points to a buffer outside of the
1074 * current buffer, advance to the next buffer. */
1075 if (address < desc->buffer_bus ||
1076 address >= desc->buffer_bus + desc->used)
1077 desc = list_entry(desc->list.next,
1078 struct descriptor_buffer, list);
1079 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1080 last = find_branch_descriptor(d, z);
1081
1082 if (!ctx->callback(ctx, d, last))
1083 break;
1084
1085 if (old_desc != desc) {
1086 /* If we've advanced to the next buffer, move the
1087 * previous buffer to the free list. */
1088 unsigned long flags;
1089 old_desc->used = 0;
1090 spin_lock_irqsave(&ctx->ohci->lock, flags);
1091 list_move_tail(&old_desc->list, &ctx->buffer_list);
1092 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1093 }
1094 ctx->last = last;
1095 }
1096}
1097
1098/*
1099 * Allocate a new buffer and add it to the list of free buffers for this
1100 * context. Must be called with ohci->lock held.
1101 */
1102static int context_add_buffer(struct context *ctx)
1103{
1104 struct descriptor_buffer *desc;
1105 dma_addr_t uninitialized_var(bus_addr);
1106 int offset;
1107
1108 /*
1109 * 16MB of descriptors should be far more than enough for any DMA
1110 * program. This will catch run-away userspace or DoS attacks.
1111 */
1112 if (ctx->total_allocation >= 16*1024*1024)
1113 return -ENOMEM;
1114
1115 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1116 &bus_addr, GFP_ATOMIC);
1117 if (!desc)
1118 return -ENOMEM;
1119
1120 offset = (void *)&desc->buffer - (void *)desc;
1121 desc->buffer_size = PAGE_SIZE - offset;
1122 desc->buffer_bus = bus_addr + offset;
1123 desc->used = 0;
1124
1125 list_add_tail(&desc->list, &ctx->buffer_list);
1126 ctx->total_allocation += PAGE_SIZE;
1127
1128 return 0;
1129}
1130
1131static int context_init(struct context *ctx, struct fw_ohci *ohci,
1132 u32 regs, descriptor_callback_t callback)
1133{
1134 ctx->ohci = ohci;
1135 ctx->regs = regs;
1136 ctx->total_allocation = 0;
1137
1138 INIT_LIST_HEAD(&ctx->buffer_list);
1139 if (context_add_buffer(ctx) < 0)
1140 return -ENOMEM;
1141
1142 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1143 struct descriptor_buffer, list);
1144
1145 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1146 ctx->callback = callback;
1147
1148 /*
1149 * We put a dummy descriptor in the buffer that has a NULL
1150 * branch address and looks like it's been sent. That way we
1151 * have a descriptor to append DMA programs to.
1152 */
1153 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1154 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1155 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1156 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1157 ctx->last = ctx->buffer_tail->buffer;
1158 ctx->prev = ctx->buffer_tail->buffer;
1159
1160 return 0;
1161}
1162
1163static void context_release(struct context *ctx)
1164{
1165 struct fw_card *card = &ctx->ohci->card;
1166 struct descriptor_buffer *desc, *tmp;
1167
1168 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1169 dma_free_coherent(card->device, PAGE_SIZE, desc,
1170 desc->buffer_bus -
1171 ((void *)&desc->buffer - (void *)desc));
1172}
1173
1174/* Must be called with ohci->lock held */
1175static struct descriptor *context_get_descriptors(struct context *ctx,
1176 int z, dma_addr_t *d_bus)
1177{
1178 struct descriptor *d = NULL;
1179 struct descriptor_buffer *desc = ctx->buffer_tail;
1180
1181 if (z * sizeof(*d) > desc->buffer_size)
1182 return NULL;
1183
1184 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1185 /* No room for the descriptor in this buffer, so advance to the
1186 * next one. */
1187
1188 if (desc->list.next == &ctx->buffer_list) {
1189 /* If there is no free buffer next in the list,
1190 * allocate one. */
1191 if (context_add_buffer(ctx) < 0)
1192 return NULL;
1193 }
1194 desc = list_entry(desc->list.next,
1195 struct descriptor_buffer, list);
1196 ctx->buffer_tail = desc;
1197 }
1198
1199 d = desc->buffer + desc->used / sizeof(*d);
1200 memset(d, 0, z * sizeof(*d));
1201 *d_bus = desc->buffer_bus + desc->used;
1202
1203 return d;
1204}
1205
1206static void context_run(struct context *ctx, u32 extra)
1207{
1208 struct fw_ohci *ohci = ctx->ohci;
1209
1210 reg_write(ohci, COMMAND_PTR(ctx->regs),
1211 le32_to_cpu(ctx->last->branch_address));
1212 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1213 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1214 ctx->running = true;
1215 flush_writes(ohci);
1216}
1217
1218static void context_append(struct context *ctx,
1219 struct descriptor *d, int z, int extra)
1220{
1221 dma_addr_t d_bus;
1222 struct descriptor_buffer *desc = ctx->buffer_tail;
1223
1224 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1225
1226 desc->used += (z + extra) * sizeof(*d);
1227
1228 wmb(); /* finish init of new descriptors before branch_address update */
1229 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1230 ctx->prev = find_branch_descriptor(d, z);
1231}
1232
1233static void context_stop(struct context *ctx)
1234{
1235 struct fw_ohci *ohci = ctx->ohci;
1236 u32 reg;
1237 int i;
1238
1239 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1240 ctx->running = false;
1241
1242 for (i = 0; i < 1000; i++) {
1243 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1244 if ((reg & CONTEXT_ACTIVE) == 0)
1245 return;
1246
1247 if (i)
1248 udelay(10);
1249 }
1250 dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1251}
1252
1253struct driver_data {
1254 u8 inline_data[8];
1255 struct fw_packet *packet;
1256};
1257
1258/*
1259 * This function apppends a packet to the DMA queue for transmission.
1260 * Must always be called with the ochi->lock held to ensure proper
1261 * generation handling and locking around packet queue manipulation.
1262 */
1263static int at_context_queue_packet(struct context *ctx,
1264 struct fw_packet *packet)
1265{
1266 struct fw_ohci *ohci = ctx->ohci;
1267 dma_addr_t d_bus, uninitialized_var(payload_bus);
1268 struct driver_data *driver_data;
1269 struct descriptor *d, *last;
1270 __le32 *header;
1271 int z, tcode;
1272
1273 d = context_get_descriptors(ctx, 4, &d_bus);
1274 if (d == NULL) {
1275 packet->ack = RCODE_SEND_ERROR;
1276 return -1;
1277 }
1278
1279 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1280 d[0].res_count = cpu_to_le16(packet->timestamp);
1281
1282 /*
1283 * The DMA format for asyncronous link packets is different
1284 * from the IEEE1394 layout, so shift the fields around
1285 * accordingly.
1286 */
1287
1288 tcode = (packet->header[0] >> 4) & 0x0f;
1289 header = (__le32 *) &d[1];
1290 switch (tcode) {
1291 case TCODE_WRITE_QUADLET_REQUEST:
1292 case TCODE_WRITE_BLOCK_REQUEST:
1293 case TCODE_WRITE_RESPONSE:
1294 case TCODE_READ_QUADLET_REQUEST:
1295 case TCODE_READ_BLOCK_REQUEST:
1296 case TCODE_READ_QUADLET_RESPONSE:
1297 case TCODE_READ_BLOCK_RESPONSE:
1298 case TCODE_LOCK_REQUEST:
1299 case TCODE_LOCK_RESPONSE:
1300 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1301 (packet->speed << 16));
1302 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1303 (packet->header[0] & 0xffff0000));
1304 header[2] = cpu_to_le32(packet->header[2]);
1305
1306 if (TCODE_IS_BLOCK_PACKET(tcode))
1307 header[3] = cpu_to_le32(packet->header[3]);
1308 else
1309 header[3] = (__force __le32) packet->header[3];
1310
1311 d[0].req_count = cpu_to_le16(packet->header_length);
1312 break;
1313
1314 case TCODE_LINK_INTERNAL:
1315 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1316 (packet->speed << 16));
1317 header[1] = cpu_to_le32(packet->header[1]);
1318 header[2] = cpu_to_le32(packet->header[2]);
1319 d[0].req_count = cpu_to_le16(12);
1320
1321 if (is_ping_packet(&packet->header[1]))
1322 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1323 break;
1324
1325 case TCODE_STREAM_DATA:
1326 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1327 (packet->speed << 16));
1328 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1329 d[0].req_count = cpu_to_le16(8);
1330 break;
1331
1332 default:
1333 /* BUG(); */
1334 packet->ack = RCODE_SEND_ERROR;
1335 return -1;
1336 }
1337
1338 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1339 driver_data = (struct driver_data *) &d[3];
1340 driver_data->packet = packet;
1341 packet->driver_data = driver_data;
1342
1343 if (packet->payload_length > 0) {
1344 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1345 payload_bus = dma_map_single(ohci->card.device,
1346 packet->payload,
1347 packet->payload_length,
1348 DMA_TO_DEVICE);
1349 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1350 packet->ack = RCODE_SEND_ERROR;
1351 return -1;
1352 }
1353 packet->payload_bus = payload_bus;
1354 packet->payload_mapped = true;
1355 } else {
1356 memcpy(driver_data->inline_data, packet->payload,
1357 packet->payload_length);
1358 payload_bus = d_bus + 3 * sizeof(*d);
1359 }
1360
1361 d[2].req_count = cpu_to_le16(packet->payload_length);
1362 d[2].data_address = cpu_to_le32(payload_bus);
1363 last = &d[2];
1364 z = 3;
1365 } else {
1366 last = &d[0];
1367 z = 2;
1368 }
1369
1370 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1371 DESCRIPTOR_IRQ_ALWAYS |
1372 DESCRIPTOR_BRANCH_ALWAYS);
1373
1374 /* FIXME: Document how the locking works. */
1375 if (ohci->generation != packet->generation) {
1376 if (packet->payload_mapped)
1377 dma_unmap_single(ohci->card.device, payload_bus,
1378 packet->payload_length, DMA_TO_DEVICE);
1379 packet->ack = RCODE_GENERATION;
1380 return -1;
1381 }
1382
1383 context_append(ctx, d, z, 4 - z);
1384
1385 if (ctx->running)
1386 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1387 else
1388 context_run(ctx, 0);
1389
1390 return 0;
1391}
1392
1393static void at_context_flush(struct context *ctx)
1394{
1395 tasklet_disable(&ctx->tasklet);
1396
1397 ctx->flushing = true;
1398 context_tasklet((unsigned long)ctx);
1399 ctx->flushing = false;
1400
1401 tasklet_enable(&ctx->tasklet);
1402}
1403
1404static int handle_at_packet(struct context *context,
1405 struct descriptor *d,
1406 struct descriptor *last)
1407{
1408 struct driver_data *driver_data;
1409 struct fw_packet *packet;
1410 struct fw_ohci *ohci = context->ohci;
1411 int evt;
1412
1413 if (last->transfer_status == 0 && !context->flushing)
1414 /* This descriptor isn't done yet, stop iteration. */
1415 return 0;
1416
1417 driver_data = (struct driver_data *) &d[3];
1418 packet = driver_data->packet;
1419 if (packet == NULL)
1420 /* This packet was cancelled, just continue. */
1421 return 1;
1422
1423 if (packet->payload_mapped)
1424 dma_unmap_single(ohci->card.device, packet->payload_bus,
1425 packet->payload_length, DMA_TO_DEVICE);
1426
1427 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1428 packet->timestamp = le16_to_cpu(last->res_count);
1429
1430 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1431
1432 switch (evt) {
1433 case OHCI1394_evt_timeout:
1434 /* Async response transmit timed out. */
1435 packet->ack = RCODE_CANCELLED;
1436 break;
1437
1438 case OHCI1394_evt_flushed:
1439 /*
1440 * The packet was flushed should give same error as
1441 * when we try to use a stale generation count.
1442 */
1443 packet->ack = RCODE_GENERATION;
1444 break;
1445
1446 case OHCI1394_evt_missing_ack:
1447 if (context->flushing)
1448 packet->ack = RCODE_GENERATION;
1449 else {
1450 /*
1451 * Using a valid (current) generation count, but the
1452 * node is not on the bus or not sending acks.
1453 */
1454 packet->ack = RCODE_NO_ACK;
1455 }
1456 break;
1457
1458 case ACK_COMPLETE + 0x10:
1459 case ACK_PENDING + 0x10:
1460 case ACK_BUSY_X + 0x10:
1461 case ACK_BUSY_A + 0x10:
1462 case ACK_BUSY_B + 0x10:
1463 case ACK_DATA_ERROR + 0x10:
1464 case ACK_TYPE_ERROR + 0x10:
1465 packet->ack = evt - 0x10;
1466 break;
1467
1468 case OHCI1394_evt_no_status:
1469 if (context->flushing) {
1470 packet->ack = RCODE_GENERATION;
1471 break;
1472 }
1473 /* fall through */
1474
1475 default:
1476 packet->ack = RCODE_SEND_ERROR;
1477 break;
1478 }
1479
1480 packet->callback(packet, &ohci->card, packet->ack);
1481
1482 return 1;
1483}
1484
1485#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1486#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1487#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1488#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1489#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1490
1491static void handle_local_rom(struct fw_ohci *ohci,
1492 struct fw_packet *packet, u32 csr)
1493{
1494 struct fw_packet response;
1495 int tcode, length, i;
1496
1497 tcode = HEADER_GET_TCODE(packet->header[0]);
1498 if (TCODE_IS_BLOCK_PACKET(tcode))
1499 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1500 else
1501 length = 4;
1502
1503 i = csr - CSR_CONFIG_ROM;
1504 if (i + length > CONFIG_ROM_SIZE) {
1505 fw_fill_response(&response, packet->header,
1506 RCODE_ADDRESS_ERROR, NULL, 0);
1507 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1508 fw_fill_response(&response, packet->header,
1509 RCODE_TYPE_ERROR, NULL, 0);
1510 } else {
1511 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1512 (void *) ohci->config_rom + i, length);
1513 }
1514
1515 fw_core_handle_response(&ohci->card, &response);
1516}
1517
1518static void handle_local_lock(struct fw_ohci *ohci,
1519 struct fw_packet *packet, u32 csr)
1520{
1521 struct fw_packet response;
1522 int tcode, length, ext_tcode, sel, try;
1523 __be32 *payload, lock_old;
1524 u32 lock_arg, lock_data;
1525
1526 tcode = HEADER_GET_TCODE(packet->header[0]);
1527 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1528 payload = packet->payload;
1529 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1530
1531 if (tcode == TCODE_LOCK_REQUEST &&
1532 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1533 lock_arg = be32_to_cpu(payload[0]);
1534 lock_data = be32_to_cpu(payload[1]);
1535 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1536 lock_arg = 0;
1537 lock_data = 0;
1538 } else {
1539 fw_fill_response(&response, packet->header,
1540 RCODE_TYPE_ERROR, NULL, 0);
1541 goto out;
1542 }
1543
1544 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1545 reg_write(ohci, OHCI1394_CSRData, lock_data);
1546 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1547 reg_write(ohci, OHCI1394_CSRControl, sel);
1548
1549 for (try = 0; try < 20; try++)
1550 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1551 lock_old = cpu_to_be32(reg_read(ohci,
1552 OHCI1394_CSRData));
1553 fw_fill_response(&response, packet->header,
1554 RCODE_COMPLETE,
1555 &lock_old, sizeof(lock_old));
1556 goto out;
1557 }
1558
1559 dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1560 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1561
1562 out:
1563 fw_core_handle_response(&ohci->card, &response);
1564}
1565
1566static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1567{
1568 u64 offset, csr;
1569
1570 if (ctx == &ctx->ohci->at_request_ctx) {
1571 packet->ack = ACK_PENDING;
1572 packet->callback(packet, &ctx->ohci->card, packet->ack);
1573 }
1574
1575 offset =
1576 ((unsigned long long)
1577 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1578 packet->header[2];
1579 csr = offset - CSR_REGISTER_BASE;
1580
1581 /* Handle config rom reads. */
1582 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1583 handle_local_rom(ctx->ohci, packet, csr);
1584 else switch (csr) {
1585 case CSR_BUS_MANAGER_ID:
1586 case CSR_BANDWIDTH_AVAILABLE:
1587 case CSR_CHANNELS_AVAILABLE_HI:
1588 case CSR_CHANNELS_AVAILABLE_LO:
1589 handle_local_lock(ctx->ohci, packet, csr);
1590 break;
1591 default:
1592 if (ctx == &ctx->ohci->at_request_ctx)
1593 fw_core_handle_request(&ctx->ohci->card, packet);
1594 else
1595 fw_core_handle_response(&ctx->ohci->card, packet);
1596 break;
1597 }
1598
1599 if (ctx == &ctx->ohci->at_response_ctx) {
1600 packet->ack = ACK_COMPLETE;
1601 packet->callback(packet, &ctx->ohci->card, packet->ack);
1602 }
1603}
1604
1605static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1606{
1607 unsigned long flags;
1608 int ret;
1609
1610 spin_lock_irqsave(&ctx->ohci->lock, flags);
1611
1612 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1613 ctx->ohci->generation == packet->generation) {
1614 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1615 handle_local_request(ctx, packet);
1616 return;
1617 }
1618
1619 ret = at_context_queue_packet(ctx, packet);
1620 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1621
1622 if (ret < 0)
1623 packet->callback(packet, &ctx->ohci->card, packet->ack);
1624
1625}
1626
1627static void detect_dead_context(struct fw_ohci *ohci,
1628 const char *name, unsigned int regs)
1629{
1630 u32 ctl;
1631
1632 ctl = reg_read(ohci, CONTROL_SET(regs));
1633 if (ctl & CONTEXT_DEAD)
1634 dev_err(ohci->card.device,
1635 "DMA context %s has stopped, error code: %s\n",
1636 name, evts[ctl & 0x1f]);
1637}
1638
1639static void handle_dead_contexts(struct fw_ohci *ohci)
1640{
1641 unsigned int i;
1642 char name[8];
1643
1644 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1645 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1646 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1647 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1648 for (i = 0; i < 32; ++i) {
1649 if (!(ohci->it_context_support & (1 << i)))
1650 continue;
1651 sprintf(name, "IT%u", i);
1652 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1653 }
1654 for (i = 0; i < 32; ++i) {
1655 if (!(ohci->ir_context_support & (1 << i)))
1656 continue;
1657 sprintf(name, "IR%u", i);
1658 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1659 }
1660 /* TODO: maybe try to flush and restart the dead contexts */
1661}
1662
1663static u32 cycle_timer_ticks(u32 cycle_timer)
1664{
1665 u32 ticks;
1666
1667 ticks = cycle_timer & 0xfff;
1668 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1669 ticks += (3072 * 8000) * (cycle_timer >> 25);
1670
1671 return ticks;
1672}
1673
1674/*
1675 * Some controllers exhibit one or more of the following bugs when updating the
1676 * iso cycle timer register:
1677 * - When the lowest six bits are wrapping around to zero, a read that happens
1678 * at the same time will return garbage in the lowest ten bits.
1679 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1680 * not incremented for about 60 ns.
1681 * - Occasionally, the entire register reads zero.
1682 *
1683 * To catch these, we read the register three times and ensure that the
1684 * difference between each two consecutive reads is approximately the same, i.e.
1685 * less than twice the other. Furthermore, any negative difference indicates an
1686 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1687 * execute, so we have enough precision to compute the ratio of the differences.)
1688 */
1689static u32 get_cycle_time(struct fw_ohci *ohci)
1690{
1691 u32 c0, c1, c2;
1692 u32 t0, t1, t2;
1693 s32 diff01, diff12;
1694 int i;
1695
1696 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1697
1698 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1699 i = 0;
1700 c1 = c2;
1701 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1702 do {
1703 c0 = c1;
1704 c1 = c2;
1705 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1706 t0 = cycle_timer_ticks(c0);
1707 t1 = cycle_timer_ticks(c1);
1708 t2 = cycle_timer_ticks(c2);
1709 diff01 = t1 - t0;
1710 diff12 = t2 - t1;
1711 } while ((diff01 <= 0 || diff12 <= 0 ||
1712 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1713 && i++ < 20);
1714 }
1715
1716 return c2;
1717}
1718
1719/*
1720 * This function has to be called at least every 64 seconds. The bus_time
1721 * field stores not only the upper 25 bits of the BUS_TIME register but also
1722 * the most significant bit of the cycle timer in bit 6 so that we can detect
1723 * changes in this bit.
1724 */
1725static u32 update_bus_time(struct fw_ohci *ohci)
1726{
1727 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1728
1729 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1730 ohci->bus_time += 0x40;
1731
1732 return ohci->bus_time | cycle_time_seconds;
1733}
1734
1735static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1736{
1737 int reg;
1738
1739 mutex_lock(&ohci->phy_reg_mutex);
1740 reg = write_phy_reg(ohci, 7, port_index);
1741 if (reg >= 0)
1742 reg = read_phy_reg(ohci, 8);
1743 mutex_unlock(&ohci->phy_reg_mutex);
1744 if (reg < 0)
1745 return reg;
1746
1747 switch (reg & 0x0f) {
1748 case 0x06:
1749 return 2; /* is child node (connected to parent node) */
1750 case 0x0e:
1751 return 3; /* is parent node (connected to child node) */
1752 }
1753 return 1; /* not connected */
1754}
1755
1756static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1757 int self_id_count)
1758{
1759 int i;
1760 u32 entry;
1761
1762 for (i = 0; i < self_id_count; i++) {
1763 entry = ohci->self_id_buffer[i];
1764 if ((self_id & 0xff000000) == (entry & 0xff000000))
1765 return -1;
1766 if ((self_id & 0xff000000) < (entry & 0xff000000))
1767 return i;
1768 }
1769 return i;
1770}
1771
1772/*
1773 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1774 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1775 * Construct the selfID from phy register contents.
1776 * FIXME: How to determine the selfID.i flag?
1777 */
1778static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1779{
1780 int reg, i, pos, status;
1781 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1782 u32 self_id = 0x8040c800;
1783
1784 reg = reg_read(ohci, OHCI1394_NodeID);
1785 if (!(reg & OHCI1394_NodeID_idValid)) {
1786 dev_notice(ohci->card.device,
1787 "node ID not valid, new bus reset in progress\n");
1788 return -EBUSY;
1789 }
1790 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1791
1792 reg = ohci_read_phy_reg(&ohci->card, 4);
1793 if (reg < 0)
1794 return reg;
1795 self_id |= ((reg & 0x07) << 8); /* power class */
1796
1797 reg = ohci_read_phy_reg(&ohci->card, 1);
1798 if (reg < 0)
1799 return reg;
1800 self_id |= ((reg & 0x3f) << 16); /* gap count */
1801
1802 for (i = 0; i < 3; i++) {
1803 status = get_status_for_port(ohci, i);
1804 if (status < 0)
1805 return status;
1806 self_id |= ((status & 0x3) << (6 - (i * 2)));
1807 }
1808
1809 pos = get_self_id_pos(ohci, self_id, self_id_count);
1810 if (pos >= 0) {
1811 memmove(&(ohci->self_id_buffer[pos+1]),
1812 &(ohci->self_id_buffer[pos]),
1813 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1814 ohci->self_id_buffer[pos] = self_id;
1815 self_id_count++;
1816 }
1817 return self_id_count;
1818}
1819
1820static void bus_reset_work(struct work_struct *work)
1821{
1822 struct fw_ohci *ohci =
1823 container_of(work, struct fw_ohci, bus_reset_work);
1824 int self_id_count, i, j, reg;
1825 int generation, new_generation;
1826 unsigned long flags;
1827 void *free_rom = NULL;
1828 dma_addr_t free_rom_bus = 0;
1829 bool is_new_root;
1830
1831 reg = reg_read(ohci, OHCI1394_NodeID);
1832 if (!(reg & OHCI1394_NodeID_idValid)) {
1833 dev_notice(ohci->card.device,
1834 "node ID not valid, new bus reset in progress\n");
1835 return;
1836 }
1837 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1838 dev_notice(ohci->card.device, "malconfigured bus\n");
1839 return;
1840 }
1841 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1842 OHCI1394_NodeID_nodeNumber);
1843
1844 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1845 if (!(ohci->is_root && is_new_root))
1846 reg_write(ohci, OHCI1394_LinkControlSet,
1847 OHCI1394_LinkControl_cycleMaster);
1848 ohci->is_root = is_new_root;
1849
1850 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1851 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1852 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1853 return;
1854 }
1855 /*
1856 * The count in the SelfIDCount register is the number of
1857 * bytes in the self ID receive buffer. Since we also receive
1858 * the inverted quadlets and a header quadlet, we shift one
1859 * bit extra to get the actual number of self IDs.
1860 */
1861 self_id_count = (reg >> 3) & 0xff;
1862
1863 if (self_id_count > 252) {
1864 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1865 return;
1866 }
1867
1868 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1869 rmb();
1870
1871 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1872 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1873 /*
1874 * If the invalid data looks like a cycle start packet,
1875 * it's likely to be the result of the cycle master
1876 * having a wrong gap count. In this case, the self IDs
1877 * so far are valid and should be processed so that the
1878 * bus manager can then correct the gap count.
1879 */
1880 if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1881 == 0xffff008f) {
1882 dev_notice(ohci->card.device,
1883 "ignoring spurious self IDs\n");
1884 self_id_count = j;
1885 break;
1886 } else {
1887 dev_notice(ohci->card.device,
1888 "inconsistent self IDs\n");
1889 return;
1890 }
1891 }
1892 ohci->self_id_buffer[j] =
1893 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1894 }
1895
1896 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1897 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1898 if (self_id_count < 0) {
1899 dev_notice(ohci->card.device,
1900 "could not construct local self ID\n");
1901 return;
1902 }
1903 }
1904
1905 if (self_id_count == 0) {
1906 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1907 return;
1908 }
1909 rmb();
1910
1911 /*
1912 * Check the consistency of the self IDs we just read. The
1913 * problem we face is that a new bus reset can start while we
1914 * read out the self IDs from the DMA buffer. If this happens,
1915 * the DMA buffer will be overwritten with new self IDs and we
1916 * will read out inconsistent data. The OHCI specification
1917 * (section 11.2) recommends a technique similar to
1918 * linux/seqlock.h, where we remember the generation of the
1919 * self IDs in the buffer before reading them out and compare
1920 * it to the current generation after reading them out. If
1921 * the two generations match we know we have a consistent set
1922 * of self IDs.
1923 */
1924
1925 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1926 if (new_generation != generation) {
1927 dev_notice(ohci->card.device,
1928 "new bus reset, discarding self ids\n");
1929 return;
1930 }
1931
1932 /* FIXME: Document how the locking works. */
1933 spin_lock_irqsave(&ohci->lock, flags);
1934
1935 ohci->generation = -1; /* prevent AT packet queueing */
1936 context_stop(&ohci->at_request_ctx);
1937 context_stop(&ohci->at_response_ctx);
1938
1939 spin_unlock_irqrestore(&ohci->lock, flags);
1940
1941 /*
1942 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1943 * packets in the AT queues and software needs to drain them.
1944 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1945 */
1946 at_context_flush(&ohci->at_request_ctx);
1947 at_context_flush(&ohci->at_response_ctx);
1948
1949 spin_lock_irqsave(&ohci->lock, flags);
1950
1951 ohci->generation = generation;
1952 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1953
1954 if (ohci->quirks & QUIRK_RESET_PACKET)
1955 ohci->request_generation = generation;
1956
1957 /*
1958 * This next bit is unrelated to the AT context stuff but we
1959 * have to do it under the spinlock also. If a new config rom
1960 * was set up before this reset, the old one is now no longer
1961 * in use and we can free it. Update the config rom pointers
1962 * to point to the current config rom and clear the
1963 * next_config_rom pointer so a new update can take place.
1964 */
1965
1966 if (ohci->next_config_rom != NULL) {
1967 if (ohci->next_config_rom != ohci->config_rom) {
1968 free_rom = ohci->config_rom;
1969 free_rom_bus = ohci->config_rom_bus;
1970 }
1971 ohci->config_rom = ohci->next_config_rom;
1972 ohci->config_rom_bus = ohci->next_config_rom_bus;
1973 ohci->next_config_rom = NULL;
1974
1975 /*
1976 * Restore config_rom image and manually update
1977 * config_rom registers. Writing the header quadlet
1978 * will indicate that the config rom is ready, so we
1979 * do that last.
1980 */
1981 reg_write(ohci, OHCI1394_BusOptions,
1982 be32_to_cpu(ohci->config_rom[2]));
1983 ohci->config_rom[0] = ohci->next_header;
1984 reg_write(ohci, OHCI1394_ConfigROMhdr,
1985 be32_to_cpu(ohci->next_header));
1986 }
1987
1988#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1989 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1990 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1991#endif
1992
1993 spin_unlock_irqrestore(&ohci->lock, flags);
1994
1995 if (free_rom)
1996 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1997 free_rom, free_rom_bus);
1998
1999 log_selfids(ohci, generation, self_id_count);
2000
2001 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2002 self_id_count, ohci->self_id_buffer,
2003 ohci->csr_state_setclear_abdicate);
2004 ohci->csr_state_setclear_abdicate = false;
2005}
2006
2007static irqreturn_t irq_handler(int irq, void *data)
2008{
2009 struct fw_ohci *ohci = data;
2010 u32 event, iso_event;
2011 int i;
2012
2013 event = reg_read(ohci, OHCI1394_IntEventClear);
2014
2015 if (!event || !~event)
2016 return IRQ_NONE;
2017
2018 /*
2019 * busReset and postedWriteErr must not be cleared yet
2020 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2021 */
2022 reg_write(ohci, OHCI1394_IntEventClear,
2023 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2024 log_irqs(ohci, event);
2025
2026 if (event & OHCI1394_selfIDComplete)
2027 queue_work(fw_workqueue, &ohci->bus_reset_work);
2028
2029 if (event & OHCI1394_RQPkt)
2030 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2031
2032 if (event & OHCI1394_RSPkt)
2033 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2034
2035 if (event & OHCI1394_reqTxComplete)
2036 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2037
2038 if (event & OHCI1394_respTxComplete)
2039 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2040
2041 if (event & OHCI1394_isochRx) {
2042 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2043 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2044
2045 while (iso_event) {
2046 i = ffs(iso_event) - 1;
2047 tasklet_schedule(
2048 &ohci->ir_context_list[i].context.tasklet);
2049 iso_event &= ~(1 << i);
2050 }
2051 }
2052
2053 if (event & OHCI1394_isochTx) {
2054 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2055 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2056
2057 while (iso_event) {
2058 i = ffs(iso_event) - 1;
2059 tasklet_schedule(
2060 &ohci->it_context_list[i].context.tasklet);
2061 iso_event &= ~(1 << i);
2062 }
2063 }
2064
2065 if (unlikely(event & OHCI1394_regAccessFail))
2066 dev_err(ohci->card.device, "register access failure\n");
2067
2068 if (unlikely(event & OHCI1394_postedWriteErr)) {
2069 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2070 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2071 reg_write(ohci, OHCI1394_IntEventClear,
2072 OHCI1394_postedWriteErr);
2073 if (printk_ratelimit())
2074 dev_err(ohci->card.device, "PCI posted write error\n");
2075 }
2076
2077 if (unlikely(event & OHCI1394_cycleTooLong)) {
2078 if (printk_ratelimit())
2079 dev_notice(ohci->card.device,
2080 "isochronous cycle too long\n");
2081 reg_write(ohci, OHCI1394_LinkControlSet,
2082 OHCI1394_LinkControl_cycleMaster);
2083 }
2084
2085 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2086 /*
2087 * We need to clear this event bit in order to make
2088 * cycleMatch isochronous I/O work. In theory we should
2089 * stop active cycleMatch iso contexts now and restart
2090 * them at least two cycles later. (FIXME?)
2091 */
2092 if (printk_ratelimit())
2093 dev_notice(ohci->card.device,
2094 "isochronous cycle inconsistent\n");
2095 }
2096
2097 if (unlikely(event & OHCI1394_unrecoverableError))
2098 handle_dead_contexts(ohci);
2099
2100 if (event & OHCI1394_cycle64Seconds) {
2101 spin_lock(&ohci->lock);
2102 update_bus_time(ohci);
2103 spin_unlock(&ohci->lock);
2104 } else
2105 flush_writes(ohci);
2106
2107 return IRQ_HANDLED;
2108}
2109
2110static int software_reset(struct fw_ohci *ohci)
2111{
2112 u32 val;
2113 int i;
2114
2115 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2116 for (i = 0; i < 500; i++) {
2117 val = reg_read(ohci, OHCI1394_HCControlSet);
2118 if (!~val)
2119 return -ENODEV; /* Card was ejected. */
2120
2121 if (!(val & OHCI1394_HCControl_softReset))
2122 return 0;
2123
2124 msleep(1);
2125 }
2126
2127 return -EBUSY;
2128}
2129
2130static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2131{
2132 size_t size = length * 4;
2133
2134 memcpy(dest, src, size);
2135 if (size < CONFIG_ROM_SIZE)
2136 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2137}
2138
2139static int configure_1394a_enhancements(struct fw_ohci *ohci)
2140{
2141 bool enable_1394a;
2142 int ret, clear, set, offset;
2143
2144 /* Check if the driver should configure link and PHY. */
2145 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2146 OHCI1394_HCControl_programPhyEnable))
2147 return 0;
2148
2149 /* Paranoia: check whether the PHY supports 1394a, too. */
2150 enable_1394a = false;
2151 ret = read_phy_reg(ohci, 2);
2152 if (ret < 0)
2153 return ret;
2154 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2155 ret = read_paged_phy_reg(ohci, 1, 8);
2156 if (ret < 0)
2157 return ret;
2158 if (ret >= 1)
2159 enable_1394a = true;
2160 }
2161
2162 if (ohci->quirks & QUIRK_NO_1394A)
2163 enable_1394a = false;
2164
2165 /* Configure PHY and link consistently. */
2166 if (enable_1394a) {
2167 clear = 0;
2168 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2169 } else {
2170 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2171 set = 0;
2172 }
2173 ret = update_phy_reg(ohci, 5, clear, set);
2174 if (ret < 0)
2175 return ret;
2176
2177 if (enable_1394a)
2178 offset = OHCI1394_HCControlSet;
2179 else
2180 offset = OHCI1394_HCControlClear;
2181 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2182
2183 /* Clean up: configuration has been taken care of. */
2184 reg_write(ohci, OHCI1394_HCControlClear,
2185 OHCI1394_HCControl_programPhyEnable);
2186
2187 return 0;
2188}
2189
2190static int probe_tsb41ba3d(struct fw_ohci *ohci)
2191{
2192 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2193 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2194 int reg, i;
2195
2196 reg = read_phy_reg(ohci, 2);
2197 if (reg < 0)
2198 return reg;
2199 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2200 return 0;
2201
2202 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2203 reg = read_paged_phy_reg(ohci, 1, i + 10);
2204 if (reg < 0)
2205 return reg;
2206 if (reg != id[i])
2207 return 0;
2208 }
2209 return 1;
2210}
2211
2212static int ohci_enable(struct fw_card *card,
2213 const __be32 *config_rom, size_t length)
2214{
2215 struct fw_ohci *ohci = fw_ohci(card);
2216 struct pci_dev *dev = to_pci_dev(card->device);
2217 u32 lps, seconds, version, irqs;
2218 int i, ret;
2219
2220 if (software_reset(ohci)) {
2221 dev_err(card->device, "failed to reset ohci card\n");
2222 return -EBUSY;
2223 }
2224
2225 /*
2226 * Now enable LPS, which we need in order to start accessing
2227 * most of the registers. In fact, on some cards (ALI M5251),
2228 * accessing registers in the SClk domain without LPS enabled
2229 * will lock up the machine. Wait 50msec to make sure we have
2230 * full link enabled. However, with some cards (well, at least
2231 * a JMicron PCIe card), we have to try again sometimes.
2232 */
2233 reg_write(ohci, OHCI1394_HCControlSet,
2234 OHCI1394_HCControl_LPS |
2235 OHCI1394_HCControl_postedWriteEnable);
2236 flush_writes(ohci);
2237
2238 for (lps = 0, i = 0; !lps && i < 3; i++) {
2239 msleep(50);
2240 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2241 OHCI1394_HCControl_LPS;
2242 }
2243
2244 if (!lps) {
2245 dev_err(card->device, "failed to set Link Power Status\n");
2246 return -EIO;
2247 }
2248
2249 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2250 ret = probe_tsb41ba3d(ohci);
2251 if (ret < 0)
2252 return ret;
2253 if (ret)
2254 dev_notice(card->device, "local TSB41BA3D phy\n");
2255 else
2256 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2257 }
2258
2259 reg_write(ohci, OHCI1394_HCControlClear,
2260 OHCI1394_HCControl_noByteSwapData);
2261
2262 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2263 reg_write(ohci, OHCI1394_LinkControlSet,
2264 OHCI1394_LinkControl_cycleTimerEnable |
2265 OHCI1394_LinkControl_cycleMaster);
2266
2267 reg_write(ohci, OHCI1394_ATRetries,
2268 OHCI1394_MAX_AT_REQ_RETRIES |
2269 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2270 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2271 (200 << 16));
2272
2273 seconds = lower_32_bits(get_seconds());
2274 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2275 ohci->bus_time = seconds & ~0x3f;
2276
2277 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2278 if (version >= OHCI_VERSION_1_1) {
2279 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2280 0xfffffffe);
2281 card->broadcast_channel_auto_allocated = true;
2282 }
2283
2284 /* Get implemented bits of the priority arbitration request counter. */
2285 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2286 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2287 reg_write(ohci, OHCI1394_FairnessControl, 0);
2288 card->priority_budget_implemented = ohci->pri_req_max != 0;
2289
2290 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2291 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2292 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2293
2294 ret = configure_1394a_enhancements(ohci);
2295 if (ret < 0)
2296 return ret;
2297
2298 /* Activate link_on bit and contender bit in our self ID packets.*/
2299 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2300 if (ret < 0)
2301 return ret;
2302
2303 /*
2304 * When the link is not yet enabled, the atomic config rom
2305 * update mechanism described below in ohci_set_config_rom()
2306 * is not active. We have to update ConfigRomHeader and
2307 * BusOptions manually, and the write to ConfigROMmap takes
2308 * effect immediately. We tie this to the enabling of the
2309 * link, so we have a valid config rom before enabling - the
2310 * OHCI requires that ConfigROMhdr and BusOptions have valid
2311 * values before enabling.
2312 *
2313 * However, when the ConfigROMmap is written, some controllers
2314 * always read back quadlets 0 and 2 from the config rom to
2315 * the ConfigRomHeader and BusOptions registers on bus reset.
2316 * They shouldn't do that in this initial case where the link
2317 * isn't enabled. This means we have to use the same
2318 * workaround here, setting the bus header to 0 and then write
2319 * the right values in the bus reset tasklet.
2320 */
2321
2322 if (config_rom) {
2323 ohci->next_config_rom =
2324 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2325 &ohci->next_config_rom_bus,
2326 GFP_KERNEL);
2327 if (ohci->next_config_rom == NULL)
2328 return -ENOMEM;
2329
2330 copy_config_rom(ohci->next_config_rom, config_rom, length);
2331 } else {
2332 /*
2333 * In the suspend case, config_rom is NULL, which
2334 * means that we just reuse the old config rom.
2335 */
2336 ohci->next_config_rom = ohci->config_rom;
2337 ohci->next_config_rom_bus = ohci->config_rom_bus;
2338 }
2339
2340 ohci->next_header = ohci->next_config_rom[0];
2341 ohci->next_config_rom[0] = 0;
2342 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2343 reg_write(ohci, OHCI1394_BusOptions,
2344 be32_to_cpu(ohci->next_config_rom[2]));
2345 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2346
2347 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2348
2349 if (!(ohci->quirks & QUIRK_NO_MSI))
2350 pci_enable_msi(dev);
2351 if (request_irq(dev->irq, irq_handler,
2352 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2353 ohci_driver_name, ohci)) {
2354 dev_err(card->device, "failed to allocate interrupt %d\n",
2355 dev->irq);
2356 pci_disable_msi(dev);
2357
2358 if (config_rom) {
2359 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2360 ohci->next_config_rom,
2361 ohci->next_config_rom_bus);
2362 ohci->next_config_rom = NULL;
2363 }
2364 return -EIO;
2365 }
2366
2367 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2368 OHCI1394_RQPkt | OHCI1394_RSPkt |
2369 OHCI1394_isochTx | OHCI1394_isochRx |
2370 OHCI1394_postedWriteErr |
2371 OHCI1394_selfIDComplete |
2372 OHCI1394_regAccessFail |
2373 OHCI1394_cycle64Seconds |
2374 OHCI1394_cycleInconsistent |
2375 OHCI1394_unrecoverableError |
2376 OHCI1394_cycleTooLong |
2377 OHCI1394_masterIntEnable;
2378 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2379 irqs |= OHCI1394_busReset;
2380 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2381
2382 reg_write(ohci, OHCI1394_HCControlSet,
2383 OHCI1394_HCControl_linkEnable |
2384 OHCI1394_HCControl_BIBimageValid);
2385
2386 reg_write(ohci, OHCI1394_LinkControlSet,
2387 OHCI1394_LinkControl_rcvSelfID |
2388 OHCI1394_LinkControl_rcvPhyPkt);
2389
2390 ar_context_run(&ohci->ar_request_ctx);
2391 ar_context_run(&ohci->ar_response_ctx);
2392
2393 flush_writes(ohci);
2394
2395 /* We are ready to go, reset bus to finish initialization. */
2396 fw_schedule_bus_reset(&ohci->card, false, true);
2397
2398 return 0;
2399}
2400
2401static int ohci_set_config_rom(struct fw_card *card,
2402 const __be32 *config_rom, size_t length)
2403{
2404 struct fw_ohci *ohci;
2405 unsigned long flags;
2406 __be32 *next_config_rom;
2407 dma_addr_t uninitialized_var(next_config_rom_bus);
2408
2409 ohci = fw_ohci(card);
2410
2411 /*
2412 * When the OHCI controller is enabled, the config rom update
2413 * mechanism is a bit tricky, but easy enough to use. See
2414 * section 5.5.6 in the OHCI specification.
2415 *
2416 * The OHCI controller caches the new config rom address in a
2417 * shadow register (ConfigROMmapNext) and needs a bus reset
2418 * for the changes to take place. When the bus reset is
2419 * detected, the controller loads the new values for the
2420 * ConfigRomHeader and BusOptions registers from the specified
2421 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2422 * shadow register. All automatically and atomically.
2423 *
2424 * Now, there's a twist to this story. The automatic load of
2425 * ConfigRomHeader and BusOptions doesn't honor the
2426 * noByteSwapData bit, so with a be32 config rom, the
2427 * controller will load be32 values in to these registers
2428 * during the atomic update, even on litte endian
2429 * architectures. The workaround we use is to put a 0 in the
2430 * header quadlet; 0 is endian agnostic and means that the
2431 * config rom isn't ready yet. In the bus reset tasklet we
2432 * then set up the real values for the two registers.
2433 *
2434 * We use ohci->lock to avoid racing with the code that sets
2435 * ohci->next_config_rom to NULL (see bus_reset_work).
2436 */
2437
2438 next_config_rom =
2439 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2440 &next_config_rom_bus, GFP_KERNEL);
2441 if (next_config_rom == NULL)
2442 return -ENOMEM;
2443
2444 spin_lock_irqsave(&ohci->lock, flags);
2445
2446 /*
2447 * If there is not an already pending config_rom update,
2448 * push our new allocation into the ohci->next_config_rom
2449 * and then mark the local variable as null so that we
2450 * won't deallocate the new buffer.
2451 *
2452 * OTOH, if there is a pending config_rom update, just
2453 * use that buffer with the new config_rom data, and
2454 * let this routine free the unused DMA allocation.
2455 */
2456
2457 if (ohci->next_config_rom == NULL) {
2458 ohci->next_config_rom = next_config_rom;
2459 ohci->next_config_rom_bus = next_config_rom_bus;
2460 next_config_rom = NULL;
2461 }
2462
2463 copy_config_rom(ohci->next_config_rom, config_rom, length);
2464
2465 ohci->next_header = config_rom[0];
2466 ohci->next_config_rom[0] = 0;
2467
2468 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2469
2470 spin_unlock_irqrestore(&ohci->lock, flags);
2471
2472 /* If we didn't use the DMA allocation, delete it. */
2473 if (next_config_rom != NULL)
2474 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2475 next_config_rom, next_config_rom_bus);
2476
2477 /*
2478 * Now initiate a bus reset to have the changes take
2479 * effect. We clean up the old config rom memory and DMA
2480 * mappings in the bus reset tasklet, since the OHCI
2481 * controller could need to access it before the bus reset
2482 * takes effect.
2483 */
2484
2485 fw_schedule_bus_reset(&ohci->card, true, true);
2486
2487 return 0;
2488}
2489
2490static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2491{
2492 struct fw_ohci *ohci = fw_ohci(card);
2493
2494 at_context_transmit(&ohci->at_request_ctx, packet);
2495}
2496
2497static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2498{
2499 struct fw_ohci *ohci = fw_ohci(card);
2500
2501 at_context_transmit(&ohci->at_response_ctx, packet);
2502}
2503
2504static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2505{
2506 struct fw_ohci *ohci = fw_ohci(card);
2507 struct context *ctx = &ohci->at_request_ctx;
2508 struct driver_data *driver_data = packet->driver_data;
2509 int ret = -ENOENT;
2510
2511 tasklet_disable(&ctx->tasklet);
2512
2513 if (packet->ack != 0)
2514 goto out;
2515
2516 if (packet->payload_mapped)
2517 dma_unmap_single(ohci->card.device, packet->payload_bus,
2518 packet->payload_length, DMA_TO_DEVICE);
2519
2520 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2521 driver_data->packet = NULL;
2522 packet->ack = RCODE_CANCELLED;
2523 packet->callback(packet, &ohci->card, packet->ack);
2524 ret = 0;
2525 out:
2526 tasklet_enable(&ctx->tasklet);
2527
2528 return ret;
2529}
2530
2531static int ohci_enable_phys_dma(struct fw_card *card,
2532 int node_id, int generation)
2533{
2534#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2535 return 0;
2536#else
2537 struct fw_ohci *ohci = fw_ohci(card);
2538 unsigned long flags;
2539 int n, ret = 0;
2540
2541 /*
2542 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2543 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2544 */
2545
2546 spin_lock_irqsave(&ohci->lock, flags);
2547
2548 if (ohci->generation != generation) {
2549 ret = -ESTALE;
2550 goto out;
2551 }
2552
2553 /*
2554 * Note, if the node ID contains a non-local bus ID, physical DMA is
2555 * enabled for _all_ nodes on remote buses.
2556 */
2557
2558 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2559 if (n < 32)
2560 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2561 else
2562 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2563
2564 flush_writes(ohci);
2565 out:
2566 spin_unlock_irqrestore(&ohci->lock, flags);
2567
2568 return ret;
2569#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2570}
2571
2572static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2573{
2574 struct fw_ohci *ohci = fw_ohci(card);
2575 unsigned long flags;
2576 u32 value;
2577
2578 switch (csr_offset) {
2579 case CSR_STATE_CLEAR:
2580 case CSR_STATE_SET:
2581 if (ohci->is_root &&
2582 (reg_read(ohci, OHCI1394_LinkControlSet) &
2583 OHCI1394_LinkControl_cycleMaster))
2584 value = CSR_STATE_BIT_CMSTR;
2585 else
2586 value = 0;
2587 if (ohci->csr_state_setclear_abdicate)
2588 value |= CSR_STATE_BIT_ABDICATE;
2589
2590 return value;
2591
2592 case CSR_NODE_IDS:
2593 return reg_read(ohci, OHCI1394_NodeID) << 16;
2594
2595 case CSR_CYCLE_TIME:
2596 return get_cycle_time(ohci);
2597
2598 case CSR_BUS_TIME:
2599 /*
2600 * We might be called just after the cycle timer has wrapped
2601 * around but just before the cycle64Seconds handler, so we
2602 * better check here, too, if the bus time needs to be updated.
2603 */
2604 spin_lock_irqsave(&ohci->lock, flags);
2605 value = update_bus_time(ohci);
2606 spin_unlock_irqrestore(&ohci->lock, flags);
2607 return value;
2608
2609 case CSR_BUSY_TIMEOUT:
2610 value = reg_read(ohci, OHCI1394_ATRetries);
2611 return (value >> 4) & 0x0ffff00f;
2612
2613 case CSR_PRIORITY_BUDGET:
2614 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2615 (ohci->pri_req_max << 8);
2616
2617 default:
2618 WARN_ON(1);
2619 return 0;
2620 }
2621}
2622
2623static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2624{
2625 struct fw_ohci *ohci = fw_ohci(card);
2626 unsigned long flags;
2627
2628 switch (csr_offset) {
2629 case CSR_STATE_CLEAR:
2630 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2631 reg_write(ohci, OHCI1394_LinkControlClear,
2632 OHCI1394_LinkControl_cycleMaster);
2633 flush_writes(ohci);
2634 }
2635 if (value & CSR_STATE_BIT_ABDICATE)
2636 ohci->csr_state_setclear_abdicate = false;
2637 break;
2638
2639 case CSR_STATE_SET:
2640 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2641 reg_write(ohci, OHCI1394_LinkControlSet,
2642 OHCI1394_LinkControl_cycleMaster);
2643 flush_writes(ohci);
2644 }
2645 if (value & CSR_STATE_BIT_ABDICATE)
2646 ohci->csr_state_setclear_abdicate = true;
2647 break;
2648
2649 case CSR_NODE_IDS:
2650 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2651 flush_writes(ohci);
2652 break;
2653
2654 case CSR_CYCLE_TIME:
2655 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2656 reg_write(ohci, OHCI1394_IntEventSet,
2657 OHCI1394_cycleInconsistent);
2658 flush_writes(ohci);
2659 break;
2660
2661 case CSR_BUS_TIME:
2662 spin_lock_irqsave(&ohci->lock, flags);
2663 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2664 spin_unlock_irqrestore(&ohci->lock, flags);
2665 break;
2666
2667 case CSR_BUSY_TIMEOUT:
2668 value = (value & 0xf) | ((value & 0xf) << 4) |
2669 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2670 reg_write(ohci, OHCI1394_ATRetries, value);
2671 flush_writes(ohci);
2672 break;
2673
2674 case CSR_PRIORITY_BUDGET:
2675 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2676 flush_writes(ohci);
2677 break;
2678
2679 default:
2680 WARN_ON(1);
2681 break;
2682 }
2683}
2684
2685static void flush_iso_completions(struct iso_context *ctx)
2686{
2687 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2688 ctx->header_length, ctx->header,
2689 ctx->base.callback_data);
2690 ctx->header_length = 0;
2691}
2692
2693static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2694{
2695 u32 *ctx_hdr;
2696
2697 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2698 if (ctx->base.drop_overflow_headers)
2699 return;
2700 flush_iso_completions(ctx);
2701 }
2702
2703 ctx_hdr = ctx->header + ctx->header_length;
2704 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2705
2706 /*
2707 * The two iso header quadlets are byteswapped to little
2708 * endian by the controller, but we want to present them
2709 * as big endian for consistency with the bus endianness.
2710 */
2711 if (ctx->base.header_size > 0)
2712 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2713 if (ctx->base.header_size > 4)
2714 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2715 if (ctx->base.header_size > 8)
2716 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2717 ctx->header_length += ctx->base.header_size;
2718}
2719
2720static int handle_ir_packet_per_buffer(struct context *context,
2721 struct descriptor *d,
2722 struct descriptor *last)
2723{
2724 struct iso_context *ctx =
2725 container_of(context, struct iso_context, context);
2726 struct descriptor *pd;
2727 u32 buffer_dma;
2728
2729 for (pd = d; pd <= last; pd++)
2730 if (pd->transfer_status)
2731 break;
2732 if (pd > last)
2733 /* Descriptor(s) not done yet, stop iteration */
2734 return 0;
2735
2736 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2737 d++;
2738 buffer_dma = le32_to_cpu(d->data_address);
2739 dma_sync_single_range_for_cpu(context->ohci->card.device,
2740 buffer_dma & PAGE_MASK,
2741 buffer_dma & ~PAGE_MASK,
2742 le16_to_cpu(d->req_count),
2743 DMA_FROM_DEVICE);
2744 }
2745
2746 copy_iso_headers(ctx, (u32 *) (last + 1));
2747
2748 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2749 flush_iso_completions(ctx);
2750
2751 return 1;
2752}
2753
2754/* d == last because each descriptor block is only a single descriptor. */
2755static int handle_ir_buffer_fill(struct context *context,
2756 struct descriptor *d,
2757 struct descriptor *last)
2758{
2759 struct iso_context *ctx =
2760 container_of(context, struct iso_context, context);
2761 unsigned int req_count, res_count, completed;
2762 u32 buffer_dma;
2763
2764 req_count = le16_to_cpu(last->req_count);
2765 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2766 completed = req_count - res_count;
2767 buffer_dma = le32_to_cpu(last->data_address);
2768
2769 if (completed > 0) {
2770 ctx->mc_buffer_bus = buffer_dma;
2771 ctx->mc_completed = completed;
2772 }
2773
2774 if (res_count != 0)
2775 /* Descriptor(s) not done yet, stop iteration */
2776 return 0;
2777
2778 dma_sync_single_range_for_cpu(context->ohci->card.device,
2779 buffer_dma & PAGE_MASK,
2780 buffer_dma & ~PAGE_MASK,
2781 completed, DMA_FROM_DEVICE);
2782
2783 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2784 ctx->base.callback.mc(&ctx->base,
2785 buffer_dma + completed,
2786 ctx->base.callback_data);
2787 ctx->mc_completed = 0;
2788 }
2789
2790 return 1;
2791}
2792
2793static void flush_ir_buffer_fill(struct iso_context *ctx)
2794{
2795 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2796 ctx->mc_buffer_bus & PAGE_MASK,
2797 ctx->mc_buffer_bus & ~PAGE_MASK,
2798 ctx->mc_completed, DMA_FROM_DEVICE);
2799
2800 ctx->base.callback.mc(&ctx->base,
2801 ctx->mc_buffer_bus + ctx->mc_completed,
2802 ctx->base.callback_data);
2803 ctx->mc_completed = 0;
2804}
2805
2806static inline void sync_it_packet_for_cpu(struct context *context,
2807 struct descriptor *pd)
2808{
2809 __le16 control;
2810 u32 buffer_dma;
2811
2812 /* only packets beginning with OUTPUT_MORE* have data buffers */
2813 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2814 return;
2815
2816 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2817 pd += 2;
2818
2819 /*
2820 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2821 * data buffer is in the context program's coherent page and must not
2822 * be synced.
2823 */
2824 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2825 (context->current_bus & PAGE_MASK)) {
2826 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2827 return;
2828 pd++;
2829 }
2830
2831 do {
2832 buffer_dma = le32_to_cpu(pd->data_address);
2833 dma_sync_single_range_for_cpu(context->ohci->card.device,
2834 buffer_dma & PAGE_MASK,
2835 buffer_dma & ~PAGE_MASK,
2836 le16_to_cpu(pd->req_count),
2837 DMA_TO_DEVICE);
2838 control = pd->control;
2839 pd++;
2840 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2841}
2842
2843static int handle_it_packet(struct context *context,
2844 struct descriptor *d,
2845 struct descriptor *last)
2846{
2847 struct iso_context *ctx =
2848 container_of(context, struct iso_context, context);
2849 struct descriptor *pd;
2850 __be32 *ctx_hdr;
2851
2852 for (pd = d; pd <= last; pd++)
2853 if (pd->transfer_status)
2854 break;
2855 if (pd > last)
2856 /* Descriptor(s) not done yet, stop iteration */
2857 return 0;
2858
2859 sync_it_packet_for_cpu(context, d);
2860
2861 if (ctx->header_length + 4 > PAGE_SIZE) {
2862 if (ctx->base.drop_overflow_headers)
2863 return 1;
2864 flush_iso_completions(ctx);
2865 }
2866
2867 ctx_hdr = ctx->header + ctx->header_length;
2868 ctx->last_timestamp = le16_to_cpu(last->res_count);
2869 /* Present this value as big-endian to match the receive code */
2870 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2871 le16_to_cpu(pd->res_count));
2872 ctx->header_length += 4;
2873
2874 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2875 flush_iso_completions(ctx);
2876
2877 return 1;
2878}
2879
2880static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2881{
2882 u32 hi = channels >> 32, lo = channels;
2883
2884 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2885 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2886 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2887 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2888 mmiowb();
2889 ohci->mc_channels = channels;
2890}
2891
2892static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2893 int type, int channel, size_t header_size)
2894{
2895 struct fw_ohci *ohci = fw_ohci(card);
2896 struct iso_context *uninitialized_var(ctx);
2897 descriptor_callback_t uninitialized_var(callback);
2898 u64 *uninitialized_var(channels);
2899 u32 *uninitialized_var(mask), uninitialized_var(regs);
2900 unsigned long flags;
2901 int index, ret = -EBUSY;
2902
2903 spin_lock_irqsave(&ohci->lock, flags);
2904
2905 switch (type) {
2906 case FW_ISO_CONTEXT_TRANSMIT:
2907 mask = &ohci->it_context_mask;
2908 callback = handle_it_packet;
2909 index = ffs(*mask) - 1;
2910 if (index >= 0) {
2911 *mask &= ~(1 << index);
2912 regs = OHCI1394_IsoXmitContextBase(index);
2913 ctx = &ohci->it_context_list[index];
2914 }
2915 break;
2916
2917 case FW_ISO_CONTEXT_RECEIVE:
2918 channels = &ohci->ir_context_channels;
2919 mask = &ohci->ir_context_mask;
2920 callback = handle_ir_packet_per_buffer;
2921 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2922 if (index >= 0) {
2923 *channels &= ~(1ULL << channel);
2924 *mask &= ~(1 << index);
2925 regs = OHCI1394_IsoRcvContextBase(index);
2926 ctx = &ohci->ir_context_list[index];
2927 }
2928 break;
2929
2930 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2931 mask = &ohci->ir_context_mask;
2932 callback = handle_ir_buffer_fill;
2933 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2934 if (index >= 0) {
2935 ohci->mc_allocated = true;
2936 *mask &= ~(1 << index);
2937 regs = OHCI1394_IsoRcvContextBase(index);
2938 ctx = &ohci->ir_context_list[index];
2939 }
2940 break;
2941
2942 default:
2943 index = -1;
2944 ret = -ENOSYS;
2945 }
2946
2947 spin_unlock_irqrestore(&ohci->lock, flags);
2948
2949 if (index < 0)
2950 return ERR_PTR(ret);
2951
2952 memset(ctx, 0, sizeof(*ctx));
2953 ctx->header_length = 0;
2954 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2955 if (ctx->header == NULL) {
2956 ret = -ENOMEM;
2957 goto out;
2958 }
2959 ret = context_init(&ctx->context, ohci, regs, callback);
2960 if (ret < 0)
2961 goto out_with_header;
2962
2963 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2964 set_multichannel_mask(ohci, 0);
2965 ctx->mc_completed = 0;
2966 }
2967
2968 return &ctx->base;
2969
2970 out_with_header:
2971 free_page((unsigned long)ctx->header);
2972 out:
2973 spin_lock_irqsave(&ohci->lock, flags);
2974
2975 switch (type) {
2976 case FW_ISO_CONTEXT_RECEIVE:
2977 *channels |= 1ULL << channel;
2978 break;
2979
2980 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2981 ohci->mc_allocated = false;
2982 break;
2983 }
2984 *mask |= 1 << index;
2985
2986 spin_unlock_irqrestore(&ohci->lock, flags);
2987
2988 return ERR_PTR(ret);
2989}
2990
2991static int ohci_start_iso(struct fw_iso_context *base,
2992 s32 cycle, u32 sync, u32 tags)
2993{
2994 struct iso_context *ctx = container_of(base, struct iso_context, base);
2995 struct fw_ohci *ohci = ctx->context.ohci;
2996 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2997 int index;
2998
2999 /* the controller cannot start without any queued packets */
3000 if (ctx->context.last->branch_address == 0)
3001 return -ENODATA;
3002
3003 switch (ctx->base.type) {
3004 case FW_ISO_CONTEXT_TRANSMIT:
3005 index = ctx - ohci->it_context_list;
3006 match = 0;
3007 if (cycle >= 0)
3008 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3009 (cycle & 0x7fff) << 16;
3010
3011 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3012 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3013 context_run(&ctx->context, match);
3014 break;
3015
3016 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3017 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3018 /* fall through */
3019 case FW_ISO_CONTEXT_RECEIVE:
3020 index = ctx - ohci->ir_context_list;
3021 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3022 if (cycle >= 0) {
3023 match |= (cycle & 0x07fff) << 12;
3024 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3025 }
3026
3027 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3028 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3029 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3030 context_run(&ctx->context, control);
3031
3032 ctx->sync = sync;
3033 ctx->tags = tags;
3034
3035 break;
3036 }
3037
3038 return 0;
3039}
3040
3041static int ohci_stop_iso(struct fw_iso_context *base)
3042{
3043 struct fw_ohci *ohci = fw_ohci(base->card);
3044 struct iso_context *ctx = container_of(base, struct iso_context, base);
3045 int index;
3046
3047 switch (ctx->base.type) {
3048 case FW_ISO_CONTEXT_TRANSMIT:
3049 index = ctx - ohci->it_context_list;
3050 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3051 break;
3052
3053 case FW_ISO_CONTEXT_RECEIVE:
3054 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3055 index = ctx - ohci->ir_context_list;
3056 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3057 break;
3058 }
3059 flush_writes(ohci);
3060 context_stop(&ctx->context);
3061 tasklet_kill(&ctx->context.tasklet);
3062
3063 return 0;
3064}
3065
3066static void ohci_free_iso_context(struct fw_iso_context *base)
3067{
3068 struct fw_ohci *ohci = fw_ohci(base->card);
3069 struct iso_context *ctx = container_of(base, struct iso_context, base);
3070 unsigned long flags;
3071 int index;
3072
3073 ohci_stop_iso(base);
3074 context_release(&ctx->context);
3075 free_page((unsigned long)ctx->header);
3076
3077 spin_lock_irqsave(&ohci->lock, flags);
3078
3079 switch (base->type) {
3080 case FW_ISO_CONTEXT_TRANSMIT:
3081 index = ctx - ohci->it_context_list;
3082 ohci->it_context_mask |= 1 << index;
3083 break;
3084
3085 case FW_ISO_CONTEXT_RECEIVE:
3086 index = ctx - ohci->ir_context_list;
3087 ohci->ir_context_mask |= 1 << index;
3088 ohci->ir_context_channels |= 1ULL << base->channel;
3089 break;
3090
3091 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3092 index = ctx - ohci->ir_context_list;
3093 ohci->ir_context_mask |= 1 << index;
3094 ohci->ir_context_channels |= ohci->mc_channels;
3095 ohci->mc_channels = 0;
3096 ohci->mc_allocated = false;
3097 break;
3098 }
3099
3100 spin_unlock_irqrestore(&ohci->lock, flags);
3101}
3102
3103static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3104{
3105 struct fw_ohci *ohci = fw_ohci(base->card);
3106 unsigned long flags;
3107 int ret;
3108
3109 switch (base->type) {
3110 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3111
3112 spin_lock_irqsave(&ohci->lock, flags);
3113
3114 /* Don't allow multichannel to grab other contexts' channels. */
3115 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3116 *channels = ohci->ir_context_channels;
3117 ret = -EBUSY;
3118 } else {
3119 set_multichannel_mask(ohci, *channels);
3120 ret = 0;
3121 }
3122
3123 spin_unlock_irqrestore(&ohci->lock, flags);
3124
3125 break;
3126 default:
3127 ret = -EINVAL;
3128 }
3129
3130 return ret;
3131}
3132
3133#ifdef CONFIG_PM
3134static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3135{
3136 int i;
3137 struct iso_context *ctx;
3138
3139 for (i = 0 ; i < ohci->n_ir ; i++) {
3140 ctx = &ohci->ir_context_list[i];
3141 if (ctx->context.running)
3142 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3143 }
3144
3145 for (i = 0 ; i < ohci->n_it ; i++) {
3146 ctx = &ohci->it_context_list[i];
3147 if (ctx->context.running)
3148 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3149 }
3150}
3151#endif
3152
3153static int queue_iso_transmit(struct iso_context *ctx,
3154 struct fw_iso_packet *packet,
3155 struct fw_iso_buffer *buffer,
3156 unsigned long payload)
3157{
3158 struct descriptor *d, *last, *pd;
3159 struct fw_iso_packet *p;
3160 __le32 *header;
3161 dma_addr_t d_bus, page_bus;
3162 u32 z, header_z, payload_z, irq;
3163 u32 payload_index, payload_end_index, next_page_index;
3164 int page, end_page, i, length, offset;
3165
3166 p = packet;
3167 payload_index = payload;
3168
3169 if (p->skip)
3170 z = 1;
3171 else
3172 z = 2;
3173 if (p->header_length > 0)
3174 z++;
3175
3176 /* Determine the first page the payload isn't contained in. */
3177 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3178 if (p->payload_length > 0)
3179 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3180 else
3181 payload_z = 0;
3182
3183 z += payload_z;
3184
3185 /* Get header size in number of descriptors. */
3186 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3187
3188 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3189 if (d == NULL)
3190 return -ENOMEM;
3191
3192 if (!p->skip) {
3193 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3194 d[0].req_count = cpu_to_le16(8);
3195 /*
3196 * Link the skip address to this descriptor itself. This causes
3197 * a context to skip a cycle whenever lost cycles or FIFO
3198 * overruns occur, without dropping the data. The application
3199 * should then decide whether this is an error condition or not.
3200 * FIXME: Make the context's cycle-lost behaviour configurable?
3201 */
3202 d[0].branch_address = cpu_to_le32(d_bus | z);
3203
3204 header = (__le32 *) &d[1];
3205 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3206 IT_HEADER_TAG(p->tag) |
3207 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3208 IT_HEADER_CHANNEL(ctx->base.channel) |
3209 IT_HEADER_SPEED(ctx->base.speed));
3210 header[1] =
3211 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3212 p->payload_length));
3213 }
3214
3215 if (p->header_length > 0) {
3216 d[2].req_count = cpu_to_le16(p->header_length);
3217 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3218 memcpy(&d[z], p->header, p->header_length);
3219 }
3220
3221 pd = d + z - payload_z;
3222 payload_end_index = payload_index + p->payload_length;
3223 for (i = 0; i < payload_z; i++) {
3224 page = payload_index >> PAGE_SHIFT;
3225 offset = payload_index & ~PAGE_MASK;
3226 next_page_index = (page + 1) << PAGE_SHIFT;
3227 length =
3228 min(next_page_index, payload_end_index) - payload_index;
3229 pd[i].req_count = cpu_to_le16(length);
3230
3231 page_bus = page_private(buffer->pages[page]);
3232 pd[i].data_address = cpu_to_le32(page_bus + offset);
3233
3234 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3235 page_bus, offset, length,
3236 DMA_TO_DEVICE);
3237
3238 payload_index += length;
3239 }
3240
3241 if (p->interrupt)
3242 irq = DESCRIPTOR_IRQ_ALWAYS;
3243 else
3244 irq = DESCRIPTOR_NO_IRQ;
3245
3246 last = z == 2 ? d : d + z - 1;
3247 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3248 DESCRIPTOR_STATUS |
3249 DESCRIPTOR_BRANCH_ALWAYS |
3250 irq);
3251
3252 context_append(&ctx->context, d, z, header_z);
3253
3254 return 0;
3255}
3256
3257static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3258 struct fw_iso_packet *packet,
3259 struct fw_iso_buffer *buffer,
3260 unsigned long payload)
3261{
3262 struct device *device = ctx->context.ohci->card.device;
3263 struct descriptor *d, *pd;
3264 dma_addr_t d_bus, page_bus;
3265 u32 z, header_z, rest;
3266 int i, j, length;
3267 int page, offset, packet_count, header_size, payload_per_buffer;
3268
3269 /*
3270 * The OHCI controller puts the isochronous header and trailer in the
3271 * buffer, so we need at least 8 bytes.
3272 */
3273 packet_count = packet->header_length / ctx->base.header_size;
3274 header_size = max(ctx->base.header_size, (size_t)8);
3275
3276 /* Get header size in number of descriptors. */
3277 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3278 page = payload >> PAGE_SHIFT;
3279 offset = payload & ~PAGE_MASK;
3280 payload_per_buffer = packet->payload_length / packet_count;
3281
3282 for (i = 0; i < packet_count; i++) {
3283 /* d points to the header descriptor */
3284 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3285 d = context_get_descriptors(&ctx->context,
3286 z + header_z, &d_bus);
3287 if (d == NULL)
3288 return -ENOMEM;
3289
3290 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3291 DESCRIPTOR_INPUT_MORE);
3292 if (packet->skip && i == 0)
3293 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3294 d->req_count = cpu_to_le16(header_size);
3295 d->res_count = d->req_count;
3296 d->transfer_status = 0;
3297 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3298
3299 rest = payload_per_buffer;
3300 pd = d;
3301 for (j = 1; j < z; j++) {
3302 pd++;
3303 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3304 DESCRIPTOR_INPUT_MORE);
3305
3306 if (offset + rest < PAGE_SIZE)
3307 length = rest;
3308 else
3309 length = PAGE_SIZE - offset;
3310 pd->req_count = cpu_to_le16(length);
3311 pd->res_count = pd->req_count;
3312 pd->transfer_status = 0;
3313
3314 page_bus = page_private(buffer->pages[page]);
3315 pd->data_address = cpu_to_le32(page_bus + offset);
3316
3317 dma_sync_single_range_for_device(device, page_bus,
3318 offset, length,
3319 DMA_FROM_DEVICE);
3320
3321 offset = (offset + length) & ~PAGE_MASK;
3322 rest -= length;
3323 if (offset == 0)
3324 page++;
3325 }
3326 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3327 DESCRIPTOR_INPUT_LAST |
3328 DESCRIPTOR_BRANCH_ALWAYS);
3329 if (packet->interrupt && i == packet_count - 1)
3330 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3331
3332 context_append(&ctx->context, d, z, header_z);
3333 }
3334
3335 return 0;
3336}
3337
3338static int queue_iso_buffer_fill(struct iso_context *ctx,
3339 struct fw_iso_packet *packet,
3340 struct fw_iso_buffer *buffer,
3341 unsigned long payload)
3342{
3343 struct descriptor *d;
3344 dma_addr_t d_bus, page_bus;
3345 int page, offset, rest, z, i, length;
3346
3347 page = payload >> PAGE_SHIFT;
3348 offset = payload & ~PAGE_MASK;
3349 rest = packet->payload_length;
3350
3351 /* We need one descriptor for each page in the buffer. */
3352 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3353
3354 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3355 return -EFAULT;
3356
3357 for (i = 0; i < z; i++) {
3358 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3359 if (d == NULL)
3360 return -ENOMEM;
3361
3362 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3363 DESCRIPTOR_BRANCH_ALWAYS);
3364 if (packet->skip && i == 0)
3365 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3366 if (packet->interrupt && i == z - 1)
3367 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3368
3369 if (offset + rest < PAGE_SIZE)
3370 length = rest;
3371 else
3372 length = PAGE_SIZE - offset;
3373 d->req_count = cpu_to_le16(length);
3374 d->res_count = d->req_count;
3375 d->transfer_status = 0;
3376
3377 page_bus = page_private(buffer->pages[page]);
3378 d->data_address = cpu_to_le32(page_bus + offset);
3379
3380 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3381 page_bus, offset, length,
3382 DMA_FROM_DEVICE);
3383
3384 rest -= length;
3385 offset = 0;
3386 page++;
3387
3388 context_append(&ctx->context, d, 1, 0);
3389 }
3390
3391 return 0;
3392}
3393
3394static int ohci_queue_iso(struct fw_iso_context *base,
3395 struct fw_iso_packet *packet,
3396 struct fw_iso_buffer *buffer,
3397 unsigned long payload)
3398{
3399 struct iso_context *ctx = container_of(base, struct iso_context, base);
3400 unsigned long flags;
3401 int ret = -ENOSYS;
3402
3403 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3404 switch (base->type) {
3405 case FW_ISO_CONTEXT_TRANSMIT:
3406 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3407 break;
3408 case FW_ISO_CONTEXT_RECEIVE:
3409 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3410 break;
3411 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3412 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3413 break;
3414 }
3415 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3416
3417 return ret;
3418}
3419
3420static void ohci_flush_queue_iso(struct fw_iso_context *base)
3421{
3422 struct context *ctx =
3423 &container_of(base, struct iso_context, base)->context;
3424
3425 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3426}
3427
3428static int ohci_flush_iso_completions(struct fw_iso_context *base)
3429{
3430 struct iso_context *ctx = container_of(base, struct iso_context, base);
3431 int ret = 0;
3432
3433 tasklet_disable(&ctx->context.tasklet);
3434
3435 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3436 context_tasklet((unsigned long)&ctx->context);
3437
3438 switch (base->type) {
3439 case FW_ISO_CONTEXT_TRANSMIT:
3440 case FW_ISO_CONTEXT_RECEIVE:
3441 if (ctx->header_length != 0)
3442 flush_iso_completions(ctx);
3443 break;
3444 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3445 if (ctx->mc_completed != 0)
3446 flush_ir_buffer_fill(ctx);
3447 break;
3448 default:
3449 ret = -ENOSYS;
3450 }
3451
3452 clear_bit_unlock(0, &ctx->flushing_completions);
3453 smp_mb__after_clear_bit();
3454 }
3455
3456 tasklet_enable(&ctx->context.tasklet);
3457
3458 return ret;
3459}
3460
3461static const struct fw_card_driver ohci_driver = {
3462 .enable = ohci_enable,
3463 .read_phy_reg = ohci_read_phy_reg,
3464 .update_phy_reg = ohci_update_phy_reg,
3465 .set_config_rom = ohci_set_config_rom,
3466 .send_request = ohci_send_request,
3467 .send_response = ohci_send_response,
3468 .cancel_packet = ohci_cancel_packet,
3469 .enable_phys_dma = ohci_enable_phys_dma,
3470 .read_csr = ohci_read_csr,
3471 .write_csr = ohci_write_csr,
3472
3473 .allocate_iso_context = ohci_allocate_iso_context,
3474 .free_iso_context = ohci_free_iso_context,
3475 .set_iso_channels = ohci_set_iso_channels,
3476 .queue_iso = ohci_queue_iso,
3477 .flush_queue_iso = ohci_flush_queue_iso,
3478 .flush_iso_completions = ohci_flush_iso_completions,
3479 .start_iso = ohci_start_iso,
3480 .stop_iso = ohci_stop_iso,
3481};
3482
3483#ifdef CONFIG_PPC_PMAC
3484static void pmac_ohci_on(struct pci_dev *dev)
3485{
3486 if (machine_is(powermac)) {
3487 struct device_node *ofn = pci_device_to_OF_node(dev);
3488
3489 if (ofn) {
3490 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3491 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3492 }
3493 }
3494}
3495
3496static void pmac_ohci_off(struct pci_dev *dev)
3497{
3498 if (machine_is(powermac)) {
3499 struct device_node *ofn = pci_device_to_OF_node(dev);
3500
3501 if (ofn) {
3502 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3503 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3504 }
3505 }
3506}
3507#else
3508static inline void pmac_ohci_on(struct pci_dev *dev) {}
3509static inline void pmac_ohci_off(struct pci_dev *dev) {}
3510#endif /* CONFIG_PPC_PMAC */
3511
3512static int __devinit pci_probe(struct pci_dev *dev,
3513 const struct pci_device_id *ent)
3514{
3515 struct fw_ohci *ohci;
3516 u32 bus_options, max_receive, link_speed, version;
3517 u64 guid;
3518 int i, err;
3519 size_t size;
3520
3521 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3522 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3523 return -ENOSYS;
3524 }
3525
3526 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3527 if (ohci == NULL) {
3528 err = -ENOMEM;
3529 goto fail;
3530 }
3531
3532 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3533
3534 pmac_ohci_on(dev);
3535
3536 err = pci_enable_device(dev);
3537 if (err) {
3538 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3539 goto fail_free;
3540 }
3541
3542 pci_set_master(dev);
3543 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3544 pci_set_drvdata(dev, ohci);
3545
3546 spin_lock_init(&ohci->lock);
3547 mutex_init(&ohci->phy_reg_mutex);
3548
3549 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3550
3551 err = pci_request_region(dev, 0, ohci_driver_name);
3552 if (err) {
3553 dev_err(&dev->dev, "MMIO resource unavailable\n");
3554 goto fail_disable;
3555 }
3556
3557 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3558 if (ohci->registers == NULL) {
3559 dev_err(&dev->dev, "failed to remap registers\n");
3560 err = -ENXIO;
3561 goto fail_iomem;
3562 }
3563
3564 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3565 if ((ohci_quirks[i].vendor == dev->vendor) &&
3566 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3567 ohci_quirks[i].device == dev->device) &&
3568 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3569 ohci_quirks[i].revision >= dev->revision)) {
3570 ohci->quirks = ohci_quirks[i].flags;
3571 break;
3572 }
3573 if (param_quirks)
3574 ohci->quirks = param_quirks;
3575
3576 /*
3577 * Because dma_alloc_coherent() allocates at least one page,
3578 * we save space by using a common buffer for the AR request/
3579 * response descriptors and the self IDs buffer.
3580 */
3581 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3582 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3583 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3584 PAGE_SIZE,
3585 &ohci->misc_buffer_bus,
3586 GFP_KERNEL);
3587 if (!ohci->misc_buffer) {
3588 err = -ENOMEM;
3589 goto fail_iounmap;
3590 }
3591
3592 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3593 OHCI1394_AsReqRcvContextControlSet);
3594 if (err < 0)
3595 goto fail_misc_buf;
3596
3597 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3598 OHCI1394_AsRspRcvContextControlSet);
3599 if (err < 0)
3600 goto fail_arreq_ctx;
3601
3602 err = context_init(&ohci->at_request_ctx, ohci,
3603 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3604 if (err < 0)
3605 goto fail_arrsp_ctx;
3606
3607 err = context_init(&ohci->at_response_ctx, ohci,
3608 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3609 if (err < 0)
3610 goto fail_atreq_ctx;
3611
3612 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3613 ohci->ir_context_channels = ~0ULL;
3614 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3615 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3616 ohci->ir_context_mask = ohci->ir_context_support;
3617 ohci->n_ir = hweight32(ohci->ir_context_mask);
3618 size = sizeof(struct iso_context) * ohci->n_ir;
3619 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3620
3621 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3622 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3623 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3624 ohci->it_context_mask = ohci->it_context_support;
3625 ohci->n_it = hweight32(ohci->it_context_mask);
3626 size = sizeof(struct iso_context) * ohci->n_it;
3627 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3628
3629 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3630 err = -ENOMEM;
3631 goto fail_contexts;
3632 }
3633
3634 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3635 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3636
3637 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3638 max_receive = (bus_options >> 12) & 0xf;
3639 link_speed = bus_options & 0x7;
3640 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3641 reg_read(ohci, OHCI1394_GUIDLo);
3642
3643 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3644 if (err)
3645 goto fail_contexts;
3646
3647 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3648 dev_notice(&dev->dev,
3649 "added OHCI v%x.%x device as card %d, "
3650 "%d IR + %d IT contexts, quirks 0x%x\n",
3651 version >> 16, version & 0xff, ohci->card.index,
3652 ohci->n_ir, ohci->n_it, ohci->quirks);
3653
3654 return 0;
3655
3656 fail_contexts:
3657 kfree(ohci->ir_context_list);
3658 kfree(ohci->it_context_list);
3659 context_release(&ohci->at_response_ctx);
3660 fail_atreq_ctx:
3661 context_release(&ohci->at_request_ctx);
3662 fail_arrsp_ctx:
3663 ar_context_release(&ohci->ar_response_ctx);
3664 fail_arreq_ctx:
3665 ar_context_release(&ohci->ar_request_ctx);
3666 fail_misc_buf:
3667 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3668 ohci->misc_buffer, ohci->misc_buffer_bus);
3669 fail_iounmap:
3670 pci_iounmap(dev, ohci->registers);
3671 fail_iomem:
3672 pci_release_region(dev, 0);
3673 fail_disable:
3674 pci_disable_device(dev);
3675 fail_free:
3676 kfree(ohci);
3677 pmac_ohci_off(dev);
3678 fail:
3679 if (err == -ENOMEM)
3680 dev_err(&dev->dev, "out of memory\n");
3681
3682 return err;
3683}
3684
3685static void pci_remove(struct pci_dev *dev)
3686{
3687 struct fw_ohci *ohci;
3688
3689 ohci = pci_get_drvdata(dev);
3690 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3691 flush_writes(ohci);
3692 cancel_work_sync(&ohci->bus_reset_work);
3693 fw_core_remove_card(&ohci->card);
3694
3695 /*
3696 * FIXME: Fail all pending packets here, now that the upper
3697 * layers can't queue any more.
3698 */
3699
3700 software_reset(ohci);
3701 free_irq(dev->irq, ohci);
3702
3703 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3704 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3705 ohci->next_config_rom, ohci->next_config_rom_bus);
3706 if (ohci->config_rom)
3707 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3708 ohci->config_rom, ohci->config_rom_bus);
3709 ar_context_release(&ohci->ar_request_ctx);
3710 ar_context_release(&ohci->ar_response_ctx);
3711 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3712 ohci->misc_buffer, ohci->misc_buffer_bus);
3713 context_release(&ohci->at_request_ctx);
3714 context_release(&ohci->at_response_ctx);
3715 kfree(ohci->it_context_list);
3716 kfree(ohci->ir_context_list);
3717 pci_disable_msi(dev);
3718 pci_iounmap(dev, ohci->registers);
3719 pci_release_region(dev, 0);
3720 pci_disable_device(dev);
3721 kfree(ohci);
3722 pmac_ohci_off(dev);
3723
3724 dev_notice(&dev->dev, "removed fw-ohci device\n");
3725}
3726
3727#ifdef CONFIG_PM
3728static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3729{
3730 struct fw_ohci *ohci = pci_get_drvdata(dev);
3731 int err;
3732
3733 software_reset(ohci);
3734 free_irq(dev->irq, ohci);
3735 pci_disable_msi(dev);
3736 err = pci_save_state(dev);
3737 if (err) {
3738 dev_err(&dev->dev, "pci_save_state failed\n");
3739 return err;
3740 }
3741 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3742 if (err)
3743 dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3744 pmac_ohci_off(dev);
3745
3746 return 0;
3747}
3748
3749static int pci_resume(struct pci_dev *dev)
3750{
3751 struct fw_ohci *ohci = pci_get_drvdata(dev);
3752 int err;
3753
3754 pmac_ohci_on(dev);
3755 pci_set_power_state(dev, PCI_D0);
3756 pci_restore_state(dev);
3757 err = pci_enable_device(dev);
3758 if (err) {
3759 dev_err(&dev->dev, "pci_enable_device failed\n");
3760 return err;
3761 }
3762
3763 /* Some systems don't setup GUID register on resume from ram */
3764 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3765 !reg_read(ohci, OHCI1394_GUIDHi)) {
3766 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3767 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3768 }
3769
3770 err = ohci_enable(&ohci->card, NULL, 0);
3771 if (err)
3772 return err;
3773
3774 ohci_resume_iso_dma(ohci);
3775
3776 return 0;
3777}
3778#endif
3779
3780static const struct pci_device_id pci_table[] = {
3781 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3782 { }
3783};
3784
3785MODULE_DEVICE_TABLE(pci, pci_table);
3786
3787static struct pci_driver fw_ohci_pci_driver = {
3788 .name = ohci_driver_name,
3789 .id_table = pci_table,
3790 .probe = pci_probe,
3791 .remove = pci_remove,
3792#ifdef CONFIG_PM
3793 .resume = pci_resume,
3794 .suspend = pci_suspend,
3795#endif
3796};
3797
3798MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3799MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3800MODULE_LICENSE("GPL");
3801
3802/* Provide a module alias so root-on-sbp2 initrds don't break. */
3803#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3804MODULE_ALIAS("ohci1394");
3805#endif
3806
3807static int __init fw_ohci_init(void)
3808{
3809 return pci_register_driver(&fw_ohci_pci_driver);
3810}
3811
3812static void __exit fw_ohci_cleanup(void)
3813{
3814 pci_unregister_driver(&fw_ohci_pci_driver);
3815}
3816
3817module_init(fw_ohci_init);
3818module_exit(fw_ohci_cleanup);