blob: 67c5210e7ce7195f9613063d36f0156a32f6af77 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/export.h>
29#include <linux/syscalls.h>
30#include <linux/uio.h>
31#include <linux/security.h>
32#include <linux/gfp.h>
33#include <linux/socket.h>
34
35/*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43{
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81out_unlock:
82 unlock_page(page);
83 return 1;
84}
85
86static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88{
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91}
92
93/*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99{
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130error:
131 unlock_page(page);
132 return err;
133}
134
135const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163};
164
165static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166{
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171}
172
173/**
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
177 *
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
182 *
183 */
184ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
186{
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
189
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
193
194 pipe_lock(pipe);
195
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
202 }
203
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
207
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
215
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
219
220 if (pipe->inode)
221 do_wakeup = 1;
222
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
227
228 break;
229 }
230
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
235 }
236
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
241 }
242
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
249 }
250
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
254 }
255
256 pipe_unlock(pipe);
257
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
260
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
263
264 return ret;
265}
266
267void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268{
269 page_cache_release(spd->pages[i]);
270}
271
272/*
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
275 */
276int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277{
278 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279
280 spd->nr_pages_max = buffers;
281 if (buffers <= PIPE_DEF_BUFFERS)
282 return 0;
283
284 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
285 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286
287 if (spd->pages && spd->partial)
288 return 0;
289
290 kfree(spd->pages);
291 kfree(spd->partial);
292 return -ENOMEM;
293}
294
295void splice_shrink_spd(struct splice_pipe_desc *spd)
296{
297 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
298 return;
299
300 kfree(spd->pages);
301 kfree(spd->partial);
302}
303
304static int
305__generic_file_splice_read(struct file *in, loff_t *ppos,
306 struct pipe_inode_info *pipe, size_t len,
307 unsigned int flags)
308{
309 struct address_space *mapping = in->f_mapping;
310 unsigned int loff, nr_pages, req_pages;
311 struct page *pages[PIPE_DEF_BUFFERS];
312 struct partial_page partial[PIPE_DEF_BUFFERS];
313 struct page *page;
314 pgoff_t index, end_index;
315 loff_t isize;
316 int error, page_nr;
317 struct splice_pipe_desc spd = {
318 .pages = pages,
319 .partial = partial,
320 .nr_pages_max = PIPE_DEF_BUFFERS,
321 .flags = flags,
322 .ops = &page_cache_pipe_buf_ops,
323 .spd_release = spd_release_page,
324 };
325
326 if (splice_grow_spd(pipe, &spd))
327 return -ENOMEM;
328
329 index = *ppos >> PAGE_CACHE_SHIFT;
330 loff = *ppos & ~PAGE_CACHE_MASK;
331 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
332 nr_pages = min(req_pages, spd.nr_pages_max);
333
334 /*
335 * Lookup the (hopefully) full range of pages we need.
336 */
337 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
338 index += spd.nr_pages;
339
340 /*
341 * If find_get_pages_contig() returned fewer pages than we needed,
342 * readahead/allocate the rest and fill in the holes.
343 */
344 if (spd.nr_pages < nr_pages)
345 page_cache_sync_readahead(mapping, &in->f_ra, in,
346 index, req_pages - spd.nr_pages);
347
348 error = 0;
349 while (spd.nr_pages < nr_pages) {
350 /*
351 * Page could be there, find_get_pages_contig() breaks on
352 * the first hole.
353 */
354 page = find_get_page(mapping, index);
355 if (!page) {
356 /*
357 * page didn't exist, allocate one.
358 */
359 page = page_cache_alloc_cold(mapping);
360 if (!page)
361 break;
362
363 error = add_to_page_cache_lru(page, mapping, index,
364 GFP_KERNEL);
365 if (unlikely(error)) {
366 page_cache_release(page);
367 if (error == -EEXIST)
368 continue;
369 break;
370 }
371 /*
372 * add_to_page_cache() locks the page, unlock it
373 * to avoid convoluting the logic below even more.
374 */
375 unlock_page(page);
376 }
377
378 spd.pages[spd.nr_pages++] = page;
379 index++;
380 }
381
382 /*
383 * Now loop over the map and see if we need to start IO on any
384 * pages, fill in the partial map, etc.
385 */
386 index = *ppos >> PAGE_CACHE_SHIFT;
387 nr_pages = spd.nr_pages;
388 spd.nr_pages = 0;
389 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
390 unsigned int this_len;
391
392 if (!len)
393 break;
394
395 /*
396 * this_len is the max we'll use from this page
397 */
398 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
399 page = spd.pages[page_nr];
400
401 if (PageReadahead(page))
402 page_cache_async_readahead(mapping, &in->f_ra, in,
403 page, index, req_pages - page_nr);
404
405 /*
406 * If the page isn't uptodate, we may need to start io on it
407 */
408 if (!PageUptodate(page)) {
409 lock_page(page);
410
411 /*
412 * Page was truncated, or invalidated by the
413 * filesystem. Redo the find/create, but this time the
414 * page is kept locked, so there's no chance of another
415 * race with truncate/invalidate.
416 */
417 if (!page->mapping) {
418 unlock_page(page);
419 page = find_or_create_page(mapping, index,
420 mapping_gfp_mask(mapping));
421
422 if (!page) {
423 error = -ENOMEM;
424 break;
425 }
426 page_cache_release(spd.pages[page_nr]);
427 spd.pages[page_nr] = page;
428 }
429 /*
430 * page was already under io and is now done, great
431 */
432 if (PageUptodate(page)) {
433 unlock_page(page);
434 goto fill_it;
435 }
436
437 /*
438 * need to read in the page
439 */
440 error = mapping->a_ops->readpage(in, page);
441 if (unlikely(error)) {
442 /*
443 * We really should re-lookup the page here,
444 * but it complicates things a lot. Instead
445 * lets just do what we already stored, and
446 * we'll get it the next time we are called.
447 */
448 if (error == AOP_TRUNCATED_PAGE)
449 error = 0;
450
451 break;
452 }
453 }
454fill_it:
455 /*
456 * i_size must be checked after PageUptodate.
457 */
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
460 if (unlikely(!isize || index > end_index))
461 break;
462
463 /*
464 * if this is the last page, see if we need to shrink
465 * the length and stop
466 */
467 if (end_index == index) {
468 unsigned int plen;
469
470 /*
471 * max good bytes in this page
472 */
473 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
474 if (plen <= loff)
475 break;
476
477 /*
478 * force quit after adding this page
479 */
480 this_len = min(this_len, plen - loff);
481 len = this_len;
482 }
483
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
486 len -= this_len;
487 loff = 0;
488 spd.nr_pages++;
489 index++;
490 }
491
492 /*
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
495 */
496 while (page_nr < nr_pages)
497 page_cache_release(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
499
500 if (spd.nr_pages)
501 error = splice_to_pipe(pipe, &spd);
502
503 splice_shrink_spd(&spd);
504 return error;
505}
506
507/**
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
514 *
515 * Description:
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
518 * a readpage() hook.
519 *
520 */
521ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
523 unsigned int flags)
524{
525 loff_t isize, left;
526 int ret;
527
528 isize = i_size_read(in->f_mapping->host);
529 if (unlikely(*ppos >= isize))
530 return 0;
531
532 left = isize - *ppos;
533 if (unlikely(left < len))
534 len = left;
535
536 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
537 if (ret > 0) {
538 *ppos += ret;
539 file_accessed(in);
540 }
541
542 return ret;
543}
544EXPORT_SYMBOL(generic_file_splice_read);
545
546static const struct pipe_buf_operations default_pipe_buf_ops = {
547 .can_merge = 0,
548 .map = generic_pipe_buf_map,
549 .unmap = generic_pipe_buf_unmap,
550 .confirm = generic_pipe_buf_confirm,
551 .release = generic_pipe_buf_release,
552 .steal = generic_pipe_buf_steal,
553 .get = generic_pipe_buf_get,
554};
555
556static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
557 unsigned long vlen, loff_t offset)
558{
559 mm_segment_t old_fs;
560 loff_t pos = offset;
561 ssize_t res;
562
563 old_fs = get_fs();
564 set_fs(get_ds());
565 /* The cast to a user pointer is valid due to the set_fs() */
566 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
567 set_fs(old_fs);
568
569 return res;
570}
571
572static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
573 loff_t pos)
574{
575 mm_segment_t old_fs;
576 ssize_t res;
577
578 old_fs = get_fs();
579 set_fs(get_ds());
580 /* The cast to a user pointer is valid due to the set_fs() */
581 res = vfs_write(file, (const char __user *)buf, count, &pos);
582 set_fs(old_fs);
583
584 return res;
585}
586
587ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
588 struct pipe_inode_info *pipe, size_t len,
589 unsigned int flags)
590{
591 unsigned int nr_pages;
592 unsigned int nr_freed;
593 size_t offset;
594 struct page *pages[PIPE_DEF_BUFFERS];
595 struct partial_page partial[PIPE_DEF_BUFFERS];
596 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
597 ssize_t res;
598 size_t this_len;
599 int error;
600 int i;
601 struct splice_pipe_desc spd = {
602 .pages = pages,
603 .partial = partial,
604 .nr_pages_max = PIPE_DEF_BUFFERS,
605 .flags = flags,
606 .ops = &default_pipe_buf_ops,
607 .spd_release = spd_release_page,
608 };
609
610 if (splice_grow_spd(pipe, &spd))
611 return -ENOMEM;
612
613 res = -ENOMEM;
614 vec = __vec;
615 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
616 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
617 if (!vec)
618 goto shrink_ret;
619 }
620
621 offset = *ppos & ~PAGE_CACHE_MASK;
622 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
623
624 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
625 struct page *page;
626
627 page = alloc_page(GFP_USER);
628 error = -ENOMEM;
629 if (!page)
630 goto err;
631
632 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
633 vec[i].iov_base = (void __user *) page_address(page);
634 vec[i].iov_len = this_len;
635 spd.pages[i] = page;
636 spd.nr_pages++;
637 len -= this_len;
638 offset = 0;
639 }
640
641 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
642 if (res < 0) {
643 error = res;
644 goto err;
645 }
646
647 error = 0;
648 if (!res)
649 goto err;
650
651 nr_freed = 0;
652 for (i = 0; i < spd.nr_pages; i++) {
653 this_len = min_t(size_t, vec[i].iov_len, res);
654 spd.partial[i].offset = 0;
655 spd.partial[i].len = this_len;
656 if (!this_len) {
657 __free_page(spd.pages[i]);
658 spd.pages[i] = NULL;
659 nr_freed++;
660 }
661 res -= this_len;
662 }
663 spd.nr_pages -= nr_freed;
664
665 res = splice_to_pipe(pipe, &spd);
666 if (res > 0)
667 *ppos += res;
668
669shrink_ret:
670 if (vec != __vec)
671 kfree(vec);
672 splice_shrink_spd(&spd);
673 return res;
674
675err:
676 for (i = 0; i < spd.nr_pages; i++)
677 __free_page(spd.pages[i]);
678
679 res = error;
680 goto shrink_ret;
681}
682EXPORT_SYMBOL(default_file_splice_read);
683
684/*
685 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
686 * using sendpage(). Return the number of bytes sent.
687 */
688static int pipe_to_sendpage(struct pipe_inode_info *pipe,
689 struct pipe_buffer *buf, struct splice_desc *sd)
690{
691 struct file *file = sd->u.file;
692 loff_t pos = sd->pos;
693 int more;
694
695 if (!likely(file->f_op && file->f_op->sendpage))
696 return -EINVAL;
697
698 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
699
700 if (sd->len < sd->total_len && pipe->nrbufs > 1)
701 more |= MSG_SENDPAGE_NOTLAST;
702
703 return file->f_op->sendpage(file, buf->page, buf->offset,
704 sd->len, &pos, more);
705}
706
707/*
708 * This is a little more tricky than the file -> pipe splicing. There are
709 * basically three cases:
710 *
711 * - Destination page already exists in the address space and there
712 * are users of it. For that case we have no other option that
713 * copying the data. Tough luck.
714 * - Destination page already exists in the address space, but there
715 * are no users of it. Make sure it's uptodate, then drop it. Fall
716 * through to last case.
717 * - Destination page does not exist, we can add the pipe page to
718 * the page cache and avoid the copy.
719 *
720 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
721 * sd->flags), we attempt to migrate pages from the pipe to the output
722 * file address space page cache. This is possible if no one else has
723 * the pipe page referenced outside of the pipe and page cache. If
724 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
725 * a new page in the output file page cache and fill/dirty that.
726 */
727int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
728 struct splice_desc *sd)
729{
730 struct file *file = sd->u.file;
731 struct address_space *mapping = file->f_mapping;
732 unsigned int offset, this_len;
733 struct page *page;
734 void *fsdata;
735 int ret;
736
737 offset = sd->pos & ~PAGE_CACHE_MASK;
738
739 this_len = sd->len;
740 if (this_len + offset > PAGE_CACHE_SIZE)
741 this_len = PAGE_CACHE_SIZE - offset;
742
743 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
744 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
745 if (unlikely(ret))
746 goto out;
747
748 if (buf->page != page) {
749 char *src = buf->ops->map(pipe, buf, 1);
750 char *dst = kmap_atomic(page);
751
752 memcpy(dst + offset, src + buf->offset, this_len);
753 flush_dcache_page(page);
754 kunmap_atomic(dst);
755 buf->ops->unmap(pipe, buf, src);
756 }
757 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
758 page, fsdata);
759out:
760 return ret;
761}
762EXPORT_SYMBOL(pipe_to_file);
763
764static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
765{
766 smp_mb();
767 if (waitqueue_active(&pipe->wait))
768 wake_up_interruptible(&pipe->wait);
769 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
770}
771
772/**
773 * splice_from_pipe_feed - feed available data from a pipe to a file
774 * @pipe: pipe to splice from
775 * @sd: information to @actor
776 * @actor: handler that splices the data
777 *
778 * Description:
779 * This function loops over the pipe and calls @actor to do the
780 * actual moving of a single struct pipe_buffer to the desired
781 * destination. It returns when there's no more buffers left in
782 * the pipe or if the requested number of bytes (@sd->total_len)
783 * have been copied. It returns a positive number (one) if the
784 * pipe needs to be filled with more data, zero if the required
785 * number of bytes have been copied and -errno on error.
786 *
787 * This, together with splice_from_pipe_{begin,end,next}, may be
788 * used to implement the functionality of __splice_from_pipe() when
789 * locking is required around copying the pipe buffers to the
790 * destination.
791 */
792int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
793 splice_actor *actor)
794{
795 int ret;
796
797 while (pipe->nrbufs) {
798 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
799 const struct pipe_buf_operations *ops = buf->ops;
800
801 sd->len = buf->len;
802 if (sd->len > sd->total_len)
803 sd->len = sd->total_len;
804
805 ret = buf->ops->confirm(pipe, buf);
806 if (unlikely(ret)) {
807 if (ret == -ENODATA)
808 ret = 0;
809 return ret;
810 }
811
812 ret = actor(pipe, buf, sd);
813 if (ret <= 0)
814 return ret;
815
816 buf->offset += ret;
817 buf->len -= ret;
818
819 sd->num_spliced += ret;
820 sd->len -= ret;
821 sd->pos += ret;
822 sd->total_len -= ret;
823
824 if (!buf->len) {
825 buf->ops = NULL;
826 ops->release(pipe, buf);
827 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
828 pipe->nrbufs--;
829 if (pipe->inode)
830 sd->need_wakeup = true;
831 }
832
833 if (!sd->total_len)
834 return 0;
835 }
836
837 return 1;
838}
839EXPORT_SYMBOL(splice_from_pipe_feed);
840
841/**
842 * splice_from_pipe_next - wait for some data to splice from
843 * @pipe: pipe to splice from
844 * @sd: information about the splice operation
845 *
846 * Description:
847 * This function will wait for some data and return a positive
848 * value (one) if pipe buffers are available. It will return zero
849 * or -errno if no more data needs to be spliced.
850 */
851int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
852{
853 while (!pipe->nrbufs) {
854 if (!pipe->writers)
855 return 0;
856
857 if (!pipe->waiting_writers && sd->num_spliced)
858 return 0;
859
860 if (sd->flags & SPLICE_F_NONBLOCK)
861 return -EAGAIN;
862
863 if (signal_pending(current))
864 return -ERESTARTSYS;
865
866 if (sd->need_wakeup) {
867 wakeup_pipe_writers(pipe);
868 sd->need_wakeup = false;
869 }
870
871 pipe_wait(pipe);
872 }
873
874 return 1;
875}
876EXPORT_SYMBOL(splice_from_pipe_next);
877
878/**
879 * splice_from_pipe_begin - start splicing from pipe
880 * @sd: information about the splice operation
881 *
882 * Description:
883 * This function should be called before a loop containing
884 * splice_from_pipe_next() and splice_from_pipe_feed() to
885 * initialize the necessary fields of @sd.
886 */
887void splice_from_pipe_begin(struct splice_desc *sd)
888{
889 sd->num_spliced = 0;
890 sd->need_wakeup = false;
891}
892EXPORT_SYMBOL(splice_from_pipe_begin);
893
894/**
895 * splice_from_pipe_end - finish splicing from pipe
896 * @pipe: pipe to splice from
897 * @sd: information about the splice operation
898 *
899 * Description:
900 * This function will wake up pipe writers if necessary. It should
901 * be called after a loop containing splice_from_pipe_next() and
902 * splice_from_pipe_feed().
903 */
904void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
905{
906 if (sd->need_wakeup)
907 wakeup_pipe_writers(pipe);
908}
909EXPORT_SYMBOL(splice_from_pipe_end);
910
911/**
912 * __splice_from_pipe - splice data from a pipe to given actor
913 * @pipe: pipe to splice from
914 * @sd: information to @actor
915 * @actor: handler that splices the data
916 *
917 * Description:
918 * This function does little more than loop over the pipe and call
919 * @actor to do the actual moving of a single struct pipe_buffer to
920 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
921 * pipe_to_user.
922 *
923 */
924ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
925 splice_actor *actor)
926{
927 int ret;
928
929 splice_from_pipe_begin(sd);
930 do {
931 ret = splice_from_pipe_next(pipe, sd);
932 if (ret > 0)
933 ret = splice_from_pipe_feed(pipe, sd, actor);
934 } while (ret > 0);
935 splice_from_pipe_end(pipe, sd);
936
937 return sd->num_spliced ? sd->num_spliced : ret;
938}
939EXPORT_SYMBOL(__splice_from_pipe);
940
941/**
942 * splice_from_pipe - splice data from a pipe to a file
943 * @pipe: pipe to splice from
944 * @out: file to splice to
945 * @ppos: position in @out
946 * @len: how many bytes to splice
947 * @flags: splice modifier flags
948 * @actor: handler that splices the data
949 *
950 * Description:
951 * See __splice_from_pipe. This function locks the pipe inode,
952 * otherwise it's identical to __splice_from_pipe().
953 *
954 */
955ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
956 loff_t *ppos, size_t len, unsigned int flags,
957 splice_actor *actor)
958{
959 ssize_t ret;
960 struct splice_desc sd = {
961 .total_len = len,
962 .flags = flags,
963 .pos = *ppos,
964 .u.file = out,
965 };
966
967 pipe_lock(pipe);
968 ret = __splice_from_pipe(pipe, &sd, actor);
969 pipe_unlock(pipe);
970
971 return ret;
972}
973
974/**
975 * generic_file_splice_write - splice data from a pipe to a file
976 * @pipe: pipe info
977 * @out: file to write to
978 * @ppos: position in @out
979 * @len: number of bytes to splice
980 * @flags: splice modifier flags
981 *
982 * Description:
983 * Will either move or copy pages (determined by @flags options) from
984 * the given pipe inode to the given file.
985 *
986 */
987ssize_t
988generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
989 loff_t *ppos, size_t len, unsigned int flags)
990{
991 struct address_space *mapping = out->f_mapping;
992 struct inode *inode = mapping->host;
993 struct splice_desc sd = {
994 .flags = flags,
995 .u.file = out,
996 };
997 ssize_t ret;
998
999 ret = generic_write_checks(out, ppos, &len, S_ISBLK(inode->i_mode));
1000 if (ret)
1001 return ret;
1002 sd.total_len = len;
1003 sd.pos = *ppos;
1004
1005 pipe_lock(pipe);
1006
1007 splice_from_pipe_begin(&sd);
1008 do {
1009 ret = splice_from_pipe_next(pipe, &sd);
1010 if (ret <= 0)
1011 break;
1012
1013 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1014 ret = file_remove_suid(out);
1015 if (!ret) {
1016 file_update_time(out);
1017 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1018 }
1019 mutex_unlock(&inode->i_mutex);
1020 } while (ret > 0);
1021 splice_from_pipe_end(pipe, &sd);
1022
1023 pipe_unlock(pipe);
1024
1025 if (sd.num_spliced)
1026 ret = sd.num_spliced;
1027
1028 if (ret > 0) {
1029 unsigned long nr_pages;
1030 int err;
1031
1032 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1033
1034 err = generic_write_sync(out, *ppos, ret);
1035 if (err)
1036 ret = err;
1037 else
1038 *ppos += ret;
1039 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1040 }
1041
1042 return ret;
1043}
1044
1045EXPORT_SYMBOL(generic_file_splice_write);
1046
1047static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1048 struct splice_desc *sd)
1049{
1050 int ret;
1051 void *data;
1052
1053 data = buf->ops->map(pipe, buf, 0);
1054 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1055 buf->ops->unmap(pipe, buf, data);
1056
1057 return ret;
1058}
1059
1060static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1061 struct file *out, loff_t *ppos,
1062 size_t len, unsigned int flags)
1063{
1064 ssize_t ret;
1065
1066 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1067 if (ret > 0)
1068 *ppos += ret;
1069
1070 return ret;
1071}
1072
1073/**
1074 * generic_splice_sendpage - splice data from a pipe to a socket
1075 * @pipe: pipe to splice from
1076 * @out: socket to write to
1077 * @ppos: position in @out
1078 * @len: number of bytes to splice
1079 * @flags: splice modifier flags
1080 *
1081 * Description:
1082 * Will send @len bytes from the pipe to a network socket. No data copying
1083 * is involved.
1084 *
1085 */
1086ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1087 loff_t *ppos, size_t len, unsigned int flags)
1088{
1089 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1090}
1091
1092EXPORT_SYMBOL(generic_splice_sendpage);
1093
1094/*
1095 * Attempt to initiate a splice from pipe to file.
1096 */
1097static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1098 loff_t *ppos, size_t len, unsigned int flags)
1099{
1100 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1101 loff_t *, size_t, unsigned int);
1102 int ret;
1103
1104 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1105 return -EBADF;
1106
1107 if (unlikely(out->f_flags & O_APPEND))
1108 return -EINVAL;
1109
1110 ret = rw_verify_area(WRITE, out, ppos, len);
1111 if (unlikely(ret < 0))
1112 return ret;
1113
1114 if (out->f_op && out->f_op->splice_write)
1115 splice_write = out->f_op->splice_write;
1116 else
1117 splice_write = default_file_splice_write;
1118
1119 return splice_write(pipe, out, ppos, len, flags);
1120}
1121
1122/*
1123 * Attempt to initiate a splice from a file to a pipe.
1124 */
1125static long do_splice_to(struct file *in, loff_t *ppos,
1126 struct pipe_inode_info *pipe, size_t len,
1127 unsigned int flags)
1128{
1129 ssize_t (*splice_read)(struct file *, loff_t *,
1130 struct pipe_inode_info *, size_t, unsigned int);
1131 int ret;
1132
1133 if (unlikely(!(in->f_mode & FMODE_READ)))
1134 return -EBADF;
1135
1136 ret = rw_verify_area(READ, in, ppos, len);
1137 if (unlikely(ret < 0))
1138 return ret;
1139
1140 if (in->f_op && in->f_op->splice_read)
1141 splice_read = in->f_op->splice_read;
1142 else
1143 splice_read = default_file_splice_read;
1144
1145 return splice_read(in, ppos, pipe, len, flags);
1146}
1147
1148/**
1149 * splice_direct_to_actor - splices data directly between two non-pipes
1150 * @in: file to splice from
1151 * @sd: actor information on where to splice to
1152 * @actor: handles the data splicing
1153 *
1154 * Description:
1155 * This is a special case helper to splice directly between two
1156 * points, without requiring an explicit pipe. Internally an allocated
1157 * pipe is cached in the process, and reused during the lifetime of
1158 * that process.
1159 *
1160 */
1161ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1162 splice_direct_actor *actor)
1163{
1164 struct pipe_inode_info *pipe;
1165 long ret, bytes;
1166 umode_t i_mode;
1167 size_t len;
1168 int i, flags;
1169
1170 /*
1171 * We require the input being a regular file, as we don't want to
1172 * randomly drop data for eg socket -> socket splicing. Use the
1173 * piped splicing for that!
1174 */
1175 i_mode = in->f_path.dentry->d_inode->i_mode;
1176 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1177 return -EINVAL;
1178
1179 /*
1180 * neither in nor out is a pipe, setup an internal pipe attached to
1181 * 'out' and transfer the wanted data from 'in' to 'out' through that
1182 */
1183 pipe = current->splice_pipe;
1184 if (unlikely(!pipe)) {
1185 pipe = alloc_pipe_info(NULL);
1186 if (!pipe)
1187 return -ENOMEM;
1188
1189 /*
1190 * We don't have an immediate reader, but we'll read the stuff
1191 * out of the pipe right after the splice_to_pipe(). So set
1192 * PIPE_READERS appropriately.
1193 */
1194 pipe->readers = 1;
1195
1196 current->splice_pipe = pipe;
1197 }
1198
1199 /*
1200 * Do the splice.
1201 */
1202 ret = 0;
1203 bytes = 0;
1204 len = sd->total_len;
1205 flags = sd->flags;
1206
1207 /*
1208 * Don't block on output, we have to drain the direct pipe.
1209 */
1210 sd->flags &= ~SPLICE_F_NONBLOCK;
1211
1212 while (len) {
1213 size_t read_len;
1214 loff_t pos = sd->pos, prev_pos = pos;
1215
1216 ret = do_splice_to(in, &pos, pipe, len, flags);
1217 if (unlikely(ret <= 0))
1218 goto out_release;
1219
1220 read_len = ret;
1221 sd->total_len = read_len;
1222
1223 /*
1224 * NOTE: nonblocking mode only applies to the input. We
1225 * must not do the output in nonblocking mode as then we
1226 * could get stuck data in the internal pipe:
1227 */
1228 ret = actor(pipe, sd);
1229 if (unlikely(ret <= 0)) {
1230 sd->pos = prev_pos;
1231 goto out_release;
1232 }
1233
1234 bytes += ret;
1235 len -= ret;
1236 sd->pos = pos;
1237
1238 if (ret < read_len) {
1239 sd->pos = prev_pos + ret;
1240 goto out_release;
1241 }
1242 }
1243
1244done:
1245 pipe->nrbufs = pipe->curbuf = 0;
1246 file_accessed(in);
1247 return bytes;
1248
1249out_release:
1250 /*
1251 * If we did an incomplete transfer we must release
1252 * the pipe buffers in question:
1253 */
1254 for (i = 0; i < pipe->buffers; i++) {
1255 struct pipe_buffer *buf = pipe->bufs + i;
1256
1257 if (buf->ops) {
1258 buf->ops->release(pipe, buf);
1259 buf->ops = NULL;
1260 }
1261 }
1262
1263 if (!bytes)
1264 bytes = ret;
1265
1266 goto done;
1267}
1268EXPORT_SYMBOL(splice_direct_to_actor);
1269
1270static int direct_splice_actor(struct pipe_inode_info *pipe,
1271 struct splice_desc *sd)
1272{
1273 struct file *file = sd->u.file;
1274
1275 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1276 sd->flags);
1277}
1278
1279/**
1280 * do_splice_direct - splices data directly between two files
1281 * @in: file to splice from
1282 * @ppos: input file offset
1283 * @out: file to splice to
1284 * @len: number of bytes to splice
1285 * @flags: splice modifier flags
1286 *
1287 * Description:
1288 * For use by do_sendfile(). splice can easily emulate sendfile, but
1289 * doing it in the application would incur an extra system call
1290 * (splice in + splice out, as compared to just sendfile()). So this helper
1291 * can splice directly through a process-private pipe.
1292 *
1293 */
1294long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1295 size_t len, unsigned int flags)
1296{
1297 struct splice_desc sd = {
1298 .len = len,
1299 .total_len = len,
1300 .flags = flags,
1301 .pos = *ppos,
1302 .u.file = out,
1303 };
1304 long ret;
1305
1306 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1307 if (ret > 0)
1308 *ppos = sd.pos;
1309
1310 return ret;
1311}
1312
1313static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1314 struct pipe_inode_info *opipe,
1315 size_t len, unsigned int flags);
1316
1317/*
1318 * Determine where to splice to/from.
1319 */
1320static long do_splice(struct file *in, loff_t __user *off_in,
1321 struct file *out, loff_t __user *off_out,
1322 size_t len, unsigned int flags)
1323{
1324 struct pipe_inode_info *ipipe;
1325 struct pipe_inode_info *opipe;
1326 loff_t offset, *off;
1327 long ret;
1328
1329 ipipe = get_pipe_info(in);
1330 opipe = get_pipe_info(out);
1331
1332 if (ipipe && opipe) {
1333 if (off_in || off_out)
1334 return -ESPIPE;
1335
1336 if (!(in->f_mode & FMODE_READ))
1337 return -EBADF;
1338
1339 if (!(out->f_mode & FMODE_WRITE))
1340 return -EBADF;
1341
1342 /* Splicing to self would be fun, but... */
1343 if (ipipe == opipe)
1344 return -EINVAL;
1345
1346 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1347 }
1348
1349 if (ipipe) {
1350 if (off_in)
1351 return -ESPIPE;
1352 if (off_out) {
1353 if (!(out->f_mode & FMODE_PWRITE))
1354 return -EINVAL;
1355 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1356 return -EFAULT;
1357 off = &offset;
1358 } else
1359 off = &out->f_pos;
1360
1361 ret = do_splice_from(ipipe, out, off, len, flags);
1362
1363 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1364 ret = -EFAULT;
1365
1366 return ret;
1367 }
1368
1369 if (opipe) {
1370 if (off_out)
1371 return -ESPIPE;
1372 if (off_in) {
1373 if (!(in->f_mode & FMODE_PREAD))
1374 return -EINVAL;
1375 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1376 return -EFAULT;
1377 off = &offset;
1378 } else
1379 off = &in->f_pos;
1380
1381 ret = do_splice_to(in, off, opipe, len, flags);
1382
1383 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1384 ret = -EFAULT;
1385
1386 return ret;
1387 }
1388
1389 return -EINVAL;
1390}
1391
1392/*
1393 * Map an iov into an array of pages and offset/length tupples. With the
1394 * partial_page structure, we can map several non-contiguous ranges into
1395 * our ones pages[] map instead of splitting that operation into pieces.
1396 * Could easily be exported as a generic helper for other users, in which
1397 * case one would probably want to add a 'max_nr_pages' parameter as well.
1398 */
1399static int get_iovec_page_array(const struct iovec __user *iov,
1400 unsigned int nr_vecs, struct page **pages,
1401 struct partial_page *partial, int aligned,
1402 unsigned int pipe_buffers)
1403{
1404 int buffers = 0, error = 0;
1405
1406 while (nr_vecs) {
1407 unsigned long off, npages;
1408 struct iovec entry;
1409 void __user *base;
1410 size_t len;
1411 int i;
1412
1413 error = -EFAULT;
1414 if (copy_from_user(&entry, iov, sizeof(entry)))
1415 break;
1416
1417 base = entry.iov_base;
1418 len = entry.iov_len;
1419
1420 /*
1421 * Sanity check this iovec. 0 read succeeds.
1422 */
1423 error = 0;
1424 if (unlikely(!len))
1425 break;
1426 error = -EFAULT;
1427 if (!access_ok(VERIFY_READ, base, len))
1428 break;
1429
1430 /*
1431 * Get this base offset and number of pages, then map
1432 * in the user pages.
1433 */
1434 off = (unsigned long) base & ~PAGE_MASK;
1435
1436 /*
1437 * If asked for alignment, the offset must be zero and the
1438 * length a multiple of the PAGE_SIZE.
1439 */
1440 error = -EINVAL;
1441 if (aligned && (off || len & ~PAGE_MASK))
1442 break;
1443
1444 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1445 if (npages > pipe_buffers - buffers)
1446 npages = pipe_buffers - buffers;
1447
1448 error = get_user_pages_fast((unsigned long)base, npages,
1449 0, &pages[buffers]);
1450
1451 if (unlikely(error <= 0))
1452 break;
1453
1454 /*
1455 * Fill this contiguous range into the partial page map.
1456 */
1457 for (i = 0; i < error; i++) {
1458 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1459
1460 partial[buffers].offset = off;
1461 partial[buffers].len = plen;
1462
1463 off = 0;
1464 len -= plen;
1465 buffers++;
1466 }
1467
1468 /*
1469 * We didn't complete this iov, stop here since it probably
1470 * means we have to move some of this into a pipe to
1471 * be able to continue.
1472 */
1473 if (len)
1474 break;
1475
1476 /*
1477 * Don't continue if we mapped fewer pages than we asked for,
1478 * or if we mapped the max number of pages that we have
1479 * room for.
1480 */
1481 if (error < npages || buffers == pipe_buffers)
1482 break;
1483
1484 nr_vecs--;
1485 iov++;
1486 }
1487
1488 if (buffers)
1489 return buffers;
1490
1491 return error;
1492}
1493
1494static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1495 struct splice_desc *sd)
1496{
1497 char *src;
1498 int ret;
1499
1500 /*
1501 * See if we can use the atomic maps, by prefaulting in the
1502 * pages and doing an atomic copy
1503 */
1504 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1505 src = buf->ops->map(pipe, buf, 1);
1506 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1507 sd->len);
1508 buf->ops->unmap(pipe, buf, src);
1509 if (!ret) {
1510 ret = sd->len;
1511 goto out;
1512 }
1513 }
1514
1515 /*
1516 * No dice, use slow non-atomic map and copy
1517 */
1518 src = buf->ops->map(pipe, buf, 0);
1519
1520 ret = sd->len;
1521 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1522 ret = -EFAULT;
1523
1524 buf->ops->unmap(pipe, buf, src);
1525out:
1526 if (ret > 0)
1527 sd->u.userptr += ret;
1528 return ret;
1529}
1530
1531/*
1532 * For lack of a better implementation, implement vmsplice() to userspace
1533 * as a simple copy of the pipes pages to the user iov.
1534 */
1535static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1536 unsigned long nr_segs, unsigned int flags)
1537{
1538 struct pipe_inode_info *pipe;
1539 struct splice_desc sd;
1540 ssize_t size;
1541 int error;
1542 long ret;
1543
1544 pipe = get_pipe_info(file);
1545 if (!pipe)
1546 return -EBADF;
1547
1548 pipe_lock(pipe);
1549
1550 error = ret = 0;
1551 while (nr_segs) {
1552 void __user *base;
1553 size_t len;
1554
1555 /*
1556 * Get user address base and length for this iovec.
1557 */
1558 error = get_user(base, &iov->iov_base);
1559 if (unlikely(error))
1560 break;
1561 error = get_user(len, &iov->iov_len);
1562 if (unlikely(error))
1563 break;
1564
1565 /*
1566 * Sanity check this iovec. 0 read succeeds.
1567 */
1568 if (unlikely(!len))
1569 break;
1570 if (unlikely(!base)) {
1571 error = -EFAULT;
1572 break;
1573 }
1574
1575 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1576 error = -EFAULT;
1577 break;
1578 }
1579
1580 sd.len = 0;
1581 sd.total_len = len;
1582 sd.flags = flags;
1583 sd.u.userptr = base;
1584 sd.pos = 0;
1585
1586 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1587 if (size < 0) {
1588 if (!ret)
1589 ret = size;
1590
1591 break;
1592 }
1593
1594 ret += size;
1595
1596 if (size < len)
1597 break;
1598
1599 nr_segs--;
1600 iov++;
1601 }
1602
1603 pipe_unlock(pipe);
1604
1605 if (!ret)
1606 ret = error;
1607
1608 return ret;
1609}
1610
1611/*
1612 * vmsplice splices a user address range into a pipe. It can be thought of
1613 * as splice-from-memory, where the regular splice is splice-from-file (or
1614 * to file). In both cases the output is a pipe, naturally.
1615 */
1616static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1617 unsigned long nr_segs, unsigned int flags)
1618{
1619 struct pipe_inode_info *pipe;
1620 struct page *pages[PIPE_DEF_BUFFERS];
1621 struct partial_page partial[PIPE_DEF_BUFFERS];
1622 struct splice_pipe_desc spd = {
1623 .pages = pages,
1624 .partial = partial,
1625 .nr_pages_max = PIPE_DEF_BUFFERS,
1626 .flags = flags,
1627 .ops = &user_page_pipe_buf_ops,
1628 .spd_release = spd_release_page,
1629 };
1630 long ret;
1631
1632 pipe = get_pipe_info(file);
1633 if (!pipe)
1634 return -EBADF;
1635
1636 if (splice_grow_spd(pipe, &spd))
1637 return -ENOMEM;
1638
1639 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1640 spd.partial, flags & SPLICE_F_GIFT,
1641 spd.nr_pages_max);
1642 if (spd.nr_pages <= 0)
1643 ret = spd.nr_pages;
1644 else
1645 ret = splice_to_pipe(pipe, &spd);
1646
1647 splice_shrink_spd(&spd);
1648 return ret;
1649}
1650
1651/*
1652 * Note that vmsplice only really supports true splicing _from_ user memory
1653 * to a pipe, not the other way around. Splicing from user memory is a simple
1654 * operation that can be supported without any funky alignment restrictions
1655 * or nasty vm tricks. We simply map in the user memory and fill them into
1656 * a pipe. The reverse isn't quite as easy, though. There are two possible
1657 * solutions for that:
1658 *
1659 * - memcpy() the data internally, at which point we might as well just
1660 * do a regular read() on the buffer anyway.
1661 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1662 * has restriction limitations on both ends of the pipe).
1663 *
1664 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1665 *
1666 */
1667SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1668 unsigned long, nr_segs, unsigned int, flags)
1669{
1670 struct file *file;
1671 long error;
1672 int fput;
1673
1674 if (unlikely(nr_segs > UIO_MAXIOV))
1675 return -EINVAL;
1676 else if (unlikely(!nr_segs))
1677 return 0;
1678
1679 error = -EBADF;
1680 file = fget_light(fd, &fput);
1681 if (file) {
1682 if (file->f_mode & FMODE_WRITE)
1683 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1684 else if (file->f_mode & FMODE_READ)
1685 error = vmsplice_to_user(file, iov, nr_segs, flags);
1686
1687 fput_light(file, fput);
1688 }
1689
1690 return error;
1691}
1692
1693SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1694 int, fd_out, loff_t __user *, off_out,
1695 size_t, len, unsigned int, flags)
1696{
1697 long error;
1698 struct file *in, *out;
1699 int fput_in, fput_out;
1700
1701 if (unlikely(!len))
1702 return 0;
1703
1704 error = -EBADF;
1705 in = fget_light(fd_in, &fput_in);
1706 if (in) {
1707 if (in->f_mode & FMODE_READ) {
1708 out = fget_light(fd_out, &fput_out);
1709 if (out) {
1710 if (out->f_mode & FMODE_WRITE)
1711 error = do_splice(in, off_in,
1712 out, off_out,
1713 len, flags);
1714 fput_light(out, fput_out);
1715 }
1716 }
1717
1718 fput_light(in, fput_in);
1719 }
1720
1721 return error;
1722}
1723
1724/*
1725 * Make sure there's data to read. Wait for input if we can, otherwise
1726 * return an appropriate error.
1727 */
1728static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1729{
1730 int ret;
1731
1732 /*
1733 * Check ->nrbufs without the inode lock first. This function
1734 * is speculative anyways, so missing one is ok.
1735 */
1736 if (pipe->nrbufs)
1737 return 0;
1738
1739 ret = 0;
1740 pipe_lock(pipe);
1741
1742 while (!pipe->nrbufs) {
1743 if (signal_pending(current)) {
1744 ret = -ERESTARTSYS;
1745 break;
1746 }
1747 if (!pipe->writers)
1748 break;
1749 if (!pipe->waiting_writers) {
1750 if (flags & SPLICE_F_NONBLOCK) {
1751 ret = -EAGAIN;
1752 break;
1753 }
1754 }
1755 pipe_wait(pipe);
1756 }
1757
1758 pipe_unlock(pipe);
1759 return ret;
1760}
1761
1762/*
1763 * Make sure there's writeable room. Wait for room if we can, otherwise
1764 * return an appropriate error.
1765 */
1766static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1767{
1768 int ret;
1769
1770 /*
1771 * Check ->nrbufs without the inode lock first. This function
1772 * is speculative anyways, so missing one is ok.
1773 */
1774 if (pipe->nrbufs < pipe->buffers)
1775 return 0;
1776
1777 ret = 0;
1778 pipe_lock(pipe);
1779
1780 while (pipe->nrbufs >= pipe->buffers) {
1781 if (!pipe->readers) {
1782 send_sig(SIGPIPE, current, 0);
1783 ret = -EPIPE;
1784 break;
1785 }
1786 if (flags & SPLICE_F_NONBLOCK) {
1787 ret = -EAGAIN;
1788 break;
1789 }
1790 if (signal_pending(current)) {
1791 ret = -ERESTARTSYS;
1792 break;
1793 }
1794 pipe->waiting_writers++;
1795 pipe_wait(pipe);
1796 pipe->waiting_writers--;
1797 }
1798
1799 pipe_unlock(pipe);
1800 return ret;
1801}
1802
1803/*
1804 * Splice contents of ipipe to opipe.
1805 */
1806static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1807 struct pipe_inode_info *opipe,
1808 size_t len, unsigned int flags)
1809{
1810 struct pipe_buffer *ibuf, *obuf;
1811 int ret = 0, nbuf;
1812 bool input_wakeup = false;
1813
1814
1815retry:
1816 ret = ipipe_prep(ipipe, flags);
1817 if (ret)
1818 return ret;
1819
1820 ret = opipe_prep(opipe, flags);
1821 if (ret)
1822 return ret;
1823
1824 /*
1825 * Potential ABBA deadlock, work around it by ordering lock
1826 * grabbing by pipe info address. Otherwise two different processes
1827 * could deadlock (one doing tee from A -> B, the other from B -> A).
1828 */
1829 pipe_double_lock(ipipe, opipe);
1830
1831 do {
1832 if (!opipe->readers) {
1833 send_sig(SIGPIPE, current, 0);
1834 if (!ret)
1835 ret = -EPIPE;
1836 break;
1837 }
1838
1839 if (!ipipe->nrbufs && !ipipe->writers)
1840 break;
1841
1842 /*
1843 * Cannot make any progress, because either the input
1844 * pipe is empty or the output pipe is full.
1845 */
1846 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1847 /* Already processed some buffers, break */
1848 if (ret)
1849 break;
1850
1851 if (flags & SPLICE_F_NONBLOCK) {
1852 ret = -EAGAIN;
1853 break;
1854 }
1855
1856 /*
1857 * We raced with another reader/writer and haven't
1858 * managed to process any buffers. A zero return
1859 * value means EOF, so retry instead.
1860 */
1861 pipe_unlock(ipipe);
1862 pipe_unlock(opipe);
1863 goto retry;
1864 }
1865
1866 ibuf = ipipe->bufs + ipipe->curbuf;
1867 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1868 obuf = opipe->bufs + nbuf;
1869
1870 if (len >= ibuf->len) {
1871 /*
1872 * Simply move the whole buffer from ipipe to opipe
1873 */
1874 *obuf = *ibuf;
1875 ibuf->ops = NULL;
1876 opipe->nrbufs++;
1877 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1878 ipipe->nrbufs--;
1879 input_wakeup = true;
1880 } else {
1881 /*
1882 * Get a reference to this pipe buffer,
1883 * so we can copy the contents over.
1884 */
1885 ibuf->ops->get(ipipe, ibuf);
1886 *obuf = *ibuf;
1887
1888 /*
1889 * Don't inherit the gift flag, we need to
1890 * prevent multiple steals of this page.
1891 */
1892 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1893
1894 obuf->len = len;
1895 opipe->nrbufs++;
1896 ibuf->offset += obuf->len;
1897 ibuf->len -= obuf->len;
1898 }
1899 ret += obuf->len;
1900 len -= obuf->len;
1901 } while (len);
1902
1903 pipe_unlock(ipipe);
1904 pipe_unlock(opipe);
1905
1906 /*
1907 * If we put data in the output pipe, wakeup any potential readers.
1908 */
1909 if (ret > 0)
1910 wakeup_pipe_readers(opipe);
1911
1912 if (input_wakeup)
1913 wakeup_pipe_writers(ipipe);
1914
1915 return ret;
1916}
1917
1918/*
1919 * Link contents of ipipe to opipe.
1920 */
1921static int link_pipe(struct pipe_inode_info *ipipe,
1922 struct pipe_inode_info *opipe,
1923 size_t len, unsigned int flags)
1924{
1925 struct pipe_buffer *ibuf, *obuf;
1926 int ret = 0, i = 0, nbuf;
1927
1928 /*
1929 * Potential ABBA deadlock, work around it by ordering lock
1930 * grabbing by pipe info address. Otherwise two different processes
1931 * could deadlock (one doing tee from A -> B, the other from B -> A).
1932 */
1933 pipe_double_lock(ipipe, opipe);
1934
1935 do {
1936 if (!opipe->readers) {
1937 send_sig(SIGPIPE, current, 0);
1938 if (!ret)
1939 ret = -EPIPE;
1940 break;
1941 }
1942
1943 /*
1944 * If we have iterated all input buffers or ran out of
1945 * output room, break.
1946 */
1947 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1948 break;
1949
1950 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1951 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1952
1953 /*
1954 * Get a reference to this pipe buffer,
1955 * so we can copy the contents over.
1956 */
1957 ibuf->ops->get(ipipe, ibuf);
1958
1959 obuf = opipe->bufs + nbuf;
1960 *obuf = *ibuf;
1961
1962 /*
1963 * Don't inherit the gift flag, we need to
1964 * prevent multiple steals of this page.
1965 */
1966 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1967
1968 if (obuf->len > len)
1969 obuf->len = len;
1970
1971 opipe->nrbufs++;
1972 ret += obuf->len;
1973 len -= obuf->len;
1974 i++;
1975 } while (len);
1976
1977 /*
1978 * return EAGAIN if we have the potential of some data in the
1979 * future, otherwise just return 0
1980 */
1981 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1982 ret = -EAGAIN;
1983
1984 pipe_unlock(ipipe);
1985 pipe_unlock(opipe);
1986
1987 /*
1988 * If we put data in the output pipe, wakeup any potential readers.
1989 */
1990 if (ret > 0)
1991 wakeup_pipe_readers(opipe);
1992
1993 return ret;
1994}
1995
1996/*
1997 * This is a tee(1) implementation that works on pipes. It doesn't copy
1998 * any data, it simply references the 'in' pages on the 'out' pipe.
1999 * The 'flags' used are the SPLICE_F_* variants, currently the only
2000 * applicable one is SPLICE_F_NONBLOCK.
2001 */
2002static long do_tee(struct file *in, struct file *out, size_t len,
2003 unsigned int flags)
2004{
2005 struct pipe_inode_info *ipipe = get_pipe_info(in);
2006 struct pipe_inode_info *opipe = get_pipe_info(out);
2007 int ret = -EINVAL;
2008
2009 /*
2010 * Duplicate the contents of ipipe to opipe without actually
2011 * copying the data.
2012 */
2013 if (ipipe && opipe && ipipe != opipe) {
2014 /*
2015 * Keep going, unless we encounter an error. The ipipe/opipe
2016 * ordering doesn't really matter.
2017 */
2018 ret = ipipe_prep(ipipe, flags);
2019 if (!ret) {
2020 ret = opipe_prep(opipe, flags);
2021 if (!ret)
2022 ret = link_pipe(ipipe, opipe, len, flags);
2023 }
2024 }
2025
2026 return ret;
2027}
2028
2029SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2030{
2031 struct file *in;
2032 int error, fput_in;
2033
2034 if (unlikely(!len))
2035 return 0;
2036
2037 error = -EBADF;
2038 in = fget_light(fdin, &fput_in);
2039 if (in) {
2040 if (in->f_mode & FMODE_READ) {
2041 int fput_out;
2042 struct file *out = fget_light(fdout, &fput_out);
2043
2044 if (out) {
2045 if (out->f_mode & FMODE_WRITE)
2046 error = do_tee(in, out, len, flags);
2047 fput_light(out, fput_out);
2048 }
2049 }
2050 fput_light(in, fput_in);
2051 }
2052
2053 return error;
2054}