lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Fast Userspace Mutexes (which I call "Futexes!"). |
| 3 | * (C) Rusty Russell, IBM 2002 |
| 4 | * |
| 5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar |
| 6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved |
| 7 | * |
| 8 | * Removed page pinning, fix privately mapped COW pages and other cleanups |
| 9 | * (C) Copyright 2003, 2004 Jamie Lokier |
| 10 | * |
| 11 | * Robust futex support started by Ingo Molnar |
| 12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved |
| 13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. |
| 14 | * |
| 15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
| 16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| 17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> |
| 18 | * |
| 19 | * PRIVATE futexes by Eric Dumazet |
| 20 | * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com> |
| 21 | * |
| 22 | * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com> |
| 23 | * Copyright (C) IBM Corporation, 2009 |
| 24 | * Thanks to Thomas Gleixner for conceptual design and careful reviews. |
| 25 | * |
| 26 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
| 27 | * enough at me, Linus for the original (flawed) idea, Matthew |
| 28 | * Kirkwood for proof-of-concept implementation. |
| 29 | * |
| 30 | * "The futexes are also cursed." |
| 31 | * "But they come in a choice of three flavours!" |
| 32 | * |
| 33 | * This program is free software; you can redistribute it and/or modify |
| 34 | * it under the terms of the GNU General Public License as published by |
| 35 | * the Free Software Foundation; either version 2 of the License, or |
| 36 | * (at your option) any later version. |
| 37 | * |
| 38 | * This program is distributed in the hope that it will be useful, |
| 39 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 40 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 41 | * GNU General Public License for more details. |
| 42 | * |
| 43 | * You should have received a copy of the GNU General Public License |
| 44 | * along with this program; if not, write to the Free Software |
| 45 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 46 | */ |
| 47 | #include <linux/slab.h> |
| 48 | #include <linux/poll.h> |
| 49 | #include <linux/fs.h> |
| 50 | #include <linux/file.h> |
| 51 | #include <linux/jhash.h> |
| 52 | #include <linux/init.h> |
| 53 | #include <linux/futex.h> |
| 54 | #include <linux/mount.h> |
| 55 | #include <linux/pagemap.h> |
| 56 | #include <linux/syscalls.h> |
| 57 | #include <linux/signal.h> |
| 58 | #include <linux/export.h> |
| 59 | #include <linux/magic.h> |
| 60 | #include <linux/pid.h> |
| 61 | #include <linux/nsproxy.h> |
| 62 | #include <linux/ptrace.h> |
| 63 | #include <linux/hugetlb.h> |
| 64 | |
| 65 | #include <asm/futex.h> |
| 66 | |
| 67 | #include "rtmutex_common.h" |
| 68 | |
| 69 | int __read_mostly futex_cmpxchg_enabled; |
| 70 | |
| 71 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) |
| 72 | |
| 73 | /* |
| 74 | * Futex flags used to encode options to functions and preserve them across |
| 75 | * restarts. |
| 76 | */ |
| 77 | #define FLAGS_SHARED 0x01 |
| 78 | #define FLAGS_CLOCKRT 0x02 |
| 79 | #define FLAGS_HAS_TIMEOUT 0x04 |
| 80 | |
| 81 | /* |
| 82 | * Priority Inheritance state: |
| 83 | */ |
| 84 | struct futex_pi_state { |
| 85 | /* |
| 86 | * list of 'owned' pi_state instances - these have to be |
| 87 | * cleaned up in do_exit() if the task exits prematurely: |
| 88 | */ |
| 89 | struct list_head list; |
| 90 | |
| 91 | /* |
| 92 | * The PI object: |
| 93 | */ |
| 94 | struct rt_mutex pi_mutex; |
| 95 | |
| 96 | struct task_struct *owner; |
| 97 | atomic_t refcount; |
| 98 | |
| 99 | union futex_key key; |
| 100 | }; |
| 101 | |
| 102 | /** |
| 103 | * struct futex_q - The hashed futex queue entry, one per waiting task |
| 104 | * @list: priority-sorted list of tasks waiting on this futex |
| 105 | * @task: the task waiting on the futex |
| 106 | * @lock_ptr: the hash bucket lock |
| 107 | * @key: the key the futex is hashed on |
| 108 | * @pi_state: optional priority inheritance state |
| 109 | * @rt_waiter: rt_waiter storage for use with requeue_pi |
| 110 | * @requeue_pi_key: the requeue_pi target futex key |
| 111 | * @bitset: bitset for the optional bitmasked wakeup |
| 112 | * |
| 113 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so |
| 114 | * we can wake only the relevant ones (hashed queues may be shared). |
| 115 | * |
| 116 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. |
| 117 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
| 118 | * The order of wakeup is always to make the first condition true, then |
| 119 | * the second. |
| 120 | * |
| 121 | * PI futexes are typically woken before they are removed from the hash list via |
| 122 | * the rt_mutex code. See unqueue_me_pi(). |
| 123 | */ |
| 124 | struct futex_q { |
| 125 | struct plist_node list; |
| 126 | |
| 127 | struct task_struct *task; |
| 128 | spinlock_t *lock_ptr; |
| 129 | union futex_key key; |
| 130 | struct futex_pi_state *pi_state; |
| 131 | struct rt_mutex_waiter *rt_waiter; |
| 132 | union futex_key *requeue_pi_key; |
| 133 | u32 bitset; |
| 134 | }; |
| 135 | |
| 136 | static const struct futex_q futex_q_init = { |
| 137 | /* list gets initialized in queue_me()*/ |
| 138 | .key = FUTEX_KEY_INIT, |
| 139 | .bitset = FUTEX_BITSET_MATCH_ANY |
| 140 | }; |
| 141 | |
| 142 | /* |
| 143 | * Hash buckets are shared by all the futex_keys that hash to the same |
| 144 | * location. Each key may have multiple futex_q structures, one for each task |
| 145 | * waiting on a futex. |
| 146 | */ |
| 147 | struct futex_hash_bucket { |
| 148 | spinlock_t lock; |
| 149 | struct plist_head chain; |
| 150 | }; |
| 151 | |
| 152 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; |
| 153 | |
| 154 | /* |
| 155 | * We hash on the keys returned from get_futex_key (see below). |
| 156 | */ |
| 157 | static struct futex_hash_bucket *hash_futex(union futex_key *key) |
| 158 | { |
| 159 | u32 hash = jhash2((u32*)&key->both.word, |
| 160 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, |
| 161 | key->both.offset); |
| 162 | return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * Return 1 if two futex_keys are equal, 0 otherwise. |
| 167 | */ |
| 168 | static inline int match_futex(union futex_key *key1, union futex_key *key2) |
| 169 | { |
| 170 | return (key1 && key2 |
| 171 | && key1->both.word == key2->both.word |
| 172 | && key1->both.ptr == key2->both.ptr |
| 173 | && key1->both.offset == key2->both.offset); |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * Take a reference to the resource addressed by a key. |
| 178 | * Can be called while holding spinlocks. |
| 179 | * |
| 180 | */ |
| 181 | static void get_futex_key_refs(union futex_key *key) |
| 182 | { |
| 183 | if (!key->both.ptr) |
| 184 | return; |
| 185 | |
| 186 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { |
| 187 | case FUT_OFF_INODE: |
| 188 | ihold(key->shared.inode); |
| 189 | break; |
| 190 | case FUT_OFF_MMSHARED: |
| 191 | atomic_inc(&key->private.mm->mm_count); |
| 192 | break; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * Drop a reference to the resource addressed by a key. |
| 198 | * The hash bucket spinlock must not be held. |
| 199 | */ |
| 200 | static void drop_futex_key_refs(union futex_key *key) |
| 201 | { |
| 202 | if (!key->both.ptr) { |
| 203 | /* If we're here then we tried to put a key we failed to get */ |
| 204 | WARN_ON_ONCE(1); |
| 205 | return; |
| 206 | } |
| 207 | |
| 208 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { |
| 209 | case FUT_OFF_INODE: |
| 210 | iput(key->shared.inode); |
| 211 | break; |
| 212 | case FUT_OFF_MMSHARED: |
| 213 | mmdrop(key->private.mm); |
| 214 | break; |
| 215 | default: |
| 216 | smp_mb(); /* explicit MB (B) */ |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | * get_futex_key() - Get parameters which are the keys for a futex |
| 222 | * @uaddr: virtual address of the futex |
| 223 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED |
| 224 | * @key: address where result is stored. |
| 225 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
| 226 | * VERIFY_WRITE) |
| 227 | * |
| 228 | * Returns a negative error code or 0 |
| 229 | * The key words are stored in *key on success. |
| 230 | * |
| 231 | * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode, |
| 232 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
| 233 | * We can usually work out the index without swapping in the page. |
| 234 | * |
| 235 | * lock_page() might sleep, the caller should not hold a spinlock. |
| 236 | */ |
| 237 | static int |
| 238 | get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw) |
| 239 | { |
| 240 | unsigned long address = (unsigned long)uaddr; |
| 241 | struct mm_struct *mm = current->mm; |
| 242 | struct page *page, *page_head; |
| 243 | int err, ro = 0; |
| 244 | |
| 245 | /* |
| 246 | * The futex address must be "naturally" aligned. |
| 247 | */ |
| 248 | key->both.offset = address % PAGE_SIZE; |
| 249 | if (unlikely((address % sizeof(u32)) != 0)) |
| 250 | return -EINVAL; |
| 251 | address -= key->both.offset; |
| 252 | |
| 253 | /* |
| 254 | * PROCESS_PRIVATE futexes are fast. |
| 255 | * As the mm cannot disappear under us and the 'key' only needs |
| 256 | * virtual address, we dont even have to find the underlying vma. |
| 257 | * Note : We do have to check 'uaddr' is a valid user address, |
| 258 | * but access_ok() should be faster than find_vma() |
| 259 | */ |
| 260 | if (!fshared) { |
| 261 | if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))) |
| 262 | return -EFAULT; |
| 263 | key->private.mm = mm; |
| 264 | key->private.address = address; |
| 265 | get_futex_key_refs(key); |
| 266 | return 0; |
| 267 | } |
| 268 | |
| 269 | again: |
| 270 | err = get_user_pages_fast(address, 1, 1, &page); |
| 271 | /* |
| 272 | * If write access is not required (eg. FUTEX_WAIT), try |
| 273 | * and get read-only access. |
| 274 | */ |
| 275 | if (err == -EFAULT && rw == VERIFY_READ) { |
| 276 | err = get_user_pages_fast(address, 1, 0, &page); |
| 277 | ro = 1; |
| 278 | } |
| 279 | if (err < 0) |
| 280 | return err; |
| 281 | else |
| 282 | err = 0; |
| 283 | |
| 284 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 285 | page_head = page; |
| 286 | if (unlikely(PageTail(page))) { |
| 287 | put_page(page); |
| 288 | /* serialize against __split_huge_page_splitting() */ |
| 289 | local_irq_disable(); |
| 290 | if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) { |
| 291 | page_head = compound_head(page); |
| 292 | /* |
| 293 | * page_head is valid pointer but we must pin |
| 294 | * it before taking the PG_lock and/or |
| 295 | * PG_compound_lock. The moment we re-enable |
| 296 | * irqs __split_huge_page_splitting() can |
| 297 | * return and the head page can be freed from |
| 298 | * under us. We can't take the PG_lock and/or |
| 299 | * PG_compound_lock on a page that could be |
| 300 | * freed from under us. |
| 301 | */ |
| 302 | if (page != page_head) { |
| 303 | get_page(page_head); |
| 304 | put_page(page); |
| 305 | } |
| 306 | local_irq_enable(); |
| 307 | } else { |
| 308 | local_irq_enable(); |
| 309 | goto again; |
| 310 | } |
| 311 | } |
| 312 | #else |
| 313 | page_head = compound_head(page); |
| 314 | if (page != page_head) { |
| 315 | get_page(page_head); |
| 316 | put_page(page); |
| 317 | } |
| 318 | #endif |
| 319 | |
| 320 | lock_page(page_head); |
| 321 | |
| 322 | /* |
| 323 | * If page_head->mapping is NULL, then it cannot be a PageAnon |
| 324 | * page; but it might be the ZERO_PAGE or in the gate area or |
| 325 | * in a special mapping (all cases which we are happy to fail); |
| 326 | * or it may have been a good file page when get_user_pages_fast |
| 327 | * found it, but truncated or holepunched or subjected to |
| 328 | * invalidate_complete_page2 before we got the page lock (also |
| 329 | * cases which we are happy to fail). And we hold a reference, |
| 330 | * so refcount care in invalidate_complete_page's remove_mapping |
| 331 | * prevents drop_caches from setting mapping to NULL beneath us. |
| 332 | * |
| 333 | * The case we do have to guard against is when memory pressure made |
| 334 | * shmem_writepage move it from filecache to swapcache beneath us: |
| 335 | * an unlikely race, but we do need to retry for page_head->mapping. |
| 336 | */ |
| 337 | if (!page_head->mapping) { |
| 338 | int shmem_swizzled = PageSwapCache(page_head); |
| 339 | unlock_page(page_head); |
| 340 | put_page(page_head); |
| 341 | if (shmem_swizzled) |
| 342 | goto again; |
| 343 | return -EFAULT; |
| 344 | } |
| 345 | |
| 346 | /* |
| 347 | * Private mappings are handled in a simple way. |
| 348 | * |
| 349 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if |
| 350 | * it's a read-only handle, it's expected that futexes attach to |
| 351 | * the object not the particular process. |
| 352 | */ |
| 353 | if (PageAnon(page_head)) { |
| 354 | /* |
| 355 | * A RO anonymous page will never change and thus doesn't make |
| 356 | * sense for futex operations. |
| 357 | */ |
| 358 | if (ro) { |
| 359 | err = -EFAULT; |
| 360 | goto out; |
| 361 | } |
| 362 | |
| 363 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
| 364 | key->private.mm = mm; |
| 365 | key->private.address = address; |
| 366 | } else { |
| 367 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ |
| 368 | key->shared.inode = page_head->mapping->host; |
| 369 | key->shared.pgoff = basepage_index(page); |
| 370 | } |
| 371 | |
| 372 | get_futex_key_refs(key); |
| 373 | |
| 374 | out: |
| 375 | unlock_page(page_head); |
| 376 | put_page(page_head); |
| 377 | return err; |
| 378 | } |
| 379 | |
| 380 | static inline void put_futex_key(union futex_key *key) |
| 381 | { |
| 382 | drop_futex_key_refs(key); |
| 383 | } |
| 384 | |
| 385 | /** |
| 386 | * fault_in_user_writeable() - Fault in user address and verify RW access |
| 387 | * @uaddr: pointer to faulting user space address |
| 388 | * |
| 389 | * Slow path to fixup the fault we just took in the atomic write |
| 390 | * access to @uaddr. |
| 391 | * |
| 392 | * We have no generic implementation of a non-destructive write to the |
| 393 | * user address. We know that we faulted in the atomic pagefault |
| 394 | * disabled section so we can as well avoid the #PF overhead by |
| 395 | * calling get_user_pages() right away. |
| 396 | */ |
| 397 | static int fault_in_user_writeable(u32 __user *uaddr) |
| 398 | { |
| 399 | struct mm_struct *mm = current->mm; |
| 400 | int ret; |
| 401 | |
| 402 | down_read(&mm->mmap_sem); |
| 403 | ret = fixup_user_fault(current, mm, (unsigned long)uaddr, |
| 404 | FAULT_FLAG_WRITE); |
| 405 | up_read(&mm->mmap_sem); |
| 406 | |
| 407 | return ret < 0 ? ret : 0; |
| 408 | } |
| 409 | |
| 410 | /** |
| 411 | * futex_top_waiter() - Return the highest priority waiter on a futex |
| 412 | * @hb: the hash bucket the futex_q's reside in |
| 413 | * @key: the futex key (to distinguish it from other futex futex_q's) |
| 414 | * |
| 415 | * Must be called with the hb lock held. |
| 416 | */ |
| 417 | static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, |
| 418 | union futex_key *key) |
| 419 | { |
| 420 | struct futex_q *this; |
| 421 | |
| 422 | plist_for_each_entry(this, &hb->chain, list) { |
| 423 | if (match_futex(&this->key, key)) |
| 424 | return this; |
| 425 | } |
| 426 | return NULL; |
| 427 | } |
| 428 | |
| 429 | static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, |
| 430 | u32 uval, u32 newval) |
| 431 | { |
| 432 | int ret; |
| 433 | |
| 434 | pagefault_disable(); |
| 435 | ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
| 436 | pagefault_enable(); |
| 437 | |
| 438 | return ret; |
| 439 | } |
| 440 | |
| 441 | static int get_futex_value_locked(u32 *dest, u32 __user *from) |
| 442 | { |
| 443 | int ret; |
| 444 | |
| 445 | pagefault_disable(); |
| 446 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
| 447 | pagefault_enable(); |
| 448 | |
| 449 | return ret ? -EFAULT : 0; |
| 450 | } |
| 451 | |
| 452 | |
| 453 | /* |
| 454 | * PI code: |
| 455 | */ |
| 456 | static int refill_pi_state_cache(void) |
| 457 | { |
| 458 | struct futex_pi_state *pi_state; |
| 459 | |
| 460 | if (likely(current->pi_state_cache)) |
| 461 | return 0; |
| 462 | |
| 463 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
| 464 | |
| 465 | if (!pi_state) |
| 466 | return -ENOMEM; |
| 467 | |
| 468 | INIT_LIST_HEAD(&pi_state->list); |
| 469 | /* pi_mutex gets initialized later */ |
| 470 | pi_state->owner = NULL; |
| 471 | atomic_set(&pi_state->refcount, 1); |
| 472 | pi_state->key = FUTEX_KEY_INIT; |
| 473 | |
| 474 | current->pi_state_cache = pi_state; |
| 475 | |
| 476 | return 0; |
| 477 | } |
| 478 | |
| 479 | static struct futex_pi_state * alloc_pi_state(void) |
| 480 | { |
| 481 | struct futex_pi_state *pi_state = current->pi_state_cache; |
| 482 | |
| 483 | WARN_ON(!pi_state); |
| 484 | current->pi_state_cache = NULL; |
| 485 | |
| 486 | return pi_state; |
| 487 | } |
| 488 | |
| 489 | /* |
| 490 | * Must be called with the hb lock held. |
| 491 | */ |
| 492 | static void free_pi_state(struct futex_pi_state *pi_state) |
| 493 | { |
| 494 | if (!pi_state) |
| 495 | return; |
| 496 | |
| 497 | if (!atomic_dec_and_test(&pi_state->refcount)) |
| 498 | return; |
| 499 | |
| 500 | /* |
| 501 | * If pi_state->owner is NULL, the owner is most probably dying |
| 502 | * and has cleaned up the pi_state already |
| 503 | */ |
| 504 | if (pi_state->owner) { |
| 505 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
| 506 | list_del_init(&pi_state->list); |
| 507 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
| 508 | |
| 509 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); |
| 510 | } |
| 511 | |
| 512 | if (current->pi_state_cache) |
| 513 | kfree(pi_state); |
| 514 | else { |
| 515 | /* |
| 516 | * pi_state->list is already empty. |
| 517 | * clear pi_state->owner. |
| 518 | * refcount is at 0 - put it back to 1. |
| 519 | */ |
| 520 | pi_state->owner = NULL; |
| 521 | atomic_set(&pi_state->refcount, 1); |
| 522 | current->pi_state_cache = pi_state; |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * Look up the task based on what TID userspace gave us. |
| 528 | * We dont trust it. |
| 529 | */ |
| 530 | static struct task_struct * futex_find_get_task(pid_t pid) |
| 531 | { |
| 532 | struct task_struct *p; |
| 533 | |
| 534 | rcu_read_lock(); |
| 535 | p = find_task_by_vpid(pid); |
| 536 | if (p) |
| 537 | get_task_struct(p); |
| 538 | |
| 539 | rcu_read_unlock(); |
| 540 | |
| 541 | return p; |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * This task is holding PI mutexes at exit time => bad. |
| 546 | * Kernel cleans up PI-state, but userspace is likely hosed. |
| 547 | * (Robust-futex cleanup is separate and might save the day for userspace.) |
| 548 | */ |
| 549 | void exit_pi_state_list(struct task_struct *curr) |
| 550 | { |
| 551 | struct list_head *next, *head = &curr->pi_state_list; |
| 552 | struct futex_pi_state *pi_state; |
| 553 | struct futex_hash_bucket *hb; |
| 554 | union futex_key key = FUTEX_KEY_INIT; |
| 555 | |
| 556 | if (!futex_cmpxchg_enabled) |
| 557 | return; |
| 558 | /* |
| 559 | * We are a ZOMBIE and nobody can enqueue itself on |
| 560 | * pi_state_list anymore, but we have to be careful |
| 561 | * versus waiters unqueueing themselves: |
| 562 | */ |
| 563 | raw_spin_lock_irq(&curr->pi_lock); |
| 564 | while (!list_empty(head)) { |
| 565 | |
| 566 | next = head->next; |
| 567 | pi_state = list_entry(next, struct futex_pi_state, list); |
| 568 | key = pi_state->key; |
| 569 | hb = hash_futex(&key); |
| 570 | raw_spin_unlock_irq(&curr->pi_lock); |
| 571 | |
| 572 | spin_lock(&hb->lock); |
| 573 | |
| 574 | raw_spin_lock_irq(&curr->pi_lock); |
| 575 | /* |
| 576 | * We dropped the pi-lock, so re-check whether this |
| 577 | * task still owns the PI-state: |
| 578 | */ |
| 579 | if (head->next != next) { |
| 580 | spin_unlock(&hb->lock); |
| 581 | continue; |
| 582 | } |
| 583 | |
| 584 | WARN_ON(pi_state->owner != curr); |
| 585 | WARN_ON(list_empty(&pi_state->list)); |
| 586 | list_del_init(&pi_state->list); |
| 587 | pi_state->owner = NULL; |
| 588 | raw_spin_unlock_irq(&curr->pi_lock); |
| 589 | |
| 590 | rt_mutex_unlock(&pi_state->pi_mutex); |
| 591 | |
| 592 | spin_unlock(&hb->lock); |
| 593 | |
| 594 | raw_spin_lock_irq(&curr->pi_lock); |
| 595 | } |
| 596 | raw_spin_unlock_irq(&curr->pi_lock); |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * We need to check the following states: |
| 601 | * |
| 602 | * Waiter | pi_state | pi->owner | uTID | uODIED | ? |
| 603 | * |
| 604 | * [1] NULL | --- | --- | 0 | 0/1 | Valid |
| 605 | * [2] NULL | --- | --- | >0 | 0/1 | Valid |
| 606 | * |
| 607 | * [3] Found | NULL | -- | Any | 0/1 | Invalid |
| 608 | * |
| 609 | * [4] Found | Found | NULL | 0 | 1 | Valid |
| 610 | * [5] Found | Found | NULL | >0 | 1 | Invalid |
| 611 | * |
| 612 | * [6] Found | Found | task | 0 | 1 | Valid |
| 613 | * |
| 614 | * [7] Found | Found | NULL | Any | 0 | Invalid |
| 615 | * |
| 616 | * [8] Found | Found | task | ==taskTID | 0/1 | Valid |
| 617 | * [9] Found | Found | task | 0 | 0 | Invalid |
| 618 | * [10] Found | Found | task | !=taskTID | 0/1 | Invalid |
| 619 | * |
| 620 | * [1] Indicates that the kernel can acquire the futex atomically. We |
| 621 | * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit. |
| 622 | * |
| 623 | * [2] Valid, if TID does not belong to a kernel thread. If no matching |
| 624 | * thread is found then it indicates that the owner TID has died. |
| 625 | * |
| 626 | * [3] Invalid. The waiter is queued on a non PI futex |
| 627 | * |
| 628 | * [4] Valid state after exit_robust_list(), which sets the user space |
| 629 | * value to FUTEX_WAITERS | FUTEX_OWNER_DIED. |
| 630 | * |
| 631 | * [5] The user space value got manipulated between exit_robust_list() |
| 632 | * and exit_pi_state_list() |
| 633 | * |
| 634 | * [6] Valid state after exit_pi_state_list() which sets the new owner in |
| 635 | * the pi_state but cannot access the user space value. |
| 636 | * |
| 637 | * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set. |
| 638 | * |
| 639 | * [8] Owner and user space value match |
| 640 | * |
| 641 | * [9] There is no transient state which sets the user space TID to 0 |
| 642 | * except exit_robust_list(), but this is indicated by the |
| 643 | * FUTEX_OWNER_DIED bit. See [4] |
| 644 | * |
| 645 | * [10] There is no transient state which leaves owner and user space |
| 646 | * TID out of sync. |
| 647 | */ |
| 648 | |
| 649 | /* |
| 650 | * Validate that the existing waiter has a pi_state and sanity check |
| 651 | * the pi_state against the user space value. If correct, attach to |
| 652 | * it. |
| 653 | */ |
| 654 | static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state, |
| 655 | struct futex_pi_state **ps) |
| 656 | { |
| 657 | pid_t pid = uval & FUTEX_TID_MASK; |
| 658 | |
| 659 | /* |
| 660 | * Userspace might have messed up non-PI and PI futexes [3] |
| 661 | */ |
| 662 | if (unlikely(!pi_state)) |
| 663 | return -EINVAL; |
| 664 | |
| 665 | WARN_ON(!atomic_read(&pi_state->refcount)); |
| 666 | |
| 667 | /* |
| 668 | * Handle the owner died case: |
| 669 | */ |
| 670 | if (uval & FUTEX_OWNER_DIED) { |
| 671 | /* |
| 672 | * exit_pi_state_list sets owner to NULL and wakes the |
| 673 | * topmost waiter. The task which acquires the |
| 674 | * pi_state->rt_mutex will fixup owner. |
| 675 | */ |
| 676 | if (!pi_state->owner) { |
| 677 | /* |
| 678 | * No pi state owner, but the user space TID |
| 679 | * is not 0. Inconsistent state. [5] |
| 680 | */ |
| 681 | if (pid) |
| 682 | return -EINVAL; |
| 683 | /* |
| 684 | * Take a ref on the state and return success. [4] |
| 685 | */ |
| 686 | goto out_state; |
| 687 | } |
| 688 | |
| 689 | /* |
| 690 | * If TID is 0, then either the dying owner has not |
| 691 | * yet executed exit_pi_state_list() or some waiter |
| 692 | * acquired the rtmutex in the pi state, but did not |
| 693 | * yet fixup the TID in user space. |
| 694 | * |
| 695 | * Take a ref on the state and return success. [6] |
| 696 | */ |
| 697 | if (!pid) |
| 698 | goto out_state; |
| 699 | } else { |
| 700 | /* |
| 701 | * If the owner died bit is not set, then the pi_state |
| 702 | * must have an owner. [7] |
| 703 | */ |
| 704 | if (!pi_state->owner) |
| 705 | return -EINVAL; |
| 706 | } |
| 707 | |
| 708 | /* |
| 709 | * Bail out if user space manipulated the futex value. If pi |
| 710 | * state exists then the owner TID must be the same as the |
| 711 | * user space TID. [9/10] |
| 712 | */ |
| 713 | if (pid != task_pid_vnr(pi_state->owner)) |
| 714 | return -EINVAL; |
| 715 | out_state: |
| 716 | atomic_inc(&pi_state->refcount); |
| 717 | *ps = pi_state; |
| 718 | return 0; |
| 719 | } |
| 720 | |
| 721 | /* |
| 722 | * Lookup the task for the TID provided from user space and attach to |
| 723 | * it after doing proper sanity checks. |
| 724 | */ |
| 725 | static int attach_to_pi_owner(u32 uval, union futex_key *key, |
| 726 | struct futex_pi_state **ps) |
| 727 | { |
| 728 | pid_t pid = uval & FUTEX_TID_MASK; |
| 729 | struct futex_pi_state *pi_state; |
| 730 | struct task_struct *p; |
| 731 | |
| 732 | /* |
| 733 | * We are the first waiter - try to look up the real owner and attach |
| 734 | * the new pi_state to it, but bail out when TID = 0 [1] |
| 735 | */ |
| 736 | if (!pid) |
| 737 | return -ESRCH; |
| 738 | p = futex_find_get_task(pid); |
| 739 | if (!p) |
| 740 | return -ESRCH; |
| 741 | |
| 742 | if (!p->mm) { |
| 743 | put_task_struct(p); |
| 744 | return -EPERM; |
| 745 | } |
| 746 | |
| 747 | /* |
| 748 | * We need to look at the task state flags to figure out, |
| 749 | * whether the task is exiting. To protect against the do_exit |
| 750 | * change of the task flags, we do this protected by |
| 751 | * p->pi_lock: |
| 752 | */ |
| 753 | raw_spin_lock_irq(&p->pi_lock); |
| 754 | if (unlikely(p->flags & PF_EXITING)) { |
| 755 | /* |
| 756 | * The task is on the way out. When PF_EXITPIDONE is |
| 757 | * set, we know that the task has finished the |
| 758 | * cleanup: |
| 759 | */ |
| 760 | int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN; |
| 761 | |
| 762 | raw_spin_unlock_irq(&p->pi_lock); |
| 763 | put_task_struct(p); |
| 764 | return ret; |
| 765 | } |
| 766 | |
| 767 | /* |
| 768 | * No existing pi state. First waiter. [2] |
| 769 | */ |
| 770 | pi_state = alloc_pi_state(); |
| 771 | |
| 772 | /* |
| 773 | * Initialize the pi_mutex in locked state and make @p |
| 774 | * the owner of it: |
| 775 | */ |
| 776 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); |
| 777 | |
| 778 | /* Store the key for possible exit cleanups: */ |
| 779 | pi_state->key = *key; |
| 780 | |
| 781 | WARN_ON(!list_empty(&pi_state->list)); |
| 782 | list_add(&pi_state->list, &p->pi_state_list); |
| 783 | pi_state->owner = p; |
| 784 | raw_spin_unlock_irq(&p->pi_lock); |
| 785 | |
| 786 | put_task_struct(p); |
| 787 | |
| 788 | *ps = pi_state; |
| 789 | |
| 790 | return 0; |
| 791 | } |
| 792 | |
| 793 | static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, |
| 794 | union futex_key *key, struct futex_pi_state **ps) |
| 795 | { |
| 796 | struct futex_q *match = futex_top_waiter(hb, key); |
| 797 | |
| 798 | /* |
| 799 | * If there is a waiter on that futex, validate it and |
| 800 | * attach to the pi_state when the validation succeeds. |
| 801 | */ |
| 802 | if (match) |
| 803 | return attach_to_pi_state(uval, match->pi_state, ps); |
| 804 | |
| 805 | /* |
| 806 | * We are the first waiter - try to look up the owner based on |
| 807 | * @uval and attach to it. |
| 808 | */ |
| 809 | return attach_to_pi_owner(uval, key, ps); |
| 810 | } |
| 811 | |
| 812 | static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval) |
| 813 | { |
| 814 | u32 uninitialized_var(curval); |
| 815 | |
| 816 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))) |
| 817 | return -EFAULT; |
| 818 | |
| 819 | /*If user space value changed, let the caller retry */ |
| 820 | return curval != uval ? -EAGAIN : 0; |
| 821 | } |
| 822 | |
| 823 | /** |
| 824 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
| 825 | * @uaddr: the pi futex user address |
| 826 | * @hb: the pi futex hash bucket |
| 827 | * @key: the futex key associated with uaddr and hb |
| 828 | * @ps: the pi_state pointer where we store the result of the |
| 829 | * lookup |
| 830 | * @task: the task to perform the atomic lock work for. This will |
| 831 | * be "current" except in the case of requeue pi. |
| 832 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) |
| 833 | * |
| 834 | * Returns: |
| 835 | * 0 - ready to wait |
| 836 | * 1 - acquired the lock |
| 837 | * <0 - error |
| 838 | * |
| 839 | * The hb->lock and futex_key refs shall be held by the caller. |
| 840 | */ |
| 841 | static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, |
| 842 | union futex_key *key, |
| 843 | struct futex_pi_state **ps, |
| 844 | struct task_struct *task, int set_waiters) |
| 845 | { |
| 846 | u32 uval, newval, vpid = task_pid_vnr(task); |
| 847 | struct futex_q *match; |
| 848 | int ret; |
| 849 | |
| 850 | /* |
| 851 | * Read the user space value first so we can validate a few |
| 852 | * things before proceeding further. |
| 853 | */ |
| 854 | if (get_futex_value_locked(&uval, uaddr)) |
| 855 | return -EFAULT; |
| 856 | |
| 857 | /* |
| 858 | * Detect deadlocks. |
| 859 | */ |
| 860 | if ((unlikely((uval & FUTEX_TID_MASK) == vpid))) |
| 861 | return -EDEADLK; |
| 862 | |
| 863 | /* |
| 864 | * Lookup existing state first. If it exists, try to attach to |
| 865 | * its pi_state. |
| 866 | */ |
| 867 | match = futex_top_waiter(hb, key); |
| 868 | if (match) |
| 869 | return attach_to_pi_state(uval, match->pi_state, ps); |
| 870 | |
| 871 | /* |
| 872 | * No waiter and user TID is 0. We are here because the |
| 873 | * waiters or the owner died bit is set or called from |
| 874 | * requeue_cmp_pi or for whatever reason something took the |
| 875 | * syscall. |
| 876 | */ |
| 877 | if (!(uval & FUTEX_TID_MASK)) { |
| 878 | /* |
| 879 | * We take over the futex. No other waiters and the user space |
| 880 | * TID is 0. We preserve the owner died bit. |
| 881 | */ |
| 882 | newval = uval & FUTEX_OWNER_DIED; |
| 883 | newval |= vpid; |
| 884 | |
| 885 | /* The futex requeue_pi code can enforce the waiters bit */ |
| 886 | if (set_waiters) |
| 887 | newval |= FUTEX_WAITERS; |
| 888 | |
| 889 | ret = lock_pi_update_atomic(uaddr, uval, newval); |
| 890 | /* If the take over worked, return 1 */ |
| 891 | return ret < 0 ? ret : 1; |
| 892 | } |
| 893 | |
| 894 | /* |
| 895 | * First waiter. Set the waiters bit before attaching ourself to |
| 896 | * the owner. If owner tries to unlock, it will be forced into |
| 897 | * the kernel and blocked on hb->lock. |
| 898 | */ |
| 899 | newval = uval | FUTEX_WAITERS; |
| 900 | ret = lock_pi_update_atomic(uaddr, uval, newval); |
| 901 | if (ret) |
| 902 | return ret; |
| 903 | /* |
| 904 | * If the update of the user space value succeeded, we try to |
| 905 | * attach to the owner. If that fails, no harm done, we only |
| 906 | * set the FUTEX_WAITERS bit in the user space variable. |
| 907 | */ |
| 908 | return attach_to_pi_owner(uval, key, ps); |
| 909 | } |
| 910 | |
| 911 | /** |
| 912 | * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket |
| 913 | * @q: The futex_q to unqueue |
| 914 | * |
| 915 | * The q->lock_ptr must not be NULL and must be held by the caller. |
| 916 | */ |
| 917 | static void __unqueue_futex(struct futex_q *q) |
| 918 | { |
| 919 | struct futex_hash_bucket *hb; |
| 920 | |
| 921 | if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr)) |
| 922 | || WARN_ON(plist_node_empty(&q->list))) |
| 923 | return; |
| 924 | |
| 925 | hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); |
| 926 | plist_del(&q->list, &hb->chain); |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * The hash bucket lock must be held when this is called. |
| 931 | * Afterwards, the futex_q must not be accessed. |
| 932 | */ |
| 933 | static void wake_futex(struct futex_q *q) |
| 934 | { |
| 935 | struct task_struct *p = q->task; |
| 936 | |
| 937 | if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) |
| 938 | return; |
| 939 | |
| 940 | /* |
| 941 | * We set q->lock_ptr = NULL _before_ we wake up the task. If |
| 942 | * a non-futex wake up happens on another CPU then the task |
| 943 | * might exit and p would dereference a non-existing task |
| 944 | * struct. Prevent this by holding a reference on p across the |
| 945 | * wake up. |
| 946 | */ |
| 947 | get_task_struct(p); |
| 948 | |
| 949 | __unqueue_futex(q); |
| 950 | /* |
| 951 | * The waiting task can free the futex_q as soon as |
| 952 | * q->lock_ptr = NULL is written, without taking any locks. A |
| 953 | * memory barrier is required here to prevent the following |
| 954 | * store to lock_ptr from getting ahead of the plist_del. |
| 955 | */ |
| 956 | smp_wmb(); |
| 957 | q->lock_ptr = NULL; |
| 958 | |
| 959 | wake_up_state(p, TASK_NORMAL); |
| 960 | put_task_struct(p); |
| 961 | } |
| 962 | |
| 963 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) |
| 964 | { |
| 965 | struct task_struct *new_owner; |
| 966 | struct futex_pi_state *pi_state = this->pi_state; |
| 967 | u32 uninitialized_var(curval), newval; |
| 968 | int ret = 0; |
| 969 | |
| 970 | if (!pi_state) |
| 971 | return -EINVAL; |
| 972 | |
| 973 | /* |
| 974 | * If current does not own the pi_state then the futex is |
| 975 | * inconsistent and user space fiddled with the futex value. |
| 976 | */ |
| 977 | if (pi_state->owner != current) |
| 978 | return -EINVAL; |
| 979 | |
| 980 | raw_spin_lock(&pi_state->pi_mutex.wait_lock); |
| 981 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
| 982 | |
| 983 | /* |
| 984 | * It is possible that the next waiter (the one that brought |
| 985 | * this owner to the kernel) timed out and is no longer |
| 986 | * waiting on the lock. |
| 987 | */ |
| 988 | if (!new_owner) |
| 989 | new_owner = this->task; |
| 990 | |
| 991 | /* |
| 992 | * We pass it to the next owner. The WAITERS bit is always |
| 993 | * kept enabled while there is PI state around. We cleanup the |
| 994 | * owner died bit, because we are the owner. |
| 995 | */ |
| 996 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
| 997 | |
| 998 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
| 999 | ret = -EFAULT; |
| 1000 | else if (curval != uval) |
| 1001 | ret = -EINVAL; |
| 1002 | if (ret) { |
| 1003 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
| 1004 | return ret; |
| 1005 | } |
| 1006 | |
| 1007 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
| 1008 | WARN_ON(list_empty(&pi_state->list)); |
| 1009 | list_del_init(&pi_state->list); |
| 1010 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
| 1011 | |
| 1012 | raw_spin_lock_irq(&new_owner->pi_lock); |
| 1013 | WARN_ON(!list_empty(&pi_state->list)); |
| 1014 | list_add(&pi_state->list, &new_owner->pi_state_list); |
| 1015 | pi_state->owner = new_owner; |
| 1016 | raw_spin_unlock_irq(&new_owner->pi_lock); |
| 1017 | |
| 1018 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
| 1019 | rt_mutex_unlock(&pi_state->pi_mutex); |
| 1020 | |
| 1021 | return 0; |
| 1022 | } |
| 1023 | |
| 1024 | /* |
| 1025 | * Express the locking dependencies for lockdep: |
| 1026 | */ |
| 1027 | static inline void |
| 1028 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) |
| 1029 | { |
| 1030 | if (hb1 <= hb2) { |
| 1031 | spin_lock(&hb1->lock); |
| 1032 | if (hb1 < hb2) |
| 1033 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); |
| 1034 | } else { /* hb1 > hb2 */ |
| 1035 | spin_lock(&hb2->lock); |
| 1036 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); |
| 1037 | } |
| 1038 | } |
| 1039 | |
| 1040 | static inline void |
| 1041 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) |
| 1042 | { |
| 1043 | spin_unlock(&hb1->lock); |
| 1044 | if (hb1 != hb2) |
| 1045 | spin_unlock(&hb2->lock); |
| 1046 | } |
| 1047 | |
| 1048 | /* |
| 1049 | * Wake up waiters matching bitset queued on this futex (uaddr). |
| 1050 | */ |
| 1051 | static int |
| 1052 | futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) |
| 1053 | { |
| 1054 | struct futex_hash_bucket *hb; |
| 1055 | struct futex_q *this, *next; |
| 1056 | struct plist_head *head; |
| 1057 | union futex_key key = FUTEX_KEY_INIT; |
| 1058 | int ret; |
| 1059 | |
| 1060 | if (!bitset) |
| 1061 | return -EINVAL; |
| 1062 | |
| 1063 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ); |
| 1064 | if (unlikely(ret != 0)) |
| 1065 | goto out; |
| 1066 | |
| 1067 | hb = hash_futex(&key); |
| 1068 | spin_lock(&hb->lock); |
| 1069 | head = &hb->chain; |
| 1070 | |
| 1071 | plist_for_each_entry_safe(this, next, head, list) { |
| 1072 | if (match_futex (&this->key, &key)) { |
| 1073 | if (this->pi_state || this->rt_waiter) { |
| 1074 | ret = -EINVAL; |
| 1075 | break; |
| 1076 | } |
| 1077 | |
| 1078 | /* Check if one of the bits is set in both bitsets */ |
| 1079 | if (!(this->bitset & bitset)) |
| 1080 | continue; |
| 1081 | |
| 1082 | wake_futex(this); |
| 1083 | if (++ret >= nr_wake) |
| 1084 | break; |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | spin_unlock(&hb->lock); |
| 1089 | put_futex_key(&key); |
| 1090 | out: |
| 1091 | return ret; |
| 1092 | } |
| 1093 | |
| 1094 | /* |
| 1095 | * Wake up all waiters hashed on the physical page that is mapped |
| 1096 | * to this virtual address: |
| 1097 | */ |
| 1098 | static int |
| 1099 | futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
| 1100 | int nr_wake, int nr_wake2, int op) |
| 1101 | { |
| 1102 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
| 1103 | struct futex_hash_bucket *hb1, *hb2; |
| 1104 | struct plist_head *head; |
| 1105 | struct futex_q *this, *next; |
| 1106 | int ret, op_ret; |
| 1107 | |
| 1108 | retry: |
| 1109 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
| 1110 | if (unlikely(ret != 0)) |
| 1111 | goto out; |
| 1112 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
| 1113 | if (unlikely(ret != 0)) |
| 1114 | goto out_put_key1; |
| 1115 | |
| 1116 | hb1 = hash_futex(&key1); |
| 1117 | hb2 = hash_futex(&key2); |
| 1118 | |
| 1119 | retry_private: |
| 1120 | double_lock_hb(hb1, hb2); |
| 1121 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
| 1122 | if (unlikely(op_ret < 0)) { |
| 1123 | |
| 1124 | double_unlock_hb(hb1, hb2); |
| 1125 | |
| 1126 | #ifndef CONFIG_MMU |
| 1127 | /* |
| 1128 | * we don't get EFAULT from MMU faults if we don't have an MMU, |
| 1129 | * but we might get them from range checking |
| 1130 | */ |
| 1131 | ret = op_ret; |
| 1132 | goto out_put_keys; |
| 1133 | #endif |
| 1134 | |
| 1135 | if (unlikely(op_ret != -EFAULT)) { |
| 1136 | ret = op_ret; |
| 1137 | goto out_put_keys; |
| 1138 | } |
| 1139 | |
| 1140 | ret = fault_in_user_writeable(uaddr2); |
| 1141 | if (ret) |
| 1142 | goto out_put_keys; |
| 1143 | |
| 1144 | if (!(flags & FLAGS_SHARED)) |
| 1145 | goto retry_private; |
| 1146 | |
| 1147 | put_futex_key(&key2); |
| 1148 | put_futex_key(&key1); |
| 1149 | goto retry; |
| 1150 | } |
| 1151 | |
| 1152 | head = &hb1->chain; |
| 1153 | |
| 1154 | plist_for_each_entry_safe(this, next, head, list) { |
| 1155 | if (match_futex (&this->key, &key1)) { |
| 1156 | if (this->pi_state || this->rt_waiter) { |
| 1157 | ret = -EINVAL; |
| 1158 | goto out_unlock; |
| 1159 | } |
| 1160 | wake_futex(this); |
| 1161 | if (++ret >= nr_wake) |
| 1162 | break; |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | if (op_ret > 0) { |
| 1167 | head = &hb2->chain; |
| 1168 | |
| 1169 | op_ret = 0; |
| 1170 | plist_for_each_entry_safe(this, next, head, list) { |
| 1171 | if (match_futex (&this->key, &key2)) { |
| 1172 | if (this->pi_state || this->rt_waiter) { |
| 1173 | ret = -EINVAL; |
| 1174 | goto out_unlock; |
| 1175 | } |
| 1176 | wake_futex(this); |
| 1177 | if (++op_ret >= nr_wake2) |
| 1178 | break; |
| 1179 | } |
| 1180 | } |
| 1181 | ret += op_ret; |
| 1182 | } |
| 1183 | |
| 1184 | out_unlock: |
| 1185 | double_unlock_hb(hb1, hb2); |
| 1186 | out_put_keys: |
| 1187 | put_futex_key(&key2); |
| 1188 | out_put_key1: |
| 1189 | put_futex_key(&key1); |
| 1190 | out: |
| 1191 | return ret; |
| 1192 | } |
| 1193 | |
| 1194 | /** |
| 1195 | * requeue_futex() - Requeue a futex_q from one hb to another |
| 1196 | * @q: the futex_q to requeue |
| 1197 | * @hb1: the source hash_bucket |
| 1198 | * @hb2: the target hash_bucket |
| 1199 | * @key2: the new key for the requeued futex_q |
| 1200 | */ |
| 1201 | static inline |
| 1202 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, |
| 1203 | struct futex_hash_bucket *hb2, union futex_key *key2) |
| 1204 | { |
| 1205 | |
| 1206 | /* |
| 1207 | * If key1 and key2 hash to the same bucket, no need to |
| 1208 | * requeue. |
| 1209 | */ |
| 1210 | if (likely(&hb1->chain != &hb2->chain)) { |
| 1211 | plist_del(&q->list, &hb1->chain); |
| 1212 | plist_add(&q->list, &hb2->chain); |
| 1213 | q->lock_ptr = &hb2->lock; |
| 1214 | } |
| 1215 | get_futex_key_refs(key2); |
| 1216 | q->key = *key2; |
| 1217 | } |
| 1218 | |
| 1219 | /** |
| 1220 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue |
| 1221 | * @q: the futex_q |
| 1222 | * @key: the key of the requeue target futex |
| 1223 | * @hb: the hash_bucket of the requeue target futex |
| 1224 | * |
| 1225 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the |
| 1226 | * target futex if it is uncontended or via a lock steal. Set the futex_q key |
| 1227 | * to the requeue target futex so the waiter can detect the wakeup on the right |
| 1228 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect |
| 1229 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
| 1230 | * to protect access to the pi_state to fixup the owner later. Must be called |
| 1231 | * with both q->lock_ptr and hb->lock held. |
| 1232 | */ |
| 1233 | static inline |
| 1234 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
| 1235 | struct futex_hash_bucket *hb) |
| 1236 | { |
| 1237 | get_futex_key_refs(key); |
| 1238 | q->key = *key; |
| 1239 | |
| 1240 | __unqueue_futex(q); |
| 1241 | |
| 1242 | WARN_ON(!q->rt_waiter); |
| 1243 | q->rt_waiter = NULL; |
| 1244 | |
| 1245 | q->lock_ptr = &hb->lock; |
| 1246 | |
| 1247 | wake_up_state(q->task, TASK_NORMAL); |
| 1248 | } |
| 1249 | |
| 1250 | /** |
| 1251 | * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter |
| 1252 | * @pifutex: the user address of the to futex |
| 1253 | * @hb1: the from futex hash bucket, must be locked by the caller |
| 1254 | * @hb2: the to futex hash bucket, must be locked by the caller |
| 1255 | * @key1: the from futex key |
| 1256 | * @key2: the to futex key |
| 1257 | * @ps: address to store the pi_state pointer |
| 1258 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) |
| 1259 | * |
| 1260 | * Try and get the lock on behalf of the top waiter if we can do it atomically. |
| 1261 | * Wake the top waiter if we succeed. If the caller specified set_waiters, |
| 1262 | * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. |
| 1263 | * hb1 and hb2 must be held by the caller. |
| 1264 | * |
| 1265 | * Returns: |
| 1266 | * 0 - failed to acquire the lock atomicly |
| 1267 | * >0 - acquired the lock, return value is vpid of the top_waiter |
| 1268 | * <0 - error |
| 1269 | */ |
| 1270 | static int futex_proxy_trylock_atomic(u32 __user *pifutex, |
| 1271 | struct futex_hash_bucket *hb1, |
| 1272 | struct futex_hash_bucket *hb2, |
| 1273 | union futex_key *key1, union futex_key *key2, |
| 1274 | struct futex_pi_state **ps, int set_waiters) |
| 1275 | { |
| 1276 | struct futex_q *top_waiter = NULL; |
| 1277 | u32 curval; |
| 1278 | int ret, vpid; |
| 1279 | |
| 1280 | if (get_futex_value_locked(&curval, pifutex)) |
| 1281 | return -EFAULT; |
| 1282 | |
| 1283 | /* |
| 1284 | * Find the top_waiter and determine if there are additional waiters. |
| 1285 | * If the caller intends to requeue more than 1 waiter to pifutex, |
| 1286 | * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, |
| 1287 | * as we have means to handle the possible fault. If not, don't set |
| 1288 | * the bit unecessarily as it will force the subsequent unlock to enter |
| 1289 | * the kernel. |
| 1290 | */ |
| 1291 | top_waiter = futex_top_waiter(hb1, key1); |
| 1292 | |
| 1293 | /* There are no waiters, nothing for us to do. */ |
| 1294 | if (!top_waiter) |
| 1295 | return 0; |
| 1296 | |
| 1297 | /* Ensure we requeue to the expected futex. */ |
| 1298 | if (!match_futex(top_waiter->requeue_pi_key, key2)) |
| 1299 | return -EINVAL; |
| 1300 | |
| 1301 | /* |
| 1302 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
| 1303 | * the contended case or if set_waiters is 1. The pi_state is returned |
| 1304 | * in ps in contended cases. |
| 1305 | */ |
| 1306 | vpid = task_pid_vnr(top_waiter->task); |
| 1307 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
| 1308 | set_waiters); |
| 1309 | if (ret == 1) { |
| 1310 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
| 1311 | return vpid; |
| 1312 | } |
| 1313 | return ret; |
| 1314 | } |
| 1315 | |
| 1316 | /** |
| 1317 | * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 |
| 1318 | * @uaddr1: source futex user address |
| 1319 | * @flags: futex flags (FLAGS_SHARED, etc.) |
| 1320 | * @uaddr2: target futex user address |
| 1321 | * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) |
| 1322 | * @nr_requeue: number of waiters to requeue (0-INT_MAX) |
| 1323 | * @cmpval: @uaddr1 expected value (or %NULL) |
| 1324 | * @requeue_pi: if we are attempting to requeue from a non-pi futex to a |
| 1325 | * pi futex (pi to pi requeue is not supported) |
| 1326 | * |
| 1327 | * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire |
| 1328 | * uaddr2 atomically on behalf of the top waiter. |
| 1329 | * |
| 1330 | * Returns: |
| 1331 | * >=0 - on success, the number of tasks requeued or woken |
| 1332 | * <0 - on error |
| 1333 | */ |
| 1334 | static int futex_requeue(u32 __user *uaddr1, unsigned int flags, |
| 1335 | u32 __user *uaddr2, int nr_wake, int nr_requeue, |
| 1336 | u32 *cmpval, int requeue_pi) |
| 1337 | { |
| 1338 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
| 1339 | int drop_count = 0, task_count = 0, ret; |
| 1340 | struct futex_pi_state *pi_state = NULL; |
| 1341 | struct futex_hash_bucket *hb1, *hb2; |
| 1342 | struct plist_head *head1; |
| 1343 | struct futex_q *this, *next; |
| 1344 | |
| 1345 | /*Fix for HUB CVE-2018-6927*/ |
| 1346 | if (nr_wake < 0 || nr_requeue < 0) |
| 1347 | return -EINVAL; |
| 1348 | |
| 1349 | if (requeue_pi) { |
| 1350 | /* |
| 1351 | * Requeue PI only works on two distinct uaddrs. This |
| 1352 | * check is only valid for private futexes. See below. |
| 1353 | */ |
| 1354 | if (uaddr1 == uaddr2) |
| 1355 | return -EINVAL; |
| 1356 | |
| 1357 | /* |
| 1358 | * requeue_pi requires a pi_state, try to allocate it now |
| 1359 | * without any locks in case it fails. |
| 1360 | */ |
| 1361 | if (refill_pi_state_cache()) |
| 1362 | return -ENOMEM; |
| 1363 | /* |
| 1364 | * requeue_pi must wake as many tasks as it can, up to nr_wake |
| 1365 | * + nr_requeue, since it acquires the rt_mutex prior to |
| 1366 | * returning to userspace, so as to not leave the rt_mutex with |
| 1367 | * waiters and no owner. However, second and third wake-ups |
| 1368 | * cannot be predicted as they involve race conditions with the |
| 1369 | * first wake and a fault while looking up the pi_state. Both |
| 1370 | * pthread_cond_signal() and pthread_cond_broadcast() should |
| 1371 | * use nr_wake=1. |
| 1372 | */ |
| 1373 | if (nr_wake != 1) |
| 1374 | return -EINVAL; |
| 1375 | } |
| 1376 | |
| 1377 | retry: |
| 1378 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
| 1379 | if (unlikely(ret != 0)) |
| 1380 | goto out; |
| 1381 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, |
| 1382 | requeue_pi ? VERIFY_WRITE : VERIFY_READ); |
| 1383 | if (unlikely(ret != 0)) |
| 1384 | goto out_put_key1; |
| 1385 | |
| 1386 | /* |
| 1387 | * The check above which compares uaddrs is not sufficient for |
| 1388 | * shared futexes. We need to compare the keys: |
| 1389 | */ |
| 1390 | if (requeue_pi && match_futex(&key1, &key2)) { |
| 1391 | ret = -EINVAL; |
| 1392 | goto out_put_keys; |
| 1393 | } |
| 1394 | |
| 1395 | hb1 = hash_futex(&key1); |
| 1396 | hb2 = hash_futex(&key2); |
| 1397 | |
| 1398 | retry_private: |
| 1399 | double_lock_hb(hb1, hb2); |
| 1400 | |
| 1401 | if (likely(cmpval != NULL)) { |
| 1402 | u32 curval; |
| 1403 | |
| 1404 | ret = get_futex_value_locked(&curval, uaddr1); |
| 1405 | |
| 1406 | if (unlikely(ret)) { |
| 1407 | double_unlock_hb(hb1, hb2); |
| 1408 | |
| 1409 | ret = get_user(curval, uaddr1); |
| 1410 | if (ret) |
| 1411 | goto out_put_keys; |
| 1412 | |
| 1413 | if (!(flags & FLAGS_SHARED)) |
| 1414 | goto retry_private; |
| 1415 | |
| 1416 | put_futex_key(&key2); |
| 1417 | put_futex_key(&key1); |
| 1418 | goto retry; |
| 1419 | } |
| 1420 | if (curval != *cmpval) { |
| 1421 | ret = -EAGAIN; |
| 1422 | goto out_unlock; |
| 1423 | } |
| 1424 | } |
| 1425 | |
| 1426 | if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
| 1427 | /* |
| 1428 | * Attempt to acquire uaddr2 and wake the top waiter. If we |
| 1429 | * intend to requeue waiters, force setting the FUTEX_WAITERS |
| 1430 | * bit. We force this here where we are able to easily handle |
| 1431 | * faults rather in the requeue loop below. |
| 1432 | */ |
| 1433 | ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
| 1434 | &key2, &pi_state, nr_requeue); |
| 1435 | |
| 1436 | /* |
| 1437 | * At this point the top_waiter has either taken uaddr2 or is |
| 1438 | * waiting on it. If the former, then the pi_state will not |
| 1439 | * exist yet, look it up one more time to ensure we have a |
| 1440 | * reference to it. If the lock was taken, ret contains the |
| 1441 | * vpid of the top waiter task. |
| 1442 | */ |
| 1443 | if (ret > 0) { |
| 1444 | WARN_ON(pi_state); |
| 1445 | drop_count++; |
| 1446 | task_count++; |
| 1447 | /* |
| 1448 | * If we acquired the lock, then the user |
| 1449 | * space value of uaddr2 should be vpid. It |
| 1450 | * cannot be changed by the top waiter as it |
| 1451 | * is blocked on hb2 lock if it tries to do |
| 1452 | * so. If something fiddled with it behind our |
| 1453 | * back the pi state lookup might unearth |
| 1454 | * it. So we rather use the known value than |
| 1455 | * rereading and handing potential crap to |
| 1456 | * lookup_pi_state. |
| 1457 | */ |
| 1458 | ret = lookup_pi_state(ret, hb2, &key2, &pi_state); |
| 1459 | } |
| 1460 | |
| 1461 | switch (ret) { |
| 1462 | case 0: |
| 1463 | break; |
| 1464 | case -EFAULT: |
| 1465 | free_pi_state(pi_state); |
| 1466 | pi_state = NULL; |
| 1467 | double_unlock_hb(hb1, hb2); |
| 1468 | put_futex_key(&key2); |
| 1469 | put_futex_key(&key1); |
| 1470 | ret = fault_in_user_writeable(uaddr2); |
| 1471 | if (!ret) |
| 1472 | goto retry; |
| 1473 | goto out; |
| 1474 | case -EAGAIN: |
| 1475 | /* |
| 1476 | * Two reasons for this: |
| 1477 | * - Owner is exiting and we just wait for the |
| 1478 | * exit to complete. |
| 1479 | * - The user space value changed. |
| 1480 | */ |
| 1481 | free_pi_state(pi_state); |
| 1482 | pi_state = NULL; |
| 1483 | double_unlock_hb(hb1, hb2); |
| 1484 | put_futex_key(&key2); |
| 1485 | put_futex_key(&key1); |
| 1486 | cond_resched(); |
| 1487 | goto retry; |
| 1488 | default: |
| 1489 | goto out_unlock; |
| 1490 | } |
| 1491 | } |
| 1492 | |
| 1493 | head1 = &hb1->chain; |
| 1494 | plist_for_each_entry_safe(this, next, head1, list) { |
| 1495 | if (task_count - nr_wake >= nr_requeue) |
| 1496 | break; |
| 1497 | |
| 1498 | if (!match_futex(&this->key, &key1)) |
| 1499 | continue; |
| 1500 | |
| 1501 | /* |
| 1502 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always |
| 1503 | * be paired with each other and no other futex ops. |
| 1504 | * |
| 1505 | * We should never be requeueing a futex_q with a pi_state, |
| 1506 | * which is awaiting a futex_unlock_pi(). |
| 1507 | */ |
| 1508 | if ((requeue_pi && !this->rt_waiter) || |
| 1509 | (!requeue_pi && this->rt_waiter) || |
| 1510 | this->pi_state) { |
| 1511 | ret = -EINVAL; |
| 1512 | break; |
| 1513 | } |
| 1514 | |
| 1515 | /* |
| 1516 | * Wake nr_wake waiters. For requeue_pi, if we acquired the |
| 1517 | * lock, we already woke the top_waiter. If not, it will be |
| 1518 | * woken by futex_unlock_pi(). |
| 1519 | */ |
| 1520 | if (++task_count <= nr_wake && !requeue_pi) { |
| 1521 | wake_futex(this); |
| 1522 | continue; |
| 1523 | } |
| 1524 | |
| 1525 | /* Ensure we requeue to the expected futex for requeue_pi. */ |
| 1526 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { |
| 1527 | ret = -EINVAL; |
| 1528 | break; |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * Requeue nr_requeue waiters and possibly one more in the case |
| 1533 | * of requeue_pi if we couldn't acquire the lock atomically. |
| 1534 | */ |
| 1535 | if (requeue_pi) { |
| 1536 | /* Prepare the waiter to take the rt_mutex. */ |
| 1537 | atomic_inc(&pi_state->refcount); |
| 1538 | this->pi_state = pi_state; |
| 1539 | ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, |
| 1540 | this->rt_waiter, |
| 1541 | this->task); |
| 1542 | if (ret == 1) { |
| 1543 | /* We got the lock. */ |
| 1544 | requeue_pi_wake_futex(this, &key2, hb2); |
| 1545 | drop_count++; |
| 1546 | continue; |
| 1547 | } else if (ret == -EAGAIN) { |
| 1548 | /* |
| 1549 | * Waiter was woken by timeout or |
| 1550 | * signal and has set pi_blocked_on to |
| 1551 | * PI_WAKEUP_INPROGRESS before we |
| 1552 | * tried to enqueue it on the rtmutex. |
| 1553 | */ |
| 1554 | this->pi_state = NULL; |
| 1555 | free_pi_state(pi_state); |
| 1556 | continue; |
| 1557 | } else if (ret) { |
| 1558 | /* -EDEADLK */ |
| 1559 | this->pi_state = NULL; |
| 1560 | free_pi_state(pi_state); |
| 1561 | goto out_unlock; |
| 1562 | } |
| 1563 | } |
| 1564 | requeue_futex(this, hb1, hb2, &key2); |
| 1565 | drop_count++; |
| 1566 | } |
| 1567 | |
| 1568 | out_unlock: |
| 1569 | free_pi_state(pi_state); |
| 1570 | double_unlock_hb(hb1, hb2); |
| 1571 | |
| 1572 | /* |
| 1573 | * drop_futex_key_refs() must be called outside the spinlocks. During |
| 1574 | * the requeue we moved futex_q's from the hash bucket at key1 to the |
| 1575 | * one at key2 and updated their key pointer. We no longer need to |
| 1576 | * hold the references to key1. |
| 1577 | */ |
| 1578 | while (--drop_count >= 0) |
| 1579 | drop_futex_key_refs(&key1); |
| 1580 | |
| 1581 | out_put_keys: |
| 1582 | put_futex_key(&key2); |
| 1583 | out_put_key1: |
| 1584 | put_futex_key(&key1); |
| 1585 | out: |
| 1586 | return ret ? ret : task_count; |
| 1587 | } |
| 1588 | |
| 1589 | /* The key must be already stored in q->key. */ |
| 1590 | static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
| 1591 | __acquires(&hb->lock) |
| 1592 | { |
| 1593 | struct futex_hash_bucket *hb; |
| 1594 | |
| 1595 | hb = hash_futex(&q->key); |
| 1596 | q->lock_ptr = &hb->lock; |
| 1597 | |
| 1598 | spin_lock(&hb->lock); |
| 1599 | return hb; |
| 1600 | } |
| 1601 | |
| 1602 | static inline void |
| 1603 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) |
| 1604 | __releases(&hb->lock) |
| 1605 | { |
| 1606 | spin_unlock(&hb->lock); |
| 1607 | } |
| 1608 | |
| 1609 | /** |
| 1610 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket |
| 1611 | * @q: The futex_q to enqueue |
| 1612 | * @hb: The destination hash bucket |
| 1613 | * |
| 1614 | * The hb->lock must be held by the caller, and is released here. A call to |
| 1615 | * queue_me() is typically paired with exactly one call to unqueue_me(). The |
| 1616 | * exceptions involve the PI related operations, which may use unqueue_me_pi() |
| 1617 | * or nothing if the unqueue is done as part of the wake process and the unqueue |
| 1618 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for |
| 1619 | * an example). |
| 1620 | */ |
| 1621 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
| 1622 | __releases(&hb->lock) |
| 1623 | { |
| 1624 | int prio; |
| 1625 | |
| 1626 | /* |
| 1627 | * The priority used to register this element is |
| 1628 | * - either the real thread-priority for the real-time threads |
| 1629 | * (i.e. threads with a priority lower than MAX_RT_PRIO) |
| 1630 | * - or MAX_RT_PRIO for non-RT threads. |
| 1631 | * Thus, all RT-threads are woken first in priority order, and |
| 1632 | * the others are woken last, in FIFO order. |
| 1633 | */ |
| 1634 | prio = min(current->normal_prio, MAX_RT_PRIO); |
| 1635 | |
| 1636 | plist_node_init(&q->list, prio); |
| 1637 | plist_add(&q->list, &hb->chain); |
| 1638 | q->task = current; |
| 1639 | spin_unlock(&hb->lock); |
| 1640 | } |
| 1641 | |
| 1642 | /** |
| 1643 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket |
| 1644 | * @q: The futex_q to unqueue |
| 1645 | * |
| 1646 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must |
| 1647 | * be paired with exactly one earlier call to queue_me(). |
| 1648 | * |
| 1649 | * Returns: |
| 1650 | * 1 - if the futex_q was still queued (and we removed unqueued it) |
| 1651 | * 0 - if the futex_q was already removed by the waking thread |
| 1652 | */ |
| 1653 | static int unqueue_me(struct futex_q *q) |
| 1654 | { |
| 1655 | spinlock_t *lock_ptr; |
| 1656 | int ret = 0; |
| 1657 | |
| 1658 | /* In the common case we don't take the spinlock, which is nice. */ |
| 1659 | retry: |
| 1660 | lock_ptr = q->lock_ptr; |
| 1661 | barrier(); |
| 1662 | if (lock_ptr != NULL) { |
| 1663 | spin_lock(lock_ptr); |
| 1664 | /* |
| 1665 | * q->lock_ptr can change between reading it and |
| 1666 | * spin_lock(), causing us to take the wrong lock. This |
| 1667 | * corrects the race condition. |
| 1668 | * |
| 1669 | * Reasoning goes like this: if we have the wrong lock, |
| 1670 | * q->lock_ptr must have changed (maybe several times) |
| 1671 | * between reading it and the spin_lock(). It can |
| 1672 | * change again after the spin_lock() but only if it was |
| 1673 | * already changed before the spin_lock(). It cannot, |
| 1674 | * however, change back to the original value. Therefore |
| 1675 | * we can detect whether we acquired the correct lock. |
| 1676 | */ |
| 1677 | if (unlikely(lock_ptr != q->lock_ptr)) { |
| 1678 | spin_unlock(lock_ptr); |
| 1679 | goto retry; |
| 1680 | } |
| 1681 | __unqueue_futex(q); |
| 1682 | |
| 1683 | BUG_ON(q->pi_state); |
| 1684 | |
| 1685 | spin_unlock(lock_ptr); |
| 1686 | ret = 1; |
| 1687 | } |
| 1688 | |
| 1689 | drop_futex_key_refs(&q->key); |
| 1690 | return ret; |
| 1691 | } |
| 1692 | |
| 1693 | /* |
| 1694 | * PI futexes can not be requeued and must remove themself from the |
| 1695 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
| 1696 | * and dropped here. |
| 1697 | */ |
| 1698 | static void unqueue_me_pi(struct futex_q *q) |
| 1699 | __releases(q->lock_ptr) |
| 1700 | { |
| 1701 | __unqueue_futex(q); |
| 1702 | |
| 1703 | BUG_ON(!q->pi_state); |
| 1704 | free_pi_state(q->pi_state); |
| 1705 | q->pi_state = NULL; |
| 1706 | |
| 1707 | spin_unlock(q->lock_ptr); |
| 1708 | } |
| 1709 | |
| 1710 | /* |
| 1711 | * Fixup the pi_state owner with the new owner. |
| 1712 | * |
| 1713 | * Must be called with hash bucket lock held and mm->sem held for non |
| 1714 | * private futexes. |
| 1715 | */ |
| 1716 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
| 1717 | struct task_struct *newowner) |
| 1718 | { |
| 1719 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
| 1720 | struct futex_pi_state *pi_state = q->pi_state; |
| 1721 | struct task_struct *oldowner = pi_state->owner; |
| 1722 | u32 uval, uninitialized_var(curval), newval; |
| 1723 | int ret; |
| 1724 | |
| 1725 | /* Owner died? */ |
| 1726 | if (!pi_state->owner) |
| 1727 | newtid |= FUTEX_OWNER_DIED; |
| 1728 | |
| 1729 | /* |
| 1730 | * We are here either because we stole the rtmutex from the |
| 1731 | * previous highest priority waiter or we are the highest priority |
| 1732 | * waiter but failed to get the rtmutex the first time. |
| 1733 | * We have to replace the newowner TID in the user space variable. |
| 1734 | * This must be atomic as we have to preserve the owner died bit here. |
| 1735 | * |
| 1736 | * Note: We write the user space value _before_ changing the pi_state |
| 1737 | * because we can fault here. Imagine swapped out pages or a fork |
| 1738 | * that marked all the anonymous memory readonly for cow. |
| 1739 | * |
| 1740 | * Modifying pi_state _before_ the user space value would |
| 1741 | * leave the pi_state in an inconsistent state when we fault |
| 1742 | * here, because we need to drop the hash bucket lock to |
| 1743 | * handle the fault. This might be observed in the PID check |
| 1744 | * in lookup_pi_state. |
| 1745 | */ |
| 1746 | retry: |
| 1747 | if (get_futex_value_locked(&uval, uaddr)) |
| 1748 | goto handle_fault; |
| 1749 | |
| 1750 | while (1) { |
| 1751 | newval = (uval & FUTEX_OWNER_DIED) | newtid; |
| 1752 | |
| 1753 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
| 1754 | goto handle_fault; |
| 1755 | if (curval == uval) |
| 1756 | break; |
| 1757 | uval = curval; |
| 1758 | } |
| 1759 | |
| 1760 | /* |
| 1761 | * We fixed up user space. Now we need to fix the pi_state |
| 1762 | * itself. |
| 1763 | */ |
| 1764 | if (pi_state->owner != NULL) { |
| 1765 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
| 1766 | WARN_ON(list_empty(&pi_state->list)); |
| 1767 | list_del_init(&pi_state->list); |
| 1768 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
| 1769 | } |
| 1770 | |
| 1771 | pi_state->owner = newowner; |
| 1772 | |
| 1773 | raw_spin_lock_irq(&newowner->pi_lock); |
| 1774 | WARN_ON(!list_empty(&pi_state->list)); |
| 1775 | list_add(&pi_state->list, &newowner->pi_state_list); |
| 1776 | raw_spin_unlock_irq(&newowner->pi_lock); |
| 1777 | return 0; |
| 1778 | |
| 1779 | /* |
| 1780 | * To handle the page fault we need to drop the hash bucket |
| 1781 | * lock here. That gives the other task (either the highest priority |
| 1782 | * waiter itself or the task which stole the rtmutex) the |
| 1783 | * chance to try the fixup of the pi_state. So once we are |
| 1784 | * back from handling the fault we need to check the pi_state |
| 1785 | * after reacquiring the hash bucket lock and before trying to |
| 1786 | * do another fixup. When the fixup has been done already we |
| 1787 | * simply return. |
| 1788 | */ |
| 1789 | handle_fault: |
| 1790 | spin_unlock(q->lock_ptr); |
| 1791 | |
| 1792 | ret = fault_in_user_writeable(uaddr); |
| 1793 | |
| 1794 | spin_lock(q->lock_ptr); |
| 1795 | |
| 1796 | /* |
| 1797 | * Check if someone else fixed it for us: |
| 1798 | */ |
| 1799 | if (pi_state->owner != oldowner) |
| 1800 | return 0; |
| 1801 | |
| 1802 | if (ret) |
| 1803 | return ret; |
| 1804 | |
| 1805 | goto retry; |
| 1806 | } |
| 1807 | |
| 1808 | static long futex_wait_restart(struct restart_block *restart); |
| 1809 | |
| 1810 | /** |
| 1811 | * fixup_owner() - Post lock pi_state and corner case management |
| 1812 | * @uaddr: user address of the futex |
| 1813 | * @q: futex_q (contains pi_state and access to the rt_mutex) |
| 1814 | * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) |
| 1815 | * |
| 1816 | * After attempting to lock an rt_mutex, this function is called to cleanup |
| 1817 | * the pi_state owner as well as handle race conditions that may allow us to |
| 1818 | * acquire the lock. Must be called with the hb lock held. |
| 1819 | * |
| 1820 | * Returns: |
| 1821 | * 1 - success, lock taken |
| 1822 | * 0 - success, lock not taken |
| 1823 | * <0 - on error (-EFAULT) |
| 1824 | */ |
| 1825 | static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
| 1826 | { |
| 1827 | struct task_struct *owner; |
| 1828 | int ret = 0; |
| 1829 | |
| 1830 | if (locked) { |
| 1831 | /* |
| 1832 | * Got the lock. We might not be the anticipated owner if we |
| 1833 | * did a lock-steal - fix up the PI-state in that case: |
| 1834 | */ |
| 1835 | if (q->pi_state->owner != current) |
| 1836 | ret = fixup_pi_state_owner(uaddr, q, current); |
| 1837 | goto out; |
| 1838 | } |
| 1839 | |
| 1840 | /* |
| 1841 | * Catch the rare case, where the lock was released when we were on the |
| 1842 | * way back before we locked the hash bucket. |
| 1843 | */ |
| 1844 | if (q->pi_state->owner == current) { |
| 1845 | /* |
| 1846 | * Try to get the rt_mutex now. This might fail as some other |
| 1847 | * task acquired the rt_mutex after we removed ourself from the |
| 1848 | * rt_mutex waiters list. |
| 1849 | */ |
| 1850 | if (rt_mutex_trylock(&q->pi_state->pi_mutex)) { |
| 1851 | locked = 1; |
| 1852 | goto out; |
| 1853 | } |
| 1854 | |
| 1855 | /* |
| 1856 | * pi_state is incorrect, some other task did a lock steal and |
| 1857 | * we returned due to timeout or signal without taking the |
| 1858 | * rt_mutex. Too late. |
| 1859 | */ |
| 1860 | raw_spin_lock(&q->pi_state->pi_mutex.wait_lock); |
| 1861 | owner = rt_mutex_owner(&q->pi_state->pi_mutex); |
| 1862 | if (!owner) |
| 1863 | owner = rt_mutex_next_owner(&q->pi_state->pi_mutex); |
| 1864 | raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock); |
| 1865 | ret = fixup_pi_state_owner(uaddr, q, owner); |
| 1866 | goto out; |
| 1867 | } |
| 1868 | |
| 1869 | /* |
| 1870 | * Paranoia check. If we did not take the lock, then we should not be |
| 1871 | * the owner of the rt_mutex. |
| 1872 | */ |
| 1873 | if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) |
| 1874 | printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p " |
| 1875 | "pi-state %p\n", ret, |
| 1876 | q->pi_state->pi_mutex.owner, |
| 1877 | q->pi_state->owner); |
| 1878 | |
| 1879 | out: |
| 1880 | return ret ? ret : locked; |
| 1881 | } |
| 1882 | |
| 1883 | /** |
| 1884 | * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal |
| 1885 | * @hb: the futex hash bucket, must be locked by the caller |
| 1886 | * @q: the futex_q to queue up on |
| 1887 | * @timeout: the prepared hrtimer_sleeper, or null for no timeout |
| 1888 | */ |
| 1889 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, |
| 1890 | struct hrtimer_sleeper *timeout) |
| 1891 | { |
| 1892 | /* |
| 1893 | * The task state is guaranteed to be set before another task can |
| 1894 | * wake it. set_current_state() is implemented using set_mb() and |
| 1895 | * queue_me() calls spin_unlock() upon completion, both serializing |
| 1896 | * access to the hash list and forcing another memory barrier. |
| 1897 | */ |
| 1898 | set_current_state(TASK_INTERRUPTIBLE); |
| 1899 | queue_me(q, hb); |
| 1900 | |
| 1901 | /* Arm the timer */ |
| 1902 | if (timeout) { |
| 1903 | hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); |
| 1904 | if (!hrtimer_active(&timeout->timer)) |
| 1905 | timeout->task = NULL; |
| 1906 | } |
| 1907 | |
| 1908 | /* |
| 1909 | * If we have been removed from the hash list, then another task |
| 1910 | * has tried to wake us, and we can skip the call to schedule(). |
| 1911 | */ |
| 1912 | if (likely(!plist_node_empty(&q->list))) { |
| 1913 | /* |
| 1914 | * If the timer has already expired, current will already be |
| 1915 | * flagged for rescheduling. Only call schedule if there |
| 1916 | * is no timeout, or if it has yet to expire. |
| 1917 | */ |
| 1918 | if (!timeout || timeout->task) |
| 1919 | schedule(); |
| 1920 | } |
| 1921 | __set_current_state(TASK_RUNNING); |
| 1922 | } |
| 1923 | |
| 1924 | /** |
| 1925 | * futex_wait_setup() - Prepare to wait on a futex |
| 1926 | * @uaddr: the futex userspace address |
| 1927 | * @val: the expected value |
| 1928 | * @flags: futex flags (FLAGS_SHARED, etc.) |
| 1929 | * @q: the associated futex_q |
| 1930 | * @hb: storage for hash_bucket pointer to be returned to caller |
| 1931 | * |
| 1932 | * Setup the futex_q and locate the hash_bucket. Get the futex value and |
| 1933 | * compare it with the expected value. Handle atomic faults internally. |
| 1934 | * Return with the hb lock held and a q.key reference on success, and unlocked |
| 1935 | * with no q.key reference on failure. |
| 1936 | * |
| 1937 | * Returns: |
| 1938 | * 0 - uaddr contains val and hb has been locked |
| 1939 | * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked |
| 1940 | */ |
| 1941 | static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
| 1942 | struct futex_q *q, struct futex_hash_bucket **hb) |
| 1943 | { |
| 1944 | u32 uval; |
| 1945 | int ret; |
| 1946 | |
| 1947 | /* |
| 1948 | * Access the page AFTER the hash-bucket is locked. |
| 1949 | * Order is important: |
| 1950 | * |
| 1951 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); |
| 1952 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } |
| 1953 | * |
| 1954 | * The basic logical guarantee of a futex is that it blocks ONLY |
| 1955 | * if cond(var) is known to be true at the time of blocking, for |
| 1956 | * any cond. If we locked the hash-bucket after testing *uaddr, that |
| 1957 | * would open a race condition where we could block indefinitely with |
| 1958 | * cond(var) false, which would violate the guarantee. |
| 1959 | * |
| 1960 | * On the other hand, we insert q and release the hash-bucket only |
| 1961 | * after testing *uaddr. This guarantees that futex_wait() will NOT |
| 1962 | * absorb a wakeup if *uaddr does not match the desired values |
| 1963 | * while the syscall executes. |
| 1964 | */ |
| 1965 | retry: |
| 1966 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ); |
| 1967 | if (unlikely(ret != 0)) |
| 1968 | return ret; |
| 1969 | |
| 1970 | retry_private: |
| 1971 | *hb = queue_lock(q); |
| 1972 | |
| 1973 | ret = get_futex_value_locked(&uval, uaddr); |
| 1974 | |
| 1975 | if (ret) { |
| 1976 | queue_unlock(q, *hb); |
| 1977 | |
| 1978 | ret = get_user(uval, uaddr); |
| 1979 | if (ret) |
| 1980 | goto out; |
| 1981 | |
| 1982 | if (!(flags & FLAGS_SHARED)) |
| 1983 | goto retry_private; |
| 1984 | |
| 1985 | put_futex_key(&q->key); |
| 1986 | goto retry; |
| 1987 | } |
| 1988 | |
| 1989 | if (uval != val) { |
| 1990 | queue_unlock(q, *hb); |
| 1991 | ret = -EWOULDBLOCK; |
| 1992 | } |
| 1993 | |
| 1994 | out: |
| 1995 | if (ret) |
| 1996 | put_futex_key(&q->key); |
| 1997 | return ret; |
| 1998 | } |
| 1999 | |
| 2000 | static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, |
| 2001 | ktime_t *abs_time, u32 bitset) |
| 2002 | { |
| 2003 | struct hrtimer_sleeper timeout, *to = NULL; |
| 2004 | struct restart_block *restart; |
| 2005 | struct futex_hash_bucket *hb; |
| 2006 | struct futex_q q = futex_q_init; |
| 2007 | int ret; |
| 2008 | |
| 2009 | if (!bitset) |
| 2010 | return -EINVAL; |
| 2011 | q.bitset = bitset; |
| 2012 | |
| 2013 | if (abs_time) { |
| 2014 | to = &timeout; |
| 2015 | |
| 2016 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
| 2017 | CLOCK_REALTIME : CLOCK_MONOTONIC, |
| 2018 | HRTIMER_MODE_ABS); |
| 2019 | hrtimer_init_sleeper(to, current); |
| 2020 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, |
| 2021 | current->timer_slack_ns); |
| 2022 | } |
| 2023 | |
| 2024 | retry: |
| 2025 | /* |
| 2026 | * Prepare to wait on uaddr. On success, holds hb lock and increments |
| 2027 | * q.key refs. |
| 2028 | */ |
| 2029 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
| 2030 | if (ret) |
| 2031 | goto out; |
| 2032 | |
| 2033 | /* queue_me and wait for wakeup, timeout, or a signal. */ |
| 2034 | futex_wait_queue_me(hb, &q, to); |
| 2035 | |
| 2036 | /* If we were woken (and unqueued), we succeeded, whatever. */ |
| 2037 | ret = 0; |
| 2038 | /* unqueue_me() drops q.key ref */ |
| 2039 | if (!unqueue_me(&q)) |
| 2040 | goto out; |
| 2041 | ret = -ETIMEDOUT; |
| 2042 | if (to && !to->task) |
| 2043 | goto out; |
| 2044 | |
| 2045 | /* |
| 2046 | * We expect signal_pending(current), but we might be the |
| 2047 | * victim of a spurious wakeup as well. |
| 2048 | */ |
| 2049 | if (!signal_pending(current)) |
| 2050 | goto retry; |
| 2051 | |
| 2052 | ret = -ERESTARTSYS; |
| 2053 | if (!abs_time) |
| 2054 | goto out; |
| 2055 | |
| 2056 | restart = ¤t_thread_info()->restart_block; |
| 2057 | restart->fn = futex_wait_restart; |
| 2058 | restart->futex.uaddr = uaddr; |
| 2059 | restart->futex.val = val; |
| 2060 | restart->futex.time = abs_time->tv64; |
| 2061 | restart->futex.bitset = bitset; |
| 2062 | restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
| 2063 | |
| 2064 | ret = -ERESTART_RESTARTBLOCK; |
| 2065 | |
| 2066 | out: |
| 2067 | if (to) { |
| 2068 | hrtimer_cancel(&to->timer); |
| 2069 | destroy_hrtimer_on_stack(&to->timer); |
| 2070 | } |
| 2071 | return ret; |
| 2072 | } |
| 2073 | |
| 2074 | |
| 2075 | static long futex_wait_restart(struct restart_block *restart) |
| 2076 | { |
| 2077 | u32 __user *uaddr = restart->futex.uaddr; |
| 2078 | ktime_t t, *tp = NULL; |
| 2079 | |
| 2080 | if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { |
| 2081 | t.tv64 = restart->futex.time; |
| 2082 | tp = &t; |
| 2083 | } |
| 2084 | restart->fn = do_no_restart_syscall; |
| 2085 | |
| 2086 | return (long)futex_wait(uaddr, restart->futex.flags, |
| 2087 | restart->futex.val, tp, restart->futex.bitset); |
| 2088 | } |
| 2089 | |
| 2090 | |
| 2091 | /* |
| 2092 | * Userspace tried a 0 -> TID atomic transition of the futex value |
| 2093 | * and failed. The kernel side here does the whole locking operation: |
| 2094 | * if there are waiters then it will block, it does PI, etc. (Due to |
| 2095 | * races the kernel might see a 0 value of the futex too.) |
| 2096 | */ |
| 2097 | static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect, |
| 2098 | ktime_t *time, int trylock) |
| 2099 | { |
| 2100 | struct hrtimer_sleeper timeout, *to = NULL; |
| 2101 | struct futex_hash_bucket *hb; |
| 2102 | struct futex_q q = futex_q_init; |
| 2103 | int res, ret; |
| 2104 | |
| 2105 | if (refill_pi_state_cache()) |
| 2106 | return -ENOMEM; |
| 2107 | |
| 2108 | if (time) { |
| 2109 | to = &timeout; |
| 2110 | hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME, |
| 2111 | HRTIMER_MODE_ABS); |
| 2112 | hrtimer_init_sleeper(to, current); |
| 2113 | hrtimer_set_expires(&to->timer, *time); |
| 2114 | } |
| 2115 | |
| 2116 | retry: |
| 2117 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE); |
| 2118 | if (unlikely(ret != 0)) |
| 2119 | goto out; |
| 2120 | |
| 2121 | retry_private: |
| 2122 | hb = queue_lock(&q); |
| 2123 | |
| 2124 | ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0); |
| 2125 | if (unlikely(ret)) { |
| 2126 | switch (ret) { |
| 2127 | case 1: |
| 2128 | /* We got the lock. */ |
| 2129 | ret = 0; |
| 2130 | goto out_unlock_put_key; |
| 2131 | case -EFAULT: |
| 2132 | goto uaddr_faulted; |
| 2133 | case -EAGAIN: |
| 2134 | /* |
| 2135 | * Two reasons for this: |
| 2136 | * - Task is exiting and we just wait for the |
| 2137 | * exit to complete. |
| 2138 | * - The user space value changed. |
| 2139 | */ |
| 2140 | queue_unlock(&q, hb); |
| 2141 | put_futex_key(&q.key); |
| 2142 | cond_resched(); |
| 2143 | goto retry; |
| 2144 | default: |
| 2145 | goto out_unlock_put_key; |
| 2146 | } |
| 2147 | } |
| 2148 | |
| 2149 | /* |
| 2150 | * Only actually queue now that the atomic ops are done: |
| 2151 | */ |
| 2152 | queue_me(&q, hb); |
| 2153 | |
| 2154 | WARN_ON(!q.pi_state); |
| 2155 | /* |
| 2156 | * Block on the PI mutex: |
| 2157 | */ |
| 2158 | if (!trylock) { |
| 2159 | ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to); |
| 2160 | } else { |
| 2161 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); |
| 2162 | /* Fixup the trylock return value: */ |
| 2163 | ret = ret ? 0 : -EWOULDBLOCK; |
| 2164 | } |
| 2165 | |
| 2166 | spin_lock(q.lock_ptr); |
| 2167 | /* |
| 2168 | * Fixup the pi_state owner and possibly acquire the lock if we |
| 2169 | * haven't already. |
| 2170 | */ |
| 2171 | res = fixup_owner(uaddr, &q, !ret); |
| 2172 | /* |
| 2173 | * If fixup_owner() returned an error, proprogate that. If it acquired |
| 2174 | * the lock, clear our -ETIMEDOUT or -EINTR. |
| 2175 | */ |
| 2176 | if (res) |
| 2177 | ret = (res < 0) ? res : 0; |
| 2178 | |
| 2179 | /* |
| 2180 | * If fixup_owner() faulted and was unable to handle the fault, unlock |
| 2181 | * it and return the fault to userspace. |
| 2182 | */ |
| 2183 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) |
| 2184 | rt_mutex_unlock(&q.pi_state->pi_mutex); |
| 2185 | |
| 2186 | /* Unqueue and drop the lock */ |
| 2187 | unqueue_me_pi(&q); |
| 2188 | |
| 2189 | goto out_put_key; |
| 2190 | |
| 2191 | out_unlock_put_key: |
| 2192 | queue_unlock(&q, hb); |
| 2193 | |
| 2194 | out_put_key: |
| 2195 | put_futex_key(&q.key); |
| 2196 | out: |
| 2197 | if (to) |
| 2198 | destroy_hrtimer_on_stack(&to->timer); |
| 2199 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
| 2200 | |
| 2201 | uaddr_faulted: |
| 2202 | queue_unlock(&q, hb); |
| 2203 | |
| 2204 | ret = fault_in_user_writeable(uaddr); |
| 2205 | if (ret) |
| 2206 | goto out_put_key; |
| 2207 | |
| 2208 | if (!(flags & FLAGS_SHARED)) |
| 2209 | goto retry_private; |
| 2210 | |
| 2211 | put_futex_key(&q.key); |
| 2212 | goto retry; |
| 2213 | } |
| 2214 | |
| 2215 | /* |
| 2216 | * Userspace attempted a TID -> 0 atomic transition, and failed. |
| 2217 | * This is the in-kernel slowpath: we look up the PI state (if any), |
| 2218 | * and do the rt-mutex unlock. |
| 2219 | */ |
| 2220 | static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
| 2221 | { |
| 2222 | u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current); |
| 2223 | union futex_key key = FUTEX_KEY_INIT; |
| 2224 | struct futex_hash_bucket *hb; |
| 2225 | struct futex_q *match; |
| 2226 | int ret; |
| 2227 | |
| 2228 | retry: |
| 2229 | if (get_user(uval, uaddr)) |
| 2230 | return -EFAULT; |
| 2231 | /* |
| 2232 | * We release only a lock we actually own: |
| 2233 | */ |
| 2234 | if ((uval & FUTEX_TID_MASK) != vpid) |
| 2235 | return -EPERM; |
| 2236 | |
| 2237 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE); |
| 2238 | if (ret) |
| 2239 | return ret; |
| 2240 | |
| 2241 | hb = hash_futex(&key); |
| 2242 | spin_lock(&hb->lock); |
| 2243 | |
| 2244 | /* |
| 2245 | * Check waiters first. We do not trust user space values at |
| 2246 | * all and we at least want to know if user space fiddled |
| 2247 | * with the futex value instead of blindly unlocking. |
| 2248 | */ |
| 2249 | match = futex_top_waiter(hb, &key); |
| 2250 | if (match) { |
| 2251 | ret = wake_futex_pi(uaddr, uval, match); |
| 2252 | /* |
| 2253 | * The atomic access to the futex value generated a |
| 2254 | * pagefault, so retry the user-access and the wakeup: |
| 2255 | */ |
| 2256 | if (ret == -EFAULT) |
| 2257 | goto pi_faulted; |
| 2258 | goto out_unlock; |
| 2259 | } |
| 2260 | |
| 2261 | /* |
| 2262 | * We have no kernel internal state, i.e. no waiters in the |
| 2263 | * kernel. Waiters which are about to queue themselves are stuck |
| 2264 | * on hb->lock. So we can safely ignore them. We do neither |
| 2265 | * preserve the WAITERS bit not the OWNER_DIED one. We are the |
| 2266 | * owner. |
| 2267 | */ |
| 2268 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) |
| 2269 | goto pi_faulted; |
| 2270 | |
| 2271 | /* |
| 2272 | * If uval has changed, let user space handle it. |
| 2273 | */ |
| 2274 | ret = (curval == uval) ? 0 : -EAGAIN; |
| 2275 | |
| 2276 | out_unlock: |
| 2277 | spin_unlock(&hb->lock); |
| 2278 | put_futex_key(&key); |
| 2279 | return ret; |
| 2280 | |
| 2281 | |
| 2282 | pi_faulted: |
| 2283 | spin_unlock(&hb->lock); |
| 2284 | put_futex_key(&key); |
| 2285 | |
| 2286 | ret = fault_in_user_writeable(uaddr); |
| 2287 | if (!ret) |
| 2288 | goto retry; |
| 2289 | |
| 2290 | return ret; |
| 2291 | } |
| 2292 | |
| 2293 | /** |
| 2294 | * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex |
| 2295 | * @hb: the hash_bucket futex_q was original enqueued on |
| 2296 | * @q: the futex_q woken while waiting to be requeued |
| 2297 | * @key2: the futex_key of the requeue target futex |
| 2298 | * @timeout: the timeout associated with the wait (NULL if none) |
| 2299 | * |
| 2300 | * Detect if the task was woken on the initial futex as opposed to the requeue |
| 2301 | * target futex. If so, determine if it was a timeout or a signal that caused |
| 2302 | * the wakeup and return the appropriate error code to the caller. Must be |
| 2303 | * called with the hb lock held. |
| 2304 | * |
| 2305 | * Returns |
| 2306 | * 0 - no early wakeup detected |
| 2307 | * <0 - -ETIMEDOUT or -ERESTARTNOINTR |
| 2308 | */ |
| 2309 | static inline |
| 2310 | int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, |
| 2311 | struct futex_q *q, union futex_key *key2, |
| 2312 | struct hrtimer_sleeper *timeout) |
| 2313 | { |
| 2314 | int ret = 0; |
| 2315 | |
| 2316 | /* |
| 2317 | * With the hb lock held, we avoid races while we process the wakeup. |
| 2318 | * We only need to hold hb (and not hb2) to ensure atomicity as the |
| 2319 | * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. |
| 2320 | * It can't be requeued from uaddr2 to something else since we don't |
| 2321 | * support a PI aware source futex for requeue. |
| 2322 | */ |
| 2323 | if (!match_futex(&q->key, key2)) { |
| 2324 | WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); |
| 2325 | /* |
| 2326 | * We were woken prior to requeue by a timeout or a signal. |
| 2327 | * Unqueue the futex_q and determine which it was. |
| 2328 | */ |
| 2329 | plist_del(&q->list, &hb->chain); |
| 2330 | |
| 2331 | /* Handle spurious wakeups gracefully */ |
| 2332 | ret = -EWOULDBLOCK; |
| 2333 | if (timeout && !timeout->task) |
| 2334 | ret = -ETIMEDOUT; |
| 2335 | else if (signal_pending(current)) |
| 2336 | ret = -ERESTARTNOINTR; |
| 2337 | } |
| 2338 | return ret; |
| 2339 | } |
| 2340 | |
| 2341 | /** |
| 2342 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 |
| 2343 | * @uaddr: the futex we initially wait on (non-pi) |
| 2344 | * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
| 2345 | * the same type, no requeueing from private to shared, etc. |
| 2346 | * @val: the expected value of uaddr |
| 2347 | * @abs_time: absolute timeout |
| 2348 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
| 2349 | * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) |
| 2350 | * @uaddr2: the pi futex we will take prior to returning to user-space |
| 2351 | * |
| 2352 | * The caller will wait on uaddr and will be requeued by futex_requeue() to |
| 2353 | * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake |
| 2354 | * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to |
| 2355 | * userspace. This ensures the rt_mutex maintains an owner when it has waiters; |
| 2356 | * without one, the pi logic would not know which task to boost/deboost, if |
| 2357 | * there was a need to. |
| 2358 | * |
| 2359 | * We call schedule in futex_wait_queue_me() when we enqueue and return there |
| 2360 | * via the following: |
| 2361 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
| 2362 | * 2) wakeup on uaddr2 after a requeue |
| 2363 | * 3) signal |
| 2364 | * 4) timeout |
| 2365 | * |
| 2366 | * If 3, cleanup and return -ERESTARTNOINTR. |
| 2367 | * |
| 2368 | * If 2, we may then block on trying to take the rt_mutex and return via: |
| 2369 | * 5) successful lock |
| 2370 | * 6) signal |
| 2371 | * 7) timeout |
| 2372 | * 8) other lock acquisition failure |
| 2373 | * |
| 2374 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
| 2375 | * |
| 2376 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. |
| 2377 | * |
| 2378 | * Returns: |
| 2379 | * 0 - On success |
| 2380 | * <0 - On error |
| 2381 | */ |
| 2382 | static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
| 2383 | u32 val, ktime_t *abs_time, u32 bitset, |
| 2384 | u32 __user *uaddr2) |
| 2385 | { |
| 2386 | struct hrtimer_sleeper timeout, *to = NULL; |
| 2387 | struct rt_mutex_waiter rt_waiter; |
| 2388 | struct rt_mutex *pi_mutex = NULL; |
| 2389 | struct futex_hash_bucket *hb, *hb2; |
| 2390 | union futex_key key2 = FUTEX_KEY_INIT; |
| 2391 | struct futex_q q = futex_q_init; |
| 2392 | int res, ret; |
| 2393 | |
| 2394 | if (uaddr == uaddr2) |
| 2395 | return -EINVAL; |
| 2396 | |
| 2397 | if (!bitset) |
| 2398 | return -EINVAL; |
| 2399 | |
| 2400 | if (abs_time) { |
| 2401 | to = &timeout; |
| 2402 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
| 2403 | CLOCK_REALTIME : CLOCK_MONOTONIC, |
| 2404 | HRTIMER_MODE_ABS); |
| 2405 | hrtimer_init_sleeper(to, current); |
| 2406 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, |
| 2407 | current->timer_slack_ns); |
| 2408 | } |
| 2409 | |
| 2410 | /* |
| 2411 | * The waiter is allocated on our stack, manipulated by the requeue |
| 2412 | * code while we sleep on uaddr. |
| 2413 | */ |
| 2414 | rt_mutex_init_waiter(&rt_waiter, false); |
| 2415 | |
| 2416 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
| 2417 | if (unlikely(ret != 0)) |
| 2418 | goto out; |
| 2419 | |
| 2420 | q.bitset = bitset; |
| 2421 | q.rt_waiter = &rt_waiter; |
| 2422 | q.requeue_pi_key = &key2; |
| 2423 | |
| 2424 | /* |
| 2425 | * Prepare to wait on uaddr. On success, increments q.key (key1) ref |
| 2426 | * count. |
| 2427 | */ |
| 2428 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
| 2429 | if (ret) |
| 2430 | goto out_key2; |
| 2431 | |
| 2432 | /* |
| 2433 | * The check above which compares uaddrs is not sufficient for |
| 2434 | * shared futexes. We need to compare the keys: |
| 2435 | */ |
| 2436 | if (match_futex(&q.key, &key2)) { |
| 2437 | queue_unlock(&q, hb); |
| 2438 | ret = -EINVAL; |
| 2439 | goto out_put_keys; |
| 2440 | } |
| 2441 | |
| 2442 | /* Queue the futex_q, drop the hb lock, wait for wakeup. */ |
| 2443 | futex_wait_queue_me(hb, &q, to); |
| 2444 | |
| 2445 | /* |
| 2446 | * On RT we must avoid races with requeue and trying to block |
| 2447 | * on two mutexes (hb->lock and uaddr2's rtmutex) by |
| 2448 | * serializing access to pi_blocked_on with pi_lock. |
| 2449 | */ |
| 2450 | raw_spin_lock_irq(¤t->pi_lock); |
| 2451 | if (current->pi_blocked_on) { |
| 2452 | /* |
| 2453 | * We have been requeued or are in the process of |
| 2454 | * being requeued. |
| 2455 | */ |
| 2456 | raw_spin_unlock_irq(¤t->pi_lock); |
| 2457 | } else { |
| 2458 | /* |
| 2459 | * Setting pi_blocked_on to PI_WAKEUP_INPROGRESS |
| 2460 | * prevents a concurrent requeue from moving us to the |
| 2461 | * uaddr2 rtmutex. After that we can safely acquire |
| 2462 | * (and possibly block on) hb->lock. |
| 2463 | */ |
| 2464 | current->pi_blocked_on = PI_WAKEUP_INPROGRESS; |
| 2465 | raw_spin_unlock_irq(¤t->pi_lock); |
| 2466 | |
| 2467 | spin_lock(&hb->lock); |
| 2468 | |
| 2469 | /* |
| 2470 | * Clean up pi_blocked_on. We might leak it otherwise |
| 2471 | * when we succeeded with the hb->lock in the fast |
| 2472 | * path. |
| 2473 | */ |
| 2474 | raw_spin_lock_irq(¤t->pi_lock); |
| 2475 | current->pi_blocked_on = NULL; |
| 2476 | raw_spin_unlock_irq(¤t->pi_lock); |
| 2477 | |
| 2478 | ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); |
| 2479 | spin_unlock(&hb->lock); |
| 2480 | if (ret) |
| 2481 | goto out_put_keys; |
| 2482 | } |
| 2483 | |
| 2484 | /* |
| 2485 | * In order to be here, we have either been requeued, are in |
| 2486 | * the process of being requeued, or requeue successfully |
| 2487 | * acquired uaddr2 on our behalf. If pi_blocked_on was |
| 2488 | * non-null above, we may be racing with a requeue. Do not |
| 2489 | * rely on q->lock_ptr to be hb2->lock until after blocking on |
| 2490 | * hb->lock or hb2->lock. The futex_requeue dropped our key1 |
| 2491 | * reference and incremented our key2 reference count. |
| 2492 | */ |
| 2493 | hb2 = hash_futex(&key2); |
| 2494 | |
| 2495 | /* Check if the requeue code acquired the second futex for us. */ |
| 2496 | if (!q.rt_waiter) { |
| 2497 | /* |
| 2498 | * Got the lock. We might not be the anticipated owner if we |
| 2499 | * did a lock-steal - fix up the PI-state in that case. |
| 2500 | */ |
| 2501 | if (q.pi_state && (q.pi_state->owner != current)) { |
| 2502 | spin_lock(&hb2->lock); |
| 2503 | BUG_ON(&hb2->lock != q.lock_ptr); |
| 2504 | ret = fixup_pi_state_owner(uaddr2, &q, current); |
| 2505 | spin_unlock(&hb2->lock); |
| 2506 | } |
| 2507 | } else { |
| 2508 | /* |
| 2509 | * We have been woken up by futex_unlock_pi(), a timeout, or a |
| 2510 | * signal. futex_unlock_pi() will not destroy the lock_ptr nor |
| 2511 | * the pi_state. |
| 2512 | */ |
| 2513 | WARN_ON(!q.pi_state); |
| 2514 | pi_mutex = &q.pi_state->pi_mutex; |
| 2515 | ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter); |
| 2516 | debug_rt_mutex_free_waiter(&rt_waiter); |
| 2517 | |
| 2518 | spin_lock(&hb2->lock); |
| 2519 | BUG_ON(&hb2->lock != q.lock_ptr); |
| 2520 | /* |
| 2521 | * Fixup the pi_state owner and possibly acquire the lock if we |
| 2522 | * haven't already. |
| 2523 | */ |
| 2524 | res = fixup_owner(uaddr2, &q, !ret); |
| 2525 | /* |
| 2526 | * If fixup_owner() returned an error, proprogate that. If it |
| 2527 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
| 2528 | */ |
| 2529 | if (res) |
| 2530 | ret = (res < 0) ? res : 0; |
| 2531 | |
| 2532 | /* Unqueue and drop the lock. */ |
| 2533 | unqueue_me_pi(&q); |
| 2534 | } |
| 2535 | |
| 2536 | /* |
| 2537 | * If fixup_pi_state_owner() faulted and was unable to handle the |
| 2538 | * fault, unlock the rt_mutex and return the fault to userspace. |
| 2539 | */ |
| 2540 | if (ret == -EFAULT) { |
| 2541 | if (pi_mutex && rt_mutex_owner(pi_mutex) == current) |
| 2542 | rt_mutex_unlock(pi_mutex); |
| 2543 | } else if (ret == -EINTR) { |
| 2544 | /* |
| 2545 | * We've already been requeued, but cannot restart by calling |
| 2546 | * futex_lock_pi() directly. We could restart this syscall, but |
| 2547 | * it would detect that the user space "val" changed and return |
| 2548 | * -EWOULDBLOCK. Save the overhead of the restart and return |
| 2549 | * -EWOULDBLOCK directly. |
| 2550 | */ |
| 2551 | ret = -EWOULDBLOCK; |
| 2552 | } |
| 2553 | |
| 2554 | out_put_keys: |
| 2555 | put_futex_key(&q.key); |
| 2556 | out_key2: |
| 2557 | put_futex_key(&key2); |
| 2558 | |
| 2559 | out: |
| 2560 | if (to) { |
| 2561 | hrtimer_cancel(&to->timer); |
| 2562 | destroy_hrtimer_on_stack(&to->timer); |
| 2563 | } |
| 2564 | return ret; |
| 2565 | } |
| 2566 | |
| 2567 | /* |
| 2568 | * Support for robust futexes: the kernel cleans up held futexes at |
| 2569 | * thread exit time. |
| 2570 | * |
| 2571 | * Implementation: user-space maintains a per-thread list of locks it |
| 2572 | * is holding. Upon do_exit(), the kernel carefully walks this list, |
| 2573 | * and marks all locks that are owned by this thread with the |
| 2574 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
| 2575 | * always manipulated with the lock held, so the list is private and |
| 2576 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' |
| 2577 | * field, to allow the kernel to clean up if the thread dies after |
| 2578 | * acquiring the lock, but just before it could have added itself to |
| 2579 | * the list. There can only be one such pending lock. |
| 2580 | */ |
| 2581 | |
| 2582 | /** |
| 2583 | * sys_set_robust_list() - Set the robust-futex list head of a task |
| 2584 | * @head: pointer to the list-head |
| 2585 | * @len: length of the list-head, as userspace expects |
| 2586 | */ |
| 2587 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
| 2588 | size_t, len) |
| 2589 | { |
| 2590 | if (!futex_cmpxchg_enabled) |
| 2591 | return -ENOSYS; |
| 2592 | /* |
| 2593 | * The kernel knows only one size for now: |
| 2594 | */ |
| 2595 | if (unlikely(len != sizeof(*head))) |
| 2596 | return -EINVAL; |
| 2597 | |
| 2598 | current->robust_list = head; |
| 2599 | |
| 2600 | return 0; |
| 2601 | } |
| 2602 | |
| 2603 | /** |
| 2604 | * sys_get_robust_list() - Get the robust-futex list head of a task |
| 2605 | * @pid: pid of the process [zero for current task] |
| 2606 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in |
| 2607 | * @len_ptr: pointer to a length field, the kernel fills in the header size |
| 2608 | */ |
| 2609 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
| 2610 | struct robust_list_head __user * __user *, head_ptr, |
| 2611 | size_t __user *, len_ptr) |
| 2612 | { |
| 2613 | struct robust_list_head __user *head; |
| 2614 | unsigned long ret; |
| 2615 | struct task_struct *p; |
| 2616 | |
| 2617 | if (!futex_cmpxchg_enabled) |
| 2618 | return -ENOSYS; |
| 2619 | |
| 2620 | rcu_read_lock(); |
| 2621 | |
| 2622 | ret = -ESRCH; |
| 2623 | if (!pid) |
| 2624 | p = current; |
| 2625 | else { |
| 2626 | p = find_task_by_vpid(pid); |
| 2627 | if (!p) |
| 2628 | goto err_unlock; |
| 2629 | } |
| 2630 | |
| 2631 | ret = -EPERM; |
| 2632 | if (!ptrace_may_access(p, PTRACE_MODE_READ)) |
| 2633 | goto err_unlock; |
| 2634 | |
| 2635 | head = p->robust_list; |
| 2636 | rcu_read_unlock(); |
| 2637 | |
| 2638 | if (put_user(sizeof(*head), len_ptr)) |
| 2639 | return -EFAULT; |
| 2640 | return put_user(head, head_ptr); |
| 2641 | |
| 2642 | err_unlock: |
| 2643 | rcu_read_unlock(); |
| 2644 | |
| 2645 | return ret; |
| 2646 | } |
| 2647 | |
| 2648 | /* |
| 2649 | * Process a futex-list entry, check whether it's owned by the |
| 2650 | * dying task, and do notification if so: |
| 2651 | */ |
| 2652 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
| 2653 | { |
| 2654 | u32 uval, uninitialized_var(nval), mval; |
| 2655 | |
| 2656 | retry: |
| 2657 | if (get_user(uval, uaddr)) |
| 2658 | return -1; |
| 2659 | |
| 2660 | if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) { |
| 2661 | /* |
| 2662 | * Ok, this dying thread is truly holding a futex |
| 2663 | * of interest. Set the OWNER_DIED bit atomically |
| 2664 | * via cmpxchg, and if the value had FUTEX_WAITERS |
| 2665 | * set, wake up a waiter (if any). (We have to do a |
| 2666 | * futex_wake() even if OWNER_DIED is already set - |
| 2667 | * to handle the rare but possible case of recursive |
| 2668 | * thread-death.) The rest of the cleanup is done in |
| 2669 | * userspace. |
| 2670 | */ |
| 2671 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
| 2672 | /* |
| 2673 | * We are not holding a lock here, but we want to have |
| 2674 | * the pagefault_disable/enable() protection because |
| 2675 | * we want to handle the fault gracefully. If the |
| 2676 | * access fails we try to fault in the futex with R/W |
| 2677 | * verification via get_user_pages. get_user() above |
| 2678 | * does not guarantee R/W access. If that fails we |
| 2679 | * give up and leave the futex locked. |
| 2680 | */ |
| 2681 | if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) { |
| 2682 | if (fault_in_user_writeable(uaddr)) |
| 2683 | return -1; |
| 2684 | goto retry; |
| 2685 | } |
| 2686 | if (nval != uval) |
| 2687 | goto retry; |
| 2688 | |
| 2689 | /* |
| 2690 | * Wake robust non-PI futexes here. The wakeup of |
| 2691 | * PI futexes happens in exit_pi_state(): |
| 2692 | */ |
| 2693 | if (!pi && (uval & FUTEX_WAITERS)) |
| 2694 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
| 2695 | } |
| 2696 | return 0; |
| 2697 | } |
| 2698 | |
| 2699 | /* |
| 2700 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: |
| 2701 | */ |
| 2702 | static inline int fetch_robust_entry(struct robust_list __user **entry, |
| 2703 | struct robust_list __user * __user *head, |
| 2704 | unsigned int *pi) |
| 2705 | { |
| 2706 | unsigned long uentry; |
| 2707 | |
| 2708 | if (get_user(uentry, (unsigned long __user *)head)) |
| 2709 | return -EFAULT; |
| 2710 | |
| 2711 | *entry = (void __user *)(uentry & ~1UL); |
| 2712 | *pi = uentry & 1; |
| 2713 | |
| 2714 | return 0; |
| 2715 | } |
| 2716 | |
| 2717 | /* |
| 2718 | * Walk curr->robust_list (very carefully, it's a userspace list!) |
| 2719 | * and mark any locks found there dead, and notify any waiters. |
| 2720 | * |
| 2721 | * We silently return on any sign of list-walking problem. |
| 2722 | */ |
| 2723 | void exit_robust_list(struct task_struct *curr) |
| 2724 | { |
| 2725 | struct robust_list_head __user *head = curr->robust_list; |
| 2726 | struct robust_list __user *entry, *next_entry, *pending; |
| 2727 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
| 2728 | unsigned int uninitialized_var(next_pi); |
| 2729 | unsigned long futex_offset; |
| 2730 | int rc; |
| 2731 | |
| 2732 | if (!futex_cmpxchg_enabled) |
| 2733 | return; |
| 2734 | |
| 2735 | /* |
| 2736 | * Fetch the list head (which was registered earlier, via |
| 2737 | * sys_set_robust_list()): |
| 2738 | */ |
| 2739 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
| 2740 | return; |
| 2741 | /* |
| 2742 | * Fetch the relative futex offset: |
| 2743 | */ |
| 2744 | if (get_user(futex_offset, &head->futex_offset)) |
| 2745 | return; |
| 2746 | /* |
| 2747 | * Fetch any possibly pending lock-add first, and handle it |
| 2748 | * if it exists: |
| 2749 | */ |
| 2750 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
| 2751 | return; |
| 2752 | |
| 2753 | next_entry = NULL; /* avoid warning with gcc */ |
| 2754 | while (entry != &head->list) { |
| 2755 | /* |
| 2756 | * Fetch the next entry in the list before calling |
| 2757 | * handle_futex_death: |
| 2758 | */ |
| 2759 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); |
| 2760 | /* |
| 2761 | * A pending lock might already be on the list, so |
| 2762 | * don't process it twice: |
| 2763 | */ |
| 2764 | if (entry != pending) |
| 2765 | if (handle_futex_death((void __user *)entry + futex_offset, |
| 2766 | curr, pi)) |
| 2767 | return; |
| 2768 | if (rc) |
| 2769 | return; |
| 2770 | entry = next_entry; |
| 2771 | pi = next_pi; |
| 2772 | /* |
| 2773 | * Avoid excessively long or circular lists: |
| 2774 | */ |
| 2775 | if (!--limit) |
| 2776 | break; |
| 2777 | |
| 2778 | cond_resched(); |
| 2779 | } |
| 2780 | |
| 2781 | if (pending) |
| 2782 | handle_futex_death((void __user *)pending + futex_offset, |
| 2783 | curr, pip); |
| 2784 | } |
| 2785 | |
| 2786 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
| 2787 | u32 __user *uaddr2, u32 val2, u32 val3) |
| 2788 | { |
| 2789 | int cmd = op & FUTEX_CMD_MASK; |
| 2790 | unsigned int flags = 0; |
| 2791 | |
| 2792 | if (!(op & FUTEX_PRIVATE_FLAG)) |
| 2793 | flags |= FLAGS_SHARED; |
| 2794 | |
| 2795 | if (op & FUTEX_CLOCK_REALTIME) { |
| 2796 | flags |= FLAGS_CLOCKRT; |
| 2797 | if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI) |
| 2798 | return -ENOSYS; |
| 2799 | } |
| 2800 | |
| 2801 | switch (cmd) { |
| 2802 | case FUTEX_LOCK_PI: |
| 2803 | case FUTEX_UNLOCK_PI: |
| 2804 | case FUTEX_TRYLOCK_PI: |
| 2805 | case FUTEX_WAIT_REQUEUE_PI: |
| 2806 | case FUTEX_CMP_REQUEUE_PI: |
| 2807 | if (!futex_cmpxchg_enabled) |
| 2808 | return -ENOSYS; |
| 2809 | } |
| 2810 | |
| 2811 | switch (cmd) { |
| 2812 | case FUTEX_WAIT: |
| 2813 | val3 = FUTEX_BITSET_MATCH_ANY; |
| 2814 | case FUTEX_WAIT_BITSET: |
| 2815 | return futex_wait(uaddr, flags, val, timeout, val3); |
| 2816 | case FUTEX_WAKE: |
| 2817 | val3 = FUTEX_BITSET_MATCH_ANY; |
| 2818 | case FUTEX_WAKE_BITSET: |
| 2819 | return futex_wake(uaddr, flags, val, val3); |
| 2820 | case FUTEX_REQUEUE: |
| 2821 | return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
| 2822 | case FUTEX_CMP_REQUEUE: |
| 2823 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
| 2824 | case FUTEX_WAKE_OP: |
| 2825 | return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
| 2826 | case FUTEX_LOCK_PI: |
| 2827 | return futex_lock_pi(uaddr, flags, val, timeout, 0); |
| 2828 | case FUTEX_UNLOCK_PI: |
| 2829 | return futex_unlock_pi(uaddr, flags); |
| 2830 | case FUTEX_TRYLOCK_PI: |
| 2831 | return futex_lock_pi(uaddr, flags, 0, timeout, 1); |
| 2832 | case FUTEX_WAIT_REQUEUE_PI: |
| 2833 | val3 = FUTEX_BITSET_MATCH_ANY; |
| 2834 | return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, |
| 2835 | uaddr2); |
| 2836 | case FUTEX_CMP_REQUEUE_PI: |
| 2837 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
| 2838 | } |
| 2839 | return -ENOSYS; |
| 2840 | } |
| 2841 | |
| 2842 | |
| 2843 | SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, |
| 2844 | struct timespec __user *, utime, u32 __user *, uaddr2, |
| 2845 | u32, val3) |
| 2846 | { |
| 2847 | struct timespec ts; |
| 2848 | ktime_t t, *tp = NULL; |
| 2849 | u32 val2 = 0; |
| 2850 | int cmd = op & FUTEX_CMD_MASK; |
| 2851 | |
| 2852 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
| 2853 | cmd == FUTEX_WAIT_BITSET || |
| 2854 | cmd == FUTEX_WAIT_REQUEUE_PI)) { |
| 2855 | if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
| 2856 | return -EFAULT; |
| 2857 | if (!timespec_valid(&ts)) |
| 2858 | return -EINVAL; |
| 2859 | |
| 2860 | t = timespec_to_ktime(ts); |
| 2861 | if (cmd == FUTEX_WAIT) |
| 2862 | t = ktime_add_safe(ktime_get(), t); |
| 2863 | tp = &t; |
| 2864 | } |
| 2865 | /* |
| 2866 | * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
| 2867 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
| 2868 | */ |
| 2869 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
| 2870 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
| 2871 | val2 = (u32) (unsigned long) utime; |
| 2872 | |
| 2873 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
| 2874 | } |
| 2875 | |
| 2876 | static int __init futex_init(void) |
| 2877 | { |
| 2878 | u32 curval; |
| 2879 | int i; |
| 2880 | |
| 2881 | /* |
| 2882 | * This will fail and we want it. Some arch implementations do |
| 2883 | * runtime detection of the futex_atomic_cmpxchg_inatomic() |
| 2884 | * functionality. We want to know that before we call in any |
| 2885 | * of the complex code paths. Also we want to prevent |
| 2886 | * registration of robust lists in that case. NULL is |
| 2887 | * guaranteed to fault and we get -EFAULT on functional |
| 2888 | * implementation, the non-functional ones will return |
| 2889 | * -ENOSYS. |
| 2890 | */ |
| 2891 | if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) |
| 2892 | futex_cmpxchg_enabled = 1; |
| 2893 | |
| 2894 | for (i = 0; i < ARRAY_SIZE(futex_queues); i++) { |
| 2895 | plist_head_init(&futex_queues[i].chain); |
| 2896 | spin_lock_init(&futex_queues[i].lock); |
| 2897 | } |
| 2898 | |
| 2899 | return 0; |
| 2900 | } |
| 2901 | __initcall(futex_init); |