blob: 91c04f16e79c9a831ab9708d6a81586844d4c173 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13#include <linux/version.h>
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/spinlock.h>
20#include <linux/kernel.h>
21#include <linux/pm.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
28#include <linux/list.h>
29#include <linux/slab.h>
30
31#include <asm/uaccess.h>
32#include <asm/mmu_context.h>
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <asm/io.h>
36
37#include "power.h"
38
39static int swsusp_page_is_free(struct page *);
40static void swsusp_set_page_forbidden(struct page *);
41static void swsusp_unset_page_forbidden(struct page *);
42
43/*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48unsigned long reserved_size;
49
50void __init hibernate_reserved_size_init(void)
51{
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53}
54
55/*
56 * Preferred image size in bytes (tunable via /sys/power/image_size).
57 * When it is set to N, swsusp will do its best to ensure the image
58 * size will not exceed N bytes, but if that is impossible, it will
59 * try to create the smallest image possible.
60 */
61unsigned long image_size;
62
63void __init hibernate_image_size_init(void)
64{
65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66}
67
68/* List of PBEs needed for restoring the pages that were allocated before
69 * the suspend and included in the suspend image, but have also been
70 * allocated by the "resume" kernel, so their contents cannot be written
71 * directly to their "original" page frames.
72 */
73struct pbe *restore_pblist;
74
75/* Pointer to an auxiliary buffer (1 page) */
76static void *buffer;
77
78/**
79 * @safe_needed - on resume, for storing the PBE list and the image,
80 * we can only use memory pages that do not conflict with the pages
81 * used before suspend. The unsafe pages have PageNosaveFree set
82 * and we count them using unsafe_pages.
83 *
84 * Each allocated image page is marked as PageNosave and PageNosaveFree
85 * so that swsusp_free() can release it.
86 */
87
88#define PG_ANY 0
89#define PG_SAFE 1
90#define PG_UNSAFE_CLEAR 1
91#define PG_UNSAFE_KEEP 0
92
93static unsigned int allocated_unsafe_pages;
94
95static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96{
97 void *res;
98
99 res = (void *)get_zeroed_page(gfp_mask);
100 if (safe_needed)
101 while (res && swsusp_page_is_free(virt_to_page(res))) {
102 /* The page is unsafe, mark it for swsusp_free() */
103 swsusp_set_page_forbidden(virt_to_page(res));
104 allocated_unsafe_pages++;
105 res = (void *)get_zeroed_page(gfp_mask);
106 }
107 if (res) {
108 swsusp_set_page_forbidden(virt_to_page(res));
109 swsusp_set_page_free(virt_to_page(res));
110 }
111 return res;
112}
113
114unsigned long get_safe_page(gfp_t gfp_mask)
115{
116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117}
118
119static struct page *alloc_image_page(gfp_t gfp_mask)
120{
121 struct page *page;
122
123 page = alloc_page(gfp_mask);
124 if (page) {
125 swsusp_set_page_forbidden(page);
126 swsusp_set_page_free(page);
127 }
128 return page;
129}
130
131/**
132 * free_image_page - free page represented by @addr, allocated with
133 * get_image_page (page flags set by it must be cleared)
134 */
135
136static inline void free_image_page(void *addr, int clear_nosave_free)
137{
138 struct page *page;
139
140 BUG_ON(!virt_addr_valid(addr));
141
142 page = virt_to_page(addr);
143
144 swsusp_unset_page_forbidden(page);
145 if (clear_nosave_free)
146 swsusp_unset_page_free(page);
147
148 __free_page(page);
149}
150
151/* struct linked_page is used to build chains of pages */
152
153#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
154
155struct linked_page {
156 struct linked_page *next;
157 char data[LINKED_PAGE_DATA_SIZE];
158} __attribute__((packed));
159
160static inline void
161free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162{
163 while (list) {
164 struct linked_page *lp = list->next;
165
166 free_image_page(list, clear_page_nosave);
167 list = lp;
168 }
169}
170
171/**
172 * struct chain_allocator is used for allocating small objects out of
173 * a linked list of pages called 'the chain'.
174 *
175 * The chain grows each time when there is no room for a new object in
176 * the current page. The allocated objects cannot be freed individually.
177 * It is only possible to free them all at once, by freeing the entire
178 * chain.
179 *
180 * NOTE: The chain allocator may be inefficient if the allocated objects
181 * are not much smaller than PAGE_SIZE.
182 */
183
184struct chain_allocator {
185 struct linked_page *chain; /* the chain */
186 unsigned int used_space; /* total size of objects allocated out
187 * of the current page
188 */
189 gfp_t gfp_mask; /* mask for allocating pages */
190 int safe_needed; /* if set, only "safe" pages are allocated */
191};
192
193static void
194chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195{
196 ca->chain = NULL;
197 ca->used_space = LINKED_PAGE_DATA_SIZE;
198 ca->gfp_mask = gfp_mask;
199 ca->safe_needed = safe_needed;
200}
201
202static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203{
204 void *ret;
205
206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 struct linked_page *lp;
208
209 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 if (!lp)
211 return NULL;
212
213 lp->next = ca->chain;
214 ca->chain = lp;
215 ca->used_space = 0;
216 }
217 ret = ca->chain->data + ca->used_space;
218 ca->used_space += size;
219 return ret;
220}
221
222/**
223 * Data types related to memory bitmaps.
224 *
225 * Memory bitmap is a structure consiting of many linked lists of
226 * objects. The main list's elements are of type struct zone_bitmap
227 * and each of them corresonds to one zone. For each zone bitmap
228 * object there is a list of objects of type struct bm_block that
229 * represent each blocks of bitmap in which information is stored.
230 *
231 * struct memory_bitmap contains a pointer to the main list of zone
232 * bitmap objects, a struct bm_position used for browsing the bitmap,
233 * and a pointer to the list of pages used for allocating all of the
234 * zone bitmap objects and bitmap block objects.
235 *
236 * NOTE: It has to be possible to lay out the bitmap in memory
237 * using only allocations of order 0. Additionally, the bitmap is
238 * designed to work with arbitrary number of zones (this is over the
239 * top for now, but let's avoid making unnecessary assumptions ;-).
240 *
241 * struct zone_bitmap contains a pointer to a list of bitmap block
242 * objects and a pointer to the bitmap block object that has been
243 * most recently used for setting bits. Additionally, it contains the
244 * pfns that correspond to the start and end of the represented zone.
245 *
246 * struct bm_block contains a pointer to the memory page in which
247 * information is stored (in the form of a block of bitmap)
248 * It also contains the pfns that correspond to the start and end of
249 * the represented memory area.
250 */
251
252#define BM_END_OF_MAP (~0UL)
253
254#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
255
256struct bm_block {
257 struct list_head hook; /* hook into a list of bitmap blocks */
258 unsigned long start_pfn; /* pfn represented by the first bit */
259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
260 unsigned long *data; /* bitmap representing pages */
261};
262
263static inline unsigned long bm_block_bits(struct bm_block *bb)
264{
265 return bb->end_pfn - bb->start_pfn;
266}
267
268/* strcut bm_position is used for browsing memory bitmaps */
269
270struct bm_position {
271 struct bm_block *block;
272 int bit;
273};
274
275struct memory_bitmap {
276 struct list_head blocks; /* list of bitmap blocks */
277 struct linked_page *p_list; /* list of pages used to store zone
278 * bitmap objects and bitmap block
279 * objects
280 */
281 struct bm_position cur; /* most recently used bit position */
282};
283
284/* Functions that operate on memory bitmaps */
285
286static void memory_bm_position_reset(struct memory_bitmap *bm)
287{
288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 bm->cur.bit = 0;
290}
291
292static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294/**
295 * create_bm_block_list - create a list of block bitmap objects
296 * @pages - number of pages to track
297 * @list - list to put the allocated blocks into
298 * @ca - chain allocator to be used for allocating memory
299 */
300static int create_bm_block_list(unsigned long pages,
301 struct list_head *list,
302 struct chain_allocator *ca)
303{
304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306 while (nr_blocks-- > 0) {
307 struct bm_block *bb;
308
309 bb = chain_alloc(ca, sizeof(struct bm_block));
310 if (!bb)
311 return -ENOMEM;
312 list_add(&bb->hook, list);
313 }
314
315 return 0;
316}
317
318struct mem_extent {
319 struct list_head hook;
320 unsigned long start;
321 unsigned long end;
322};
323
324/**
325 * free_mem_extents - free a list of memory extents
326 * @list - list of extents to empty
327 */
328static void free_mem_extents(struct list_head *list)
329{
330 struct mem_extent *ext, *aux;
331
332 list_for_each_entry_safe(ext, aux, list, hook) {
333 list_del(&ext->hook);
334 kfree(ext);
335 }
336}
337
338/**
339 * create_mem_extents - create a list of memory extents representing
340 * contiguous ranges of PFNs
341 * @list - list to put the extents into
342 * @gfp_mask - mask to use for memory allocations
343 */
344static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345{
346 struct zone *zone;
347
348 INIT_LIST_HEAD(list);
349
350 for_each_populated_zone(zone) {
351 unsigned long zone_start, zone_end;
352 struct mem_extent *ext, *cur, *aux;
353
354 zone_start = zone->zone_start_pfn;
355 zone_end = zone->zone_start_pfn + zone->spanned_pages;
356
357 list_for_each_entry(ext, list, hook)
358 if (zone_start <= ext->end)
359 break;
360
361 if (&ext->hook == list || zone_end < ext->start) {
362 /* New extent is necessary */
363 struct mem_extent *new_ext;
364
365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 if (!new_ext) {
367 free_mem_extents(list);
368 return -ENOMEM;
369 }
370 new_ext->start = zone_start;
371 new_ext->end = zone_end;
372 list_add_tail(&new_ext->hook, &ext->hook);
373 continue;
374 }
375
376 /* Merge this zone's range of PFNs with the existing one */
377 if (zone_start < ext->start)
378 ext->start = zone_start;
379 if (zone_end > ext->end)
380 ext->end = zone_end;
381
382 /* More merging may be possible */
383 cur = ext;
384 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 if (zone_end < cur->start)
386 break;
387 if (zone_end < cur->end)
388 ext->end = cur->end;
389 list_del(&cur->hook);
390 kfree(cur);
391 }
392 }
393
394 return 0;
395}
396
397/**
398 * memory_bm_create - allocate memory for a memory bitmap
399 */
400static int
401memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402{
403 struct chain_allocator ca;
404 struct list_head mem_extents;
405 struct mem_extent *ext;
406 int error;
407
408 chain_init(&ca, gfp_mask, safe_needed);
409 INIT_LIST_HEAD(&bm->blocks);
410
411 error = create_mem_extents(&mem_extents, gfp_mask);
412 if (error)
413 return error;
414
415 list_for_each_entry(ext, &mem_extents, hook) {
416 struct bm_block *bb;
417 unsigned long pfn = ext->start;
418 unsigned long pages = ext->end - ext->start;
419
420 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 if (error)
424 goto Error;
425
426 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 bb->data = get_image_page(gfp_mask, safe_needed);
428 if (!bb->data) {
429 error = -ENOMEM;
430 goto Error;
431 }
432
433 bb->start_pfn = pfn;
434 if (pages >= BM_BITS_PER_BLOCK) {
435 pfn += BM_BITS_PER_BLOCK;
436 pages -= BM_BITS_PER_BLOCK;
437 } else {
438 /* This is executed only once in the loop */
439 pfn += pages;
440 }
441 bb->end_pfn = pfn;
442 }
443 }
444
445 bm->p_list = ca.chain;
446 memory_bm_position_reset(bm);
447 Exit:
448 free_mem_extents(&mem_extents);
449 return error;
450
451 Error:
452 bm->p_list = ca.chain;
453 memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 goto Exit;
455}
456
457/**
458 * memory_bm_free - free memory occupied by the memory bitmap @bm
459 */
460static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461{
462 struct bm_block *bb;
463
464 list_for_each_entry(bb, &bm->blocks, hook)
465 if (bb->data)
466 free_image_page(bb->data, clear_nosave_free);
467
468 free_list_of_pages(bm->p_list, clear_nosave_free);
469
470 INIT_LIST_HEAD(&bm->blocks);
471}
472
473/**
474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
476 * of @bm->cur_zone_bm are updated.
477 */
478static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 void **addr, unsigned int *bit_nr)
480{
481 struct bm_block *bb;
482
483 /*
484 * Check if the pfn corresponds to the current bitmap block and find
485 * the block where it fits if this is not the case.
486 */
487 bb = bm->cur.block;
488 if (pfn < bb->start_pfn)
489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 if (pfn >= bb->start_pfn)
491 break;
492
493 if (pfn >= bb->end_pfn)
494 list_for_each_entry_continue(bb, &bm->blocks, hook)
495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 break;
497
498 if (&bb->hook == &bm->blocks)
499 return -EFAULT;
500
501 /* The block has been found */
502 bm->cur.block = bb;
503 pfn -= bb->start_pfn;
504 bm->cur.bit = pfn + 1;
505 *bit_nr = pfn;
506 *addr = bb->data;
507 return 0;
508}
509
510static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511{
512 void *addr;
513 unsigned int bit;
514 int error;
515
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
518 set_bit(bit, addr);
519}
520
521static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522{
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 if (!error)
529 set_bit(bit, addr);
530 return error;
531}
532
533static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534{
535 void *addr;
536 unsigned int bit;
537 int error;
538
539 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 BUG_ON(error);
541 clear_bit(bit, addr);
542}
543
544static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545{
546 void *addr;
547 unsigned int bit;
548 int error;
549
550 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 BUG_ON(error);
552 return test_bit(bit, addr);
553}
554
555static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556{
557 void *addr;
558 unsigned int bit;
559
560 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561}
562
563/**
564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
566 * returned.
567 *
568 * It is required to run memory_bm_position_reset() before the first call to
569 * this function.
570 */
571
572static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573{
574 struct bm_block *bb;
575 int bit;
576
577 bb = bm->cur.block;
578 do {
579 bit = bm->cur.bit;
580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 if (bit < bm_block_bits(bb))
582 goto Return_pfn;
583
584 bb = list_entry(bb->hook.next, struct bm_block, hook);
585 bm->cur.block = bb;
586 bm->cur.bit = 0;
587 } while (&bb->hook != &bm->blocks);
588
589 memory_bm_position_reset(bm);
590 return BM_END_OF_MAP;
591
592 Return_pfn:
593 bm->cur.bit = bit + 1;
594 return bb->start_pfn + bit;
595}
596
597/**
598 * This structure represents a range of page frames the contents of which
599 * should not be saved during the suspend.
600 */
601
602struct nosave_region {
603 struct list_head list;
604 unsigned long start_pfn;
605 unsigned long end_pfn;
606};
607
608static LIST_HEAD(nosave_regions);
609
610/**
611 * register_nosave_region - register a range of page frames the contents
612 * of which should not be saved during the suspend (to be used in the early
613 * initialization code)
614 */
615
616void __init
617__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 int use_kmalloc)
619{
620 struct nosave_region *region;
621
622 if (start_pfn >= end_pfn)
623 return;
624
625 if (!list_empty(&nosave_regions)) {
626 /* Try to extend the previous region (they should be sorted) */
627 region = list_entry(nosave_regions.prev,
628 struct nosave_region, list);
629 if (region->end_pfn == start_pfn) {
630 region->end_pfn = end_pfn;
631 goto Report;
632 }
633 }
634 if (use_kmalloc) {
635 /* during init, this shouldn't fail */
636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 BUG_ON(!region);
638 } else
639 /* This allocation cannot fail */
640 region = alloc_bootmem(sizeof(struct nosave_region));
641 region->start_pfn = start_pfn;
642 region->end_pfn = end_pfn;
643 list_add_tail(&region->list, &nosave_regions);
644 Report:
645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647}
648
649/*
650 * Set bits in this map correspond to the page frames the contents of which
651 * should not be saved during the suspend.
652 */
653static struct memory_bitmap *forbidden_pages_map;
654
655/* Set bits in this map correspond to free page frames. */
656static struct memory_bitmap *free_pages_map;
657
658/*
659 * Each page frame allocated for creating the image is marked by setting the
660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661 */
662
663void swsusp_set_page_free(struct page *page)
664{
665 if (free_pages_map)
666 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667}
668
669static int swsusp_page_is_free(struct page *page)
670{
671 return free_pages_map ?
672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673}
674
675void swsusp_unset_page_free(struct page *page)
676{
677 if (free_pages_map)
678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679}
680
681static void swsusp_set_page_forbidden(struct page *page)
682{
683 if (forbidden_pages_map)
684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685}
686
687int swsusp_page_is_forbidden(struct page *page)
688{
689 return forbidden_pages_map ?
690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691}
692
693static void swsusp_unset_page_forbidden(struct page *page)
694{
695 if (forbidden_pages_map)
696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697}
698
699/**
700 * mark_nosave_pages - set bits corresponding to the page frames the
701 * contents of which should not be saved in a given bitmap.
702 */
703
704static void mark_nosave_pages(struct memory_bitmap *bm)
705{
706 struct nosave_region *region;
707
708 if (list_empty(&nosave_regions))
709 return;
710
711 list_for_each_entry(region, &nosave_regions, list) {
712 unsigned long pfn;
713
714 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
715 (unsigned long long) region->start_pfn << PAGE_SHIFT,
716 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
717 - 1);
718
719 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
720 if (pfn_valid(pfn)) {
721 /*
722 * It is safe to ignore the result of
723 * mem_bm_set_bit_check() here, since we won't
724 * touch the PFNs for which the error is
725 * returned anyway.
726 */
727 mem_bm_set_bit_check(bm, pfn);
728 }
729 }
730}
731
732/**
733 * create_basic_memory_bitmaps - create bitmaps needed for marking page
734 * frames that should not be saved and free page frames. The pointers
735 * forbidden_pages_map and free_pages_map are only modified if everything
736 * goes well, because we don't want the bits to be used before both bitmaps
737 * are set up.
738 */
739
740int create_basic_memory_bitmaps(void)
741{
742 struct memory_bitmap *bm1, *bm2;
743 int error = 0;
744
745 BUG_ON(forbidden_pages_map || free_pages_map);
746
747 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
748 if (!bm1)
749 return -ENOMEM;
750
751 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
752 if (error)
753 goto Free_first_object;
754
755 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
756 if (!bm2)
757 goto Free_first_bitmap;
758
759 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
760 if (error)
761 goto Free_second_object;
762
763 forbidden_pages_map = bm1;
764 free_pages_map = bm2;
765 mark_nosave_pages(forbidden_pages_map);
766
767 pr_debug("PM: Basic memory bitmaps created\n");
768
769 return 0;
770
771 Free_second_object:
772 kfree(bm2);
773 Free_first_bitmap:
774 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
775 Free_first_object:
776 kfree(bm1);
777 return -ENOMEM;
778}
779
780/**
781 * free_basic_memory_bitmaps - free memory bitmaps allocated by
782 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
783 * so that the bitmaps themselves are not referred to while they are being
784 * freed.
785 */
786
787void free_basic_memory_bitmaps(void)
788{
789 struct memory_bitmap *bm1, *bm2;
790
791 BUG_ON(!(forbidden_pages_map && free_pages_map));
792
793 bm1 = forbidden_pages_map;
794 bm2 = free_pages_map;
795 forbidden_pages_map = NULL;
796 free_pages_map = NULL;
797 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
798 kfree(bm1);
799 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
800 kfree(bm2);
801
802 pr_debug("PM: Basic memory bitmaps freed\n");
803}
804
805/**
806 * snapshot_additional_pages - estimate the number of additional pages
807 * be needed for setting up the suspend image data structures for given
808 * zone (usually the returned value is greater than the exact number)
809 */
810
811unsigned int snapshot_additional_pages(struct zone *zone)
812{
813 unsigned int res;
814
815 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
816 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
817 LINKED_PAGE_DATA_SIZE);
818 return 2 * res;
819}
820
821#ifdef CONFIG_HIGHMEM
822/**
823 * count_free_highmem_pages - compute the total number of free highmem
824 * pages, system-wide.
825 */
826
827static unsigned int count_free_highmem_pages(void)
828{
829 struct zone *zone;
830 unsigned int cnt = 0;
831
832 for_each_populated_zone(zone)
833 if (is_highmem(zone))
834 cnt += zone_page_state(zone, NR_FREE_PAGES);
835
836 return cnt;
837}
838
839/**
840 * saveable_highmem_page - Determine whether a highmem page should be
841 * included in the suspend image.
842 *
843 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
844 * and it isn't a part of a free chunk of pages.
845 */
846static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
847{
848 struct page *page;
849
850 if (!pfn_valid(pfn))
851 return NULL;
852
853 page = pfn_to_page(pfn);
854 if (page_zone(page) != zone)
855 return NULL;
856
857 BUG_ON(!PageHighMem(page));
858
859 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
860 PageReserved(page))
861 return NULL;
862
863 if (page_is_guard(page))
864 return NULL;
865
866 return page;
867}
868
869/**
870 * count_highmem_pages - compute the total number of saveable highmem
871 * pages.
872 */
873
874static unsigned int count_highmem_pages(void)
875{
876 struct zone *zone;
877 unsigned int n = 0;
878
879 for_each_populated_zone(zone) {
880 unsigned long pfn, max_zone_pfn;
881
882 if (!is_highmem(zone))
883 continue;
884
885 mark_free_pages(zone);
886 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
887 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
888 if (saveable_highmem_page(zone, pfn))
889 n++;
890 }
891 return n;
892}
893#else
894static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
895{
896 return NULL;
897}
898#endif /* CONFIG_HIGHMEM */
899
900/**
901 * saveable_page - Determine whether a non-highmem page should be included
902 * in the suspend image.
903 *
904 * We should save the page if it isn't Nosave, and is not in the range
905 * of pages statically defined as 'unsaveable', and it isn't a part of
906 * a free chunk of pages.
907 */
908static struct page *saveable_page(struct zone *zone, unsigned long pfn)
909{
910 struct page *page;
911
912 if (!pfn_valid(pfn))
913 return NULL;
914
915 page = pfn_to_page(pfn);
916 if (page_zone(page) != zone)
917 return NULL;
918
919 BUG_ON(PageHighMem(page));
920
921 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
922 return NULL;
923
924 if (PageReserved(page)
925 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
926 return NULL;
927
928 if (page_is_guard(page))
929 return NULL;
930
931 return page;
932}
933
934/**
935 * count_data_pages - compute the total number of saveable non-highmem
936 * pages.
937 */
938
939static unsigned int count_data_pages(void)
940{
941 struct zone *zone;
942 unsigned long pfn, max_zone_pfn;
943 unsigned int n = 0;
944
945 for_each_populated_zone(zone) {
946 if (is_highmem(zone))
947 continue;
948
949 mark_free_pages(zone);
950 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
951 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
952 if (saveable_page(zone, pfn))
953 n++;
954 }
955 return n;
956}
957
958/* This is needed, because copy_page and memcpy are not usable for copying
959 * task structs.
960 */
961static inline void do_copy_page(long *dst, long *src)
962{
963 int n;
964
965 for (n = PAGE_SIZE / sizeof(long); n; n--)
966 *dst++ = *src++;
967}
968
969
970/**
971 * safe_copy_page - check if the page we are going to copy is marked as
972 * present in the kernel page tables (this always is the case if
973 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
974 * kernel_page_present() always returns 'true').
975 */
976static void safe_copy_page(void *dst, struct page *s_page)
977{
978 if (kernel_page_present(s_page)) {
979 do_copy_page(dst, page_address(s_page));
980 } else {
981 kernel_map_pages(s_page, 1, 1);
982 do_copy_page(dst, page_address(s_page));
983 kernel_map_pages(s_page, 1, 0);
984 }
985}
986
987
988#ifdef CONFIG_HIGHMEM
989static inline struct page *
990page_is_saveable(struct zone *zone, unsigned long pfn)
991{
992 return is_highmem(zone) ?
993 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
994}
995
996static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
997{
998 struct page *s_page, *d_page;
999 void *src, *dst;
1000
1001 s_page = pfn_to_page(src_pfn);
1002 d_page = pfn_to_page(dst_pfn);
1003 if (PageHighMem(s_page)) {
1004 src = kmap_atomic(s_page);
1005 dst = kmap_atomic(d_page);
1006 do_copy_page(dst, src);
1007 kunmap_atomic(dst);
1008 kunmap_atomic(src);
1009 } else {
1010 if (PageHighMem(d_page)) {
1011 /* Page pointed to by src may contain some kernel
1012 * data modified by kmap_atomic()
1013 */
1014 safe_copy_page(buffer, s_page);
1015 dst = kmap_atomic(d_page);
1016 copy_page(dst, buffer);
1017 kunmap_atomic(dst);
1018 } else {
1019 safe_copy_page(page_address(d_page), s_page);
1020 }
1021 }
1022}
1023#else
1024#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1025
1026static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1027{
1028 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1029 pfn_to_page(src_pfn));
1030}
1031#endif /* CONFIG_HIGHMEM */
1032
1033static void
1034copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1035{
1036 struct zone *zone;
1037 unsigned long pfn;
1038
1039 for_each_populated_zone(zone) {
1040 unsigned long max_zone_pfn;
1041
1042 mark_free_pages(zone);
1043 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1044 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1045 if (page_is_saveable(zone, pfn))
1046 memory_bm_set_bit(orig_bm, pfn);
1047 }
1048 memory_bm_position_reset(orig_bm);
1049 memory_bm_position_reset(copy_bm);
1050 for(;;) {
1051 pfn = memory_bm_next_pfn(orig_bm);
1052 if (unlikely(pfn == BM_END_OF_MAP))
1053 break;
1054 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1055 }
1056}
1057
1058/* Total number of image pages */
1059static unsigned int nr_copy_pages;
1060/* Number of pages needed for saving the original pfns of the image pages */
1061static unsigned int nr_meta_pages;
1062/*
1063 * Numbers of normal and highmem page frames allocated for hibernation image
1064 * before suspending devices.
1065 */
1066unsigned int alloc_normal, alloc_highmem;
1067/*
1068 * Memory bitmap used for marking saveable pages (during hibernation) or
1069 * hibernation image pages (during restore)
1070 */
1071static struct memory_bitmap orig_bm;
1072/*
1073 * Memory bitmap used during hibernation for marking allocated page frames that
1074 * will contain copies of saveable pages. During restore it is initially used
1075 * for marking hibernation image pages, but then the set bits from it are
1076 * duplicated in @orig_bm and it is released. On highmem systems it is next
1077 * used for marking "safe" highmem pages, but it has to be reinitialized for
1078 * this purpose.
1079 */
1080static struct memory_bitmap copy_bm;
1081
1082/**
1083 * swsusp_free - free pages allocated for the suspend.
1084 *
1085 * Suspend pages are alocated before the atomic copy is made, so we
1086 * need to release them after the resume.
1087 */
1088
1089void swsusp_free(void)
1090{
1091 struct zone *zone;
1092 unsigned long pfn, max_zone_pfn;
1093
1094 for_each_populated_zone(zone) {
1095 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1096 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1097 if (pfn_valid(pfn)) {
1098 struct page *page = pfn_to_page(pfn);
1099
1100 if (swsusp_page_is_forbidden(page) &&
1101 swsusp_page_is_free(page)) {
1102 swsusp_unset_page_forbidden(page);
1103 swsusp_unset_page_free(page);
1104 __free_page(page);
1105 }
1106 }
1107 }
1108 nr_copy_pages = 0;
1109 nr_meta_pages = 0;
1110 restore_pblist = NULL;
1111 buffer = NULL;
1112 alloc_normal = 0;
1113 alloc_highmem = 0;
1114}
1115
1116/* Helper functions used for the shrinking of memory. */
1117
1118#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1119
1120/**
1121 * preallocate_image_pages - Allocate a number of pages for hibernation image
1122 * @nr_pages: Number of page frames to allocate.
1123 * @mask: GFP flags to use for the allocation.
1124 *
1125 * Return value: Number of page frames actually allocated
1126 */
1127static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1128{
1129 unsigned long nr_alloc = 0;
1130
1131 while (nr_pages > 0) {
1132 struct page *page;
1133
1134 page = alloc_image_page(mask);
1135 if (!page)
1136 break;
1137 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1138 if (PageHighMem(page))
1139 alloc_highmem++;
1140 else
1141 alloc_normal++;
1142 nr_pages--;
1143 nr_alloc++;
1144 }
1145
1146 return nr_alloc;
1147}
1148
1149static unsigned long preallocate_image_memory(unsigned long nr_pages,
1150 unsigned long avail_normal)
1151{
1152 unsigned long alloc;
1153
1154 if (avail_normal <= alloc_normal)
1155 return 0;
1156
1157 alloc = avail_normal - alloc_normal;
1158 if (nr_pages < alloc)
1159 alloc = nr_pages;
1160
1161 return preallocate_image_pages(alloc, GFP_IMAGE);
1162}
1163
1164#ifdef CONFIG_HIGHMEM
1165static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1166{
1167 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1168}
1169
1170/**
1171 * __fraction - Compute (an approximation of) x * (multiplier / base)
1172 */
1173static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1174{
1175 x *= multiplier;
1176 do_div(x, base);
1177 return (unsigned long)x;
1178}
1179
1180static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1181 unsigned long highmem,
1182 unsigned long total)
1183{
1184 unsigned long alloc = __fraction(nr_pages, highmem, total);
1185
1186 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1187}
1188#else /* CONFIG_HIGHMEM */
1189static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1190{
1191 return 0;
1192}
1193
1194static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1195 unsigned long highmem,
1196 unsigned long total)
1197{
1198 return 0;
1199}
1200#endif /* CONFIG_HIGHMEM */
1201
1202/**
1203 * free_unnecessary_pages - Release preallocated pages not needed for the image
1204 */
1205static void free_unnecessary_pages(void)
1206{
1207 unsigned long save, to_free_normal, to_free_highmem;
1208
1209 save = count_data_pages();
1210 if (alloc_normal >= save) {
1211 to_free_normal = alloc_normal - save;
1212 save = 0;
1213 } else {
1214 to_free_normal = 0;
1215 save -= alloc_normal;
1216 }
1217 save += count_highmem_pages();
1218 if (alloc_highmem >= save) {
1219 to_free_highmem = alloc_highmem - save;
1220 } else {
1221 to_free_highmem = 0;
1222 save -= alloc_highmem;
1223 if (to_free_normal > save)
1224 to_free_normal -= save;
1225 else
1226 to_free_normal = 0;
1227 }
1228
1229 memory_bm_position_reset(&copy_bm);
1230
1231 while (to_free_normal > 0 || to_free_highmem > 0) {
1232 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1233 struct page *page = pfn_to_page(pfn);
1234
1235 if (PageHighMem(page)) {
1236 if (!to_free_highmem)
1237 continue;
1238 to_free_highmem--;
1239 alloc_highmem--;
1240 } else {
1241 if (!to_free_normal)
1242 continue;
1243 to_free_normal--;
1244 alloc_normal--;
1245 }
1246 memory_bm_clear_bit(&copy_bm, pfn);
1247 swsusp_unset_page_forbidden(page);
1248 swsusp_unset_page_free(page);
1249 __free_page(page);
1250 }
1251}
1252
1253/**
1254 * minimum_image_size - Estimate the minimum acceptable size of an image
1255 * @saveable: Number of saveable pages in the system.
1256 *
1257 * We want to avoid attempting to free too much memory too hard, so estimate the
1258 * minimum acceptable size of a hibernation image to use as the lower limit for
1259 * preallocating memory.
1260 *
1261 * We assume that the minimum image size should be proportional to
1262 *
1263 * [number of saveable pages] - [number of pages that can be freed in theory]
1264 *
1265 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1266 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1267 * minus mapped file pages.
1268 */
1269static unsigned long minimum_image_size(unsigned long saveable)
1270{
1271 unsigned long size;
1272
1273 size = global_page_state(NR_SLAB_RECLAIMABLE)
1274 + global_page_state(NR_ACTIVE_ANON)
1275 + global_page_state(NR_INACTIVE_ANON)
1276 + global_page_state(NR_ACTIVE_FILE)
1277 + global_page_state(NR_INACTIVE_FILE)
1278 - global_page_state(NR_FILE_MAPPED);
1279
1280 return saveable <= size ? 0 : saveable - size;
1281}
1282
1283/**
1284 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1285 *
1286 * To create a hibernation image it is necessary to make a copy of every page
1287 * frame in use. We also need a number of page frames to be free during
1288 * hibernation for allocations made while saving the image and for device
1289 * drivers, in case they need to allocate memory from their hibernation
1290 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1291 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1292 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1293 * total number of available page frames and allocate at least
1294 *
1295 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1296 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1297 *
1298 * of them, which corresponds to the maximum size of a hibernation image.
1299 *
1300 * If image_size is set below the number following from the above formula,
1301 * the preallocation of memory is continued until the total number of saveable
1302 * pages in the system is below the requested image size or the minimum
1303 * acceptable image size returned by minimum_image_size(), whichever is greater.
1304 */
1305int hibernate_preallocate_memory(void)
1306{
1307 struct zone *zone;
1308 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1309 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1310 struct timeval start, stop;
1311 int error;
1312
1313 printk(KERN_INFO "PM: Preallocating image memory... ");
1314 do_gettimeofday(&start);
1315
1316 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1317 if (error)
1318 goto err_out;
1319
1320 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1321 if (error)
1322 goto err_out;
1323
1324 alloc_normal = 0;
1325 alloc_highmem = 0;
1326
1327 /* Count the number of saveable data pages. */
1328 save_highmem = count_highmem_pages();
1329 saveable = count_data_pages();
1330
1331 /*
1332 * Compute the total number of page frames we can use (count) and the
1333 * number of pages needed for image metadata (size).
1334 */
1335 count = saveable;
1336 saveable += save_highmem;
1337 highmem = save_highmem;
1338 size = 0;
1339 for_each_populated_zone(zone) {
1340 size += snapshot_additional_pages(zone);
1341 if (is_highmem(zone))
1342 highmem += zone_page_state(zone, NR_FREE_PAGES);
1343 else
1344 count += zone_page_state(zone, NR_FREE_PAGES);
1345 }
1346 avail_normal = count;
1347 count += highmem;
1348 count -= totalreserve_pages;
1349
1350 /* Add number of pages required for page keys (s390 only). */
1351 size += page_key_additional_pages(saveable);
1352
1353 /* Compute the maximum number of saveable pages to leave in memory. */
1354 max_size = (count - (size + PAGES_FOR_IO)) / 2
1355 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1356 /* Compute the desired number of image pages specified by image_size. */
1357 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1358 if (size > max_size)
1359 size = max_size;
1360 /*
1361 * If the desired number of image pages is at least as large as the
1362 * current number of saveable pages in memory, allocate page frames for
1363 * the image and we're done.
1364 */
1365 if (size >= saveable) {
1366 pages = preallocate_image_highmem(save_highmem);
1367 pages += preallocate_image_memory(saveable - pages, avail_normal);
1368 goto out;
1369 }
1370
1371 /* Estimate the minimum size of the image. */
1372 pages = minimum_image_size(saveable);
1373 /*
1374 * To avoid excessive pressure on the normal zone, leave room in it to
1375 * accommodate an image of the minimum size (unless it's already too
1376 * small, in which case don't preallocate pages from it at all).
1377 */
1378 if (avail_normal > pages)
1379 avail_normal -= pages;
1380 else
1381 avail_normal = 0;
1382 if (size < pages)
1383 size = min_t(unsigned long, pages, max_size);
1384
1385 /*
1386 * Let the memory management subsystem know that we're going to need a
1387 * large number of page frames to allocate and make it free some memory.
1388 * NOTE: If this is not done, performance will be hurt badly in some
1389 * test cases.
1390 */
1391 shrink_all_memory(saveable - size);
1392
1393 /*
1394 * The number of saveable pages in memory was too high, so apply some
1395 * pressure to decrease it. First, make room for the largest possible
1396 * image and fail if that doesn't work. Next, try to decrease the size
1397 * of the image as much as indicated by 'size' using allocations from
1398 * highmem and non-highmem zones separately.
1399 */
1400 pages_highmem = preallocate_image_highmem(highmem / 2);
1401 alloc = count - max_size;
1402 if (alloc > pages_highmem)
1403 alloc -= pages_highmem;
1404 else
1405 alloc = 0;
1406 pages = preallocate_image_memory(alloc, avail_normal);
1407 if (pages < alloc) {
1408 /* We have exhausted non-highmem pages, try highmem. */
1409 alloc -= pages;
1410 pages += pages_highmem;
1411 pages_highmem = preallocate_image_highmem(alloc);
1412 if (pages_highmem < alloc)
1413 goto err_out;
1414 pages += pages_highmem;
1415 /*
1416 * size is the desired number of saveable pages to leave in
1417 * memory, so try to preallocate (all memory - size) pages.
1418 */
1419 alloc = (count - pages) - size;
1420 pages += preallocate_image_highmem(alloc);
1421 } else {
1422 /*
1423 * There are approximately max_size saveable pages at this point
1424 * and we want to reduce this number down to size.
1425 */
1426 alloc = max_size - size;
1427 size = preallocate_highmem_fraction(alloc, highmem, count);
1428 pages_highmem += size;
1429 alloc -= size;
1430 size = preallocate_image_memory(alloc, avail_normal);
1431 pages_highmem += preallocate_image_highmem(alloc - size);
1432 pages += pages_highmem + size;
1433 }
1434
1435 /*
1436 * We only need as many page frames for the image as there are saveable
1437 * pages in memory, but we have allocated more. Release the excessive
1438 * ones now.
1439 */
1440 free_unnecessary_pages();
1441
1442 out:
1443 do_gettimeofday(&stop);
1444 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1445 swsusp_show_speed(&start, &stop, pages, "Allocated");
1446
1447 return 0;
1448
1449 err_out:
1450 printk(KERN_CONT "\n");
1451 swsusp_free();
1452 return -ENOMEM;
1453}
1454
1455#ifdef CONFIG_HIGHMEM
1456/**
1457 * count_pages_for_highmem - compute the number of non-highmem pages
1458 * that will be necessary for creating copies of highmem pages.
1459 */
1460
1461static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1462{
1463 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1464
1465 if (free_highmem >= nr_highmem)
1466 nr_highmem = 0;
1467 else
1468 nr_highmem -= free_highmem;
1469
1470 return nr_highmem;
1471}
1472#else
1473static unsigned int
1474count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1475#endif /* CONFIG_HIGHMEM */
1476
1477/**
1478 * enough_free_mem - Make sure we have enough free memory for the
1479 * snapshot image.
1480 */
1481
1482static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1483{
1484 struct zone *zone;
1485 unsigned int free = alloc_normal;
1486
1487 for_each_populated_zone(zone)
1488 if (!is_highmem(zone))
1489 free += zone_page_state(zone, NR_FREE_PAGES);
1490
1491 nr_pages += count_pages_for_highmem(nr_highmem);
1492 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1493 nr_pages, PAGES_FOR_IO, free);
1494
1495 return free > nr_pages + PAGES_FOR_IO;
1496}
1497
1498#ifdef CONFIG_HIGHMEM
1499/**
1500 * get_highmem_buffer - if there are some highmem pages in the suspend
1501 * image, we may need the buffer to copy them and/or load their data.
1502 */
1503
1504static inline int get_highmem_buffer(int safe_needed)
1505{
1506 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1507 return buffer ? 0 : -ENOMEM;
1508}
1509
1510/**
1511 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1512 * Try to allocate as many pages as needed, but if the number of free
1513 * highmem pages is lesser than that, allocate them all.
1514 */
1515
1516static inline unsigned int
1517alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1518{
1519 unsigned int to_alloc = count_free_highmem_pages();
1520
1521 if (to_alloc > nr_highmem)
1522 to_alloc = nr_highmem;
1523
1524 nr_highmem -= to_alloc;
1525 while (to_alloc-- > 0) {
1526 struct page *page;
1527
1528 page = alloc_image_page(__GFP_HIGHMEM);
1529 memory_bm_set_bit(bm, page_to_pfn(page));
1530 }
1531 return nr_highmem;
1532}
1533#else
1534static inline int get_highmem_buffer(int safe_needed) { return 0; }
1535
1536static inline unsigned int
1537alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1538#endif /* CONFIG_HIGHMEM */
1539
1540/**
1541 * swsusp_alloc - allocate memory for the suspend image
1542 *
1543 * We first try to allocate as many highmem pages as there are
1544 * saveable highmem pages in the system. If that fails, we allocate
1545 * non-highmem pages for the copies of the remaining highmem ones.
1546 *
1547 * In this approach it is likely that the copies of highmem pages will
1548 * also be located in the high memory, because of the way in which
1549 * copy_data_pages() works.
1550 */
1551
1552static int
1553swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1554 unsigned int nr_pages, unsigned int nr_highmem)
1555{
1556 if (nr_highmem > 0) {
1557 if (get_highmem_buffer(PG_ANY))
1558 goto err_out;
1559 if (nr_highmem > alloc_highmem) {
1560 nr_highmem -= alloc_highmem;
1561 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1562 }
1563 }
1564 if (nr_pages > alloc_normal) {
1565 nr_pages -= alloc_normal;
1566 while (nr_pages-- > 0) {
1567 struct page *page;
1568
1569 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1570 if (!page)
1571 goto err_out;
1572 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1573 }
1574 }
1575
1576 return 0;
1577
1578 err_out:
1579 swsusp_free();
1580 return -ENOMEM;
1581}
1582
1583asmlinkage int swsusp_save(void)
1584{
1585 unsigned int nr_pages, nr_highmem;
1586
1587 printk(KERN_INFO "PM: Creating hibernation image:\n");
1588
1589 drain_local_pages(NULL);
1590 nr_pages = count_data_pages();
1591 nr_highmem = count_highmem_pages();
1592 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1593
1594 if (!enough_free_mem(nr_pages, nr_highmem)) {
1595 printk(KERN_ERR "PM: Not enough free memory\n");
1596 return -ENOMEM;
1597 }
1598
1599 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1600 printk(KERN_ERR "PM: Memory allocation failed\n");
1601 return -ENOMEM;
1602 }
1603
1604 /* During allocating of suspend pagedir, new cold pages may appear.
1605 * Kill them.
1606 */
1607 drain_local_pages(NULL);
1608 copy_data_pages(&copy_bm, &orig_bm);
1609
1610 /*
1611 * End of critical section. From now on, we can write to memory,
1612 * but we should not touch disk. This specially means we must _not_
1613 * touch swap space! Except we must write out our image of course.
1614 */
1615
1616 nr_pages += nr_highmem;
1617 nr_copy_pages = nr_pages;
1618 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1619
1620 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1621 nr_pages);
1622
1623 return 0;
1624}
1625
1626#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1627static int init_header_complete(struct swsusp_info *info)
1628{
1629 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1630 info->version_code = LINUX_VERSION_CODE;
1631 return 0;
1632}
1633
1634static char *check_image_kernel(struct swsusp_info *info)
1635{
1636 if (info->version_code != LINUX_VERSION_CODE)
1637 return "kernel version";
1638 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1639 return "system type";
1640 if (strcmp(info->uts.release,init_utsname()->release))
1641 return "kernel release";
1642 if (strcmp(info->uts.version,init_utsname()->version))
1643 return "version";
1644 if (strcmp(info->uts.machine,init_utsname()->machine))
1645 return "machine";
1646 return NULL;
1647}
1648#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1649
1650unsigned long snapshot_get_image_size(void)
1651{
1652 return nr_copy_pages + nr_meta_pages + 1;
1653}
1654
1655static int init_header(struct swsusp_info *info)
1656{
1657 memset(info, 0, sizeof(struct swsusp_info));
1658 info->num_physpages = num_physpages;
1659 info->image_pages = nr_copy_pages;
1660 info->pages = snapshot_get_image_size();
1661 info->size = info->pages;
1662 info->size <<= PAGE_SHIFT;
1663 return init_header_complete(info);
1664}
1665
1666/**
1667 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1668 * are stored in the array @buf[] (1 page at a time)
1669 */
1670
1671static inline void
1672pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1673{
1674 int j;
1675
1676 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1677 buf[j] = memory_bm_next_pfn(bm);
1678 if (unlikely(buf[j] == BM_END_OF_MAP))
1679 break;
1680 /* Save page key for data page (s390 only). */
1681 page_key_read(buf + j);
1682 }
1683}
1684
1685/**
1686 * snapshot_read_next - used for reading the system memory snapshot.
1687 *
1688 * On the first call to it @handle should point to a zeroed
1689 * snapshot_handle structure. The structure gets updated and a pointer
1690 * to it should be passed to this function every next time.
1691 *
1692 * On success the function returns a positive number. Then, the caller
1693 * is allowed to read up to the returned number of bytes from the memory
1694 * location computed by the data_of() macro.
1695 *
1696 * The function returns 0 to indicate the end of data stream condition,
1697 * and a negative number is returned on error. In such cases the
1698 * structure pointed to by @handle is not updated and should not be used
1699 * any more.
1700 */
1701
1702int snapshot_read_next(struct snapshot_handle *handle)
1703{
1704 if (handle->cur > nr_meta_pages + nr_copy_pages)
1705 return 0;
1706
1707 if (!buffer) {
1708 /* This makes the buffer be freed by swsusp_free() */
1709 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1710 if (!buffer)
1711 return -ENOMEM;
1712 }
1713 if (!handle->cur) {
1714 int error;
1715
1716 error = init_header((struct swsusp_info *)buffer);
1717 if (error)
1718 return error;
1719 handle->buffer = buffer;
1720 memory_bm_position_reset(&orig_bm);
1721 memory_bm_position_reset(&copy_bm);
1722 } else if (handle->cur <= nr_meta_pages) {
1723 clear_page(buffer);
1724 pack_pfns(buffer, &orig_bm);
1725 } else {
1726 struct page *page;
1727
1728 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1729 if (PageHighMem(page)) {
1730 /* Highmem pages are copied to the buffer,
1731 * because we can't return with a kmapped
1732 * highmem page (we may not be called again).
1733 */
1734 void *kaddr;
1735
1736 kaddr = kmap_atomic(page);
1737 copy_page(buffer, kaddr);
1738 kunmap_atomic(kaddr);
1739 handle->buffer = buffer;
1740 } else {
1741 handle->buffer = page_address(page);
1742 }
1743 }
1744 handle->cur++;
1745 return PAGE_SIZE;
1746}
1747
1748/**
1749 * mark_unsafe_pages - mark the pages that cannot be used for storing
1750 * the image during resume, because they conflict with the pages that
1751 * had been used before suspend
1752 */
1753
1754static int mark_unsafe_pages(struct memory_bitmap *bm)
1755{
1756 struct zone *zone;
1757 unsigned long pfn, max_zone_pfn;
1758
1759 /* Clear page flags */
1760 for_each_populated_zone(zone) {
1761 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1762 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1763 if (pfn_valid(pfn))
1764 swsusp_unset_page_free(pfn_to_page(pfn));
1765 }
1766
1767 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1768 memory_bm_position_reset(bm);
1769 do {
1770 pfn = memory_bm_next_pfn(bm);
1771 if (likely(pfn != BM_END_OF_MAP)) {
1772 if (likely(pfn_valid(pfn)))
1773 swsusp_set_page_free(pfn_to_page(pfn));
1774 else
1775 return -EFAULT;
1776 }
1777 } while (pfn != BM_END_OF_MAP);
1778
1779 allocated_unsafe_pages = 0;
1780
1781 return 0;
1782}
1783
1784static void
1785duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1786{
1787 unsigned long pfn;
1788
1789 memory_bm_position_reset(src);
1790 pfn = memory_bm_next_pfn(src);
1791 while (pfn != BM_END_OF_MAP) {
1792 memory_bm_set_bit(dst, pfn);
1793 pfn = memory_bm_next_pfn(src);
1794 }
1795}
1796
1797static int check_header(struct swsusp_info *info)
1798{
1799 char *reason;
1800
1801 reason = check_image_kernel(info);
1802 if (!reason && info->num_physpages != num_physpages)
1803 reason = "memory size";
1804 if (reason) {
1805 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1806 return -EPERM;
1807 }
1808 return 0;
1809}
1810
1811/**
1812 * load header - check the image header and copy data from it
1813 */
1814
1815static int
1816load_header(struct swsusp_info *info)
1817{
1818 int error;
1819
1820 restore_pblist = NULL;
1821 error = check_header(info);
1822 if (!error) {
1823 nr_copy_pages = info->image_pages;
1824 nr_meta_pages = info->pages - info->image_pages - 1;
1825 }
1826 return error;
1827}
1828
1829/**
1830 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1831 * the corresponding bit in the memory bitmap @bm
1832 */
1833static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1834{
1835 int j;
1836
1837 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1838 if (unlikely(buf[j] == BM_END_OF_MAP))
1839 break;
1840
1841 /* Extract and buffer page key for data page (s390 only). */
1842 page_key_memorize(buf + j);
1843
1844 if (memory_bm_pfn_present(bm, buf[j]))
1845 memory_bm_set_bit(bm, buf[j]);
1846 else
1847 return -EFAULT;
1848 }
1849
1850 return 0;
1851}
1852
1853/* List of "safe" pages that may be used to store data loaded from the suspend
1854 * image
1855 */
1856static struct linked_page *safe_pages_list;
1857
1858#ifdef CONFIG_HIGHMEM
1859/* struct highmem_pbe is used for creating the list of highmem pages that
1860 * should be restored atomically during the resume from disk, because the page
1861 * frames they have occupied before the suspend are in use.
1862 */
1863struct highmem_pbe {
1864 struct page *copy_page; /* data is here now */
1865 struct page *orig_page; /* data was here before the suspend */
1866 struct highmem_pbe *next;
1867};
1868
1869/* List of highmem PBEs needed for restoring the highmem pages that were
1870 * allocated before the suspend and included in the suspend image, but have
1871 * also been allocated by the "resume" kernel, so their contents cannot be
1872 * written directly to their "original" page frames.
1873 */
1874static struct highmem_pbe *highmem_pblist;
1875
1876/**
1877 * count_highmem_image_pages - compute the number of highmem pages in the
1878 * suspend image. The bits in the memory bitmap @bm that correspond to the
1879 * image pages are assumed to be set.
1880 */
1881
1882static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1883{
1884 unsigned long pfn;
1885 unsigned int cnt = 0;
1886
1887 memory_bm_position_reset(bm);
1888 pfn = memory_bm_next_pfn(bm);
1889 while (pfn != BM_END_OF_MAP) {
1890 if (PageHighMem(pfn_to_page(pfn)))
1891 cnt++;
1892
1893 pfn = memory_bm_next_pfn(bm);
1894 }
1895 return cnt;
1896}
1897
1898/**
1899 * prepare_highmem_image - try to allocate as many highmem pages as
1900 * there are highmem image pages (@nr_highmem_p points to the variable
1901 * containing the number of highmem image pages). The pages that are
1902 * "safe" (ie. will not be overwritten when the suspend image is
1903 * restored) have the corresponding bits set in @bm (it must be
1904 * unitialized).
1905 *
1906 * NOTE: This function should not be called if there are no highmem
1907 * image pages.
1908 */
1909
1910static unsigned int safe_highmem_pages;
1911
1912static struct memory_bitmap *safe_highmem_bm;
1913
1914static int
1915prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1916{
1917 unsigned int to_alloc;
1918
1919 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1920 return -ENOMEM;
1921
1922 if (get_highmem_buffer(PG_SAFE))
1923 return -ENOMEM;
1924
1925 to_alloc = count_free_highmem_pages();
1926 if (to_alloc > *nr_highmem_p)
1927 to_alloc = *nr_highmem_p;
1928 else
1929 *nr_highmem_p = to_alloc;
1930
1931 safe_highmem_pages = 0;
1932 while (to_alloc-- > 0) {
1933 struct page *page;
1934
1935 page = alloc_page(__GFP_HIGHMEM);
1936 if (!swsusp_page_is_free(page)) {
1937 /* The page is "safe", set its bit the bitmap */
1938 memory_bm_set_bit(bm, page_to_pfn(page));
1939 safe_highmem_pages++;
1940 }
1941 /* Mark the page as allocated */
1942 swsusp_set_page_forbidden(page);
1943 swsusp_set_page_free(page);
1944 }
1945 memory_bm_position_reset(bm);
1946 safe_highmem_bm = bm;
1947 return 0;
1948}
1949
1950/**
1951 * get_highmem_page_buffer - for given highmem image page find the buffer
1952 * that suspend_write_next() should set for its caller to write to.
1953 *
1954 * If the page is to be saved to its "original" page frame or a copy of
1955 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1956 * the copy of the page is to be made in normal memory, so the address of
1957 * the copy is returned.
1958 *
1959 * If @buffer is returned, the caller of suspend_write_next() will write
1960 * the page's contents to @buffer, so they will have to be copied to the
1961 * right location on the next call to suspend_write_next() and it is done
1962 * with the help of copy_last_highmem_page(). For this purpose, if
1963 * @buffer is returned, @last_highmem page is set to the page to which
1964 * the data will have to be copied from @buffer.
1965 */
1966
1967static struct page *last_highmem_page;
1968
1969static void *
1970get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1971{
1972 struct highmem_pbe *pbe;
1973 void *kaddr;
1974
1975 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1976 /* We have allocated the "original" page frame and we can
1977 * use it directly to store the loaded page.
1978 */
1979 last_highmem_page = page;
1980 return buffer;
1981 }
1982 /* The "original" page frame has not been allocated and we have to
1983 * use a "safe" page frame to store the loaded page.
1984 */
1985 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1986 if (!pbe) {
1987 swsusp_free();
1988 return ERR_PTR(-ENOMEM);
1989 }
1990 pbe->orig_page = page;
1991 if (safe_highmem_pages > 0) {
1992 struct page *tmp;
1993
1994 /* Copy of the page will be stored in high memory */
1995 kaddr = buffer;
1996 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1997 safe_highmem_pages--;
1998 last_highmem_page = tmp;
1999 pbe->copy_page = tmp;
2000 } else {
2001 /* Copy of the page will be stored in normal memory */
2002 kaddr = safe_pages_list;
2003 safe_pages_list = safe_pages_list->next;
2004 pbe->copy_page = virt_to_page(kaddr);
2005 }
2006 pbe->next = highmem_pblist;
2007 highmem_pblist = pbe;
2008 return kaddr;
2009}
2010
2011/**
2012 * copy_last_highmem_page - copy the contents of a highmem image from
2013 * @buffer, where the caller of snapshot_write_next() has place them,
2014 * to the right location represented by @last_highmem_page .
2015 */
2016
2017static void copy_last_highmem_page(void)
2018{
2019 if (last_highmem_page) {
2020 void *dst;
2021
2022 dst = kmap_atomic(last_highmem_page);
2023 copy_page(dst, buffer);
2024 kunmap_atomic(dst);
2025 last_highmem_page = NULL;
2026 }
2027}
2028
2029static inline int last_highmem_page_copied(void)
2030{
2031 return !last_highmem_page;
2032}
2033
2034static inline void free_highmem_data(void)
2035{
2036 if (safe_highmem_bm)
2037 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2038
2039 if (buffer)
2040 free_image_page(buffer, PG_UNSAFE_CLEAR);
2041}
2042#else
2043static inline int get_safe_write_buffer(void) { return 0; }
2044
2045static unsigned int
2046count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2047
2048static inline int
2049prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2050{
2051 return 0;
2052}
2053
2054static inline void *
2055get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2056{
2057 return ERR_PTR(-EINVAL);
2058}
2059
2060static inline void copy_last_highmem_page(void) {}
2061static inline int last_highmem_page_copied(void) { return 1; }
2062static inline void free_highmem_data(void) {}
2063#endif /* CONFIG_HIGHMEM */
2064
2065/**
2066 * prepare_image - use the memory bitmap @bm to mark the pages that will
2067 * be overwritten in the process of restoring the system memory state
2068 * from the suspend image ("unsafe" pages) and allocate memory for the
2069 * image.
2070 *
2071 * The idea is to allocate a new memory bitmap first and then allocate
2072 * as many pages as needed for the image data, but not to assign these
2073 * pages to specific tasks initially. Instead, we just mark them as
2074 * allocated and create a lists of "safe" pages that will be used
2075 * later. On systems with high memory a list of "safe" highmem pages is
2076 * also created.
2077 */
2078
2079#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2080
2081static int
2082prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2083{
2084 unsigned int nr_pages, nr_highmem;
2085 struct linked_page *sp_list, *lp;
2086 int error;
2087
2088 /* If there is no highmem, the buffer will not be necessary */
2089 free_image_page(buffer, PG_UNSAFE_CLEAR);
2090 buffer = NULL;
2091
2092 nr_highmem = count_highmem_image_pages(bm);
2093 error = mark_unsafe_pages(bm);
2094 if (error)
2095 goto Free;
2096
2097 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2098 if (error)
2099 goto Free;
2100
2101 duplicate_memory_bitmap(new_bm, bm);
2102 memory_bm_free(bm, PG_UNSAFE_KEEP);
2103 if (nr_highmem > 0) {
2104 error = prepare_highmem_image(bm, &nr_highmem);
2105 if (error)
2106 goto Free;
2107 }
2108 /* Reserve some safe pages for potential later use.
2109 *
2110 * NOTE: This way we make sure there will be enough safe pages for the
2111 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2112 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2113 */
2114 sp_list = NULL;
2115 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2116 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2117 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2118 while (nr_pages > 0) {
2119 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2120 if (!lp) {
2121 error = -ENOMEM;
2122 goto Free;
2123 }
2124 lp->next = sp_list;
2125 sp_list = lp;
2126 nr_pages--;
2127 }
2128 /* Preallocate memory for the image */
2129 safe_pages_list = NULL;
2130 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2131 while (nr_pages > 0) {
2132 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2133 if (!lp) {
2134 error = -ENOMEM;
2135 goto Free;
2136 }
2137 if (!swsusp_page_is_free(virt_to_page(lp))) {
2138 /* The page is "safe", add it to the list */
2139 lp->next = safe_pages_list;
2140 safe_pages_list = lp;
2141 }
2142 /* Mark the page as allocated */
2143 swsusp_set_page_forbidden(virt_to_page(lp));
2144 swsusp_set_page_free(virt_to_page(lp));
2145 nr_pages--;
2146 }
2147 /* Free the reserved safe pages so that chain_alloc() can use them */
2148 while (sp_list) {
2149 lp = sp_list->next;
2150 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2151 sp_list = lp;
2152 }
2153 return 0;
2154
2155 Free:
2156 swsusp_free();
2157 return error;
2158}
2159
2160/**
2161 * get_buffer - compute the address that snapshot_write_next() should
2162 * set for its caller to write to.
2163 */
2164
2165static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2166{
2167 struct pbe *pbe;
2168 struct page *page;
2169 unsigned long pfn = memory_bm_next_pfn(bm);
2170
2171 if (pfn == BM_END_OF_MAP)
2172 return ERR_PTR(-EFAULT);
2173
2174 page = pfn_to_page(pfn);
2175 if (PageHighMem(page))
2176 return get_highmem_page_buffer(page, ca);
2177
2178 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2179 /* We have allocated the "original" page frame and we can
2180 * use it directly to store the loaded page.
2181 */
2182 return page_address(page);
2183
2184 /* The "original" page frame has not been allocated and we have to
2185 * use a "safe" page frame to store the loaded page.
2186 */
2187 pbe = chain_alloc(ca, sizeof(struct pbe));
2188 if (!pbe) {
2189 swsusp_free();
2190 return ERR_PTR(-ENOMEM);
2191 }
2192 pbe->orig_address = page_address(page);
2193 pbe->address = safe_pages_list;
2194 safe_pages_list = safe_pages_list->next;
2195 pbe->next = restore_pblist;
2196 restore_pblist = pbe;
2197 return pbe->address;
2198}
2199
2200/**
2201 * snapshot_write_next - used for writing the system memory snapshot.
2202 *
2203 * On the first call to it @handle should point to a zeroed
2204 * snapshot_handle structure. The structure gets updated and a pointer
2205 * to it should be passed to this function every next time.
2206 *
2207 * On success the function returns a positive number. Then, the caller
2208 * is allowed to write up to the returned number of bytes to the memory
2209 * location computed by the data_of() macro.
2210 *
2211 * The function returns 0 to indicate the "end of file" condition,
2212 * and a negative number is returned on error. In such cases the
2213 * structure pointed to by @handle is not updated and should not be used
2214 * any more.
2215 */
2216
2217int snapshot_write_next(struct snapshot_handle *handle)
2218{
2219 static struct chain_allocator ca;
2220 int error = 0;
2221
2222 /* Check if we have already loaded the entire image */
2223 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2224 return 0;
2225
2226 handle->sync_read = 1;
2227
2228 if (!handle->cur) {
2229 if (!buffer)
2230 /* This makes the buffer be freed by swsusp_free() */
2231 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2232
2233 if (!buffer)
2234 return -ENOMEM;
2235
2236 handle->buffer = buffer;
2237 } else if (handle->cur == 1) {
2238 error = load_header(buffer);
2239 if (error)
2240 return error;
2241
2242 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2243 if (error)
2244 return error;
2245
2246 /* Allocate buffer for page keys. */
2247 error = page_key_alloc(nr_copy_pages);
2248 if (error)
2249 return error;
2250
2251 } else if (handle->cur <= nr_meta_pages + 1) {
2252 error = unpack_orig_pfns(buffer, &copy_bm);
2253 if (error)
2254 return error;
2255
2256 if (handle->cur == nr_meta_pages + 1) {
2257 error = prepare_image(&orig_bm, &copy_bm);
2258 if (error)
2259 return error;
2260
2261 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2262 memory_bm_position_reset(&orig_bm);
2263 restore_pblist = NULL;
2264 handle->buffer = get_buffer(&orig_bm, &ca);
2265 handle->sync_read = 0;
2266 if (IS_ERR(handle->buffer))
2267 return PTR_ERR(handle->buffer);
2268 }
2269 } else {
2270 copy_last_highmem_page();
2271 /* Restore page key for data page (s390 only). */
2272 page_key_write(handle->buffer);
2273 handle->buffer = get_buffer(&orig_bm, &ca);
2274 if (IS_ERR(handle->buffer))
2275 return PTR_ERR(handle->buffer);
2276 if (handle->buffer != buffer)
2277 handle->sync_read = 0;
2278 }
2279 handle->cur++;
2280 return PAGE_SIZE;
2281}
2282
2283/**
2284 * snapshot_write_finalize - must be called after the last call to
2285 * snapshot_write_next() in case the last page in the image happens
2286 * to be a highmem page and its contents should be stored in the
2287 * highmem. Additionally, it releases the memory that will not be
2288 * used any more.
2289 */
2290
2291void snapshot_write_finalize(struct snapshot_handle *handle)
2292{
2293 copy_last_highmem_page();
2294 /* Restore page key for data page (s390 only). */
2295 page_key_write(handle->buffer);
2296 page_key_free();
2297 /* Free only if we have loaded the image entirely */
2298 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2299 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2300 free_highmem_data();
2301 }
2302}
2303
2304int snapshot_image_loaded(struct snapshot_handle *handle)
2305{
2306 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2307 handle->cur <= nr_meta_pages + nr_copy_pages);
2308}
2309
2310#ifdef CONFIG_HIGHMEM
2311/* Assumes that @buf is ready and points to a "safe" page */
2312static inline void
2313swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2314{
2315 void *kaddr1, *kaddr2;
2316
2317 kaddr1 = kmap_atomic(p1);
2318 kaddr2 = kmap_atomic(p2);
2319 copy_page(buf, kaddr1);
2320 copy_page(kaddr1, kaddr2);
2321 copy_page(kaddr2, buf);
2322 kunmap_atomic(kaddr2);
2323 kunmap_atomic(kaddr1);
2324}
2325
2326/**
2327 * restore_highmem - for each highmem page that was allocated before
2328 * the suspend and included in the suspend image, and also has been
2329 * allocated by the "resume" kernel swap its current (ie. "before
2330 * resume") contents with the previous (ie. "before suspend") one.
2331 *
2332 * If the resume eventually fails, we can call this function once
2333 * again and restore the "before resume" highmem state.
2334 */
2335
2336int restore_highmem(void)
2337{
2338 struct highmem_pbe *pbe = highmem_pblist;
2339 void *buf;
2340
2341 if (!pbe)
2342 return 0;
2343
2344 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2345 if (!buf)
2346 return -ENOMEM;
2347
2348 while (pbe) {
2349 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2350 pbe = pbe->next;
2351 }
2352 free_image_page(buf, PG_UNSAFE_CLEAR);
2353 return 0;
2354}
2355#endif /* CONFIG_HIGHMEM */