blob: 055268b44f8bdd0e262a50a6aa21e6dd2c4ecda5 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
55
56#include "rcutree.h"
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
60
61/* Data structures. */
62
63static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
64
65#define RCU_STATE_INITIALIZER(structname) { \
66 .level = { &structname##_state.node[0] }, \
67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \
71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73 }, \
74 .fqs_state = RCU_GP_IDLE, \
75 .gpnum = -300, \
76 .completed = -300, \
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
79 .n_force_qs = 0, \
80 .n_force_qs_ngp = 0, \
81 .name = #structname, \
82}
83
84struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
85DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
86
87struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
88DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
89
90static struct rcu_state *rcu_state;
91
92/*
93 * The rcu_scheduler_active variable transitions from zero to one just
94 * before the first task is spawned. So when this variable is zero, RCU
95 * can assume that there is but one task, allowing RCU to (for example)
96 * optimized synchronize_sched() to a simple barrier(). When this variable
97 * is one, RCU must actually do all the hard work required to detect real
98 * grace periods. This variable is also used to suppress boot-time false
99 * positives from lockdep-RCU error checking.
100 */
101int rcu_scheduler_active __read_mostly;
102EXPORT_SYMBOL_GPL(rcu_scheduler_active);
103
104/*
105 * The rcu_scheduler_fully_active variable transitions from zero to one
106 * during the early_initcall() processing, which is after the scheduler
107 * is capable of creating new tasks. So RCU processing (for example,
108 * creating tasks for RCU priority boosting) must be delayed until after
109 * rcu_scheduler_fully_active transitions from zero to one. We also
110 * currently delay invocation of any RCU callbacks until after this point.
111 *
112 * It might later prove better for people registering RCU callbacks during
113 * early boot to take responsibility for these callbacks, but one step at
114 * a time.
115 */
116static int rcu_scheduler_fully_active __read_mostly;
117
118#ifdef CONFIG_RCU_BOOST
119
120/*
121 * Control variables for per-CPU and per-rcu_node kthreads. These
122 * handle all flavors of RCU.
123 */
124static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
126DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
127DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
128DEFINE_PER_CPU(char, rcu_cpu_has_work);
129
130#endif /* #ifdef CONFIG_RCU_BOOST */
131
132static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
133static void invoke_rcu_core(void);
134static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
135
136/*
137 * Track the rcutorture test sequence number and the update version
138 * number within a given test. The rcutorture_testseq is incremented
139 * on every rcutorture module load and unload, so has an odd value
140 * when a test is running. The rcutorture_vernum is set to zero
141 * when rcutorture starts and is incremented on each rcutorture update.
142 * These variables enable correlating rcutorture output with the
143 * RCU tracing information.
144 */
145unsigned long rcutorture_testseq;
146unsigned long rcutorture_vernum;
147
148/*
149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
150 * permit this function to be invoked without holding the root rcu_node
151 * structure's ->lock, but of course results can be subject to change.
152 */
153static int rcu_gp_in_progress(struct rcu_state *rsp)
154{
155 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
156}
157
158/*
159 * Note a quiescent state. Because we do not need to know
160 * how many quiescent states passed, just if there was at least
161 * one since the start of the grace period, this just sets a flag.
162 * The caller must have disabled preemption.
163 */
164void rcu_sched_qs(int cpu)
165{
166 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
167
168 rdp->passed_quiesce_gpnum = rdp->gpnum;
169 barrier();
170 if (rdp->passed_quiesce == 0)
171 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
172 rdp->passed_quiesce = 1;
173}
174
175#ifdef CONFIG_PREEMPT_RT_FULL
176static void rcu_preempt_qs(int cpu);
177
178void rcu_bh_qs(int cpu)
179{
180 unsigned long flags;
181
182 /* Callers to this function, rcu_preempt_qs(), must disable irqs. */
183 local_irq_save(flags);
184 rcu_preempt_qs(cpu);
185 local_irq_restore(flags);
186}
187#else
188void rcu_bh_qs(int cpu)
189{
190 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
191
192 rdp->passed_quiesce_gpnum = rdp->gpnum;
193 barrier();
194 if (rdp->passed_quiesce == 0)
195 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
196 rdp->passed_quiesce = 1;
197}
198#endif
199
200/*
201 * Note a context switch. This is a quiescent state for RCU-sched,
202 * and requires special handling for preemptible RCU.
203 * The caller must have disabled preemption.
204 */
205void rcu_note_context_switch(int cpu)
206{
207 trace_rcu_utilization("Start context switch");
208 rcu_sched_qs(cpu);
209 rcu_preempt_note_context_switch(cpu);
210 trace_rcu_utilization("End context switch");
211}
212EXPORT_SYMBOL_GPL(rcu_note_context_switch);
213
214DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
215 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
216 .dynticks = ATOMIC_INIT(1),
217};
218
219static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
220static long qhimark = 10000; /* If this many pending, ignore blimit. */
221static long qlowmark = 100; /* Once only this many pending, use blimit. */
222
223module_param(blimit, long, 0);
224module_param(qhimark, long, 0);
225module_param(qlowmark, long, 0);
226
227int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
228int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
229
230module_param(rcu_cpu_stall_suppress, int, 0644);
231module_param(rcu_cpu_stall_timeout, int, 0644);
232
233static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
234static int rcu_pending(int cpu);
235
236/*
237 * Return the number of RCU-sched batches processed thus far for debug & stats.
238 */
239long rcu_batches_completed_sched(void)
240{
241 return rcu_sched_state.completed;
242}
243EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
244
245#ifndef CONFIG_PREEMPT_RT_FULL
246/*
247 * Return the number of RCU BH batches processed thus far for debug & stats.
248 */
249long rcu_batches_completed_bh(void)
250{
251 return rcu_bh_state.completed;
252}
253EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
254
255/*
256 * Force a quiescent state for RCU BH.
257 */
258void rcu_bh_force_quiescent_state(void)
259{
260 force_quiescent_state(&rcu_bh_state, 0);
261}
262EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
263#endif
264
265/*
266 * Record the number of times rcutorture tests have been initiated and
267 * terminated. This information allows the debugfs tracing stats to be
268 * correlated to the rcutorture messages, even when the rcutorture module
269 * is being repeatedly loaded and unloaded. In other words, we cannot
270 * store this state in rcutorture itself.
271 */
272void rcutorture_record_test_transition(void)
273{
274 rcutorture_testseq++;
275 rcutorture_vernum = 0;
276}
277EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
278
279/*
280 * Record the number of writer passes through the current rcutorture test.
281 * This is also used to correlate debugfs tracing stats with the rcutorture
282 * messages.
283 */
284void rcutorture_record_progress(unsigned long vernum)
285{
286 rcutorture_vernum++;
287}
288EXPORT_SYMBOL_GPL(rcutorture_record_progress);
289
290/*
291 * Force a quiescent state for RCU-sched.
292 */
293void rcu_sched_force_quiescent_state(void)
294{
295 force_quiescent_state(&rcu_sched_state, 0);
296}
297EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
298
299/*
300 * Does the CPU have callbacks ready to be invoked?
301 */
302static int
303cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
304{
305 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
306}
307
308/*
309 * Does the current CPU require a yet-as-unscheduled grace period?
310 */
311static int
312cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
313{
314 return *rdp->nxttail[RCU_DONE_TAIL +
315 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
316 !rcu_gp_in_progress(rsp);
317}
318
319/*
320 * Return the root node of the specified rcu_state structure.
321 */
322static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
323{
324 return &rsp->node[0];
325}
326
327/*
328 * If the specified CPU is offline, tell the caller that it is in
329 * a quiescent state. Otherwise, whack it with a reschedule IPI.
330 * Grace periods can end up waiting on an offline CPU when that
331 * CPU is in the process of coming online -- it will be added to the
332 * rcu_node bitmasks before it actually makes it online. The same thing
333 * can happen while a CPU is in the process of coming online. Because this
334 * race is quite rare, we check for it after detecting that the grace
335 * period has been delayed rather than checking each and every CPU
336 * each and every time we start a new grace period.
337 */
338static int rcu_implicit_offline_qs(struct rcu_data *rdp)
339{
340 /*
341 * If the CPU is offline for more than a jiffy, it is in a quiescent
342 * state. We can trust its state not to change because interrupts
343 * are disabled. The reason for the jiffy's worth of slack is to
344 * handle CPUs initializing on the way up and finding their way
345 * to the idle loop on the way down.
346 */
347 if (cpu_is_offline(rdp->cpu) &&
348 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
349 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
350 rdp->offline_fqs++;
351 return 1;
352 }
353 return 0;
354}
355
356/*
357 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
358 *
359 * If the new value of the ->dynticks_nesting counter now is zero,
360 * we really have entered idle, and must do the appropriate accounting.
361 * The caller must have disabled interrupts.
362 */
363static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
364{
365 trace_rcu_dyntick("Start", oldval, 0);
366 if (!is_idle_task(current)) {
367 struct task_struct *idle = idle_task(smp_processor_id());
368
369 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
370 ftrace_dump(DUMP_ALL);
371 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
372 current->pid, current->comm,
373 idle->pid, idle->comm); /* must be idle task! */
374 }
375 rcu_prepare_for_idle(smp_processor_id());
376 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
377 smp_mb__before_atomic_inc(); /* See above. */
378 atomic_inc(&rdtp->dynticks);
379 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
380 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
381
382 /*
383 * The idle task is not permitted to enter the idle loop while
384 * in an RCU read-side critical section.
385 */
386 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
387 "Illegal idle entry in RCU read-side critical section.");
388 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
389 "Illegal idle entry in RCU-bh read-side critical section.");
390 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
391 "Illegal idle entry in RCU-sched read-side critical section.");
392}
393
394/**
395 * rcu_idle_enter - inform RCU that current CPU is entering idle
396 *
397 * Enter idle mode, in other words, -leave- the mode in which RCU
398 * read-side critical sections can occur. (Though RCU read-side
399 * critical sections can occur in irq handlers in idle, a possibility
400 * handled by irq_enter() and irq_exit().)
401 *
402 * We crowbar the ->dynticks_nesting field to zero to allow for
403 * the possibility of usermode upcalls having messed up our count
404 * of interrupt nesting level during the prior busy period.
405 */
406void rcu_idle_enter(void)
407{
408 unsigned long flags;
409 long long oldval;
410 struct rcu_dynticks *rdtp;
411
412 local_irq_save(flags);
413 rdtp = &__get_cpu_var(rcu_dynticks);
414 oldval = rdtp->dynticks_nesting;
415 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
416 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
417 rdtp->dynticks_nesting = 0;
418 else
419 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
420 rcu_idle_enter_common(rdtp, oldval);
421 local_irq_restore(flags);
422}
423EXPORT_SYMBOL_GPL(rcu_idle_enter);
424
425/**
426 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
427 *
428 * Exit from an interrupt handler, which might possibly result in entering
429 * idle mode, in other words, leaving the mode in which read-side critical
430 * sections can occur.
431 *
432 * This code assumes that the idle loop never does anything that might
433 * result in unbalanced calls to irq_enter() and irq_exit(). If your
434 * architecture violates this assumption, RCU will give you what you
435 * deserve, good and hard. But very infrequently and irreproducibly.
436 *
437 * Use things like work queues to work around this limitation.
438 *
439 * You have been warned.
440 */
441void rcu_irq_exit(void)
442{
443 unsigned long flags;
444 long long oldval;
445 struct rcu_dynticks *rdtp;
446
447 local_irq_save(flags);
448 rdtp = &__get_cpu_var(rcu_dynticks);
449 oldval = rdtp->dynticks_nesting;
450 rdtp->dynticks_nesting--;
451 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
452 if (rdtp->dynticks_nesting)
453 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
454 else
455 rcu_idle_enter_common(rdtp, oldval);
456 local_irq_restore(flags);
457}
458
459/*
460 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
461 *
462 * If the new value of the ->dynticks_nesting counter was previously zero,
463 * we really have exited idle, and must do the appropriate accounting.
464 * The caller must have disabled interrupts.
465 */
466static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
467{
468 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
469 atomic_inc(&rdtp->dynticks);
470 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
471 smp_mb__after_atomic_inc(); /* See above. */
472 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
473 rcu_cleanup_after_idle(smp_processor_id());
474 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
475 if (!is_idle_task(current)) {
476 struct task_struct *idle = idle_task(smp_processor_id());
477
478 trace_rcu_dyntick("Error on exit: not idle task",
479 oldval, rdtp->dynticks_nesting);
480 ftrace_dump(DUMP_ALL);
481 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
482 current->pid, current->comm,
483 idle->pid, idle->comm); /* must be idle task! */
484 }
485}
486
487/**
488 * rcu_idle_exit - inform RCU that current CPU is leaving idle
489 *
490 * Exit idle mode, in other words, -enter- the mode in which RCU
491 * read-side critical sections can occur.
492 *
493 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
494 * allow for the possibility of usermode upcalls messing up our count
495 * of interrupt nesting level during the busy period that is just
496 * now starting.
497 */
498void rcu_idle_exit(void)
499{
500 unsigned long flags;
501 struct rcu_dynticks *rdtp;
502 long long oldval;
503
504 local_irq_save(flags);
505 rdtp = &__get_cpu_var(rcu_dynticks);
506 oldval = rdtp->dynticks_nesting;
507 WARN_ON_ONCE(oldval < 0);
508 if (oldval & DYNTICK_TASK_NEST_MASK)
509 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
510 else
511 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
512 rcu_idle_exit_common(rdtp, oldval);
513 local_irq_restore(flags);
514}
515EXPORT_SYMBOL_GPL(rcu_idle_exit);
516
517/**
518 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
519 *
520 * Enter an interrupt handler, which might possibly result in exiting
521 * idle mode, in other words, entering the mode in which read-side critical
522 * sections can occur.
523 *
524 * Note that the Linux kernel is fully capable of entering an interrupt
525 * handler that it never exits, for example when doing upcalls to
526 * user mode! This code assumes that the idle loop never does upcalls to
527 * user mode. If your architecture does do upcalls from the idle loop (or
528 * does anything else that results in unbalanced calls to the irq_enter()
529 * and irq_exit() functions), RCU will give you what you deserve, good
530 * and hard. But very infrequently and irreproducibly.
531 *
532 * Use things like work queues to work around this limitation.
533 *
534 * You have been warned.
535 */
536void rcu_irq_enter(void)
537{
538 unsigned long flags;
539 struct rcu_dynticks *rdtp;
540 long long oldval;
541
542 local_irq_save(flags);
543 rdtp = &__get_cpu_var(rcu_dynticks);
544 oldval = rdtp->dynticks_nesting;
545 rdtp->dynticks_nesting++;
546 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
547 if (oldval)
548 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
549 else
550 rcu_idle_exit_common(rdtp, oldval);
551 local_irq_restore(flags);
552}
553
554/**
555 * rcu_nmi_enter - inform RCU of entry to NMI context
556 *
557 * If the CPU was idle with dynamic ticks active, and there is no
558 * irq handler running, this updates rdtp->dynticks_nmi to let the
559 * RCU grace-period handling know that the CPU is active.
560 */
561void rcu_nmi_enter(void)
562{
563 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
564
565 if (rdtp->dynticks_nmi_nesting == 0 &&
566 (atomic_read(&rdtp->dynticks) & 0x1))
567 return;
568 rdtp->dynticks_nmi_nesting++;
569 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
570 atomic_inc(&rdtp->dynticks);
571 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
572 smp_mb__after_atomic_inc(); /* See above. */
573 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
574}
575
576/**
577 * rcu_nmi_exit - inform RCU of exit from NMI context
578 *
579 * If the CPU was idle with dynamic ticks active, and there is no
580 * irq handler running, this updates rdtp->dynticks_nmi to let the
581 * RCU grace-period handling know that the CPU is no longer active.
582 */
583void rcu_nmi_exit(void)
584{
585 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
586
587 if (rdtp->dynticks_nmi_nesting == 0 ||
588 --rdtp->dynticks_nmi_nesting != 0)
589 return;
590 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
591 smp_mb__before_atomic_inc(); /* See above. */
592 atomic_inc(&rdtp->dynticks);
593 smp_mb__after_atomic_inc(); /* Force delay to next write. */
594 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
595}
596
597#ifdef CONFIG_PROVE_RCU
598
599/**
600 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
601 *
602 * If the current CPU is in its idle loop and is neither in an interrupt
603 * or NMI handler, return true.
604 */
605int rcu_is_cpu_idle(void)
606{
607 int ret;
608
609 preempt_disable();
610 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
611 preempt_enable();
612 return ret;
613}
614EXPORT_SYMBOL(rcu_is_cpu_idle);
615
616#ifdef CONFIG_HOTPLUG_CPU
617
618/*
619 * Is the current CPU online? Disable preemption to avoid false positives
620 * that could otherwise happen due to the current CPU number being sampled,
621 * this task being preempted, its old CPU being taken offline, resuming
622 * on some other CPU, then determining that its old CPU is now offline.
623 * It is OK to use RCU on an offline processor during initial boot, hence
624 * the check for rcu_scheduler_fully_active. Note also that it is OK
625 * for a CPU coming online to use RCU for one jiffy prior to marking itself
626 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
627 * offline to continue to use RCU for one jiffy after marking itself
628 * offline in the cpu_online_mask. This leniency is necessary given the
629 * non-atomic nature of the online and offline processing, for example,
630 * the fact that a CPU enters the scheduler after completing the CPU_DYING
631 * notifiers.
632 *
633 * This is also why RCU internally marks CPUs online during the
634 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
635 *
636 * Disable checking if in an NMI handler because we cannot safely report
637 * errors from NMI handlers anyway.
638 */
639bool rcu_lockdep_current_cpu_online(void)
640{
641 struct rcu_data *rdp;
642 struct rcu_node *rnp;
643 bool ret;
644
645 if (in_nmi())
646 return 1;
647 preempt_disable();
648 rdp = &__get_cpu_var(rcu_sched_data);
649 rnp = rdp->mynode;
650 ret = (rdp->grpmask & rnp->qsmaskinit) ||
651 !rcu_scheduler_fully_active;
652 preempt_enable();
653 return ret;
654}
655EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
656
657#endif /* #ifdef CONFIG_HOTPLUG_CPU */
658
659#endif /* #ifdef CONFIG_PROVE_RCU */
660
661/**
662 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
663 *
664 * If the current CPU is idle or running at a first-level (not nested)
665 * interrupt from idle, return true. The caller must have at least
666 * disabled preemption.
667 */
668int rcu_is_cpu_rrupt_from_idle(void)
669{
670 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
671}
672
673/*
674 * Snapshot the specified CPU's dynticks counter so that we can later
675 * credit them with an implicit quiescent state. Return 1 if this CPU
676 * is in dynticks idle mode, which is an extended quiescent state.
677 */
678static int dyntick_save_progress_counter(struct rcu_data *rdp)
679{
680 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
681 return (rdp->dynticks_snap & 0x1) == 0;
682}
683
684/*
685 * Return true if the specified CPU has passed through a quiescent
686 * state by virtue of being in or having passed through an dynticks
687 * idle state since the last call to dyntick_save_progress_counter()
688 * for this same CPU.
689 */
690static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
691{
692 unsigned int curr;
693 unsigned int snap;
694
695 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
696 snap = (unsigned int)rdp->dynticks_snap;
697
698 /*
699 * If the CPU passed through or entered a dynticks idle phase with
700 * no active irq/NMI handlers, then we can safely pretend that the CPU
701 * already acknowledged the request to pass through a quiescent
702 * state. Either way, that CPU cannot possibly be in an RCU
703 * read-side critical section that started before the beginning
704 * of the current RCU grace period.
705 */
706 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
707 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
708 rdp->dynticks_fqs++;
709 return 1;
710 }
711
712 /* Go check for the CPU being offline. */
713 return rcu_implicit_offline_qs(rdp);
714}
715
716static int jiffies_till_stall_check(void)
717{
718 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
719
720 /*
721 * Limit check must be consistent with the Kconfig limits
722 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
723 */
724 if (till_stall_check < 3) {
725 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
726 till_stall_check = 3;
727 } else if (till_stall_check > 300) {
728 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
729 till_stall_check = 300;
730 }
731 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
732}
733
734static void record_gp_stall_check_time(struct rcu_state *rsp)
735{
736 rsp->gp_start = jiffies;
737 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
738}
739
740static void print_other_cpu_stall(struct rcu_state *rsp)
741{
742 int cpu;
743 long delta;
744 unsigned long flags;
745 int ndetected;
746 struct rcu_node *rnp = rcu_get_root(rsp);
747
748 /* Only let one CPU complain about others per time interval. */
749
750 raw_spin_lock_irqsave(&rnp->lock, flags);
751 delta = jiffies - rsp->jiffies_stall;
752 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
753 raw_spin_unlock_irqrestore(&rnp->lock, flags);
754 return;
755 }
756 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
757 raw_spin_unlock_irqrestore(&rnp->lock, flags);
758
759 /*
760 * OK, time to rat on our buddy...
761 * See Documentation/RCU/stallwarn.txt for info on how to debug
762 * RCU CPU stall warnings.
763 */
764 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
765 rsp->name);
766 print_cpu_stall_info_begin();
767 rcu_for_each_leaf_node(rsp, rnp) {
768 raw_spin_lock_irqsave(&rnp->lock, flags);
769 ndetected += rcu_print_task_stall(rnp);
770 raw_spin_unlock_irqrestore(&rnp->lock, flags);
771 if (rnp->qsmask == 0)
772 continue;
773 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
774 if (rnp->qsmask & (1UL << cpu)) {
775 print_cpu_stall_info(rsp, rnp->grplo + cpu);
776 ndetected++;
777 }
778 }
779
780 /*
781 * Now rat on any tasks that got kicked up to the root rcu_node
782 * due to CPU offlining.
783 */
784 rnp = rcu_get_root(rsp);
785 raw_spin_lock_irqsave(&rnp->lock, flags);
786 ndetected = rcu_print_task_stall(rnp);
787 raw_spin_unlock_irqrestore(&rnp->lock, flags);
788
789 print_cpu_stall_info_end();
790 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
791 smp_processor_id(), (long)(jiffies - rsp->gp_start));
792 if (ndetected == 0)
793 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
794 else if (!trigger_all_cpu_backtrace())
795 dump_stack();
796
797 /* If so configured, complain about tasks blocking the grace period. */
798
799 rcu_print_detail_task_stall(rsp);
800
801 force_quiescent_state(rsp, 0); /* Kick them all. */
802}
803
804static void print_cpu_stall(struct rcu_state *rsp)
805{
806 unsigned long flags;
807 struct rcu_node *rnp = rcu_get_root(rsp);
808
809 /*
810 * OK, time to rat on ourselves...
811 * See Documentation/RCU/stallwarn.txt for info on how to debug
812 * RCU CPU stall warnings.
813 */
814 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
815 print_cpu_stall_info_begin();
816 print_cpu_stall_info(rsp, smp_processor_id());
817 print_cpu_stall_info_end();
818 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
819 if (!trigger_all_cpu_backtrace())
820 dump_stack();
821
822 raw_spin_lock_irqsave(&rnp->lock, flags);
823 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
824 rsp->jiffies_stall = jiffies +
825 3 * jiffies_till_stall_check() + 3;
826 raw_spin_unlock_irqrestore(&rnp->lock, flags);
827
828 set_need_resched(); /* kick ourselves to get things going. */
829}
830
831static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
832{
833 unsigned long j;
834 unsigned long js;
835 struct rcu_node *rnp;
836
837 if (rcu_cpu_stall_suppress)
838 return;
839 j = ACCESS_ONCE(jiffies);
840 js = ACCESS_ONCE(rsp->jiffies_stall);
841 rnp = rdp->mynode;
842 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
843
844 /* We haven't checked in, so go dump stack. */
845 print_cpu_stall(rsp);
846
847 } else if (rcu_gp_in_progress(rsp) &&
848 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
849
850 /* They had a few time units to dump stack, so complain. */
851 print_other_cpu_stall(rsp);
852 }
853}
854
855static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
856{
857 rcu_cpu_stall_suppress = 1;
858 return NOTIFY_DONE;
859}
860
861/**
862 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
863 *
864 * Set the stall-warning timeout way off into the future, thus preventing
865 * any RCU CPU stall-warning messages from appearing in the current set of
866 * RCU grace periods.
867 *
868 * The caller must disable hard irqs.
869 */
870void rcu_cpu_stall_reset(void)
871{
872 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
873 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
874 rcu_preempt_stall_reset();
875}
876
877static struct notifier_block rcu_panic_block = {
878 .notifier_call = rcu_panic,
879};
880
881static void __init check_cpu_stall_init(void)
882{
883 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
884}
885
886/*
887 * Update CPU-local rcu_data state to record the newly noticed grace period.
888 * This is used both when we started the grace period and when we notice
889 * that someone else started the grace period. The caller must hold the
890 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
891 * and must have irqs disabled.
892 */
893static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
894{
895 if (rdp->gpnum != rnp->gpnum) {
896 /*
897 * If the current grace period is waiting for this CPU,
898 * set up to detect a quiescent state, otherwise don't
899 * go looking for one.
900 */
901 rdp->gpnum = rnp->gpnum;
902 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
903 if (rnp->qsmask & rdp->grpmask) {
904 rdp->qs_pending = 1;
905 rdp->passed_quiesce = 0;
906 } else
907 rdp->qs_pending = 0;
908 zero_cpu_stall_ticks(rdp);
909 }
910}
911
912static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
913{
914 unsigned long flags;
915 struct rcu_node *rnp;
916
917 local_irq_save(flags);
918 rnp = rdp->mynode;
919 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
920 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
921 local_irq_restore(flags);
922 return;
923 }
924 __note_new_gpnum(rsp, rnp, rdp);
925 raw_spin_unlock_irqrestore(&rnp->lock, flags);
926}
927
928/*
929 * Did someone else start a new RCU grace period start since we last
930 * checked? Update local state appropriately if so. Must be called
931 * on the CPU corresponding to rdp.
932 */
933static int
934check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
935{
936 unsigned long flags;
937 int ret = 0;
938
939 local_irq_save(flags);
940 if (rdp->gpnum != rsp->gpnum) {
941 note_new_gpnum(rsp, rdp);
942 ret = 1;
943 }
944 local_irq_restore(flags);
945 return ret;
946}
947
948/*
949 * Advance this CPU's callbacks, but only if the current grace period
950 * has ended. This may be called only from the CPU to whom the rdp
951 * belongs. In addition, the corresponding leaf rcu_node structure's
952 * ->lock must be held by the caller, with irqs disabled.
953 */
954static void
955__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
956{
957 /* Did another grace period end? */
958 if (rdp->completed != rnp->completed) {
959
960 /* Advance callbacks. No harm if list empty. */
961 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
962 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
963 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
964
965 /* Remember that we saw this grace-period completion. */
966 rdp->completed = rnp->completed;
967 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
968
969 /*
970 * If we were in an extended quiescent state, we may have
971 * missed some grace periods that others CPUs handled on
972 * our behalf. Catch up with this state to avoid noting
973 * spurious new grace periods. If another grace period
974 * has started, then rnp->gpnum will have advanced, so
975 * we will detect this later on.
976 */
977 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
978 rdp->gpnum = rdp->completed;
979
980 /*
981 * If RCU does not need a quiescent state from this CPU,
982 * then make sure that this CPU doesn't go looking for one.
983 */
984 if ((rnp->qsmask & rdp->grpmask) == 0)
985 rdp->qs_pending = 0;
986 }
987}
988
989/*
990 * Advance this CPU's callbacks, but only if the current grace period
991 * has ended. This may be called only from the CPU to whom the rdp
992 * belongs.
993 */
994static void
995rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
996{
997 unsigned long flags;
998 struct rcu_node *rnp;
999
1000 local_irq_save(flags);
1001 rnp = rdp->mynode;
1002 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1003 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1004 local_irq_restore(flags);
1005 return;
1006 }
1007 __rcu_process_gp_end(rsp, rnp, rdp);
1008 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1009}
1010
1011/*
1012 * Do per-CPU grace-period initialization for running CPU. The caller
1013 * must hold the lock of the leaf rcu_node structure corresponding to
1014 * this CPU.
1015 */
1016static void
1017rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1018{
1019 /* Prior grace period ended, so advance callbacks for current CPU. */
1020 __rcu_process_gp_end(rsp, rnp, rdp);
1021
1022 /*
1023 * Because this CPU just now started the new grace period, we know
1024 * that all of its callbacks will be covered by this upcoming grace
1025 * period, even the ones that were registered arbitrarily recently.
1026 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1027 *
1028 * Other CPUs cannot be sure exactly when the grace period started.
1029 * Therefore, their recently registered callbacks must pass through
1030 * an additional RCU_NEXT_READY stage, so that they will be handled
1031 * by the next RCU grace period.
1032 */
1033 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1034 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1035
1036 /* Set state so that this CPU will detect the next quiescent state. */
1037 __note_new_gpnum(rsp, rnp, rdp);
1038}
1039
1040/*
1041 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1042 * in preparation for detecting the next grace period. The caller must hold
1043 * the root node's ->lock, which is released before return. Hard irqs must
1044 * be disabled.
1045 *
1046 * Note that it is legal for a dying CPU (which is marked as offline) to
1047 * invoke this function. This can happen when the dying CPU reports its
1048 * quiescent state.
1049 */
1050static void
1051rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1052 __releases(rcu_get_root(rsp)->lock)
1053{
1054 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1055 struct rcu_node *rnp = rcu_get_root(rsp);
1056
1057 if (!rcu_scheduler_fully_active ||
1058 !cpu_needs_another_gp(rsp, rdp)) {
1059 /*
1060 * Either the scheduler hasn't yet spawned the first
1061 * non-idle task or this CPU does not need another
1062 * grace period. Either way, don't start a new grace
1063 * period.
1064 */
1065 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1066 return;
1067 }
1068
1069 if (rsp->fqs_active) {
1070 /*
1071 * This CPU needs a grace period, but force_quiescent_state()
1072 * is running. Tell it to start one on this CPU's behalf.
1073 */
1074 rsp->fqs_need_gp = 1;
1075 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1076 return;
1077 }
1078
1079 /* Advance to a new grace period and initialize state. */
1080 rsp->gpnum++;
1081 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1082 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1083 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1084 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1085 record_gp_stall_check_time(rsp);
1086 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1087
1088 /* Exclude any concurrent CPU-hotplug operations. */
1089 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1090
1091 /*
1092 * Set the quiescent-state-needed bits in all the rcu_node
1093 * structures for all currently online CPUs in breadth-first
1094 * order, starting from the root rcu_node structure. This
1095 * operation relies on the layout of the hierarchy within the
1096 * rsp->node[] array. Note that other CPUs will access only
1097 * the leaves of the hierarchy, which still indicate that no
1098 * grace period is in progress, at least until the corresponding
1099 * leaf node has been initialized. In addition, we have excluded
1100 * CPU-hotplug operations.
1101 *
1102 * Note that the grace period cannot complete until we finish
1103 * the initialization process, as there will be at least one
1104 * qsmask bit set in the root node until that time, namely the
1105 * one corresponding to this CPU, due to the fact that we have
1106 * irqs disabled.
1107 */
1108 rcu_for_each_node_breadth_first(rsp, rnp) {
1109 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1110 rcu_preempt_check_blocked_tasks(rnp);
1111 rnp->qsmask = rnp->qsmaskinit;
1112 rnp->gpnum = rsp->gpnum;
1113 rnp->completed = rsp->completed;
1114 if (rnp == rdp->mynode)
1115 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1116 rcu_preempt_boost_start_gp(rnp);
1117 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1118 rnp->level, rnp->grplo,
1119 rnp->grphi, rnp->qsmask);
1120 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1121 }
1122
1123 rnp = rcu_get_root(rsp);
1124 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1125 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1126 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1127 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1128}
1129
1130/*
1131 * Report a full set of quiescent states to the specified rcu_state
1132 * data structure. This involves cleaning up after the prior grace
1133 * period and letting rcu_start_gp() start up the next grace period
1134 * if one is needed. Note that the caller must hold rnp->lock, as
1135 * required by rcu_start_gp(), which will release it.
1136 */
1137static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1138 __releases(rcu_get_root(rsp)->lock)
1139{
1140 unsigned long gp_duration;
1141 struct rcu_node *rnp = rcu_get_root(rsp);
1142 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1143
1144 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1145
1146 /*
1147 * Ensure that all grace-period and pre-grace-period activity
1148 * is seen before the assignment to rsp->completed.
1149 */
1150 smp_mb(); /* See above block comment. */
1151 gp_duration = jiffies - rsp->gp_start;
1152 if (gp_duration > rsp->gp_max)
1153 rsp->gp_max = gp_duration;
1154
1155 /*
1156 * We know the grace period is complete, but to everyone else
1157 * it appears to still be ongoing. But it is also the case
1158 * that to everyone else it looks like there is nothing that
1159 * they can do to advance the grace period. It is therefore
1160 * safe for us to drop the lock in order to mark the grace
1161 * period as completed in all of the rcu_node structures.
1162 *
1163 * But if this CPU needs another grace period, it will take
1164 * care of this while initializing the next grace period.
1165 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1166 * because the callbacks have not yet been advanced: Those
1167 * callbacks are waiting on the grace period that just now
1168 * completed.
1169 */
1170 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1171 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1172
1173 /*
1174 * Propagate new ->completed value to rcu_node structures
1175 * so that other CPUs don't have to wait until the start
1176 * of the next grace period to process their callbacks.
1177 */
1178 rcu_for_each_node_breadth_first(rsp, rnp) {
1179 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1180 rnp->completed = rsp->gpnum;
1181 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1182 }
1183 rnp = rcu_get_root(rsp);
1184 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1185 }
1186
1187 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1188 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1189 rsp->fqs_state = RCU_GP_IDLE;
1190 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1191}
1192
1193/*
1194 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1195 * Allows quiescent states for a group of CPUs to be reported at one go
1196 * to the specified rcu_node structure, though all the CPUs in the group
1197 * must be represented by the same rcu_node structure (which need not be
1198 * a leaf rcu_node structure, though it often will be). That structure's
1199 * lock must be held upon entry, and it is released before return.
1200 */
1201static void
1202rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1203 struct rcu_node *rnp, unsigned long flags)
1204 __releases(rnp->lock)
1205{
1206 struct rcu_node *rnp_c;
1207
1208 /* Walk up the rcu_node hierarchy. */
1209 for (;;) {
1210 if (!(rnp->qsmask & mask)) {
1211
1212 /* Our bit has already been cleared, so done. */
1213 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1214 return;
1215 }
1216 rnp->qsmask &= ~mask;
1217 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1218 mask, rnp->qsmask, rnp->level,
1219 rnp->grplo, rnp->grphi,
1220 !!rnp->gp_tasks);
1221 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1222
1223 /* Other bits still set at this level, so done. */
1224 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1225 return;
1226 }
1227 mask = rnp->grpmask;
1228 if (rnp->parent == NULL) {
1229
1230 /* No more levels. Exit loop holding root lock. */
1231
1232 break;
1233 }
1234 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1235 rnp_c = rnp;
1236 rnp = rnp->parent;
1237 raw_spin_lock_irqsave(&rnp->lock, flags);
1238 WARN_ON_ONCE(rnp_c->qsmask);
1239 }
1240
1241 /*
1242 * Get here if we are the last CPU to pass through a quiescent
1243 * state for this grace period. Invoke rcu_report_qs_rsp()
1244 * to clean up and start the next grace period if one is needed.
1245 */
1246 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1247}
1248
1249/*
1250 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1251 * structure. This must be either called from the specified CPU, or
1252 * called when the specified CPU is known to be offline (and when it is
1253 * also known that no other CPU is concurrently trying to help the offline
1254 * CPU). The lastcomp argument is used to make sure we are still in the
1255 * grace period of interest. We don't want to end the current grace period
1256 * based on quiescent states detected in an earlier grace period!
1257 */
1258static void
1259rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1260{
1261 unsigned long flags;
1262 unsigned long mask;
1263 struct rcu_node *rnp;
1264
1265 rnp = rdp->mynode;
1266 raw_spin_lock_irqsave(&rnp->lock, flags);
1267 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1268
1269 /*
1270 * The grace period in which this quiescent state was
1271 * recorded has ended, so don't report it upwards.
1272 * We will instead need a new quiescent state that lies
1273 * within the current grace period.
1274 */
1275 rdp->passed_quiesce = 0; /* need qs for new gp. */
1276 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1277 return;
1278 }
1279 mask = rdp->grpmask;
1280 if ((rnp->qsmask & mask) == 0) {
1281 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1282 } else {
1283 rdp->qs_pending = 0;
1284
1285 /*
1286 * This GP can't end until cpu checks in, so all of our
1287 * callbacks can be processed during the next GP.
1288 */
1289 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1290
1291 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1292 }
1293}
1294
1295/*
1296 * Check to see if there is a new grace period of which this CPU
1297 * is not yet aware, and if so, set up local rcu_data state for it.
1298 * Otherwise, see if this CPU has just passed through its first
1299 * quiescent state for this grace period, and record that fact if so.
1300 */
1301static void
1302rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1303{
1304 /* If there is now a new grace period, record and return. */
1305 if (check_for_new_grace_period(rsp, rdp))
1306 return;
1307
1308 /*
1309 * Does this CPU still need to do its part for current grace period?
1310 * If no, return and let the other CPUs do their part as well.
1311 */
1312 if (!rdp->qs_pending)
1313 return;
1314
1315 /*
1316 * Was there a quiescent state since the beginning of the grace
1317 * period? If no, then exit and wait for the next call.
1318 */
1319 if (!rdp->passed_quiesce)
1320 return;
1321
1322 /*
1323 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1324 * judge of that).
1325 */
1326 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1327}
1328
1329#ifdef CONFIG_HOTPLUG_CPU
1330
1331/*
1332 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1333 * Also record a quiescent state for this CPU for the current grace period.
1334 * Synchronization and interrupt disabling are not required because
1335 * this function executes in stop_machine() context. Therefore, cleanup
1336 * operations that might block must be done later from the CPU_DEAD
1337 * notifier.
1338 *
1339 * Note that the outgoing CPU's bit has already been cleared in the
1340 * cpu_online_mask. This allows us to randomly pick a callback
1341 * destination from the bits set in that mask.
1342 */
1343static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1344{
1345 int i;
1346 unsigned long mask;
1347 int receive_cpu = cpumask_any(cpu_online_mask);
1348 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1349 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1350 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */
1351
1352 /* First, adjust the counts. */
1353 if (rdp->nxtlist != NULL) {
1354 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1355 receive_rdp->qlen += rdp->qlen;
1356 rdp->qlen_lazy = 0;
1357 rdp->qlen = 0;
1358 }
1359
1360 /*
1361 * Next, move ready-to-invoke callbacks to be invoked on some
1362 * other CPU. These will not be required to pass through another
1363 * grace period: They are done, regardless of CPU.
1364 */
1365 if (rdp->nxtlist != NULL &&
1366 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1367 struct rcu_head *oldhead;
1368 struct rcu_head **oldtail;
1369 struct rcu_head **newtail;
1370
1371 oldhead = rdp->nxtlist;
1372 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1373 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1374 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1375 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1376 newtail = rdp->nxttail[RCU_DONE_TAIL];
1377 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1378 if (receive_rdp->nxttail[i] == oldtail)
1379 receive_rdp->nxttail[i] = newtail;
1380 if (rdp->nxttail[i] == newtail)
1381 rdp->nxttail[i] = &rdp->nxtlist;
1382 }
1383 }
1384
1385 /*
1386 * Finally, put the rest of the callbacks at the end of the list.
1387 * The ones that made it partway through get to start over: We
1388 * cannot assume that grace periods are synchronized across CPUs.
1389 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1390 * this does not seem compelling. Not yet, anyway.)
1391 */
1392 if (rdp->nxtlist != NULL) {
1393 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1394 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1395 rdp->nxttail[RCU_NEXT_TAIL];
1396 receive_rdp->n_cbs_adopted += rdp->qlen;
1397 rdp->n_cbs_orphaned += rdp->qlen;
1398
1399 rdp->nxtlist = NULL;
1400 for (i = 0; i < RCU_NEXT_SIZE; i++)
1401 rdp->nxttail[i] = &rdp->nxtlist;
1402 }
1403
1404 /*
1405 * Record a quiescent state for the dying CPU. This is safe
1406 * only because we have already cleared out the callbacks.
1407 * (Otherwise, the RCU core might try to schedule the invocation
1408 * of callbacks on this now-offline CPU, which would be bad.)
1409 */
1410 mask = rdp->grpmask; /* rnp->grplo is constant. */
1411 trace_rcu_grace_period(rsp->name,
1412 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1413 "cpuofl");
1414 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1415 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1416}
1417
1418/*
1419 * The CPU has been completely removed, and some other CPU is reporting
1420 * this fact from process context. Do the remainder of the cleanup.
1421 * There can only be one CPU hotplug operation at a time, so no other
1422 * CPU can be attempting to update rcu_cpu_kthread_task.
1423 */
1424static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1425{
1426 unsigned long flags;
1427 unsigned long mask;
1428 int need_report = 0;
1429 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1430 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rnp. */
1431
1432 /* Adjust any no-longer-needed kthreads. */
1433 rcu_stop_cpu_kthread(cpu);
1434 rcu_node_kthread_setaffinity(rnp, -1);
1435
1436 /* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */
1437
1438 /* Exclude any attempts to start a new grace period. */
1439 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1440
1441 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1442 mask = rdp->grpmask; /* rnp->grplo is constant. */
1443 do {
1444 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1445 rnp->qsmaskinit &= ~mask;
1446 if (rnp->qsmaskinit != 0) {
1447 if (rnp != rdp->mynode)
1448 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1449 break;
1450 }
1451 if (rnp == rdp->mynode)
1452 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1453 else
1454 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1455 mask = rnp->grpmask;
1456 rnp = rnp->parent;
1457 } while (rnp != NULL);
1458
1459 /*
1460 * We still hold the leaf rcu_node structure lock here, and
1461 * irqs are still disabled. The reason for this subterfuge is
1462 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1463 * held leads to deadlock.
1464 */
1465 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1466 rnp = rdp->mynode;
1467 if (need_report & RCU_OFL_TASKS_NORM_GP)
1468 rcu_report_unblock_qs_rnp(rnp, flags);
1469 else
1470 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1471 if (need_report & RCU_OFL_TASKS_EXP_GP)
1472 rcu_report_exp_rnp(rsp, rnp, true);
1473}
1474
1475#else /* #ifdef CONFIG_HOTPLUG_CPU */
1476
1477static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1478{
1479}
1480
1481static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1482{
1483}
1484
1485#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1486
1487/*
1488 * Invoke any RCU callbacks that have made it to the end of their grace
1489 * period. Thottle as specified by rdp->blimit.
1490 */
1491static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1492{
1493 unsigned long flags;
1494 struct rcu_head *next, *list, **tail;
1495 long bl, count, count_lazy;
1496
1497 /* If no callbacks are ready, just return.*/
1498 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1499 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1500 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1501 need_resched(), is_idle_task(current),
1502 rcu_is_callbacks_kthread());
1503 return;
1504 }
1505
1506 /*
1507 * Extract the list of ready callbacks, disabling to prevent
1508 * races with call_rcu() from interrupt handlers.
1509 */
1510 local_irq_save(flags);
1511 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1512 bl = rdp->blimit;
1513 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1514 list = rdp->nxtlist;
1515 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1516 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1517 tail = rdp->nxttail[RCU_DONE_TAIL];
1518 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1519 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1520 rdp->nxttail[count] = &rdp->nxtlist;
1521 local_irq_restore(flags);
1522
1523 /* Invoke callbacks. */
1524 count = count_lazy = 0;
1525 while (list) {
1526 next = list->next;
1527 prefetch(next);
1528 debug_rcu_head_unqueue(list);
1529 if (__rcu_reclaim(rsp->name, list))
1530 count_lazy++;
1531 list = next;
1532 /* Stop only if limit reached and CPU has something to do. */
1533 if (++count >= bl &&
1534 (need_resched() ||
1535 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1536 break;
1537 }
1538
1539 local_irq_save(flags);
1540 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1541 is_idle_task(current),
1542 rcu_is_callbacks_kthread());
1543
1544 /* Update count, and requeue any remaining callbacks. */
1545 rdp->qlen_lazy -= count_lazy;
1546 rdp->qlen -= count;
1547 rdp->n_cbs_invoked += count;
1548 if (list != NULL) {
1549 *tail = rdp->nxtlist;
1550 rdp->nxtlist = list;
1551 for (count = 0; count < RCU_NEXT_SIZE; count++)
1552 if (&rdp->nxtlist == rdp->nxttail[count])
1553 rdp->nxttail[count] = tail;
1554 else
1555 break;
1556 }
1557
1558 /* Reinstate batch limit if we have worked down the excess. */
1559 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1560 rdp->blimit = blimit;
1561
1562 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1563 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1564 rdp->qlen_last_fqs_check = 0;
1565 rdp->n_force_qs_snap = rsp->n_force_qs;
1566 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1567 rdp->qlen_last_fqs_check = rdp->qlen;
1568
1569 local_irq_restore(flags);
1570
1571 /* Re-invoke RCU core processing if there are callbacks remaining. */
1572 if (cpu_has_callbacks_ready_to_invoke(rdp))
1573 invoke_rcu_core();
1574}
1575
1576/*
1577 * Check to see if this CPU is in a non-context-switch quiescent state
1578 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1579 * Also schedule RCU core processing.
1580 *
1581 * This function must be called from hardirq context. It is normally
1582 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1583 * false, there is no point in invoking rcu_check_callbacks().
1584 */
1585void rcu_check_callbacks(int cpu, int user)
1586{
1587 trace_rcu_utilization("Start scheduler-tick");
1588 increment_cpu_stall_ticks();
1589 if (user || rcu_is_cpu_rrupt_from_idle()) {
1590
1591 /*
1592 * Get here if this CPU took its interrupt from user
1593 * mode or from the idle loop, and if this is not a
1594 * nested interrupt. In this case, the CPU is in
1595 * a quiescent state, so note it.
1596 *
1597 * No memory barrier is required here because both
1598 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1599 * variables that other CPUs neither access nor modify,
1600 * at least not while the corresponding CPU is online.
1601 */
1602
1603 rcu_sched_qs(cpu);
1604 rcu_bh_qs(cpu);
1605
1606 } else if (!in_softirq()) {
1607
1608 /*
1609 * Get here if this CPU did not take its interrupt from
1610 * softirq, in other words, if it is not interrupting
1611 * a rcu_bh read-side critical section. This is an _bh
1612 * critical section, so note it.
1613 */
1614
1615 rcu_bh_qs(cpu);
1616 }
1617 rcu_preempt_check_callbacks(cpu);
1618 if (rcu_pending(cpu))
1619 invoke_rcu_core();
1620 trace_rcu_utilization("End scheduler-tick");
1621}
1622
1623/*
1624 * Scan the leaf rcu_node structures, processing dyntick state for any that
1625 * have not yet encountered a quiescent state, using the function specified.
1626 * Also initiate boosting for any threads blocked on the root rcu_node.
1627 *
1628 * The caller must have suppressed start of new grace periods.
1629 */
1630static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1631{
1632 unsigned long bit;
1633 int cpu;
1634 unsigned long flags;
1635 unsigned long mask;
1636 struct rcu_node *rnp;
1637
1638 rcu_for_each_leaf_node(rsp, rnp) {
1639 mask = 0;
1640 raw_spin_lock_irqsave(&rnp->lock, flags);
1641 if (!rcu_gp_in_progress(rsp)) {
1642 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1643 return;
1644 }
1645 if (rnp->qsmask == 0) {
1646 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1647 continue;
1648 }
1649 cpu = rnp->grplo;
1650 bit = 1;
1651 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1652 if ((rnp->qsmask & bit) != 0 &&
1653 f(per_cpu_ptr(rsp->rda, cpu)))
1654 mask |= bit;
1655 }
1656 if (mask != 0) {
1657
1658 /* rcu_report_qs_rnp() releases rnp->lock. */
1659 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1660 continue;
1661 }
1662 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1663 }
1664 rnp = rcu_get_root(rsp);
1665 if (rnp->qsmask == 0) {
1666 raw_spin_lock_irqsave(&rnp->lock, flags);
1667 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1668 }
1669}
1670
1671/*
1672 * Force quiescent states on reluctant CPUs, and also detect which
1673 * CPUs are in dyntick-idle mode.
1674 */
1675static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1676{
1677 unsigned long flags;
1678 struct rcu_node *rnp = rcu_get_root(rsp);
1679
1680 trace_rcu_utilization("Start fqs");
1681 if (!rcu_gp_in_progress(rsp)) {
1682 trace_rcu_utilization("End fqs");
1683 return; /* No grace period in progress, nothing to force. */
1684 }
1685 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1686 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1687 trace_rcu_utilization("End fqs");
1688 return; /* Someone else is already on the job. */
1689 }
1690 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1691 goto unlock_fqs_ret; /* no emergency and done recently. */
1692 rsp->n_force_qs++;
1693 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1694 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1695 if(!rcu_gp_in_progress(rsp)) {
1696 rsp->n_force_qs_ngp++;
1697 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1698 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1699 }
1700 rsp->fqs_active = 1;
1701 switch (rsp->fqs_state) {
1702 case RCU_GP_IDLE:
1703 case RCU_GP_INIT:
1704
1705 break; /* grace period idle or initializing, ignore. */
1706
1707 case RCU_SAVE_DYNTICK:
1708 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1709 break; /* So gcc recognizes the dead code. */
1710
1711 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1712
1713 /* Record dyntick-idle state. */
1714 force_qs_rnp(rsp, dyntick_save_progress_counter);
1715 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1716 if (rcu_gp_in_progress(rsp))
1717 rsp->fqs_state = RCU_FORCE_QS;
1718 break;
1719
1720 case RCU_FORCE_QS:
1721
1722 /* Check dyntick-idle state, send IPI to laggarts. */
1723 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1724 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1725
1726 /* Leave state in case more forcing is required. */
1727
1728 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1729 break;
1730 }
1731 rsp->fqs_active = 0;
1732 if (rsp->fqs_need_gp) {
1733 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1734 rsp->fqs_need_gp = 0;
1735 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1736 trace_rcu_utilization("End fqs");
1737 return;
1738 }
1739 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1740unlock_fqs_ret:
1741 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1742 trace_rcu_utilization("End fqs");
1743}
1744
1745/*
1746 * This does the RCU core processing work for the specified rcu_state
1747 * and rcu_data structures. This may be called only from the CPU to
1748 * whom the rdp belongs.
1749 */
1750static void
1751__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1752{
1753 unsigned long flags;
1754
1755 WARN_ON_ONCE(rdp->beenonline == 0);
1756
1757 /*
1758 * If an RCU GP has gone long enough, go check for dyntick
1759 * idle CPUs and, if needed, send resched IPIs.
1760 */
1761 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1762 force_quiescent_state(rsp, 1);
1763
1764 /*
1765 * Advance callbacks in response to end of earlier grace
1766 * period that some other CPU ended.
1767 */
1768 rcu_process_gp_end(rsp, rdp);
1769
1770 /* Update RCU state based on any recent quiescent states. */
1771 rcu_check_quiescent_state(rsp, rdp);
1772
1773 /* Does this CPU require a not-yet-started grace period? */
1774 if (cpu_needs_another_gp(rsp, rdp)) {
1775 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1776 rcu_start_gp(rsp, flags); /* releases above lock */
1777 }
1778
1779 /* If there are callbacks ready, invoke them. */
1780 if (cpu_has_callbacks_ready_to_invoke(rdp))
1781 invoke_rcu_callbacks(rsp, rdp);
1782}
1783
1784/*
1785 * Do RCU core processing for the current CPU.
1786 */
1787static void rcu_process_callbacks(struct softirq_action *unused)
1788{
1789 trace_rcu_utilization("Start RCU core");
1790 __rcu_process_callbacks(&rcu_sched_state,
1791 &__get_cpu_var(rcu_sched_data));
1792 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1793 rcu_preempt_process_callbacks();
1794 trace_rcu_utilization("End RCU core");
1795}
1796
1797/*
1798 * Schedule RCU callback invocation. If the specified type of RCU
1799 * does not support RCU priority boosting, just do a direct call,
1800 * otherwise wake up the per-CPU kernel kthread. Note that because we
1801 * are running on the current CPU with interrupts disabled, the
1802 * rcu_cpu_kthread_task cannot disappear out from under us.
1803 */
1804static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1805{
1806 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1807 return;
1808 if (likely(!rsp->boost)) {
1809 rcu_do_batch(rsp, rdp);
1810 return;
1811 }
1812 invoke_rcu_callbacks_kthread();
1813}
1814
1815static void invoke_rcu_core(void)
1816{
1817 raise_softirq(RCU_SOFTIRQ);
1818}
1819
1820static void
1821__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1822 struct rcu_state *rsp, bool lazy)
1823{
1824 unsigned long flags;
1825 struct rcu_data *rdp;
1826
1827 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1828 debug_rcu_head_queue(head);
1829 head->func = func;
1830 head->next = NULL;
1831
1832 smp_mb(); /* Ensure RCU update seen before callback registry. */
1833
1834 /*
1835 * Opportunistically note grace-period endings and beginnings.
1836 * Note that we might see a beginning right after we see an
1837 * end, but never vice versa, since this CPU has to pass through
1838 * a quiescent state betweentimes.
1839 */
1840 local_irq_save(flags);
1841 rdp = this_cpu_ptr(rsp->rda);
1842
1843 /* Add the callback to our list. */
1844 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1845 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1846 rdp->qlen++;
1847 if (lazy)
1848 rdp->qlen_lazy++;
1849
1850 if (__is_kfree_rcu_offset((unsigned long)func))
1851 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1852 rdp->qlen_lazy, rdp->qlen);
1853 else
1854 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1855
1856 /* If interrupts were disabled, don't dive into RCU core. */
1857 if (irqs_disabled_flags(flags)) {
1858 local_irq_restore(flags);
1859 return;
1860 }
1861
1862 /*
1863 * Force the grace period if too many callbacks or too long waiting.
1864 * Enforce hysteresis, and don't invoke force_quiescent_state()
1865 * if some other CPU has recently done so. Also, don't bother
1866 * invoking force_quiescent_state() if the newly enqueued callback
1867 * is the only one waiting for a grace period to complete.
1868 */
1869 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1870
1871 /* Are we ignoring a completed grace period? */
1872 rcu_process_gp_end(rsp, rdp);
1873 check_for_new_grace_period(rsp, rdp);
1874
1875 /* Start a new grace period if one not already started. */
1876 if (!rcu_gp_in_progress(rsp)) {
1877 unsigned long nestflag;
1878 struct rcu_node *rnp_root = rcu_get_root(rsp);
1879
1880 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1881 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1882 } else {
1883 /* Give the grace period a kick. */
1884 rdp->blimit = LONG_MAX;
1885 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1886 *rdp->nxttail[RCU_DONE_TAIL] != head)
1887 force_quiescent_state(rsp, 0);
1888 rdp->n_force_qs_snap = rsp->n_force_qs;
1889 rdp->qlen_last_fqs_check = rdp->qlen;
1890 }
1891 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1892 force_quiescent_state(rsp, 1);
1893 local_irq_restore(flags);
1894}
1895
1896/*
1897 * Queue an RCU-sched callback for invocation after a grace period.
1898 */
1899void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1900{
1901 __call_rcu(head, func, &rcu_sched_state, 0);
1902}
1903EXPORT_SYMBOL_GPL(call_rcu_sched);
1904
1905#ifndef CONFIG_PREEMPT_RT_FULL
1906/*
1907 * Queue an RCU callback for invocation after a quicker grace period.
1908 */
1909void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1910{
1911 __call_rcu(head, func, &rcu_bh_state, 0);
1912}
1913EXPORT_SYMBOL_GPL(call_rcu_bh);
1914#endif
1915
1916/**
1917 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1918 *
1919 * Control will return to the caller some time after a full rcu-sched
1920 * grace period has elapsed, in other words after all currently executing
1921 * rcu-sched read-side critical sections have completed. These read-side
1922 * critical sections are delimited by rcu_read_lock_sched() and
1923 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1924 * local_irq_disable(), and so on may be used in place of
1925 * rcu_read_lock_sched().
1926 *
1927 * This means that all preempt_disable code sequences, including NMI and
1928 * hardware-interrupt handlers, in progress on entry will have completed
1929 * before this primitive returns. However, this does not guarantee that
1930 * softirq handlers will have completed, since in some kernels, these
1931 * handlers can run in process context, and can block.
1932 *
1933 * This primitive provides the guarantees made by the (now removed)
1934 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1935 * guarantees that rcu_read_lock() sections will have completed.
1936 * In "classic RCU", these two guarantees happen to be one and
1937 * the same, but can differ in realtime RCU implementations.
1938 */
1939void synchronize_sched(void)
1940{
1941 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1942 !lock_is_held(&rcu_lock_map) &&
1943 !lock_is_held(&rcu_sched_lock_map),
1944 "Illegal synchronize_sched() in RCU-sched read-side critical section");
1945 if (rcu_blocking_is_gp())
1946 return;
1947 wait_rcu_gp(call_rcu_sched);
1948}
1949EXPORT_SYMBOL_GPL(synchronize_sched);
1950
1951#ifndef CONFIG_PREEMPT_RT_FULL
1952/**
1953 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1954 *
1955 * Control will return to the caller some time after a full rcu_bh grace
1956 * period has elapsed, in other words after all currently executing rcu_bh
1957 * read-side critical sections have completed. RCU read-side critical
1958 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1959 * and may be nested.
1960 */
1961void synchronize_rcu_bh(void)
1962{
1963 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1964 !lock_is_held(&rcu_lock_map) &&
1965 !lock_is_held(&rcu_sched_lock_map),
1966 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1967 if (rcu_blocking_is_gp())
1968 return;
1969 wait_rcu_gp(call_rcu_bh);
1970}
1971EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1972#endif
1973
1974static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1975static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1976
1977static int synchronize_sched_expedited_cpu_stop(void *data)
1978{
1979 /*
1980 * There must be a full memory barrier on each affected CPU
1981 * between the time that try_stop_cpus() is called and the
1982 * time that it returns.
1983 *
1984 * In the current initial implementation of cpu_stop, the
1985 * above condition is already met when the control reaches
1986 * this point and the following smp_mb() is not strictly
1987 * necessary. Do smp_mb() anyway for documentation and
1988 * robustness against future implementation changes.
1989 */
1990 smp_mb(); /* See above comment block. */
1991 return 0;
1992}
1993
1994/**
1995 * synchronize_sched_expedited - Brute-force RCU-sched grace period
1996 *
1997 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
1998 * approach to force the grace period to end quickly. This consumes
1999 * significant time on all CPUs and is unfriendly to real-time workloads,
2000 * so is thus not recommended for any sort of common-case code. In fact,
2001 * if you are using synchronize_sched_expedited() in a loop, please
2002 * restructure your code to batch your updates, and then use a single
2003 * synchronize_sched() instead.
2004 *
2005 * Note that it is illegal to call this function while holding any lock
2006 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2007 * to call this function from a CPU-hotplug notifier. Failing to observe
2008 * these restriction will result in deadlock.
2009 *
2010 * This implementation can be thought of as an application of ticket
2011 * locking to RCU, with sync_sched_expedited_started and
2012 * sync_sched_expedited_done taking on the roles of the halves
2013 * of the ticket-lock word. Each task atomically increments
2014 * sync_sched_expedited_started upon entry, snapshotting the old value,
2015 * then attempts to stop all the CPUs. If this succeeds, then each
2016 * CPU will have executed a context switch, resulting in an RCU-sched
2017 * grace period. We are then done, so we use atomic_cmpxchg() to
2018 * update sync_sched_expedited_done to match our snapshot -- but
2019 * only if someone else has not already advanced past our snapshot.
2020 *
2021 * On the other hand, if try_stop_cpus() fails, we check the value
2022 * of sync_sched_expedited_done. If it has advanced past our
2023 * initial snapshot, then someone else must have forced a grace period
2024 * some time after we took our snapshot. In this case, our work is
2025 * done for us, and we can simply return. Otherwise, we try again,
2026 * but keep our initial snapshot for purposes of checking for someone
2027 * doing our work for us.
2028 *
2029 * If we fail too many times in a row, we fall back to synchronize_sched().
2030 */
2031void synchronize_sched_expedited(void)
2032{
2033 int firstsnap, s, snap, trycount = 0;
2034
2035 /* Note that atomic_inc_return() implies full memory barrier. */
2036 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2037 get_online_cpus();
2038 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2039
2040 /*
2041 * Each pass through the following loop attempts to force a
2042 * context switch on each CPU.
2043 */
2044 while (try_stop_cpus(cpu_online_mask,
2045 synchronize_sched_expedited_cpu_stop,
2046 NULL) == -EAGAIN) {
2047 put_online_cpus();
2048
2049 /* No joy, try again later. Or just synchronize_sched(). */
2050 if (trycount++ < 10)
2051 udelay(trycount * num_online_cpus());
2052 else {
2053 synchronize_sched();
2054 return;
2055 }
2056
2057 /* Check to see if someone else did our work for us. */
2058 s = atomic_read(&sync_sched_expedited_done);
2059 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2060 smp_mb(); /* ensure test happens before caller kfree */
2061 return;
2062 }
2063
2064 /*
2065 * Refetching sync_sched_expedited_started allows later
2066 * callers to piggyback on our grace period. We subtract
2067 * 1 to get the same token that the last incrementer got.
2068 * We retry after they started, so our grace period works
2069 * for them, and they started after our first try, so their
2070 * grace period works for us.
2071 */
2072 get_online_cpus();
2073 snap = atomic_read(&sync_sched_expedited_started);
2074 smp_mb(); /* ensure read is before try_stop_cpus(). */
2075 }
2076
2077 /*
2078 * Everyone up to our most recent fetch is covered by our grace
2079 * period. Update the counter, but only if our work is still
2080 * relevant -- which it won't be if someone who started later
2081 * than we did beat us to the punch.
2082 */
2083 do {
2084 s = atomic_read(&sync_sched_expedited_done);
2085 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2086 smp_mb(); /* ensure test happens before caller kfree */
2087 break;
2088 }
2089 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2090
2091 put_online_cpus();
2092}
2093EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2094
2095/*
2096 * Check to see if there is any immediate RCU-related work to be done
2097 * by the current CPU, for the specified type of RCU, returning 1 if so.
2098 * The checks are in order of increasing expense: checks that can be
2099 * carried out against CPU-local state are performed first. However,
2100 * we must check for CPU stalls first, else we might not get a chance.
2101 */
2102static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2103{
2104 struct rcu_node *rnp = rdp->mynode;
2105
2106 rdp->n_rcu_pending++;
2107
2108 /* Check for CPU stalls, if enabled. */
2109 check_cpu_stall(rsp, rdp);
2110
2111 /* Is the RCU core waiting for a quiescent state from this CPU? */
2112 if (rcu_scheduler_fully_active &&
2113 rdp->qs_pending && !rdp->passed_quiesce) {
2114
2115 /*
2116 * If force_quiescent_state() coming soon and this CPU
2117 * needs a quiescent state, and this is either RCU-sched
2118 * or RCU-bh, force a local reschedule.
2119 */
2120 rdp->n_rp_qs_pending++;
2121 if (!rdp->preemptible &&
2122 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2123 jiffies))
2124 set_need_resched();
2125 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2126 rdp->n_rp_report_qs++;
2127 return 1;
2128 }
2129
2130 /* Does this CPU have callbacks ready to invoke? */
2131 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2132 rdp->n_rp_cb_ready++;
2133 return 1;
2134 }
2135
2136 /* Has RCU gone idle with this CPU needing another grace period? */
2137 if (cpu_needs_another_gp(rsp, rdp)) {
2138 rdp->n_rp_cpu_needs_gp++;
2139 return 1;
2140 }
2141
2142 /* Has another RCU grace period completed? */
2143 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2144 rdp->n_rp_gp_completed++;
2145 return 1;
2146 }
2147
2148 /* Has a new RCU grace period started? */
2149 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2150 rdp->n_rp_gp_started++;
2151 return 1;
2152 }
2153
2154 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2155 if (rcu_gp_in_progress(rsp) &&
2156 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2157 rdp->n_rp_need_fqs++;
2158 return 1;
2159 }
2160
2161 /* nothing to do */
2162 rdp->n_rp_need_nothing++;
2163 return 0;
2164}
2165
2166/*
2167 * Check to see if there is any immediate RCU-related work to be done
2168 * by the current CPU, returning 1 if so. This function is part of the
2169 * RCU implementation; it is -not- an exported member of the RCU API.
2170 */
2171static int rcu_pending(int cpu)
2172{
2173 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2174 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2175 rcu_preempt_pending(cpu);
2176}
2177
2178/*
2179 * Check to see if any future RCU-related work will need to be done
2180 * by the current CPU, even if none need be done immediately, returning
2181 * 1 if so.
2182 */
2183static int rcu_cpu_has_callbacks(int cpu)
2184{
2185 /* RCU callbacks either ready or pending? */
2186 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2187 per_cpu(rcu_bh_data, cpu).nxtlist ||
2188 rcu_preempt_cpu_has_callbacks(cpu);
2189}
2190
2191static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2192static atomic_t rcu_barrier_cpu_count;
2193static DEFINE_MUTEX(rcu_barrier_mutex);
2194static struct completion rcu_barrier_completion;
2195
2196static void rcu_barrier_callback(struct rcu_head *notused)
2197{
2198 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2199 complete(&rcu_barrier_completion);
2200}
2201
2202/*
2203 * Called with preemption disabled, and from cross-cpu IRQ context.
2204 */
2205static void rcu_barrier_func(void *type)
2206{
2207 int cpu = smp_processor_id();
2208 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2209 void (*call_rcu_func)(struct rcu_head *head,
2210 void (*func)(struct rcu_head *head));
2211
2212 atomic_inc(&rcu_barrier_cpu_count);
2213 call_rcu_func = type;
2214 call_rcu_func(head, rcu_barrier_callback);
2215}
2216
2217/*
2218 * Orchestrate the specified type of RCU barrier, waiting for all
2219 * RCU callbacks of the specified type to complete.
2220 */
2221static void _rcu_barrier(struct rcu_state *rsp,
2222 void (*call_rcu_func)(struct rcu_head *head,
2223 void (*func)(struct rcu_head *head)))
2224{
2225 BUG_ON(in_interrupt());
2226 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2227 mutex_lock(&rcu_barrier_mutex);
2228 init_completion(&rcu_barrier_completion);
2229 /*
2230 * Initialize rcu_barrier_cpu_count to 1, then invoke
2231 * rcu_barrier_func() on each CPU, so that each CPU also has
2232 * incremented rcu_barrier_cpu_count. Only then is it safe to
2233 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2234 * might complete its grace period before all of the other CPUs
2235 * did their increment, causing this function to return too
2236 * early. Note that on_each_cpu() disables irqs, which prevents
2237 * any CPUs from coming online or going offline until each online
2238 * CPU has queued its RCU-barrier callback.
2239 */
2240 atomic_set(&rcu_barrier_cpu_count, 1);
2241 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2242 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2243 complete(&rcu_barrier_completion);
2244 wait_for_completion(&rcu_barrier_completion);
2245 mutex_unlock(&rcu_barrier_mutex);
2246}
2247
2248#ifndef CONFIG_PREEMPT_RT_FULL
2249/**
2250 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2251 */
2252void rcu_barrier_bh(void)
2253{
2254 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2255}
2256EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2257#endif
2258
2259/**
2260 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2261 */
2262void rcu_barrier_sched(void)
2263{
2264 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2265}
2266EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2267
2268/*
2269 * Do boot-time initialization of a CPU's per-CPU RCU data.
2270 */
2271static void __init
2272rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2273{
2274 unsigned long flags;
2275 int i;
2276 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2277 struct rcu_node *rnp = rcu_get_root(rsp);
2278
2279 /* Set up local state, ensuring consistent view of global state. */
2280 raw_spin_lock_irqsave(&rnp->lock, flags);
2281 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2282 rdp->nxtlist = NULL;
2283 for (i = 0; i < RCU_NEXT_SIZE; i++)
2284 rdp->nxttail[i] = &rdp->nxtlist;
2285 rdp->qlen_lazy = 0;
2286 rdp->qlen = 0;
2287 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2288 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2289 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2290 rdp->cpu = cpu;
2291 rdp->rsp = rsp;
2292 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2293}
2294
2295/*
2296 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2297 * offline event can be happening at a given time. Note also that we
2298 * can accept some slop in the rsp->completed access due to the fact
2299 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2300 */
2301static void __cpuinit
2302rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2303{
2304 unsigned long flags;
2305 unsigned long mask;
2306 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2307 struct rcu_node *rnp = rcu_get_root(rsp);
2308
2309 /* Set up local state, ensuring consistent view of global state. */
2310 raw_spin_lock_irqsave(&rnp->lock, flags);
2311 rdp->beenonline = 1; /* We have now been online. */
2312 rdp->preemptible = preemptible;
2313 rdp->qlen_last_fqs_check = 0;
2314 rdp->n_force_qs_snap = rsp->n_force_qs;
2315 rdp->blimit = blimit;
2316 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2317 atomic_set(&rdp->dynticks->dynticks,
2318 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2319 rcu_prepare_for_idle_init(cpu);
2320 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2321
2322 /*
2323 * A new grace period might start here. If so, we won't be part
2324 * of it, but that is OK, as we are currently in a quiescent state.
2325 */
2326
2327 /* Exclude any attempts to start a new GP on large systems. */
2328 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2329
2330 /* Add CPU to rcu_node bitmasks. */
2331 rnp = rdp->mynode;
2332 mask = rdp->grpmask;
2333 do {
2334 /* Exclude any attempts to start a new GP on small systems. */
2335 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2336 rnp->qsmaskinit |= mask;
2337 mask = rnp->grpmask;
2338 if (rnp == rdp->mynode) {
2339 /*
2340 * If there is a grace period in progress, we will
2341 * set up to wait for it next time we run the
2342 * RCU core code.
2343 */
2344 rdp->gpnum = rnp->completed;
2345 rdp->completed = rnp->completed;
2346 rdp->passed_quiesce = 0;
2347 rdp->qs_pending = 0;
2348 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2349 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2350 }
2351 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2352 rnp = rnp->parent;
2353 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2354
2355 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2356}
2357
2358static void __cpuinit rcu_prepare_cpu(int cpu)
2359{
2360 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2361 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2362 rcu_preempt_init_percpu_data(cpu);
2363}
2364
2365/*
2366 * Handle CPU online/offline notification events.
2367 */
2368static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2369 unsigned long action, void *hcpu)
2370{
2371 long cpu = (long)hcpu;
2372 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2373 struct rcu_node *rnp = rdp->mynode;
2374
2375 trace_rcu_utilization("Start CPU hotplug");
2376 switch (action) {
2377 case CPU_UP_PREPARE:
2378 case CPU_UP_PREPARE_FROZEN:
2379 rcu_prepare_cpu(cpu);
2380 rcu_prepare_kthreads(cpu);
2381 break;
2382 case CPU_ONLINE:
2383 case CPU_DOWN_FAILED:
2384 rcu_node_kthread_setaffinity(rnp, -1);
2385 rcu_cpu_kthread_setrt(cpu, 1);
2386 break;
2387 case CPU_DOWN_PREPARE:
2388 rcu_node_kthread_setaffinity(rnp, cpu);
2389 rcu_cpu_kthread_setrt(cpu, 0);
2390 break;
2391 case CPU_DYING:
2392 case CPU_DYING_FROZEN:
2393 /*
2394 * The whole machine is "stopped" except this CPU, so we can
2395 * touch any data without introducing corruption. We send the
2396 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2397 */
2398 rcu_cleanup_dying_cpu(&rcu_bh_state);
2399 rcu_cleanup_dying_cpu(&rcu_sched_state);
2400 rcu_preempt_cleanup_dying_cpu();
2401 rcu_cleanup_after_idle(cpu);
2402 break;
2403 case CPU_DEAD:
2404 case CPU_DEAD_FROZEN:
2405 case CPU_UP_CANCELED:
2406 case CPU_UP_CANCELED_FROZEN:
2407 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2408 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2409 rcu_preempt_cleanup_dead_cpu(cpu);
2410 break;
2411 default:
2412 break;
2413 }
2414 trace_rcu_utilization("End CPU hotplug");
2415 return NOTIFY_OK;
2416}
2417
2418/*
2419 * This function is invoked towards the end of the scheduler's initialization
2420 * process. Before this is called, the idle task might contain
2421 * RCU read-side critical sections (during which time, this idle
2422 * task is booting the system). After this function is called, the
2423 * idle tasks are prohibited from containing RCU read-side critical
2424 * sections. This function also enables RCU lockdep checking.
2425 */
2426void rcu_scheduler_starting(void)
2427{
2428 WARN_ON(num_online_cpus() != 1);
2429 WARN_ON(nr_context_switches() > 0);
2430 rcu_scheduler_active = 1;
2431}
2432
2433/*
2434 * Compute the per-level fanout, either using the exact fanout specified
2435 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2436 */
2437#ifdef CONFIG_RCU_FANOUT_EXACT
2438static void __init rcu_init_levelspread(struct rcu_state *rsp)
2439{
2440 int i;
2441
2442 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2443 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2444 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2445}
2446#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2447static void __init rcu_init_levelspread(struct rcu_state *rsp)
2448{
2449 int ccur;
2450 int cprv;
2451 int i;
2452
2453 cprv = NR_CPUS;
2454 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2455 ccur = rsp->levelcnt[i];
2456 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2457 cprv = ccur;
2458 }
2459}
2460#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2461
2462/*
2463 * Helper function for rcu_init() that initializes one rcu_state structure.
2464 */
2465static void __init rcu_init_one(struct rcu_state *rsp,
2466 struct rcu_data __percpu *rda)
2467{
2468 static char *buf[] = { "rcu_node_level_0",
2469 "rcu_node_level_1",
2470 "rcu_node_level_2",
2471 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2472 int cpustride = 1;
2473 int i;
2474 int j;
2475 struct rcu_node *rnp;
2476
2477 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2478
2479 /* Initialize the level-tracking arrays. */
2480
2481 for (i = 1; i < NUM_RCU_LVLS; i++)
2482 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2483 rcu_init_levelspread(rsp);
2484
2485 /* Initialize the elements themselves, starting from the leaves. */
2486
2487 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2488 cpustride *= rsp->levelspread[i];
2489 rnp = rsp->level[i];
2490 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2491 raw_spin_lock_init(&rnp->lock);
2492 lockdep_set_class_and_name(&rnp->lock,
2493 &rcu_node_class[i], buf[i]);
2494 rnp->gpnum = 0;
2495 rnp->qsmask = 0;
2496 rnp->qsmaskinit = 0;
2497 rnp->grplo = j * cpustride;
2498 rnp->grphi = (j + 1) * cpustride - 1;
2499 if (rnp->grphi >= NR_CPUS)
2500 rnp->grphi = NR_CPUS - 1;
2501 if (i == 0) {
2502 rnp->grpnum = 0;
2503 rnp->grpmask = 0;
2504 rnp->parent = NULL;
2505 } else {
2506 rnp->grpnum = j % rsp->levelspread[i - 1];
2507 rnp->grpmask = 1UL << rnp->grpnum;
2508 rnp->parent = rsp->level[i - 1] +
2509 j / rsp->levelspread[i - 1];
2510 }
2511 rnp->level = i;
2512 INIT_LIST_HEAD(&rnp->blkd_tasks);
2513 }
2514 }
2515
2516 rsp->rda = rda;
2517 rnp = rsp->level[NUM_RCU_LVLS - 1];
2518 for_each_possible_cpu(i) {
2519 while (i > rnp->grphi)
2520 rnp++;
2521 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2522 rcu_boot_init_percpu_data(i, rsp);
2523 }
2524}
2525
2526void __init rcu_init(void)
2527{
2528 int cpu;
2529
2530 rcu_bootup_announce();
2531 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2532 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2533 __rcu_init_preempt();
2534 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2535
2536 /*
2537 * We don't need protection against CPU-hotplug here because
2538 * this is called early in boot, before either interrupts
2539 * or the scheduler are operational.
2540 */
2541 cpu_notifier(rcu_cpu_notify, 0);
2542 for_each_online_cpu(cpu)
2543 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2544 check_cpu_stall_init();
2545}
2546
2547#include "rcutree_plugin.h"