blob: fae623db6612f91cad6b759247573d397a84013f [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/alarmtimer.h>
23#include <linux/mutex.h>
24#include <linux/platform_device.h>
25#include <linux/posix-timers.h>
26#include <linux/workqueue.h>
27#include <linux/freezer.h>
28
29/**
30 * struct alarm_base - Alarm timer bases
31 * @lock: Lock for syncrhonized access to the base
32 * @timerqueue: Timerqueue head managing the list of events
33 * @timer: hrtimer used to schedule events while running
34 * @gettime: Function to read the time correlating to the base
35 * @base_clockid: clockid for the base
36 */
37static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 struct hrtimer timer;
41 ktime_t (*gettime)(void);
42 clockid_t base_clockid;
43} alarm_bases[ALARM_NUMTYPE];
44
45/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
46static ktime_t freezer_delta;
47static DEFINE_SPINLOCK(freezer_delta_lock);
48
49static struct wakeup_source *ws;
50
51#ifdef CONFIG_RTC_CLASS
52/* rtc timer and device for setting alarm wakeups at suspend */
53static struct rtc_timer rtctimer;
54static struct rtc_device *rtcdev;
55static DEFINE_SPINLOCK(rtcdev_lock);
56
57/**
58 * alarmtimer_get_rtcdev - Return selected rtcdevice
59 *
60 * This function returns the rtc device to use for wakealarms.
61 * If one has not already been chosen, it checks to see if a
62 * functional rtc device is available.
63 */
64struct rtc_device *alarmtimer_get_rtcdev(void)
65{
66 unsigned long flags;
67 struct rtc_device *ret;
68
69 spin_lock_irqsave(&rtcdev_lock, flags);
70 ret = rtcdev;
71 spin_unlock_irqrestore(&rtcdev_lock, flags);
72
73 return ret;
74}
75
76
77static int alarmtimer_rtc_add_device(struct device *dev,
78 struct class_interface *class_intf)
79{
80 unsigned long flags;
81 struct rtc_device *rtc = to_rtc_device(dev);
82
83 if (rtcdev)
84 return -EBUSY;
85
86 if (!rtc->ops->set_alarm)
87 return -1;
88 if (!device_may_wakeup(rtc->dev.parent))
89 return -1;
90
91 spin_lock_irqsave(&rtcdev_lock, flags);
92 if (!rtcdev) {
93 rtcdev = rtc;
94 /* hold a reference so it doesn't go away */
95 get_device(dev);
96 }
97 spin_unlock_irqrestore(&rtcdev_lock, flags);
98 return 0;
99}
100
101static inline void alarmtimer_rtc_timer_init(void)
102{
103 rtc_timer_init(&rtctimer, NULL, NULL);
104}
105
106static struct class_interface alarmtimer_rtc_interface = {
107 .add_dev = &alarmtimer_rtc_add_device,
108};
109
110static int alarmtimer_rtc_interface_setup(void)
111{
112 alarmtimer_rtc_interface.class = rtc_class;
113 return class_interface_register(&alarmtimer_rtc_interface);
114}
115static void alarmtimer_rtc_interface_remove(void)
116{
117 class_interface_unregister(&alarmtimer_rtc_interface);
118}
119#else
120struct rtc_device *alarmtimer_get_rtcdev(void)
121{
122 return NULL;
123}
124#define rtcdev (NULL)
125static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
126static inline void alarmtimer_rtc_interface_remove(void) { }
127static inline void alarmtimer_rtc_timer_init(void) { }
128#endif
129
130/**
131 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
132 * @base: pointer to the base where the timer is being run
133 * @alarm: pointer to alarm being enqueued.
134 *
135 * Adds alarm to a alarm_base timerqueue and if necessary sets
136 * an hrtimer to run.
137 *
138 * Must hold base->lock when calling.
139 */
140static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
141{
142 timerqueue_add(&base->timerqueue, &alarm->node);
143 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
144
145 if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
146 hrtimer_try_to_cancel(&base->timer);
147 hrtimer_start(&base->timer, alarm->node.expires,
148 HRTIMER_MODE_ABS);
149 }
150}
151
152/**
153 * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
154 * @base: pointer to the base where the timer is running
155 * @alarm: pointer to alarm being removed
156 *
157 * Removes alarm to a alarm_base timerqueue and if necessary sets
158 * a new timer to run.
159 *
160 * Must hold base->lock when calling.
161 */
162static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
163{
164 struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
165
166 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
167 return;
168
169 timerqueue_del(&base->timerqueue, &alarm->node);
170 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
171
172 if (next == &alarm->node) {
173 hrtimer_try_to_cancel(&base->timer);
174 next = timerqueue_getnext(&base->timerqueue);
175 if (!next)
176 return;
177 hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
178 }
179}
180
181
182/**
183 * alarmtimer_fired - Handles alarm hrtimer being fired.
184 * @timer: pointer to hrtimer being run
185 *
186 * When a alarm timer fires, this runs through the timerqueue to
187 * see which alarms expired, and runs those. If there are more alarm
188 * timers queued for the future, we set the hrtimer to fire when
189 * when the next future alarm timer expires.
190 */
191static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
192{
193 struct alarm_base *base = container_of(timer, struct alarm_base, timer);
194 struct timerqueue_node *next;
195 unsigned long flags;
196 ktime_t now;
197 int ret = HRTIMER_NORESTART;
198 int restart = ALARMTIMER_NORESTART;
199
200 spin_lock_irqsave(&base->lock, flags);
201 now = base->gettime();
202 while ((next = timerqueue_getnext(&base->timerqueue))) {
203 struct alarm *alarm;
204 ktime_t expired = next->expires;
205
206 if (expired.tv64 > now.tv64)
207 break;
208
209 alarm = container_of(next, struct alarm, node);
210
211 timerqueue_del(&base->timerqueue, &alarm->node);
212 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
213
214 alarm->state |= ALARMTIMER_STATE_CALLBACK;
215 spin_unlock_irqrestore(&base->lock, flags);
216 if (alarm->function)
217 restart = alarm->function(alarm, now);
218 spin_lock_irqsave(&base->lock, flags);
219 alarm->state &= ~ALARMTIMER_STATE_CALLBACK;
220
221 if (restart != ALARMTIMER_NORESTART) {
222 timerqueue_add(&base->timerqueue, &alarm->node);
223 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
224 }
225 }
226
227 if (next) {
228 hrtimer_set_expires(&base->timer, next->expires);
229 ret = HRTIMER_RESTART;
230 }
231 spin_unlock_irqrestore(&base->lock, flags);
232
233 return ret;
234
235}
236
237ktime_t alarm_expires_remaining(const struct alarm *alarm)
238{
239 struct alarm_base *base = &alarm_bases[alarm->type];
240 return ktime_sub(alarm->node.expires, base->gettime());
241}
242
243#ifdef CONFIG_RTC_CLASS
244/**
245 * alarmtimer_suspend - Suspend time callback
246 * @dev: unused
247 * @state: unused
248 *
249 * When we are going into suspend, we look through the bases
250 * to see which is the soonest timer to expire. We then
251 * set an rtc timer to fire that far into the future, which
252 * will wake us from suspend.
253 */
254static int alarmtimer_suspend(struct device *dev)
255{
256 struct rtc_time tm;
257 ktime_t min, now;
258 unsigned long flags;
259 struct rtc_device *rtc;
260 int i;
261 int ret;
262
263 spin_lock_irqsave(&freezer_delta_lock, flags);
264 min = freezer_delta;
265 freezer_delta = ktime_set(0, 0);
266 spin_unlock_irqrestore(&freezer_delta_lock, flags);
267
268 rtc = alarmtimer_get_rtcdev();
269 /* If we have no rtcdev, just return */
270 if (!rtc)
271 return 0;
272
273 /* Find the soonest timer to expire*/
274 for (i = 0; i < ALARM_NUMTYPE; i++) {
275 struct alarm_base *base = &alarm_bases[i];
276 struct timerqueue_node *next;
277 ktime_t delta;
278
279 spin_lock_irqsave(&base->lock, flags);
280 next = timerqueue_getnext(&base->timerqueue);
281 spin_unlock_irqrestore(&base->lock, flags);
282 if (!next)
283 continue;
284 delta = ktime_sub(next->expires, base->gettime());
285 if (!min.tv64 || (delta.tv64 < min.tv64))
286 min = delta;
287 }
288 if (min.tv64 == 0)
289 return 0;
290
291 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
292 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
293 return -EBUSY;
294 }
295
296 /* Setup an rtc timer to fire that far in the future */
297 rtc_timer_cancel(rtc, &rtctimer);
298 rtc_read_time(rtc, &tm);
299 now = rtc_tm_to_ktime(tm);
300 now = ktime_add(now, min);
301
302 /* Set alarm, if in the past reject suspend briefly to handle */
303 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
304 if (ret < 0)
305 __pm_wakeup_event(ws, 1 * MSEC_PER_SEC);
306 return ret;
307}
308#else
309static int alarmtimer_suspend(struct device *dev)
310{
311 return 0;
312}
313#endif
314
315static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
316{
317 ktime_t delta;
318 unsigned long flags;
319 struct alarm_base *base = &alarm_bases[type];
320
321 delta = ktime_sub(absexp, base->gettime());
322
323 spin_lock_irqsave(&freezer_delta_lock, flags);
324 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
325 freezer_delta = delta;
326 spin_unlock_irqrestore(&freezer_delta_lock, flags);
327}
328
329
330/**
331 * alarm_init - Initialize an alarm structure
332 * @alarm: ptr to alarm to be initialized
333 * @type: the type of the alarm
334 * @function: callback that is run when the alarm fires
335 */
336void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
337 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
338{
339 timerqueue_init(&alarm->node);
340 alarm->function = function;
341 alarm->type = type;
342 alarm->state = ALARMTIMER_STATE_INACTIVE;
343}
344
345/**
346 * alarm_start - Sets an alarm to fire
347 * @alarm: ptr to alarm to set
348 * @start: time to run the alarm
349 */
350void alarm_start(struct alarm *alarm, ktime_t start)
351{
352 struct alarm_base *base = &alarm_bases[alarm->type];
353 unsigned long flags;
354
355 spin_lock_irqsave(&base->lock, flags);
356 if (alarmtimer_active(alarm))
357 alarmtimer_remove(base, alarm);
358 alarm->node.expires = start;
359 alarmtimer_enqueue(base, alarm);
360 spin_unlock_irqrestore(&base->lock, flags);
361}
362
363/**
364 * alarm_try_to_cancel - Tries to cancel an alarm timer
365 * @alarm: ptr to alarm to be canceled
366 *
367 * Returns 1 if the timer was canceled, 0 if it was not running,
368 * and -1 if the callback was running
369 */
370int alarm_try_to_cancel(struct alarm *alarm)
371{
372 struct alarm_base *base = &alarm_bases[alarm->type];
373 unsigned long flags;
374 int ret = -1;
375 spin_lock_irqsave(&base->lock, flags);
376
377 if (alarmtimer_callback_running(alarm))
378 goto out;
379
380 if (alarmtimer_is_queued(alarm)) {
381 alarmtimer_remove(base, alarm);
382 ret = 1;
383 } else
384 ret = 0;
385out:
386 spin_unlock_irqrestore(&base->lock, flags);
387 return ret;
388}
389
390
391/**
392 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
393 * @alarm: ptr to alarm to be canceled
394 *
395 * Returns 1 if the timer was canceled, 0 if it was not active.
396 */
397int alarm_cancel(struct alarm *alarm)
398{
399 for (;;) {
400 int ret = alarm_try_to_cancel(alarm);
401 if (ret >= 0)
402 return ret;
403 cpu_relax();
404 }
405}
406
407
408u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
409{
410 u64 overrun = 1;
411 ktime_t delta;
412
413 delta = ktime_sub(now, alarm->node.expires);
414
415 if (delta.tv64 < 0)
416 return 0;
417
418 if (unlikely(delta.tv64 >= interval.tv64)) {
419 s64 incr = ktime_to_ns(interval);
420
421 overrun = ktime_divns(delta, incr);
422
423 alarm->node.expires = ktime_add_ns(alarm->node.expires,
424 incr*overrun);
425
426 if (alarm->node.expires.tv64 > now.tv64)
427 return overrun;
428 /*
429 * This (and the ktime_add() below) is the
430 * correction for exact:
431 */
432 overrun++;
433 }
434
435 alarm->node.expires = ktime_add(alarm->node.expires, interval);
436 return overrun;
437}
438
439
440
441
442/**
443 * clock2alarm - helper that converts from clockid to alarmtypes
444 * @clockid: clockid.
445 */
446static enum alarmtimer_type clock2alarm(clockid_t clockid)
447{
448 if (clockid == CLOCK_REALTIME_ALARM)
449 return ALARM_REALTIME;
450 if (clockid == CLOCK_BOOTTIME_ALARM)
451 return ALARM_BOOTTIME;
452 return -1;
453}
454
455/**
456 * alarm_handle_timer - Callback for posix timers
457 * @alarm: alarm that fired
458 *
459 * Posix timer callback for expired alarm timers.
460 */
461static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
462 ktime_t now)
463{
464 unsigned long flags;
465 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
466 it.alarm.alarmtimer);
467 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
468
469 spin_lock_irqsave(&ptr->it_lock, flags);
470 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
471 if (posix_timer_event(ptr, 0) != 0)
472 ptr->it_overrun++;
473 }
474
475 /* Re-add periodic timers */
476 if (ptr->it.alarm.interval.tv64) {
477 ptr->it_overrun += alarm_forward(alarm, now,
478 ptr->it.alarm.interval);
479 result = ALARMTIMER_RESTART;
480 }
481 spin_unlock_irqrestore(&ptr->it_lock, flags);
482
483 return result;
484}
485
486/**
487 * alarm_clock_getres - posix getres interface
488 * @which_clock: clockid
489 * @tp: timespec to fill
490 *
491 * Returns the granularity of underlying alarm base clock
492 */
493static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
494{
495 clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
496
497 if (!alarmtimer_get_rtcdev())
498 return -EINVAL;
499
500 return hrtimer_get_res(baseid, tp);
501}
502
503/**
504 * alarm_clock_get - posix clock_get interface
505 * @which_clock: clockid
506 * @tp: timespec to fill.
507 *
508 * Provides the underlying alarm base time.
509 */
510static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
511{
512 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
513
514 if (!alarmtimer_get_rtcdev())
515 return -EINVAL;
516
517 *tp = ktime_to_timespec(base->gettime());
518 return 0;
519}
520
521/**
522 * alarm_timer_create - posix timer_create interface
523 * @new_timer: k_itimer pointer to manage
524 *
525 * Initializes the k_itimer structure.
526 */
527static int alarm_timer_create(struct k_itimer *new_timer)
528{
529 enum alarmtimer_type type;
530 struct alarm_base *base;
531
532 if (!alarmtimer_get_rtcdev())
533 return -ENOTSUPP;
534
535 if (!capable(CAP_WAKE_ALARM))
536 return -EPERM;
537
538 type = clock2alarm(new_timer->it_clock);
539 base = &alarm_bases[type];
540 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
541 return 0;
542}
543
544/**
545 * alarm_timer_get - posix timer_get interface
546 * @new_timer: k_itimer pointer
547 * @cur_setting: itimerspec data to fill
548 *
549 * Copies out the current itimerspec data
550 */
551static void alarm_timer_get(struct k_itimer *timr,
552 struct itimerspec *cur_setting)
553{
554 ktime_t relative_expiry_time =
555 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
556
557 if (ktime_to_ns(relative_expiry_time) > 0) {
558 cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
559 } else {
560 cur_setting->it_value.tv_sec = 0;
561 cur_setting->it_value.tv_nsec = 0;
562 }
563
564 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
565}
566
567/**
568 * alarm_timer_del - posix timer_del interface
569 * @timr: k_itimer pointer to be deleted
570 *
571 * Cancels any programmed alarms for the given timer.
572 */
573static int alarm_timer_del(struct k_itimer *timr)
574{
575 if (!rtcdev)
576 return -ENOTSUPP;
577
578 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
579 return TIMER_RETRY;
580
581 return 0;
582}
583
584/**
585 * alarm_timer_set - posix timer_set interface
586 * @timr: k_itimer pointer to be deleted
587 * @flags: timer flags
588 * @new_setting: itimerspec to be used
589 * @old_setting: itimerspec being replaced
590 *
591 * Sets the timer to new_setting, and starts the timer.
592 */
593static int alarm_timer_set(struct k_itimer *timr, int flags,
594 struct itimerspec *new_setting,
595 struct itimerspec *old_setting)
596{
597 ktime_t exp;
598
599 if (!rtcdev)
600 return -ENOTSUPP;
601
602 if (flags & ~TIMER_ABSTIME)
603 return -EINVAL;
604
605 if (old_setting)
606 alarm_timer_get(timr, old_setting);
607
608 /* If the timer was already set, cancel it */
609 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
610 return TIMER_RETRY;
611
612 /* start the timer */
613 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
614 exp = timespec_to_ktime(new_setting->it_value);
615 /* Convert (if necessary) to absolute time */
616 if (flags != TIMER_ABSTIME) {
617 ktime_t now;
618
619 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
620 exp = ktime_add(now, exp);
621 }
622
623 alarm_start(&timr->it.alarm.alarmtimer, exp);
624 return 0;
625}
626
627/**
628 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
629 * @alarm: ptr to alarm that fired
630 *
631 * Wakes up the task that set the alarmtimer
632 */
633static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
634 ktime_t now)
635{
636 struct task_struct *task = (struct task_struct *)alarm->data;
637
638 alarm->data = NULL;
639 if (task)
640 wake_up_process(task);
641 return ALARMTIMER_NORESTART;
642}
643
644/**
645 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
646 * @alarm: ptr to alarmtimer
647 * @absexp: absolute expiration time
648 *
649 * Sets the alarm timer and sleeps until it is fired or interrupted.
650 */
651static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
652{
653 alarm->data = (void *)current;
654 do {
655 set_current_state(TASK_INTERRUPTIBLE);
656 alarm_start(alarm, absexp);
657 if (likely(alarm->data))
658 schedule();
659
660 alarm_cancel(alarm);
661 } while (alarm->data && !signal_pending(current));
662
663 __set_current_state(TASK_RUNNING);
664
665 return (alarm->data == NULL);
666}
667
668
669/**
670 * update_rmtp - Update remaining timespec value
671 * @exp: expiration time
672 * @type: timer type
673 * @rmtp: user pointer to remaining timepsec value
674 *
675 * Helper function that fills in rmtp value with time between
676 * now and the exp value
677 */
678static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
679 struct timespec __user *rmtp)
680{
681 struct timespec rmt;
682 ktime_t rem;
683
684 rem = ktime_sub(exp, alarm_bases[type].gettime());
685
686 if (rem.tv64 <= 0)
687 return 0;
688 rmt = ktime_to_timespec(rem);
689
690 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
691 return -EFAULT;
692
693 return 1;
694
695}
696
697/**
698 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
699 * @restart: ptr to restart block
700 *
701 * Handles restarted clock_nanosleep calls
702 */
703static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
704{
705 enum alarmtimer_type type = restart->nanosleep.clockid;
706 ktime_t exp;
707 struct timespec __user *rmtp;
708 struct alarm alarm;
709 int ret = 0;
710
711 exp.tv64 = restart->nanosleep.expires;
712 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
713
714 if (alarmtimer_do_nsleep(&alarm, exp))
715 goto out;
716
717 if (freezing(current))
718 alarmtimer_freezerset(exp, type);
719
720 rmtp = restart->nanosleep.rmtp;
721 if (rmtp) {
722 ret = update_rmtp(exp, type, rmtp);
723 if (ret <= 0)
724 goto out;
725 }
726
727
728 /* The other values in restart are already filled in */
729 ret = -ERESTART_RESTARTBLOCK;
730out:
731 return ret;
732}
733
734/**
735 * alarm_timer_nsleep - alarmtimer nanosleep
736 * @which_clock: clockid
737 * @flags: determins abstime or relative
738 * @tsreq: requested sleep time (abs or rel)
739 * @rmtp: remaining sleep time saved
740 *
741 * Handles clock_nanosleep calls against _ALARM clockids
742 */
743static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
744 struct timespec *tsreq, struct timespec __user *rmtp)
745{
746 enum alarmtimer_type type = clock2alarm(which_clock);
747 struct alarm alarm;
748 ktime_t exp;
749 int ret = 0;
750 struct restart_block *restart;
751
752 if (!alarmtimer_get_rtcdev())
753 return -ENOTSUPP;
754
755 if (flags & ~TIMER_ABSTIME)
756 return -EINVAL;
757
758 if (!capable(CAP_WAKE_ALARM))
759 return -EPERM;
760
761 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
762
763 exp = timespec_to_ktime(*tsreq);
764 /* Convert (if necessary) to absolute time */
765 if (flags != TIMER_ABSTIME) {
766 ktime_t now = alarm_bases[type].gettime();
767 exp = ktime_add(now, exp);
768 }
769
770 if (alarmtimer_do_nsleep(&alarm, exp))
771 goto out;
772
773 if (freezing(current))
774 alarmtimer_freezerset(exp, type);
775
776 /* abs timers don't set remaining time or restart */
777 if (flags == TIMER_ABSTIME) {
778 ret = -ERESTARTNOHAND;
779 goto out;
780 }
781
782 if (rmtp) {
783 ret = update_rmtp(exp, type, rmtp);
784 if (ret <= 0)
785 goto out;
786 }
787
788 restart = &current_thread_info()->restart_block;
789 restart->fn = alarm_timer_nsleep_restart;
790 restart->nanosleep.clockid = type;
791 restart->nanosleep.expires = exp.tv64;
792 restart->nanosleep.rmtp = rmtp;
793 ret = -ERESTART_RESTARTBLOCK;
794
795out:
796 return ret;
797}
798
799
800/* Suspend hook structures */
801static const struct dev_pm_ops alarmtimer_pm_ops = {
802 .suspend = alarmtimer_suspend,
803};
804
805static struct platform_driver alarmtimer_driver = {
806 .driver = {
807 .name = "alarmtimer",
808 .pm = &alarmtimer_pm_ops,
809 }
810};
811
812/**
813 * alarmtimer_init - Initialize alarm timer code
814 *
815 * This function initializes the alarm bases and registers
816 * the posix clock ids.
817 */
818static int __init alarmtimer_init(void)
819{
820 struct platform_device *pdev;
821 int error = 0;
822 int i;
823 struct k_clock alarm_clock = {
824 .clock_getres = alarm_clock_getres,
825 .clock_get = alarm_clock_get,
826 .timer_create = alarm_timer_create,
827 .timer_set = alarm_timer_set,
828 .timer_del = alarm_timer_del,
829 .timer_get = alarm_timer_get,
830 .nsleep = alarm_timer_nsleep,
831 };
832
833 alarmtimer_rtc_timer_init();
834
835 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
836 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
837
838 /* Initialize alarm bases */
839 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
840 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
841 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
842 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
843 for (i = 0; i < ALARM_NUMTYPE; i++) {
844 timerqueue_init_head(&alarm_bases[i].timerqueue);
845 spin_lock_init(&alarm_bases[i].lock);
846 hrtimer_init(&alarm_bases[i].timer,
847 alarm_bases[i].base_clockid,
848 HRTIMER_MODE_ABS);
849 alarm_bases[i].timer.function = alarmtimer_fired;
850 }
851
852 error = alarmtimer_rtc_interface_setup();
853 if (error)
854 return error;
855
856 error = platform_driver_register(&alarmtimer_driver);
857 if (error)
858 goto out_if;
859
860 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
861 if (IS_ERR(pdev)) {
862 error = PTR_ERR(pdev);
863 goto out_drv;
864 }
865 ws = wakeup_source_register("alarmtimer");
866 return 0;
867
868out_drv:
869 platform_driver_unregister(&alarmtimer_driver);
870out_if:
871 alarmtimer_rtc_interface_remove();
872 return error;
873}
874device_initcall(alarmtimer_init);