blob: cb6456d358601b0a521882f17ab5f449df5c5a8c [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/backing-dev.h>
12#include <linux/mm.h>
13#include <linux/shm.h>
14#include <linux/mman.h>
15#include <linux/pagemap.h>
16#include <linux/swap.h>
17#include <linux/syscalls.h>
18#include <linux/capability.h>
19#include <linux/init.h>
20#include <linux/file.h>
21#include <linux/fs.h>
22#include <linux/personality.h>
23#include <linux/security.h>
24#include <linux/hugetlb.h>
25#include <linux/profile.h>
26#include <linux/export.h>
27#include <linux/mount.h>
28#include <linux/mempolicy.h>
29#include <linux/rmap.h>
30#include <linux/mmu_notifier.h>
31#include <linux/perf_event.h>
32#include <linux/audit.h>
33#include <linux/khugepaged.h>
34
35#include <asm/uaccess.h>
36#include <asm/cacheflush.h>
37#include <asm/tlb.h>
38#include <asm/mmu_context.h>
39
40#include "internal.h"
41
42#ifndef arch_mmap_check
43#define arch_mmap_check(addr, len, flags) (0)
44#endif
45
46#ifndef arch_rebalance_pgtables
47#define arch_rebalance_pgtables(addr, len) (addr)
48#endif
49
50static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
53
54/*
55 * WARNING: the debugging will use recursive algorithms so never enable this
56 * unless you know what you are doing.
57 */
58#undef DEBUG_MM_RB
59
60/* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
63 *
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 */
75pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78};
79
80pgprot_t vm_get_page_prot(unsigned long vm_flags)
81{
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85}
86EXPORT_SYMBOL(vm_get_page_prot);
87
88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91/*
92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
93 * other variables. It can be updated by several CPUs frequently.
94 */
95struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97/*
98 * Check that a process has enough memory to allocate a new virtual
99 * mapping. 0 means there is enough memory for the allocation to
100 * succeed and -ENOMEM implies there is not.
101 *
102 * We currently support three overcommit policies, which are set via the
103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 *
105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106 * Additional code 2002 Jul 20 by Robert Love.
107 *
108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 *
110 * Note this is a helper function intended to be used by LSMs which
111 * wish to use this logic.
112 */
113int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114{
115 long free, allowed;
116
117 vm_acct_memory(pages);
118
119 /*
120 * Sometimes we want to use more memory than we have
121 */
122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123 return 0;
124
125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126 free = global_page_state(NR_FREE_PAGES);
127 free += global_page_state(NR_FILE_PAGES);
128
129 /*
130 * shmem pages shouldn't be counted as free in this
131 * case, they can't be purged, only swapped out, and
132 * that won't affect the overall amount of available
133 * memory in the system.
134 */
135 free -= global_page_state(NR_SHMEM);
136
137 free += nr_swap_pages;
138
139 /*
140 * Any slabs which are created with the
141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142 * which are reclaimable, under pressure. The dentry
143 * cache and most inode caches should fall into this
144 */
145 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147 /*
148 * Leave reserved pages. The pages are not for anonymous pages.
149 */
150 if (free <= totalreserve_pages)
151 goto error;
152 else
153 free -= totalreserve_pages;
154
155 /*
156 * Leave the last 3% for root
157 */
158 if (!cap_sys_admin)
159 free -= free / 32;
160
161 if (free > pages)
162 return 0;
163
164 goto error;
165 }
166
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
169 /*
170 * Leave the last 3% for root
171 */
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
175
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
180
181 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 return 0;
183error:
184 vm_unacct_memory(pages);
185
186 return -ENOMEM;
187}
188
189/*
190 * Requires inode->i_mapping->i_mmap_mutex
191 */
192static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
194{
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
199
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.vm_set.list);
203 else
204 vma_prio_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
206}
207
208/*
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
211 */
212void unlink_file_vma(struct vm_area_struct *vma)
213{
214 struct file *file = vma->vm_file;
215
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 mutex_lock(&mapping->i_mmap_mutex);
219 __remove_shared_vm_struct(vma, file, mapping);
220 mutex_unlock(&mapping->i_mmap_mutex);
221 }
222}
223
224/*
225 * Close a vm structure and free it, returning the next.
226 */
227static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228{
229 struct vm_area_struct *next = vma->vm_next;
230
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file) {
235 fput(vma->vm_file);
236 if (vma->vm_flags & VM_EXECUTABLE)
237 removed_exe_file_vma(vma->vm_mm);
238 }
239 mpol_put(vma_policy(vma));
240 kmem_cache_free(vm_area_cachep, vma);
241 return next;
242}
243
244static unsigned long do_brk(unsigned long addr, unsigned long len);
245
246SYSCALL_DEFINE1(brk, unsigned long, brk)
247{
248 unsigned long rlim, retval;
249 unsigned long newbrk, oldbrk;
250 struct mm_struct *mm = current->mm;
251 unsigned long min_brk;
252
253 down_write(&mm->mmap_sem);
254
255#ifdef CONFIG_COMPAT_BRK
256 /*
257 * CONFIG_COMPAT_BRK can still be overridden by setting
258 * randomize_va_space to 2, which will still cause mm->start_brk
259 * to be arbitrarily shifted
260 */
261 if (current->brk_randomized)
262 min_brk = mm->start_brk;
263 else
264 min_brk = mm->end_data;
265#else
266 min_brk = mm->start_brk;
267#endif
268 if (brk < min_brk)
269 goto out;
270
271 /*
272 * Check against rlimit here. If this check is done later after the test
273 * of oldbrk with newbrk then it can escape the test and let the data
274 * segment grow beyond its set limit the in case where the limit is
275 * not page aligned -Ram Gupta
276 */
277 rlim = rlimit(RLIMIT_DATA);
278 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279 (mm->end_data - mm->start_data) > rlim)
280 goto out;
281
282 newbrk = PAGE_ALIGN(brk);
283 oldbrk = PAGE_ALIGN(mm->brk);
284 if (oldbrk == newbrk)
285 goto set_brk;
286
287 /* Always allow shrinking brk. */
288 if (brk <= mm->brk) {
289 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290 goto set_brk;
291 goto out;
292 }
293
294 /* Check against existing mmap mappings. */
295 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296 goto out;
297
298 /* Ok, looks good - let it rip. */
299 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300 goto out;
301set_brk:
302 mm->brk = brk;
303out:
304 retval = mm->brk;
305 up_write(&mm->mmap_sem);
306 return retval;
307}
308
309#ifdef DEBUG_MM_RB
310static int browse_rb(struct rb_root *root)
311{
312 int i = 0, j;
313 struct rb_node *nd, *pn = NULL;
314 unsigned long prev = 0, pend = 0;
315
316 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317 struct vm_area_struct *vma;
318 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319 if (vma->vm_start < prev)
320 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321 if (vma->vm_start < pend)
322 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323 if (vma->vm_start > vma->vm_end)
324 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325 i++;
326 pn = nd;
327 prev = vma->vm_start;
328 pend = vma->vm_end;
329 }
330 j = 0;
331 for (nd = pn; nd; nd = rb_prev(nd)) {
332 j++;
333 }
334 if (i != j)
335 printk("backwards %d, forwards %d\n", j, i), i = 0;
336 return i;
337}
338
339void validate_mm(struct mm_struct *mm)
340{
341 int bug = 0;
342 int i = 0;
343 struct vm_area_struct *tmp = mm->mmap;
344 while (tmp) {
345 tmp = tmp->vm_next;
346 i++;
347 }
348 if (i != mm->map_count)
349 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350 i = browse_rb(&mm->mm_rb);
351 if (i != mm->map_count)
352 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353 BUG_ON(bug);
354}
355#else
356#define validate_mm(mm) do { } while (0)
357#endif
358
359static struct vm_area_struct *
360find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361 struct vm_area_struct **pprev, struct rb_node ***rb_link,
362 struct rb_node ** rb_parent)
363{
364 struct vm_area_struct * vma;
365 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366
367 __rb_link = &mm->mm_rb.rb_node;
368 rb_prev = __rb_parent = NULL;
369 vma = NULL;
370
371 while (*__rb_link) {
372 struct vm_area_struct *vma_tmp;
373
374 __rb_parent = *__rb_link;
375 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376
377 if (vma_tmp->vm_end > addr) {
378 vma = vma_tmp;
379 if (vma_tmp->vm_start <= addr)
380 break;
381 __rb_link = &__rb_parent->rb_left;
382 } else {
383 rb_prev = __rb_parent;
384 __rb_link = &__rb_parent->rb_right;
385 }
386 }
387
388 *pprev = NULL;
389 if (rb_prev)
390 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391 *rb_link = __rb_link;
392 *rb_parent = __rb_parent;
393 return vma;
394}
395
396static unsigned long count_vma_pages_range(struct mm_struct *mm,
397 unsigned long addr, unsigned long end)
398{
399 unsigned long nr_pages = 0;
400 struct vm_area_struct *vma;
401
402 /* Find first overlaping mapping */
403 vma = find_vma_intersection(mm, addr, end);
404 if (!vma)
405 return 0;
406
407 nr_pages = (min(end, vma->vm_end) -
408 max(addr, vma->vm_start)) >> PAGE_SHIFT;
409
410 /* Iterate over the rest of the overlaps */
411 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
412 unsigned long overlap_len;
413
414 if (vma->vm_start > end)
415 break;
416
417 overlap_len = min(end, vma->vm_end) - vma->vm_start;
418 nr_pages += overlap_len >> PAGE_SHIFT;
419 }
420
421 return nr_pages;
422}
423
424void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
425 struct rb_node **rb_link, struct rb_node *rb_parent)
426{
427 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
428 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
429}
430
431static void __vma_link_file(struct vm_area_struct *vma)
432{
433 struct file *file;
434
435 file = vma->vm_file;
436 if (file) {
437 struct address_space *mapping = file->f_mapping;
438
439 if (vma->vm_flags & VM_DENYWRITE)
440 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
441 if (vma->vm_flags & VM_SHARED)
442 mapping->i_mmap_writable++;
443
444 flush_dcache_mmap_lock(mapping);
445 if (unlikely(vma->vm_flags & VM_NONLINEAR))
446 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
447 else
448 vma_prio_tree_insert(vma, &mapping->i_mmap);
449 flush_dcache_mmap_unlock(mapping);
450 }
451}
452
453static void
454__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
455 struct vm_area_struct *prev, struct rb_node **rb_link,
456 struct rb_node *rb_parent)
457{
458 __vma_link_list(mm, vma, prev, rb_parent);
459 __vma_link_rb(mm, vma, rb_link, rb_parent);
460}
461
462static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
463 struct vm_area_struct *prev, struct rb_node **rb_link,
464 struct rb_node *rb_parent)
465{
466 struct address_space *mapping = NULL;
467
468 if (vma->vm_file)
469 mapping = vma->vm_file->f_mapping;
470
471 if (mapping)
472 mutex_lock(&mapping->i_mmap_mutex);
473
474 __vma_link(mm, vma, prev, rb_link, rb_parent);
475 __vma_link_file(vma);
476
477 if (mapping)
478 mutex_unlock(&mapping->i_mmap_mutex);
479
480 mm->map_count++;
481 validate_mm(mm);
482}
483
484/*
485 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
486 * mm's list and rbtree. It has already been inserted into the prio_tree.
487 */
488static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
489{
490 struct vm_area_struct *__vma, *prev;
491 struct rb_node **rb_link, *rb_parent;
492
493 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
494 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
495 __vma_link(mm, vma, prev, rb_link, rb_parent);
496 mm->map_count++;
497}
498
499static inline void
500__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
501 struct vm_area_struct *prev)
502{
503 struct vm_area_struct *next = vma->vm_next;
504
505 prev->vm_next = next;
506 if (next)
507 next->vm_prev = prev;
508 rb_erase(&vma->vm_rb, &mm->mm_rb);
509 if (mm->mmap_cache == vma)
510 mm->mmap_cache = prev;
511}
512
513/*
514 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
515 * is already present in an i_mmap tree without adjusting the tree.
516 * The following helper function should be used when such adjustments
517 * are necessary. The "insert" vma (if any) is to be inserted
518 * before we drop the necessary locks.
519 */
520int vma_adjust(struct vm_area_struct *vma, unsigned long start,
521 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
522{
523 struct mm_struct *mm = vma->vm_mm;
524 struct vm_area_struct *next = vma->vm_next;
525 struct vm_area_struct *importer = NULL;
526 struct address_space *mapping = NULL;
527 struct prio_tree_root *root = NULL;
528 struct anon_vma *anon_vma = NULL;
529 struct file *file = vma->vm_file;
530 long adjust_next = 0;
531 int remove_next = 0;
532
533 if (next && !insert) {
534 struct vm_area_struct *exporter = NULL;
535
536 if (end >= next->vm_end) {
537 /*
538 * vma expands, overlapping all the next, and
539 * perhaps the one after too (mprotect case 6).
540 */
541again: remove_next = 1 + (end > next->vm_end);
542 end = next->vm_end;
543 exporter = next;
544 importer = vma;
545 } else if (end > next->vm_start) {
546 /*
547 * vma expands, overlapping part of the next:
548 * mprotect case 5 shifting the boundary up.
549 */
550 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
551 exporter = next;
552 importer = vma;
553 } else if (end < vma->vm_end) {
554 /*
555 * vma shrinks, and !insert tells it's not
556 * split_vma inserting another: so it must be
557 * mprotect case 4 shifting the boundary down.
558 */
559 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
560 exporter = vma;
561 importer = next;
562 }
563
564 /*
565 * Easily overlooked: when mprotect shifts the boundary,
566 * make sure the expanding vma has anon_vma set if the
567 * shrinking vma had, to cover any anon pages imported.
568 */
569 if (exporter && exporter->anon_vma && !importer->anon_vma) {
570 int error;
571
572 importer->anon_vma = exporter->anon_vma;
573 error = anon_vma_clone(importer, exporter);
574 if (error)
575 return error;
576 }
577 }
578
579 if (file) {
580 mapping = file->f_mapping;
581 if (!(vma->vm_flags & VM_NONLINEAR))
582 root = &mapping->i_mmap;
583 mutex_lock(&mapping->i_mmap_mutex);
584 if (insert) {
585 /*
586 * Put into prio_tree now, so instantiated pages
587 * are visible to arm/parisc __flush_dcache_page
588 * throughout; but we cannot insert into address
589 * space until vma start or end is updated.
590 */
591 __vma_link_file(insert);
592 }
593 }
594
595 vma_adjust_trans_huge(vma, start, end, adjust_next);
596
597 /*
598 * When changing only vma->vm_end, we don't really need anon_vma
599 * lock. This is a fairly rare case by itself, but the anon_vma
600 * lock may be shared between many sibling processes. Skipping
601 * the lock for brk adjustments makes a difference sometimes.
602 */
603 if (vma->anon_vma && (importer || start != vma->vm_start)) {
604 anon_vma = vma->anon_vma;
605 anon_vma_lock(anon_vma);
606 }
607
608 if (root) {
609 flush_dcache_mmap_lock(mapping);
610 vma_prio_tree_remove(vma, root);
611 if (adjust_next)
612 vma_prio_tree_remove(next, root);
613 }
614
615 vma->vm_start = start;
616 vma->vm_end = end;
617 vma->vm_pgoff = pgoff;
618 if (adjust_next) {
619 next->vm_start += adjust_next << PAGE_SHIFT;
620 next->vm_pgoff += adjust_next;
621 }
622
623 if (root) {
624 if (adjust_next)
625 vma_prio_tree_insert(next, root);
626 vma_prio_tree_insert(vma, root);
627 flush_dcache_mmap_unlock(mapping);
628 }
629
630 if (remove_next) {
631 /*
632 * vma_merge has merged next into vma, and needs
633 * us to remove next before dropping the locks.
634 */
635 __vma_unlink(mm, next, vma);
636 if (file)
637 __remove_shared_vm_struct(next, file, mapping);
638 } else if (insert) {
639 /*
640 * split_vma has split insert from vma, and needs
641 * us to insert it before dropping the locks
642 * (it may either follow vma or precede it).
643 */
644 __insert_vm_struct(mm, insert);
645 }
646
647 if (anon_vma)
648 anon_vma_unlock(anon_vma);
649 if (mapping)
650 mutex_unlock(&mapping->i_mmap_mutex);
651
652 if (remove_next) {
653 if (file) {
654 fput(file);
655 if (next->vm_flags & VM_EXECUTABLE)
656 removed_exe_file_vma(mm);
657 }
658 if (next->anon_vma)
659 anon_vma_merge(vma, next);
660 mm->map_count--;
661 mpol_put(vma_policy(next));
662 kmem_cache_free(vm_area_cachep, next);
663 /*
664 * In mprotect's case 6 (see comments on vma_merge),
665 * we must remove another next too. It would clutter
666 * up the code too much to do both in one go.
667 */
668 if (remove_next == 2) {
669 next = vma->vm_next;
670 goto again;
671 }
672 }
673
674 validate_mm(mm);
675
676 return 0;
677}
678
679/*
680 * If the vma has a ->close operation then the driver probably needs to release
681 * per-vma resources, so we don't attempt to merge those.
682 */
683static inline int is_mergeable_vma(struct vm_area_struct *vma,
684 struct file *file, unsigned long vm_flags)
685{
686 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
687 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
688 return 0;
689 if (vma->vm_file != file)
690 return 0;
691 if (vma->vm_ops && vma->vm_ops->close)
692 return 0;
693 return 1;
694}
695
696static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
697 struct anon_vma *anon_vma2,
698 struct vm_area_struct *vma)
699{
700 /*
701 * The list_is_singular() test is to avoid merging VMA cloned from
702 * parents. This can improve scalability caused by anon_vma lock.
703 */
704 if ((!anon_vma1 || !anon_vma2) && (!vma ||
705 list_is_singular(&vma->anon_vma_chain)))
706 return 1;
707 return anon_vma1 == anon_vma2;
708}
709
710/*
711 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
712 * in front of (at a lower virtual address and file offset than) the vma.
713 *
714 * We cannot merge two vmas if they have differently assigned (non-NULL)
715 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
716 *
717 * We don't check here for the merged mmap wrapping around the end of pagecache
718 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
719 * wrap, nor mmaps which cover the final page at index -1UL.
720 */
721static int
722can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
723 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
724{
725 if (is_mergeable_vma(vma, file, vm_flags) &&
726 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
727 if (vma->vm_pgoff == vm_pgoff)
728 return 1;
729 }
730 return 0;
731}
732
733/*
734 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
735 * beyond (at a higher virtual address and file offset than) the vma.
736 *
737 * We cannot merge two vmas if they have differently assigned (non-NULL)
738 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
739 */
740static int
741can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
742 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
743{
744 if (is_mergeable_vma(vma, file, vm_flags) &&
745 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
746 pgoff_t vm_pglen;
747 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
748 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
749 return 1;
750 }
751 return 0;
752}
753
754/*
755 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
756 * whether that can be merged with its predecessor or its successor.
757 * Or both (it neatly fills a hole).
758 *
759 * In most cases - when called for mmap, brk or mremap - [addr,end) is
760 * certain not to be mapped by the time vma_merge is called; but when
761 * called for mprotect, it is certain to be already mapped (either at
762 * an offset within prev, or at the start of next), and the flags of
763 * this area are about to be changed to vm_flags - and the no-change
764 * case has already been eliminated.
765 *
766 * The following mprotect cases have to be considered, where AAAA is
767 * the area passed down from mprotect_fixup, never extending beyond one
768 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
769 *
770 * AAAA AAAA AAAA AAAA
771 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
772 * cannot merge might become might become might become
773 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
774 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
775 * mremap move: PPPPNNNNNNNN 8
776 * AAAA
777 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
778 * might become case 1 below case 2 below case 3 below
779 *
780 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
781 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
782 */
783struct vm_area_struct *vma_merge(struct mm_struct *mm,
784 struct vm_area_struct *prev, unsigned long addr,
785 unsigned long end, unsigned long vm_flags,
786 struct anon_vma *anon_vma, struct file *file,
787 pgoff_t pgoff, struct mempolicy *policy)
788{
789 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
790 struct vm_area_struct *area, *next;
791 int err;
792
793 /*
794 * We later require that vma->vm_flags == vm_flags,
795 * so this tests vma->vm_flags & VM_SPECIAL, too.
796 */
797 if (vm_flags & VM_SPECIAL)
798 return NULL;
799
800 if (prev)
801 next = prev->vm_next;
802 else
803 next = mm->mmap;
804 area = next;
805 if (next && next->vm_end == end) /* cases 6, 7, 8 */
806 next = next->vm_next;
807
808 /*
809 * Can it merge with the predecessor?
810 */
811 if (prev && prev->vm_end == addr &&
812 mpol_equal(vma_policy(prev), policy) &&
813 can_vma_merge_after(prev, vm_flags,
814 anon_vma, file, pgoff)) {
815 /*
816 * OK, it can. Can we now merge in the successor as well?
817 */
818 if (next && end == next->vm_start &&
819 mpol_equal(policy, vma_policy(next)) &&
820 can_vma_merge_before(next, vm_flags,
821 anon_vma, file, pgoff+pglen) &&
822 is_mergeable_anon_vma(prev->anon_vma,
823 next->anon_vma, NULL)) {
824 /* cases 1, 6 */
825 err = vma_adjust(prev, prev->vm_start,
826 next->vm_end, prev->vm_pgoff, NULL);
827 } else /* cases 2, 5, 7 */
828 err = vma_adjust(prev, prev->vm_start,
829 end, prev->vm_pgoff, NULL);
830 if (err)
831 return NULL;
832 khugepaged_enter_vma_merge(prev, vm_flags);
833 return prev;
834 }
835
836 /*
837 * Can this new request be merged in front of next?
838 */
839 if (next && end == next->vm_start &&
840 mpol_equal(policy, vma_policy(next)) &&
841 can_vma_merge_before(next, vm_flags,
842 anon_vma, file, pgoff+pglen)) {
843 if (prev && addr < prev->vm_end) /* case 4 */
844 err = vma_adjust(prev, prev->vm_start,
845 addr, prev->vm_pgoff, NULL);
846 else /* cases 3, 8 */
847 err = vma_adjust(area, addr, next->vm_end,
848 next->vm_pgoff - pglen, NULL);
849 if (err)
850 return NULL;
851 khugepaged_enter_vma_merge(area, vm_flags);
852 return area;
853 }
854
855 return NULL;
856}
857
858/*
859 * Rough compatbility check to quickly see if it's even worth looking
860 * at sharing an anon_vma.
861 *
862 * They need to have the same vm_file, and the flags can only differ
863 * in things that mprotect may change.
864 *
865 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
866 * we can merge the two vma's. For example, we refuse to merge a vma if
867 * there is a vm_ops->close() function, because that indicates that the
868 * driver is doing some kind of reference counting. But that doesn't
869 * really matter for the anon_vma sharing case.
870 */
871static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
872{
873 return a->vm_end == b->vm_start &&
874 mpol_equal(vma_policy(a), vma_policy(b)) &&
875 a->vm_file == b->vm_file &&
876 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
877 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
878}
879
880/*
881 * Do some basic sanity checking to see if we can re-use the anon_vma
882 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
883 * the same as 'old', the other will be the new one that is trying
884 * to share the anon_vma.
885 *
886 * NOTE! This runs with mm_sem held for reading, so it is possible that
887 * the anon_vma of 'old' is concurrently in the process of being set up
888 * by another page fault trying to merge _that_. But that's ok: if it
889 * is being set up, that automatically means that it will be a singleton
890 * acceptable for merging, so we can do all of this optimistically. But
891 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
892 *
893 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
894 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
895 * is to return an anon_vma that is "complex" due to having gone through
896 * a fork).
897 *
898 * We also make sure that the two vma's are compatible (adjacent,
899 * and with the same memory policies). That's all stable, even with just
900 * a read lock on the mm_sem.
901 */
902static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
903{
904 if (anon_vma_compatible(a, b)) {
905 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
906
907 if (anon_vma && list_is_singular(&old->anon_vma_chain))
908 return anon_vma;
909 }
910 return NULL;
911}
912
913/*
914 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
915 * neighbouring vmas for a suitable anon_vma, before it goes off
916 * to allocate a new anon_vma. It checks because a repetitive
917 * sequence of mprotects and faults may otherwise lead to distinct
918 * anon_vmas being allocated, preventing vma merge in subsequent
919 * mprotect.
920 */
921struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
922{
923 struct anon_vma *anon_vma;
924 struct vm_area_struct *near;
925
926 near = vma->vm_next;
927 if (!near)
928 goto try_prev;
929
930 anon_vma = reusable_anon_vma(near, vma, near);
931 if (anon_vma)
932 return anon_vma;
933try_prev:
934 near = vma->vm_prev;
935 if (!near)
936 goto none;
937
938 anon_vma = reusable_anon_vma(near, near, vma);
939 if (anon_vma)
940 return anon_vma;
941none:
942 /*
943 * There's no absolute need to look only at touching neighbours:
944 * we could search further afield for "compatible" anon_vmas.
945 * But it would probably just be a waste of time searching,
946 * or lead to too many vmas hanging off the same anon_vma.
947 * We're trying to allow mprotect remerging later on,
948 * not trying to minimize memory used for anon_vmas.
949 */
950 return NULL;
951}
952
953#ifdef CONFIG_PROC_FS
954void vm_stat_account(struct mm_struct *mm, unsigned long flags,
955 struct file *file, long pages)
956{
957 const unsigned long stack_flags
958 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
959
960 if (file) {
961 mm->shared_vm += pages;
962 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
963 mm->exec_vm += pages;
964 } else if (flags & stack_flags)
965 mm->stack_vm += pages;
966 if (flags & (VM_RESERVED|VM_IO))
967 mm->reserved_vm += pages;
968}
969#endif /* CONFIG_PROC_FS */
970
971/*
972 * If a hint addr is less than mmap_min_addr change hint to be as
973 * low as possible but still greater than mmap_min_addr
974 */
975static inline unsigned long round_hint_to_min(unsigned long hint)
976{
977 hint &= PAGE_MASK;
978 if (((void *)hint != NULL) &&
979 (hint < mmap_min_addr))
980 return PAGE_ALIGN(mmap_min_addr);
981 return hint;
982}
983
984/*
985 * The caller must hold down_write(&current->mm->mmap_sem).
986 */
987
988static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
989 unsigned long len, unsigned long prot,
990 unsigned long flags, unsigned long pgoff)
991{
992 struct mm_struct * mm = current->mm;
993 struct inode *inode;
994 vm_flags_t vm_flags;
995 int error;
996 unsigned long reqprot = prot;
997
998 /*
999 * Does the application expect PROT_READ to imply PROT_EXEC?
1000 *
1001 * (the exception is when the underlying filesystem is noexec
1002 * mounted, in which case we dont add PROT_EXEC.)
1003 */
1004 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1005 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1006 prot |= PROT_EXEC;
1007
1008 if (!len)
1009 return -EINVAL;
1010
1011 if (!(flags & MAP_FIXED))
1012 addr = round_hint_to_min(addr);
1013
1014 /* Careful about overflows.. */
1015 len = PAGE_ALIGN(len);
1016 if (!len)
1017 return -ENOMEM;
1018
1019 /* offset overflow? */
1020 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1021 return -EOVERFLOW;
1022
1023 /* Too many mappings? */
1024 if (mm->map_count > sysctl_max_map_count)
1025 return -ENOMEM;
1026
1027 /* Obtain the address to map to. we verify (or select) it and ensure
1028 * that it represents a valid section of the address space.
1029 */
1030 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1031 if (addr & ~PAGE_MASK)
1032 return addr;
1033
1034 /* Do simple checking here so the lower-level routines won't have
1035 * to. we assume access permissions have been handled by the open
1036 * of the memory object, so we don't do any here.
1037 */
1038 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1039 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1040
1041 if (flags & MAP_LOCKED)
1042 if (!can_do_mlock())
1043 return -EPERM;
1044
1045 /* mlock MCL_FUTURE? */
1046 if (vm_flags & VM_LOCKED) {
1047 unsigned long locked, lock_limit;
1048 locked = len >> PAGE_SHIFT;
1049 locked += mm->locked_vm;
1050 lock_limit = rlimit(RLIMIT_MEMLOCK);
1051 lock_limit >>= PAGE_SHIFT;
1052 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1053 return -EAGAIN;
1054 }
1055
1056 inode = file ? file->f_path.dentry->d_inode : NULL;
1057
1058 if (file) {
1059 switch (flags & MAP_TYPE) {
1060 case MAP_SHARED:
1061 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1062 return -EACCES;
1063
1064 /*
1065 * Make sure we don't allow writing to an append-only
1066 * file..
1067 */
1068 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1069 return -EACCES;
1070
1071 /*
1072 * Make sure there are no mandatory locks on the file.
1073 */
1074 if (locks_verify_locked(inode))
1075 return -EAGAIN;
1076
1077 vm_flags |= VM_SHARED | VM_MAYSHARE;
1078 if (!(file->f_mode & FMODE_WRITE))
1079 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1080
1081 /* fall through */
1082 case MAP_PRIVATE:
1083 if (!(file->f_mode & FMODE_READ))
1084 return -EACCES;
1085 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1086 if (vm_flags & VM_EXEC)
1087 return -EPERM;
1088 vm_flags &= ~VM_MAYEXEC;
1089 }
1090
1091 if (!file->f_op || !file->f_op->mmap)
1092 return -ENODEV;
1093 break;
1094
1095 default:
1096 return -EINVAL;
1097 }
1098 } else {
1099 switch (flags & MAP_TYPE) {
1100 case MAP_SHARED:
1101 /*
1102 * Ignore pgoff.
1103 */
1104 pgoff = 0;
1105 vm_flags |= VM_SHARED | VM_MAYSHARE;
1106 break;
1107 case MAP_PRIVATE:
1108 /*
1109 * Set pgoff according to addr for anon_vma.
1110 */
1111 pgoff = addr >> PAGE_SHIFT;
1112 break;
1113 default:
1114 return -EINVAL;
1115 }
1116 }
1117
1118 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1119 if (error)
1120 return error;
1121
1122 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1123}
1124
1125unsigned long do_mmap(struct file *file, unsigned long addr,
1126 unsigned long len, unsigned long prot,
1127 unsigned long flag, unsigned long offset)
1128{
1129 if (unlikely(offset + PAGE_ALIGN(len) < offset))
1130 return -EINVAL;
1131 if (unlikely(offset & ~PAGE_MASK))
1132 return -EINVAL;
1133 return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1134}
1135EXPORT_SYMBOL(do_mmap);
1136
1137unsigned long vm_mmap(struct file *file, unsigned long addr,
1138 unsigned long len, unsigned long prot,
1139 unsigned long flag, unsigned long offset)
1140{
1141 unsigned long ret;
1142 struct mm_struct *mm = current->mm;
1143
1144 down_write(&mm->mmap_sem);
1145 ret = do_mmap(file, addr, len, prot, flag, offset);
1146 up_write(&mm->mmap_sem);
1147 return ret;
1148}
1149EXPORT_SYMBOL(vm_mmap);
1150
1151SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1152 unsigned long, prot, unsigned long, flags,
1153 unsigned long, fd, unsigned long, pgoff)
1154{
1155 struct file *file = NULL;
1156 unsigned long retval = -EBADF;
1157
1158 if (!(flags & MAP_ANONYMOUS)) {
1159 audit_mmap_fd(fd, flags);
1160 if (unlikely(flags & MAP_HUGETLB))
1161 return -EINVAL;
1162 file = fget(fd);
1163 if (!file)
1164 goto out;
1165 if (is_file_hugepages(file))
1166 len = ALIGN(len, huge_page_size(hstate_file(file)));
1167 } else if (flags & MAP_HUGETLB) {
1168 struct user_struct *user = NULL;
1169
1170 len = ALIGN(len, huge_page_size(&default_hstate));
1171 /*
1172 * VM_NORESERVE is used because the reservations will be
1173 * taken when vm_ops->mmap() is called
1174 * A dummy user value is used because we are not locking
1175 * memory so no accounting is necessary
1176 */
1177 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1178 VM_NORESERVE, &user,
1179 HUGETLB_ANONHUGE_INODE);
1180 if (IS_ERR(file))
1181 return PTR_ERR(file);
1182 }
1183
1184 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1185
1186 down_write(&current->mm->mmap_sem);
1187 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1188 up_write(&current->mm->mmap_sem);
1189
1190 if (file)
1191 fput(file);
1192out:
1193 return retval;
1194}
1195
1196#ifdef __ARCH_WANT_SYS_OLD_MMAP
1197struct mmap_arg_struct {
1198 unsigned long addr;
1199 unsigned long len;
1200 unsigned long prot;
1201 unsigned long flags;
1202 unsigned long fd;
1203 unsigned long offset;
1204};
1205
1206SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1207{
1208 struct mmap_arg_struct a;
1209
1210 if (copy_from_user(&a, arg, sizeof(a)))
1211 return -EFAULT;
1212 if (a.offset & ~PAGE_MASK)
1213 return -EINVAL;
1214
1215 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1216 a.offset >> PAGE_SHIFT);
1217}
1218#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1219
1220/*
1221 * Some shared mappigns will want the pages marked read-only
1222 * to track write events. If so, we'll downgrade vm_page_prot
1223 * to the private version (using protection_map[] without the
1224 * VM_SHARED bit).
1225 */
1226int vma_wants_writenotify(struct vm_area_struct *vma)
1227{
1228 vm_flags_t vm_flags = vma->vm_flags;
1229
1230 /* If it was private or non-writable, the write bit is already clear */
1231 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1232 return 0;
1233
1234 /* The backer wishes to know when pages are first written to? */
1235 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1236 return 1;
1237
1238 /* The open routine did something to the protections already? */
1239 if (pgprot_val(vma->vm_page_prot) !=
1240 pgprot_val(vm_get_page_prot(vm_flags)))
1241 return 0;
1242
1243 /* Specialty mapping? */
1244 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1245 return 0;
1246
1247 /* Can the mapping track the dirty pages? */
1248 return vma->vm_file && vma->vm_file->f_mapping &&
1249 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1250}
1251
1252/*
1253 * We account for memory if it's a private writeable mapping,
1254 * not hugepages and VM_NORESERVE wasn't set.
1255 */
1256static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1257{
1258 /*
1259 * hugetlb has its own accounting separate from the core VM
1260 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1261 */
1262 if (file && is_file_hugepages(file))
1263 return 0;
1264
1265 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1266}
1267
1268unsigned long mmap_region(struct file *file, unsigned long addr,
1269 unsigned long len, unsigned long flags,
1270 vm_flags_t vm_flags, unsigned long pgoff)
1271{
1272 struct mm_struct *mm = current->mm;
1273 struct vm_area_struct *vma, *prev;
1274 int correct_wcount = 0;
1275 int error;
1276 struct rb_node **rb_link, *rb_parent;
1277 unsigned long charged = 0;
1278 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1279
1280 /* Check against address space limit. */
1281 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1282 unsigned long nr_pages;
1283
1284 /*
1285 * MAP_FIXED may remove pages of mappings that intersects with
1286 * requested mapping. Account for the pages it would unmap.
1287 */
1288 if (!(vm_flags & MAP_FIXED))
1289 return -ENOMEM;
1290
1291 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1292
1293 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1294 return -ENOMEM;
1295 }
1296
1297 /* Clear old maps */
1298 error = -ENOMEM;
1299munmap_back:
1300 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1301 if (vma && vma->vm_start < addr + len) {
1302 if (do_munmap(mm, addr, len))
1303 return -ENOMEM;
1304 goto munmap_back;
1305 }
1306
1307 /*
1308 * Set 'VM_NORESERVE' if we should not account for the
1309 * memory use of this mapping.
1310 */
1311 if ((flags & MAP_NORESERVE)) {
1312 /* We honor MAP_NORESERVE if allowed to overcommit */
1313 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1314 vm_flags |= VM_NORESERVE;
1315
1316 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1317 if (file && is_file_hugepages(file))
1318 vm_flags |= VM_NORESERVE;
1319 }
1320
1321 /*
1322 * Private writable mapping: check memory availability
1323 */
1324 if (accountable_mapping(file, vm_flags)) {
1325 charged = len >> PAGE_SHIFT;
1326 if (security_vm_enough_memory_mm(mm, charged))
1327 return -ENOMEM;
1328 vm_flags |= VM_ACCOUNT;
1329 }
1330
1331 /*
1332 * Can we just expand an old mapping?
1333 */
1334 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1335 if (vma)
1336 goto out;
1337
1338 /*
1339 * Determine the object being mapped and call the appropriate
1340 * specific mapper. the address has already been validated, but
1341 * not unmapped, but the maps are removed from the list.
1342 */
1343 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1344 if (!vma) {
1345 error = -ENOMEM;
1346 goto unacct_error;
1347 }
1348
1349 vma->vm_mm = mm;
1350 vma->vm_start = addr;
1351 vma->vm_end = addr + len;
1352 vma->vm_flags = vm_flags;
1353 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1354 vma->vm_pgoff = pgoff;
1355 INIT_LIST_HEAD(&vma->anon_vma_chain);
1356
1357 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1358
1359 if (file) {
1360 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1361 goto free_vma;
1362 if (vm_flags & VM_DENYWRITE) {
1363 error = deny_write_access(file);
1364 if (error)
1365 goto free_vma;
1366 correct_wcount = 1;
1367 }
1368 vma->vm_file = file;
1369 get_file(file);
1370 error = file->f_op->mmap(file, vma);
1371 if (error)
1372 goto unmap_and_free_vma;
1373 if (vm_flags & VM_EXECUTABLE)
1374 added_exe_file_vma(mm);
1375
1376 /* Can addr have changed??
1377 *
1378 * Answer: Yes, several device drivers can do it in their
1379 * f_op->mmap method. -DaveM
1380 */
1381 addr = vma->vm_start;
1382 pgoff = vma->vm_pgoff;
1383 vm_flags = vma->vm_flags;
1384 } else if (vm_flags & VM_SHARED) {
1385 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1386 goto free_vma;
1387 error = shmem_zero_setup(vma);
1388 if (error)
1389 goto free_vma;
1390 }
1391
1392 if (vma_wants_writenotify(vma)) {
1393 pgprot_t pprot = vma->vm_page_prot;
1394
1395 /* Can vma->vm_page_prot have changed??
1396 *
1397 * Answer: Yes, drivers may have changed it in their
1398 * f_op->mmap method.
1399 *
1400 * Ensures that vmas marked as uncached stay that way.
1401 */
1402 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1403 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1404 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1405 }
1406
1407 vma_link(mm, vma, prev, rb_link, rb_parent);
1408 file = vma->vm_file;
1409
1410 /* Once vma denies write, undo our temporary denial count */
1411 if (correct_wcount)
1412 atomic_inc(&inode->i_writecount);
1413out:
1414 perf_event_mmap(vma);
1415
1416 mm->total_vm += len >> PAGE_SHIFT;
1417 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1418 if (vm_flags & VM_LOCKED) {
1419 if (!mlock_vma_pages_range(vma, addr, addr + len))
1420 mm->locked_vm += (len >> PAGE_SHIFT);
1421 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1422 make_pages_present(addr, addr + len);
1423 return addr;
1424
1425unmap_and_free_vma:
1426 if (correct_wcount)
1427 atomic_inc(&inode->i_writecount);
1428 vma->vm_file = NULL;
1429 fput(file);
1430
1431 /* Undo any partial mapping done by a device driver. */
1432 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1433 charged = 0;
1434free_vma:
1435 kmem_cache_free(vm_area_cachep, vma);
1436unacct_error:
1437 if (charged)
1438 vm_unacct_memory(charged);
1439 return error;
1440}
1441
1442/* Get an address range which is currently unmapped.
1443 * For shmat() with addr=0.
1444 *
1445 * Ugly calling convention alert:
1446 * Return value with the low bits set means error value,
1447 * ie
1448 * if (ret & ~PAGE_MASK)
1449 * error = ret;
1450 *
1451 * This function "knows" that -ENOMEM has the bits set.
1452 */
1453#ifndef HAVE_ARCH_UNMAPPED_AREA
1454unsigned long
1455arch_get_unmapped_area(struct file *filp, unsigned long addr,
1456 unsigned long len, unsigned long pgoff, unsigned long flags)
1457{
1458 struct mm_struct *mm = current->mm;
1459 struct vm_area_struct *vma;
1460 unsigned long start_addr;
1461
1462 if (len > TASK_SIZE)
1463 return -ENOMEM;
1464
1465 if (flags & MAP_FIXED)
1466 return addr;
1467
1468 if (addr) {
1469 addr = PAGE_ALIGN(addr);
1470 vma = find_vma(mm, addr);
1471 if (TASK_SIZE - len >= addr &&
1472 (!vma || addr + len <= vma->vm_start))
1473 return addr;
1474 }
1475 if (len > mm->cached_hole_size) {
1476 start_addr = addr = mm->free_area_cache;
1477 } else {
1478 start_addr = addr = TASK_UNMAPPED_BASE;
1479 mm->cached_hole_size = 0;
1480 }
1481
1482full_search:
1483 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1484 /* At this point: (!vma || addr < vma->vm_end). */
1485 if (TASK_SIZE - len < addr) {
1486 /*
1487 * Start a new search - just in case we missed
1488 * some holes.
1489 */
1490 if (start_addr != TASK_UNMAPPED_BASE) {
1491 addr = TASK_UNMAPPED_BASE;
1492 start_addr = addr;
1493 mm->cached_hole_size = 0;
1494 goto full_search;
1495 }
1496 return -ENOMEM;
1497 }
1498 if (!vma || addr + len <= vma->vm_start) {
1499 /*
1500 * Remember the place where we stopped the search:
1501 */
1502 mm->free_area_cache = addr + len;
1503 return addr;
1504 }
1505 if (addr + mm->cached_hole_size < vma->vm_start)
1506 mm->cached_hole_size = vma->vm_start - addr;
1507 addr = vma->vm_end;
1508 }
1509}
1510#endif
1511
1512void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1513{
1514 /*
1515 * Is this a new hole at the lowest possible address?
1516 */
1517 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1518 mm->free_area_cache = addr;
1519}
1520
1521/*
1522 * This mmap-allocator allocates new areas top-down from below the
1523 * stack's low limit (the base):
1524 */
1525#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1526unsigned long
1527arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1528 const unsigned long len, const unsigned long pgoff,
1529 const unsigned long flags)
1530{
1531 struct vm_area_struct *vma;
1532 struct mm_struct *mm = current->mm;
1533 unsigned long addr = addr0, start_addr;
1534
1535 /* requested length too big for entire address space */
1536 if (len > TASK_SIZE)
1537 return -ENOMEM;
1538
1539 if (flags & MAP_FIXED)
1540 return addr;
1541
1542 /* requesting a specific address */
1543 if (addr) {
1544 addr = PAGE_ALIGN(addr);
1545 vma = find_vma(mm, addr);
1546 if (TASK_SIZE - len >= addr &&
1547 (!vma || addr + len <= vma->vm_start))
1548 return addr;
1549 }
1550
1551 /* check if free_area_cache is useful for us */
1552 if (len <= mm->cached_hole_size) {
1553 mm->cached_hole_size = 0;
1554 mm->free_area_cache = mm->mmap_base;
1555 }
1556
1557try_again:
1558 /* either no address requested or can't fit in requested address hole */
1559 start_addr = addr = mm->free_area_cache;
1560
1561 if (addr < len)
1562 goto fail;
1563
1564 addr -= len;
1565 do {
1566 /*
1567 * Lookup failure means no vma is above this address,
1568 * else if new region fits below vma->vm_start,
1569 * return with success:
1570 */
1571 vma = find_vma(mm, addr);
1572 if (!vma || addr+len <= vma->vm_start)
1573 /* remember the address as a hint for next time */
1574 return (mm->free_area_cache = addr);
1575
1576 /* remember the largest hole we saw so far */
1577 if (addr + mm->cached_hole_size < vma->vm_start)
1578 mm->cached_hole_size = vma->vm_start - addr;
1579
1580 /* try just below the current vma->vm_start */
1581 addr = vma->vm_start-len;
1582 } while (len < vma->vm_start);
1583
1584fail:
1585 /*
1586 * if hint left us with no space for the requested
1587 * mapping then try again:
1588 *
1589 * Note: this is different with the case of bottomup
1590 * which does the fully line-search, but we use find_vma
1591 * here that causes some holes skipped.
1592 */
1593 if (start_addr != mm->mmap_base) {
1594 mm->free_area_cache = mm->mmap_base;
1595 mm->cached_hole_size = 0;
1596 goto try_again;
1597 }
1598
1599 /*
1600 * A failed mmap() very likely causes application failure,
1601 * so fall back to the bottom-up function here. This scenario
1602 * can happen with large stack limits and large mmap()
1603 * allocations.
1604 */
1605 mm->cached_hole_size = ~0UL;
1606 mm->free_area_cache = TASK_UNMAPPED_BASE;
1607 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1608 /*
1609 * Restore the topdown base:
1610 */
1611 mm->free_area_cache = mm->mmap_base;
1612 mm->cached_hole_size = ~0UL;
1613
1614 return addr;
1615}
1616#endif
1617
1618void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1619{
1620 /*
1621 * Is this a new hole at the highest possible address?
1622 */
1623 if (addr > mm->free_area_cache)
1624 mm->free_area_cache = addr;
1625
1626 /* dont allow allocations above current base */
1627 if (mm->free_area_cache > mm->mmap_base)
1628 mm->free_area_cache = mm->mmap_base;
1629}
1630
1631unsigned long
1632get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1633 unsigned long pgoff, unsigned long flags)
1634{
1635 unsigned long (*get_area)(struct file *, unsigned long,
1636 unsigned long, unsigned long, unsigned long);
1637
1638 unsigned long error = arch_mmap_check(addr, len, flags);
1639 if (error)
1640 return error;
1641
1642 /* Careful about overflows.. */
1643 if (len > TASK_SIZE)
1644 return -ENOMEM;
1645
1646 get_area = current->mm->get_unmapped_area;
1647 if (file && file->f_op && file->f_op->get_unmapped_area)
1648 get_area = file->f_op->get_unmapped_area;
1649 addr = get_area(file, addr, len, pgoff, flags);
1650 if (IS_ERR_VALUE(addr))
1651 return addr;
1652
1653 if (addr > TASK_SIZE - len)
1654 return -ENOMEM;
1655 if (addr & ~PAGE_MASK)
1656 return -EINVAL;
1657
1658 return arch_rebalance_pgtables(addr, len);
1659}
1660
1661EXPORT_SYMBOL(get_unmapped_area);
1662
1663/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1664struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1665{
1666 struct vm_area_struct *vma = NULL;
1667
1668 if (mm) {
1669 /* Check the cache first. */
1670 /* (Cache hit rate is typically around 35%.) */
1671 vma = ACCESS_ONCE(mm->mmap_cache);
1672 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1673 struct rb_node * rb_node;
1674
1675 rb_node = mm->mm_rb.rb_node;
1676 vma = NULL;
1677
1678 while (rb_node) {
1679 struct vm_area_struct * vma_tmp;
1680
1681 vma_tmp = rb_entry(rb_node,
1682 struct vm_area_struct, vm_rb);
1683
1684 if (vma_tmp->vm_end > addr) {
1685 vma = vma_tmp;
1686 if (vma_tmp->vm_start <= addr)
1687 break;
1688 rb_node = rb_node->rb_left;
1689 } else
1690 rb_node = rb_node->rb_right;
1691 }
1692 if (vma)
1693 mm->mmap_cache = vma;
1694 }
1695 }
1696 return vma;
1697}
1698
1699EXPORT_SYMBOL(find_vma);
1700
1701/*
1702 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1703 */
1704struct vm_area_struct *
1705find_vma_prev(struct mm_struct *mm, unsigned long addr,
1706 struct vm_area_struct **pprev)
1707{
1708 struct vm_area_struct *vma;
1709
1710 vma = find_vma(mm, addr);
1711 if (vma) {
1712 *pprev = vma->vm_prev;
1713 } else {
1714 struct rb_node *rb_node = mm->mm_rb.rb_node;
1715 *pprev = NULL;
1716 while (rb_node) {
1717 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1718 rb_node = rb_node->rb_right;
1719 }
1720 }
1721 return vma;
1722}
1723
1724/*
1725 * Verify that the stack growth is acceptable and
1726 * update accounting. This is shared with both the
1727 * grow-up and grow-down cases.
1728 */
1729static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1730{
1731 struct mm_struct *mm = vma->vm_mm;
1732 struct rlimit *rlim = current->signal->rlim;
1733 unsigned long new_start, actual_size;
1734
1735 /* address space limit tests */
1736 if (!may_expand_vm(mm, grow))
1737 return -ENOMEM;
1738
1739 /* Stack limit test */
1740 actual_size = size;
1741 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1742 actual_size -= PAGE_SIZE;
1743 if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1744 return -ENOMEM;
1745
1746 /* mlock limit tests */
1747 if (vma->vm_flags & VM_LOCKED) {
1748 unsigned long locked;
1749 unsigned long limit;
1750 locked = mm->locked_vm + grow;
1751 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1752 limit >>= PAGE_SHIFT;
1753 if (locked > limit && !capable(CAP_IPC_LOCK))
1754 return -ENOMEM;
1755 }
1756
1757 /* Check to ensure the stack will not grow into a hugetlb-only region */
1758 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1759 vma->vm_end - size;
1760 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1761 return -EFAULT;
1762
1763 /*
1764 * Overcommit.. This must be the final test, as it will
1765 * update security statistics.
1766 */
1767 if (security_vm_enough_memory_mm(mm, grow))
1768 return -ENOMEM;
1769
1770 /* Ok, everything looks good - let it rip */
1771 mm->total_vm += grow;
1772 if (vma->vm_flags & VM_LOCKED)
1773 mm->locked_vm += grow;
1774 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1775 return 0;
1776}
1777
1778#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1779/*
1780 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1781 * vma is the last one with address > vma->vm_end. Have to extend vma.
1782 */
1783int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1784{
1785 int error;
1786
1787 if (!(vma->vm_flags & VM_GROWSUP))
1788 return -EFAULT;
1789
1790 /*
1791 * We must make sure the anon_vma is allocated
1792 * so that the anon_vma locking is not a noop.
1793 */
1794 if (unlikely(anon_vma_prepare(vma)))
1795 return -ENOMEM;
1796 vma_lock_anon_vma(vma);
1797
1798 /*
1799 * vma->vm_start/vm_end cannot change under us because the caller
1800 * is required to hold the mmap_sem in read mode. We need the
1801 * anon_vma lock to serialize against concurrent expand_stacks.
1802 * Also guard against wrapping around to address 0.
1803 */
1804 if (address < PAGE_ALIGN(address+4))
1805 address = PAGE_ALIGN(address+4);
1806 else {
1807 vma_unlock_anon_vma(vma);
1808 return -ENOMEM;
1809 }
1810 error = 0;
1811
1812 /* Somebody else might have raced and expanded it already */
1813 if (address > vma->vm_end) {
1814 unsigned long size, grow;
1815
1816 size = address - vma->vm_start;
1817 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1818
1819 error = -ENOMEM;
1820 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1821 error = acct_stack_growth(vma, size, grow);
1822 if (!error) {
1823 vma->vm_end = address;
1824 perf_event_mmap(vma);
1825 }
1826 }
1827 }
1828 vma_unlock_anon_vma(vma);
1829 khugepaged_enter_vma_merge(vma, vma->vm_flags);
1830 return error;
1831}
1832#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1833
1834/*
1835 * vma is the first one with address < vma->vm_start. Have to extend vma.
1836 */
1837int expand_downwards(struct vm_area_struct *vma,
1838 unsigned long address)
1839{
1840 int error;
1841
1842 /*
1843 * We must make sure the anon_vma is allocated
1844 * so that the anon_vma locking is not a noop.
1845 */
1846 if (unlikely(anon_vma_prepare(vma)))
1847 return -ENOMEM;
1848
1849 address &= PAGE_MASK;
1850 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1851 if (error)
1852 return error;
1853
1854 vma_lock_anon_vma(vma);
1855
1856 /*
1857 * vma->vm_start/vm_end cannot change under us because the caller
1858 * is required to hold the mmap_sem in read mode. We need the
1859 * anon_vma lock to serialize against concurrent expand_stacks.
1860 */
1861
1862 /* Somebody else might have raced and expanded it already */
1863 if (address < vma->vm_start) {
1864 unsigned long size, grow;
1865
1866 size = vma->vm_end - address;
1867 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1868
1869 error = -ENOMEM;
1870 if (grow <= vma->vm_pgoff) {
1871 error = acct_stack_growth(vma, size, grow);
1872 if (!error) {
1873 vma->vm_start = address;
1874 vma->vm_pgoff -= grow;
1875 perf_event_mmap(vma);
1876 }
1877 }
1878 }
1879 vma_unlock_anon_vma(vma);
1880 khugepaged_enter_vma_merge(vma, vma->vm_flags);
1881 return error;
1882}
1883
1884/*
1885 * Note how expand_stack() refuses to expand the stack all the way to
1886 * abut the next virtual mapping, *unless* that mapping itself is also
1887 * a stack mapping. We want to leave room for a guard page, after all
1888 * (the guard page itself is not added here, that is done by the
1889 * actual page faulting logic)
1890 *
1891 * This matches the behavior of the guard page logic (see mm/memory.c:
1892 * check_stack_guard_page()), which only allows the guard page to be
1893 * removed under these circumstances.
1894 */
1895#ifdef CONFIG_STACK_GROWSUP
1896int expand_stack(struct vm_area_struct *vma, unsigned long address)
1897{
1898 struct vm_area_struct *next;
1899
1900 address &= PAGE_MASK;
1901 next = vma->vm_next;
1902 if (next && next->vm_start == address + PAGE_SIZE) {
1903 if (!(next->vm_flags & VM_GROWSUP))
1904 return -ENOMEM;
1905 }
1906 return expand_upwards(vma, address);
1907}
1908
1909struct vm_area_struct *
1910find_extend_vma(struct mm_struct *mm, unsigned long addr)
1911{
1912 struct vm_area_struct *vma, *prev;
1913
1914 addr &= PAGE_MASK;
1915 vma = find_vma_prev(mm, addr, &prev);
1916 if (vma && (vma->vm_start <= addr))
1917 return vma;
1918 if (!prev || expand_stack(prev, addr))
1919 return NULL;
1920 if (prev->vm_flags & VM_LOCKED) {
1921 mlock_vma_pages_range(prev, addr, prev->vm_end);
1922 }
1923 return prev;
1924}
1925#else
1926int expand_stack(struct vm_area_struct *vma, unsigned long address)
1927{
1928 struct vm_area_struct *prev;
1929
1930 address &= PAGE_MASK;
1931 prev = vma->vm_prev;
1932 if (prev && prev->vm_end == address) {
1933 if (!(prev->vm_flags & VM_GROWSDOWN))
1934 return -ENOMEM;
1935 }
1936 return expand_downwards(vma, address);
1937}
1938
1939struct vm_area_struct *
1940find_extend_vma(struct mm_struct * mm, unsigned long addr)
1941{
1942 struct vm_area_struct * vma;
1943 unsigned long start;
1944
1945 addr &= PAGE_MASK;
1946 vma = find_vma(mm,addr);
1947 if (!vma)
1948 return NULL;
1949 if (vma->vm_start <= addr)
1950 return vma;
1951 if (!(vma->vm_flags & VM_GROWSDOWN))
1952 return NULL;
1953 start = vma->vm_start;
1954 if (expand_stack(vma, addr))
1955 return NULL;
1956 if (vma->vm_flags & VM_LOCKED) {
1957 mlock_vma_pages_range(vma, addr, start);
1958 }
1959 return vma;
1960}
1961#endif
1962
1963/*
1964 * Ok - we have the memory areas we should free on the vma list,
1965 * so release them, and do the vma updates.
1966 *
1967 * Called with the mm semaphore held.
1968 */
1969static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1970{
1971 /* Update high watermark before we lower total_vm */
1972 update_hiwater_vm(mm);
1973 do {
1974 long nrpages = vma_pages(vma);
1975
1976 mm->total_vm -= nrpages;
1977 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1978 vma = remove_vma(vma);
1979 } while (vma);
1980 validate_mm(mm);
1981}
1982
1983/*
1984 * Get rid of page table information in the indicated region.
1985 *
1986 * Called with the mm semaphore held.
1987 */
1988static void unmap_region(struct mm_struct *mm,
1989 struct vm_area_struct *vma, struct vm_area_struct *prev,
1990 unsigned long start, unsigned long end)
1991{
1992 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1993 struct mmu_gather tlb;
1994 unsigned long nr_accounted = 0;
1995
1996 lru_add_drain();
1997 tlb_gather_mmu(&tlb, mm, 0);
1998 update_hiwater_rss(mm);
1999 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
2000 vm_unacct_memory(nr_accounted);
2001 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2002 next ? next->vm_start : USER_PGTABLES_CEILING);
2003 tlb_finish_mmu(&tlb, start, end);
2004}
2005
2006/*
2007 * Create a list of vma's touched by the unmap, removing them from the mm's
2008 * vma list as we go..
2009 */
2010static void
2011detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2012 struct vm_area_struct *prev, unsigned long end)
2013{
2014 struct vm_area_struct **insertion_point;
2015 struct vm_area_struct *tail_vma = NULL;
2016 unsigned long addr;
2017
2018 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2019 vma->vm_prev = NULL;
2020 do {
2021 rb_erase(&vma->vm_rb, &mm->mm_rb);
2022 mm->map_count--;
2023 tail_vma = vma;
2024 vma = vma->vm_next;
2025 } while (vma && vma->vm_start < end);
2026 *insertion_point = vma;
2027 if (vma)
2028 vma->vm_prev = prev;
2029 tail_vma->vm_next = NULL;
2030 if (mm->unmap_area == arch_unmap_area)
2031 addr = prev ? prev->vm_end : mm->mmap_base;
2032 else
2033 addr = vma ? vma->vm_start : mm->mmap_base;
2034 mm->unmap_area(mm, addr);
2035 mm->mmap_cache = NULL; /* Kill the cache. */
2036}
2037
2038/*
2039 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2040 * munmap path where it doesn't make sense to fail.
2041 */
2042static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2043 unsigned long addr, int new_below)
2044{
2045 struct mempolicy *pol;
2046 struct vm_area_struct *new;
2047 int err = -ENOMEM;
2048
2049 if (is_vm_hugetlb_page(vma) && (addr &
2050 ~(huge_page_mask(hstate_vma(vma)))))
2051 return -EINVAL;
2052
2053 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2054 if (!new)
2055 goto out_err;
2056
2057 /* most fields are the same, copy all, and then fixup */
2058 *new = *vma;
2059
2060 INIT_LIST_HEAD(&new->anon_vma_chain);
2061
2062 if (new_below)
2063 new->vm_end = addr;
2064 else {
2065 new->vm_start = addr;
2066 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2067 }
2068
2069 pol = mpol_dup(vma_policy(vma));
2070 if (IS_ERR(pol)) {
2071 err = PTR_ERR(pol);
2072 goto out_free_vma;
2073 }
2074 vma_set_policy(new, pol);
2075
2076 if (anon_vma_clone(new, vma))
2077 goto out_free_mpol;
2078
2079 if (new->vm_file) {
2080 get_file(new->vm_file);
2081 if (vma->vm_flags & VM_EXECUTABLE)
2082 added_exe_file_vma(mm);
2083 }
2084
2085 if (new->vm_ops && new->vm_ops->open)
2086 new->vm_ops->open(new);
2087
2088 if (new_below)
2089 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2090 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2091 else
2092 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2093
2094 /* Success. */
2095 if (!err)
2096 return 0;
2097
2098 /* Clean everything up if vma_adjust failed. */
2099 if (new->vm_ops && new->vm_ops->close)
2100 new->vm_ops->close(new);
2101 if (new->vm_file) {
2102 if (vma->vm_flags & VM_EXECUTABLE)
2103 removed_exe_file_vma(mm);
2104 fput(new->vm_file);
2105 }
2106 unlink_anon_vmas(new);
2107 out_free_mpol:
2108 mpol_put(pol);
2109 out_free_vma:
2110 kmem_cache_free(vm_area_cachep, new);
2111 out_err:
2112 return err;
2113}
2114
2115/*
2116 * Split a vma into two pieces at address 'addr', a new vma is allocated
2117 * either for the first part or the tail.
2118 */
2119int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2120 unsigned long addr, int new_below)
2121{
2122 if (mm->map_count >= sysctl_max_map_count)
2123 return -ENOMEM;
2124
2125 return __split_vma(mm, vma, addr, new_below);
2126}
2127
2128/* Munmap is split into 2 main parts -- this part which finds
2129 * what needs doing, and the areas themselves, which do the
2130 * work. This now handles partial unmappings.
2131 * Jeremy Fitzhardinge <jeremy@goop.org>
2132 */
2133int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2134{
2135 unsigned long end;
2136 struct vm_area_struct *vma, *prev, *last;
2137
2138 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2139 return -EINVAL;
2140
2141 if ((len = PAGE_ALIGN(len)) == 0)
2142 return -EINVAL;
2143
2144 /* Find the first overlapping VMA */
2145 vma = find_vma(mm, start);
2146 if (!vma)
2147 return 0;
2148 prev = vma->vm_prev;
2149 /* we have start < vma->vm_end */
2150
2151 /* if it doesn't overlap, we have nothing.. */
2152 end = start + len;
2153 if (vma->vm_start >= end)
2154 return 0;
2155
2156 /*
2157 * If we need to split any vma, do it now to save pain later.
2158 *
2159 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2160 * unmapped vm_area_struct will remain in use: so lower split_vma
2161 * places tmp vma above, and higher split_vma places tmp vma below.
2162 */
2163 if (start > vma->vm_start) {
2164 int error;
2165
2166 /*
2167 * Make sure that map_count on return from munmap() will
2168 * not exceed its limit; but let map_count go just above
2169 * its limit temporarily, to help free resources as expected.
2170 */
2171 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2172 return -ENOMEM;
2173
2174 error = __split_vma(mm, vma, start, 0);
2175 if (error)
2176 return error;
2177 prev = vma;
2178 }
2179
2180 /* Does it split the last one? */
2181 last = find_vma(mm, end);
2182 if (last && end > last->vm_start) {
2183 int error = __split_vma(mm, last, end, 1);
2184 if (error)
2185 return error;
2186 }
2187 vma = prev? prev->vm_next: mm->mmap;
2188
2189 /*
2190 * unlock any mlock()ed ranges before detaching vmas
2191 */
2192 if (mm->locked_vm) {
2193 struct vm_area_struct *tmp = vma;
2194 while (tmp && tmp->vm_start < end) {
2195 if (tmp->vm_flags & VM_LOCKED) {
2196 mm->locked_vm -= vma_pages(tmp);
2197 munlock_vma_pages_all(tmp);
2198 }
2199 tmp = tmp->vm_next;
2200 }
2201 }
2202
2203 /*
2204 * Remove the vma's, and unmap the actual pages
2205 */
2206 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2207 unmap_region(mm, vma, prev, start, end);
2208
2209 /* Fix up all other VM information */
2210 remove_vma_list(mm, vma);
2211
2212 return 0;
2213}
2214EXPORT_SYMBOL(do_munmap);
2215
2216int vm_munmap(unsigned long start, size_t len)
2217{
2218 int ret;
2219 struct mm_struct *mm = current->mm;
2220
2221 down_write(&mm->mmap_sem);
2222 ret = do_munmap(mm, start, len);
2223 up_write(&mm->mmap_sem);
2224 return ret;
2225}
2226EXPORT_SYMBOL(vm_munmap);
2227
2228SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2229{
2230 profile_munmap(addr);
2231 return vm_munmap(addr, len);
2232}
2233
2234static inline void verify_mm_writelocked(struct mm_struct *mm)
2235{
2236#ifdef CONFIG_DEBUG_VM
2237 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2238 WARN_ON(1);
2239 up_read(&mm->mmap_sem);
2240 }
2241#endif
2242}
2243
2244/*
2245 * this is really a simplified "do_mmap". it only handles
2246 * anonymous maps. eventually we may be able to do some
2247 * brk-specific accounting here.
2248 */
2249static unsigned long do_brk(unsigned long addr, unsigned long len)
2250{
2251 struct mm_struct * mm = current->mm;
2252 struct vm_area_struct * vma, * prev;
2253 unsigned long flags;
2254 struct rb_node ** rb_link, * rb_parent;
2255 pgoff_t pgoff = addr >> PAGE_SHIFT;
2256 int error;
2257
2258 len = PAGE_ALIGN(len);
2259 if (!len)
2260 return addr;
2261
2262 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2263 if (error)
2264 return error;
2265
2266 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2267
2268 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2269 if (error & ~PAGE_MASK)
2270 return error;
2271
2272 /*
2273 * mlock MCL_FUTURE?
2274 */
2275 if (mm->def_flags & VM_LOCKED) {
2276 unsigned long locked, lock_limit;
2277 locked = len >> PAGE_SHIFT;
2278 locked += mm->locked_vm;
2279 lock_limit = rlimit(RLIMIT_MEMLOCK);
2280 lock_limit >>= PAGE_SHIFT;
2281 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2282 return -EAGAIN;
2283 }
2284
2285 /*
2286 * mm->mmap_sem is required to protect against another thread
2287 * changing the mappings in case we sleep.
2288 */
2289 verify_mm_writelocked(mm);
2290
2291 /*
2292 * Clear old maps. this also does some error checking for us
2293 */
2294 munmap_back:
2295 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2296 if (vma && vma->vm_start < addr + len) {
2297 if (do_munmap(mm, addr, len))
2298 return -ENOMEM;
2299 goto munmap_back;
2300 }
2301
2302 /* Check against address space limits *after* clearing old maps... */
2303 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2304 return -ENOMEM;
2305
2306 if (mm->map_count > sysctl_max_map_count)
2307 return -ENOMEM;
2308
2309 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2310 return -ENOMEM;
2311
2312 /* Can we just expand an old private anonymous mapping? */
2313 vma = vma_merge(mm, prev, addr, addr + len, flags,
2314 NULL, NULL, pgoff, NULL);
2315 if (vma)
2316 goto out;
2317
2318 /*
2319 * create a vma struct for an anonymous mapping
2320 */
2321 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2322 if (!vma) {
2323 vm_unacct_memory(len >> PAGE_SHIFT);
2324 return -ENOMEM;
2325 }
2326
2327 INIT_LIST_HEAD(&vma->anon_vma_chain);
2328 vma->vm_mm = mm;
2329 vma->vm_start = addr;
2330 vma->vm_end = addr + len;
2331 vma->vm_pgoff = pgoff;
2332 vma->vm_flags = flags;
2333 vma->vm_page_prot = vm_get_page_prot(flags);
2334 vma_link(mm, vma, prev, rb_link, rb_parent);
2335out:
2336 perf_event_mmap(vma);
2337 mm->total_vm += len >> PAGE_SHIFT;
2338 if (flags & VM_LOCKED) {
2339 if (!mlock_vma_pages_range(vma, addr, addr + len))
2340 mm->locked_vm += (len >> PAGE_SHIFT);
2341 }
2342 return addr;
2343}
2344
2345unsigned long vm_brk(unsigned long addr, unsigned long len)
2346{
2347 struct mm_struct *mm = current->mm;
2348 unsigned long ret;
2349
2350 down_write(&mm->mmap_sem);
2351 ret = do_brk(addr, len);
2352 up_write(&mm->mmap_sem);
2353 return ret;
2354}
2355EXPORT_SYMBOL(vm_brk);
2356
2357/* Release all mmaps. */
2358void exit_mmap(struct mm_struct *mm)
2359{
2360 struct mmu_gather tlb;
2361 struct vm_area_struct *vma;
2362 unsigned long nr_accounted = 0;
2363
2364 /* mm's last user has gone, and its about to be pulled down */
2365 mmu_notifier_release(mm);
2366
2367 if (mm->locked_vm) {
2368 vma = mm->mmap;
2369 while (vma) {
2370 if (vma->vm_flags & VM_LOCKED)
2371 munlock_vma_pages_all(vma);
2372 vma = vma->vm_next;
2373 }
2374 }
2375
2376 arch_exit_mmap(mm);
2377
2378 vma = mm->mmap;
2379 if (!vma) /* Can happen if dup_mmap() received an OOM */
2380 return;
2381
2382 lru_add_drain();
2383 flush_cache_mm(mm);
2384 tlb_gather_mmu(&tlb, mm, 1);
2385 /* update_hiwater_rss(mm) here? but nobody should be looking */
2386 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2387 unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2388 vm_unacct_memory(nr_accounted);
2389
2390 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2391 tlb_finish_mmu(&tlb, 0, -1);
2392
2393 /*
2394 * Walk the list again, actually closing and freeing it,
2395 * with preemption enabled, without holding any MM locks.
2396 */
2397 while (vma)
2398 vma = remove_vma(vma);
2399
2400 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2401}
2402
2403/* Insert vm structure into process list sorted by address
2404 * and into the inode's i_mmap tree. If vm_file is non-NULL
2405 * then i_mmap_mutex is taken here.
2406 */
2407int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2408{
2409 struct vm_area_struct * __vma, * prev;
2410 struct rb_node ** rb_link, * rb_parent;
2411
2412 /*
2413 * The vm_pgoff of a purely anonymous vma should be irrelevant
2414 * until its first write fault, when page's anon_vma and index
2415 * are set. But now set the vm_pgoff it will almost certainly
2416 * end up with (unless mremap moves it elsewhere before that
2417 * first wfault), so /proc/pid/maps tells a consistent story.
2418 *
2419 * By setting it to reflect the virtual start address of the
2420 * vma, merges and splits can happen in a seamless way, just
2421 * using the existing file pgoff checks and manipulations.
2422 * Similarly in do_mmap_pgoff and in do_brk.
2423 */
2424 if (!vma->vm_file) {
2425 BUG_ON(vma->anon_vma);
2426 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2427 }
2428 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2429 if (__vma && __vma->vm_start < vma->vm_end)
2430 return -ENOMEM;
2431 if ((vma->vm_flags & VM_ACCOUNT) &&
2432 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2433 return -ENOMEM;
2434 vma_link(mm, vma, prev, rb_link, rb_parent);
2435 return 0;
2436}
2437
2438/*
2439 * Copy the vma structure to a new location in the same mm,
2440 * prior to moving page table entries, to effect an mremap move.
2441 */
2442struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2443 unsigned long addr, unsigned long len, pgoff_t pgoff)
2444{
2445 struct vm_area_struct *vma = *vmap;
2446 unsigned long vma_start = vma->vm_start;
2447 struct mm_struct *mm = vma->vm_mm;
2448 struct vm_area_struct *new_vma, *prev;
2449 struct rb_node **rb_link, *rb_parent;
2450 struct mempolicy *pol;
2451 bool faulted_in_anon_vma = true;
2452
2453 /*
2454 * If anonymous vma has not yet been faulted, update new pgoff
2455 * to match new location, to increase its chance of merging.
2456 */
2457 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2458 pgoff = addr >> PAGE_SHIFT;
2459 faulted_in_anon_vma = false;
2460 }
2461
2462 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2463 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2464 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2465 if (new_vma) {
2466 /*
2467 * Source vma may have been merged into new_vma
2468 */
2469 if (unlikely(vma_start >= new_vma->vm_start &&
2470 vma_start < new_vma->vm_end)) {
2471 /*
2472 * The only way we can get a vma_merge with
2473 * self during an mremap is if the vma hasn't
2474 * been faulted in yet and we were allowed to
2475 * reset the dst vma->vm_pgoff to the
2476 * destination address of the mremap to allow
2477 * the merge to happen. mremap must change the
2478 * vm_pgoff linearity between src and dst vmas
2479 * (in turn preventing a vma_merge) to be
2480 * safe. It is only safe to keep the vm_pgoff
2481 * linear if there are no pages mapped yet.
2482 */
2483 VM_BUG_ON(faulted_in_anon_vma);
2484 *vmap = new_vma;
2485 } else
2486 anon_vma_moveto_tail(new_vma);
2487 } else {
2488 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2489 if (new_vma) {
2490 *new_vma = *vma;
2491 pol = mpol_dup(vma_policy(vma));
2492 if (IS_ERR(pol))
2493 goto out_free_vma;
2494 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2495 if (anon_vma_clone(new_vma, vma))
2496 goto out_free_mempol;
2497 vma_set_policy(new_vma, pol);
2498 new_vma->vm_start = addr;
2499 new_vma->vm_end = addr + len;
2500 new_vma->vm_pgoff = pgoff;
2501 if (new_vma->vm_file) {
2502 get_file(new_vma->vm_file);
2503 if (vma->vm_flags & VM_EXECUTABLE)
2504 added_exe_file_vma(mm);
2505 }
2506 if (new_vma->vm_ops && new_vma->vm_ops->open)
2507 new_vma->vm_ops->open(new_vma);
2508 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2509 }
2510 }
2511 return new_vma;
2512
2513 out_free_mempol:
2514 mpol_put(pol);
2515 out_free_vma:
2516 kmem_cache_free(vm_area_cachep, new_vma);
2517 return NULL;
2518}
2519
2520/*
2521 * Return true if the calling process may expand its vm space by the passed
2522 * number of pages
2523 */
2524int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2525{
2526 unsigned long cur = mm->total_vm; /* pages */
2527 unsigned long lim;
2528
2529 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2530
2531 if (cur + npages > lim)
2532 return 0;
2533 return 1;
2534}
2535
2536
2537static int special_mapping_fault(struct vm_area_struct *vma,
2538 struct vm_fault *vmf)
2539{
2540 pgoff_t pgoff;
2541 struct page **pages;
2542
2543 /*
2544 * special mappings have no vm_file, and in that case, the mm
2545 * uses vm_pgoff internally. So we have to subtract it from here.
2546 * We are allowed to do this because we are the mm; do not copy
2547 * this code into drivers!
2548 */
2549 pgoff = vmf->pgoff - vma->vm_pgoff;
2550
2551 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2552 pgoff--;
2553
2554 if (*pages) {
2555 struct page *page = *pages;
2556 get_page(page);
2557 vmf->page = page;
2558 return 0;
2559 }
2560
2561 return VM_FAULT_SIGBUS;
2562}
2563
2564/*
2565 * Having a close hook prevents vma merging regardless of flags.
2566 */
2567static void special_mapping_close(struct vm_area_struct *vma)
2568{
2569}
2570
2571static const struct vm_operations_struct special_mapping_vmops = {
2572 .close = special_mapping_close,
2573 .fault = special_mapping_fault,
2574};
2575
2576/*
2577 * Called with mm->mmap_sem held for writing.
2578 * Insert a new vma covering the given region, with the given flags.
2579 * Its pages are supplied by the given array of struct page *.
2580 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2581 * The region past the last page supplied will always produce SIGBUS.
2582 * The array pointer and the pages it points to are assumed to stay alive
2583 * for as long as this mapping might exist.
2584 */
2585int install_special_mapping(struct mm_struct *mm,
2586 unsigned long addr, unsigned long len,
2587 unsigned long vm_flags, struct page **pages)
2588{
2589 int ret;
2590 struct vm_area_struct *vma;
2591
2592 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2593 if (unlikely(vma == NULL))
2594 return -ENOMEM;
2595
2596 INIT_LIST_HEAD(&vma->anon_vma_chain);
2597 vma->vm_mm = mm;
2598 vma->vm_start = addr;
2599 vma->vm_end = addr + len;
2600
2601 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2602 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2603
2604 vma->vm_ops = &special_mapping_vmops;
2605 vma->vm_private_data = pages;
2606
2607 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2608 if (ret)
2609 goto out;
2610
2611 ret = insert_vm_struct(mm, vma);
2612 if (ret)
2613 goto out;
2614
2615 mm->total_vm += len >> PAGE_SHIFT;
2616
2617 perf_event_mmap(vma);
2618
2619 return 0;
2620
2621out:
2622 kmem_cache_free(vm_area_cachep, vma);
2623 return ret;
2624}
2625
2626static DEFINE_MUTEX(mm_all_locks_mutex);
2627
2628static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2629{
2630 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2631 /*
2632 * The LSB of head.next can't change from under us
2633 * because we hold the mm_all_locks_mutex.
2634 */
2635 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2636 /*
2637 * We can safely modify head.next after taking the
2638 * anon_vma->root->mutex. If some other vma in this mm shares
2639 * the same anon_vma we won't take it again.
2640 *
2641 * No need of atomic instructions here, head.next
2642 * can't change from under us thanks to the
2643 * anon_vma->root->mutex.
2644 */
2645 if (__test_and_set_bit(0, (unsigned long *)
2646 &anon_vma->root->head.next))
2647 BUG();
2648 }
2649}
2650
2651static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2652{
2653 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2654 /*
2655 * AS_MM_ALL_LOCKS can't change from under us because
2656 * we hold the mm_all_locks_mutex.
2657 *
2658 * Operations on ->flags have to be atomic because
2659 * even if AS_MM_ALL_LOCKS is stable thanks to the
2660 * mm_all_locks_mutex, there may be other cpus
2661 * changing other bitflags in parallel to us.
2662 */
2663 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2664 BUG();
2665 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2666 }
2667}
2668
2669/*
2670 * This operation locks against the VM for all pte/vma/mm related
2671 * operations that could ever happen on a certain mm. This includes
2672 * vmtruncate, try_to_unmap, and all page faults.
2673 *
2674 * The caller must take the mmap_sem in write mode before calling
2675 * mm_take_all_locks(). The caller isn't allowed to release the
2676 * mmap_sem until mm_drop_all_locks() returns.
2677 *
2678 * mmap_sem in write mode is required in order to block all operations
2679 * that could modify pagetables and free pages without need of
2680 * altering the vma layout (for example populate_range() with
2681 * nonlinear vmas). It's also needed in write mode to avoid new
2682 * anon_vmas to be associated with existing vmas.
2683 *
2684 * A single task can't take more than one mm_take_all_locks() in a row
2685 * or it would deadlock.
2686 *
2687 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2688 * mapping->flags avoid to take the same lock twice, if more than one
2689 * vma in this mm is backed by the same anon_vma or address_space.
2690 *
2691 * We can take all the locks in random order because the VM code
2692 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2693 * takes more than one of them in a row. Secondly we're protected
2694 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2695 *
2696 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2697 * that may have to take thousand of locks.
2698 *
2699 * mm_take_all_locks() can fail if it's interrupted by signals.
2700 */
2701int mm_take_all_locks(struct mm_struct *mm)
2702{
2703 struct vm_area_struct *vma;
2704 struct anon_vma_chain *avc;
2705
2706 BUG_ON(down_read_trylock(&mm->mmap_sem));
2707
2708 mutex_lock(&mm_all_locks_mutex);
2709
2710 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2711 if (signal_pending(current))
2712 goto out_unlock;
2713 if (vma->vm_file && vma->vm_file->f_mapping)
2714 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2715 }
2716
2717 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2718 if (signal_pending(current))
2719 goto out_unlock;
2720 if (vma->anon_vma)
2721 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2722 vm_lock_anon_vma(mm, avc->anon_vma);
2723 }
2724
2725 return 0;
2726
2727out_unlock:
2728 mm_drop_all_locks(mm);
2729 return -EINTR;
2730}
2731
2732static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2733{
2734 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2735 /*
2736 * The LSB of head.next can't change to 0 from under
2737 * us because we hold the mm_all_locks_mutex.
2738 *
2739 * We must however clear the bitflag before unlocking
2740 * the vma so the users using the anon_vma->head will
2741 * never see our bitflag.
2742 *
2743 * No need of atomic instructions here, head.next
2744 * can't change from under us until we release the
2745 * anon_vma->root->mutex.
2746 */
2747 if (!__test_and_clear_bit(0, (unsigned long *)
2748 &anon_vma->root->head.next))
2749 BUG();
2750 anon_vma_unlock(anon_vma);
2751 }
2752}
2753
2754static void vm_unlock_mapping(struct address_space *mapping)
2755{
2756 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2757 /*
2758 * AS_MM_ALL_LOCKS can't change to 0 from under us
2759 * because we hold the mm_all_locks_mutex.
2760 */
2761 mutex_unlock(&mapping->i_mmap_mutex);
2762 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2763 &mapping->flags))
2764 BUG();
2765 }
2766}
2767
2768/*
2769 * The mmap_sem cannot be released by the caller until
2770 * mm_drop_all_locks() returns.
2771 */
2772void mm_drop_all_locks(struct mm_struct *mm)
2773{
2774 struct vm_area_struct *vma;
2775 struct anon_vma_chain *avc;
2776
2777 BUG_ON(down_read_trylock(&mm->mmap_sem));
2778 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2779
2780 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2781 if (vma->anon_vma)
2782 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2783 vm_unlock_anon_vma(avc->anon_vma);
2784 if (vma->vm_file && vma->vm_file->f_mapping)
2785 vm_unlock_mapping(vma->vm_file->f_mapping);
2786 }
2787
2788 mutex_unlock(&mm_all_locks_mutex);
2789}
2790
2791/*
2792 * initialise the VMA slab
2793 */
2794void __init mmap_init(void)
2795{
2796 int ret;
2797
2798 ret = percpu_counter_init(&vm_committed_as, 0);
2799 VM_BUG_ON(ret);
2800}