blob: 461932286680e6898dda7f576fd99fd56fb93307 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80#define pr_fmt(fmt) "UDP: " fmt
81
82#include <asm/uaccess.h>
83#include <asm/ioctls.h>
84#include <linux/bootmem.h>
85#include <linux/highmem.h>
86#include <linux/swap.h>
87#include <linux/types.h>
88#include <linux/fcntl.h>
89#include <linux/module.h>
90#include <linux/socket.h>
91#include <linux/sockios.h>
92#include <linux/igmp.h>
93#include <linux/in.h>
94#include <linux/errno.h>
95#include <linux/timer.h>
96#include <linux/mm.h>
97#include <linux/inet.h>
98#include <linux/netdevice.h>
99#include <linux/slab.h>
100#include <net/tcp_states.h>
101#include <linux/skbuff.h>
102#include <linux/proc_fs.h>
103#include <linux/seq_file.h>
104#include <net/net_namespace.h>
105#include <net/icmp.h>
106#include <net/route.h>
107#include <net/checksum.h>
108#include <net/xfrm.h>
109#include <trace/events/udp.h>
110#include "udp_impl.h"
111
112#include <net/netfilter/nf_conntrack.h>
113#include <net/SI/fast_common.h>
114
115
116struct udp_table udp_table __read_mostly;
117EXPORT_SYMBOL(udp_table);
118
119long sysctl_udp_mem[3] __read_mostly;
120EXPORT_SYMBOL(sysctl_udp_mem);
121
122int sysctl_udp_rmem_min __read_mostly;
123EXPORT_SYMBOL(sysctl_udp_rmem_min);
124
125int sysctl_udp_wmem_min __read_mostly;
126EXPORT_SYMBOL(sysctl_udp_wmem_min);
127
128atomic_long_t udp_memory_allocated;
129EXPORT_SYMBOL(udp_memory_allocated);
130
131#define MAX_UDP_PORTS 65536
132#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133
134static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 const struct udp_hslot *hslot,
136 unsigned long *bitmap,
137 struct sock *sk,
138 int (*saddr_comp)(const struct sock *sk1,
139 const struct sock *sk2),
140 unsigned int log)
141{
142 struct sock *sk2;
143 struct hlist_nulls_node *node;
144
145 sk_nulls_for_each(sk2, node, &hslot->head)
146 if (net_eq(sock_net(sk2), net) &&
147 sk2 != sk &&
148 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
149 (!sk2->sk_reuse || !sk->sk_reuse) &&
150 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
151 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
152 (*saddr_comp)(sk, sk2)) {
153 if (bitmap)
154 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
155 bitmap);
156 else
157 return 1;
158 }
159 return 0;
160}
161
162/*
163 * Note: we still hold spinlock of primary hash chain, so no other writer
164 * can insert/delete a socket with local_port == num
165 */
166static int udp_lib_lport_inuse2(struct net *net, __u16 num,
167 struct udp_hslot *hslot2,
168 struct sock *sk,
169 int (*saddr_comp)(const struct sock *sk1,
170 const struct sock *sk2))
171{
172 struct sock *sk2;
173 struct hlist_nulls_node *node;
174 int res = 0;
175
176 spin_lock(&hslot2->lock);
177 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
178 if (net_eq(sock_net(sk2), net) &&
179 sk2 != sk &&
180 (udp_sk(sk2)->udp_port_hash == num) &&
181 (!sk2->sk_reuse || !sk->sk_reuse) &&
182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 (*saddr_comp)(sk, sk2)) {
185 res = 1;
186 break;
187 }
188 spin_unlock(&hslot2->lock);
189 return res;
190}
191
192/**
193 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
194 *
195 * @sk: socket struct in question
196 * @snum: port number to look up
197 * @saddr_comp: AF-dependent comparison of bound local IP addresses
198 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
199 * with NULL address
200 */
201int udp_lib_get_port(struct sock *sk, unsigned short snum,
202 int (*saddr_comp)(const struct sock *sk1,
203 const struct sock *sk2),
204 unsigned int hash2_nulladdr)
205{
206 struct udp_hslot *hslot, *hslot2;
207 struct udp_table *udptable = sk->sk_prot->h.udp_table;
208 int error = 1;
209 struct net *net = sock_net(sk);
210
211 if (!snum) {
212 int low, high, remaining;
213 unsigned rand;
214 unsigned short first, last;
215 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
216
217 inet_get_local_port_range(&low, &high);
218 remaining = (high - low) + 1;
219
220 rand = net_random();
221 first = (((u64)rand * remaining) >> 32) + low;
222 /*
223 * force rand to be an odd multiple of UDP_HTABLE_SIZE
224 */
225 rand = (rand | 1) * (udptable->mask + 1);
226 last = first + udptable->mask + 1;
227 do {
228 hslot = udp_hashslot(udptable, net, first);
229 bitmap_zero(bitmap, PORTS_PER_CHAIN);
230 spin_lock_bh(&hslot->lock);
231 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
232 saddr_comp, udptable->log);
233
234 snum = first;
235 /*
236 * Iterate on all possible values of snum for this hash.
237 * Using steps of an odd multiple of UDP_HTABLE_SIZE
238 * give us randomization and full range coverage.
239 */
240 do {
241 if (low <= snum && snum <= high &&
242 !test_bit(snum >> udptable->log, bitmap) &&
243 !inet_is_reserved_local_port(snum))
244 goto found;
245 snum += rand;
246 } while (snum != first);
247 spin_unlock_bh(&hslot->lock);
248 } while (++first != last);
249 goto fail;
250 } else {
251 hslot = udp_hashslot(udptable, net, snum);
252 spin_lock_bh(&hslot->lock);
253 if (hslot->count > 10) {
254 int exist;
255 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
256
257 slot2 &= udptable->mask;
258 hash2_nulladdr &= udptable->mask;
259
260 hslot2 = udp_hashslot2(udptable, slot2);
261 if (hslot->count < hslot2->count)
262 goto scan_primary_hash;
263
264 exist = udp_lib_lport_inuse2(net, snum, hslot2,
265 sk, saddr_comp);
266 if (!exist && (hash2_nulladdr != slot2)) {
267 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
268 exist = udp_lib_lport_inuse2(net, snum, hslot2,
269 sk, saddr_comp);
270 }
271 if (exist)
272 goto fail_unlock;
273 else
274 goto found;
275 }
276scan_primary_hash:
277 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
278 saddr_comp, 0))
279 goto fail_unlock;
280 }
281found:
282 inet_sk(sk)->inet_num = snum;
283 udp_sk(sk)->udp_port_hash = snum;
284 udp_sk(sk)->udp_portaddr_hash ^= snum;
285 if (sk_unhashed(sk)) {
286 sk_nulls_add_node_rcu(sk, &hslot->head);
287 hslot->count++;
288 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
289
290 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
291 spin_lock(&hslot2->lock);
292 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
293 &hslot2->head);
294 hslot2->count++;
295 spin_unlock(&hslot2->lock);
296 }
297 error = 0;
298fail_unlock:
299 spin_unlock_bh(&hslot->lock);
300fail:
301 return error;
302}
303EXPORT_SYMBOL(udp_lib_get_port);
304
305static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
306{
307 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
308
309 return (!ipv6_only_sock(sk2) &&
310 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
311 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
312}
313
314static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
315 unsigned int port)
316{
317 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
318}
319
320int udp_v4_get_port(struct sock *sk, unsigned short snum)
321{
322 unsigned int hash2_nulladdr =
323 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
324 unsigned int hash2_partial =
325 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
326
327 /* precompute partial secondary hash */
328 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
329 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
330}
331
332static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
333 unsigned short hnum,
334 __be16 sport, __be32 daddr, __be16 dport, int dif)
335{
336 int score = -1;
337
338 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
339 !ipv6_only_sock(sk)) {
340 struct inet_sock *inet = inet_sk(sk);
341
342 score = (sk->sk_family == PF_INET ? 1 : 0);
343 if (inet->inet_rcv_saddr) {
344 if (inet->inet_rcv_saddr != daddr)
345 return -1;
346 score += 2;
347 }
348 if (inet->inet_daddr) {
349 if (inet->inet_daddr != saddr)
350 return -1;
351 score += 2;
352 }
353 if (inet->inet_dport) {
354 if (inet->inet_dport != sport)
355 return -1;
356 score += 2;
357 }
358 if (sk->sk_bound_dev_if) {
359 if (sk->sk_bound_dev_if != dif)
360 return -1;
361 score += 2;
362 }
363 }
364 return score;
365}
366
367/*
368 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
369 */
370#define SCORE2_MAX (1 + 2 + 2 + 2)
371static inline int compute_score2(struct sock *sk, struct net *net,
372 __be32 saddr, __be16 sport,
373 __be32 daddr, unsigned int hnum, int dif)
374{
375 int score = -1;
376
377 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
378 struct inet_sock *inet = inet_sk(sk);
379
380 if (inet->inet_rcv_saddr != daddr)
381 return -1;
382 if (inet->inet_num != hnum)
383 return -1;
384
385 score = (sk->sk_family == PF_INET ? 1 : 0);
386 if (inet->inet_daddr) {
387 if (inet->inet_daddr != saddr)
388 return -1;
389 score += 2;
390 }
391 if (inet->inet_dport) {
392 if (inet->inet_dport != sport)
393 return -1;
394 score += 2;
395 }
396 if (sk->sk_bound_dev_if) {
397 if (sk->sk_bound_dev_if != dif)
398 return -1;
399 score += 2;
400 }
401 }
402 return score;
403}
404
405
406/* called with read_rcu_lock() */
407static struct sock *udp4_lib_lookup2(struct net *net,
408 __be32 saddr, __be16 sport,
409 __be32 daddr, unsigned int hnum, int dif,
410 struct udp_hslot *hslot2, unsigned int slot2)
411{
412 struct sock *sk, *result;
413 struct hlist_nulls_node *node;
414 int score, badness;
415
416begin:
417 result = NULL;
418 badness = -1;
419 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
420 //ÕâÀï¼ÆËãÆ¥Åä³Ì¶È£¬Ñ¡Ôñ×îÓÅ
421 score = compute_score2(sk, net, saddr, sport,
422 daddr, hnum, dif);
423 if (score > badness) {
424 result = sk;
425 badness = score;
426 if (score == SCORE2_MAX)
427 goto exact_match;
428 }
429 }
430 /*
431 * if the nulls value we got at the end of this lookup is
432 * not the expected one, we must restart lookup.
433 * We probably met an item that was moved to another chain.
434 */
435 if (get_nulls_value(node) != slot2)
436 goto begin;
437
438 if (result) {
439exact_match:
440 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
441 result = NULL;
442 else if (unlikely(compute_score2(result, net, saddr, sport,
443 daddr, hnum, dif) < badness)) {
444 sock_put(result);
445 goto begin;
446 }
447 }
448 return result;
449}
450
451/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
452 * harder than this. -DaveM
453 */
454struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
455 __be16 sport, __be32 daddr, __be16 dport,
456 int dif, struct udp_table *udptable)
457{
458 struct sock *sk, *result;
459 struct hlist_nulls_node *node;
460 unsigned short hnum = ntohs(dport);
461 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
462 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
463 int score, badness;
464
465 rcu_read_lock();
466 if (hslot->count > 10) {
467 //socketÊýÁ¿½Ï¶à£¬²ÉÓþ«È·Æ¥Åä
468 hash2 = udp4_portaddr_hash(net, daddr, hnum);
469 slot2 = hash2 & udptable->mask;
470 hslot2 = &udptable->hash2[slot2];
471 if (hslot->count < hslot2->count)
472 goto begin;
473
474 result = udp4_lib_lookup2(net, saddr, sport,
475 daddr, hnum, dif,
476 hslot2, slot2);
477 if (!result) {
478 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
479 slot2 = hash2 & udptable->mask;
480 hslot2 = &udptable->hash2[slot2];
481 if (hslot->count < hslot2->count)
482 goto begin;
483 //ʹÓÃͨÓõØÖ·½øÐÐÆ¥Å䣬hashҲͬÑùÊÇÓëINADDR_ANY¹ØÁªµÄ
484 result = udp4_lib_lookup2(net, saddr, sport,
485 htonl(INADDR_ANY), hnum, dif,
486 hslot2, slot2);
487 }
488 rcu_read_unlock();
489 return result;
490 }
491begin:
492 result = NULL;
493 badness = -1;
494 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
495 score = compute_score(sk, net, saddr, hnum, sport,
496 daddr, dport, dif);
497 if (score > badness) {
498 result = sk;
499 badness = score;
500 }
501 }
502 /*
503 * if the nulls value we got at the end of this lookup is
504 * not the expected one, we must restart lookup.
505 * We probably met an item that was moved to another chain.
506 */
507 if (get_nulls_value(node) != slot)
508 goto begin;
509
510 if (result) {
511 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
512 result = NULL;
513 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
514 daddr, dport, dif) < badness)) {
515 sock_put(result);
516 goto begin;
517 }
518 }
519 rcu_read_unlock();
520 return result;
521}
522EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
523
524static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
525 __be16 sport, __be16 dport,
526 struct udp_table *udptable)
527{
528 struct sock *sk;
529 const struct iphdr *iph = ip_hdr(skb);
530
531 if (unlikely(sk = skb_steal_sock(skb)))
532 return sk;
533 else
534 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
535 iph->daddr, dport, inet_iif(skb),
536 udptable);
537}
538
539struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
540 __be32 daddr, __be16 dport, int dif)
541{
542 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
543}
544EXPORT_SYMBOL_GPL(udp4_lib_lookup);
545
546static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
547 __be16 loc_port, __be32 loc_addr,
548 __be16 rmt_port, __be32 rmt_addr,
549 int dif)
550{
551 struct hlist_nulls_node *node;
552 struct sock *s = sk;
553 unsigned short hnum = ntohs(loc_port);
554
555 sk_nulls_for_each_from(s, node) {
556 struct inet_sock *inet = inet_sk(s);
557
558 if (!net_eq(sock_net(s), net) ||
559 udp_sk(s)->udp_port_hash != hnum ||
560 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
561 (inet->inet_dport != rmt_port && inet->inet_dport) ||
562 (inet->inet_rcv_saddr &&
563 inet->inet_rcv_saddr != loc_addr) ||
564 ipv6_only_sock(s) ||
565 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
566 continue;
567 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
568 continue;
569 goto found;
570 }
571 s = NULL;
572found:
573 return s;
574}
575
576/*
577 * This routine is called by the ICMP module when it gets some
578 * sort of error condition. If err < 0 then the socket should
579 * be closed and the error returned to the user. If err > 0
580 * it's just the icmp type << 8 | icmp code.
581 * Header points to the ip header of the error packet. We move
582 * on past this. Then (as it used to claim before adjustment)
583 * header points to the first 8 bytes of the udp header. We need
584 * to find the appropriate port.
585 */
586
587void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
588{
589 struct inet_sock *inet;
590 const struct iphdr *iph = (const struct iphdr *)skb->data;
591 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
592 const int type = icmp_hdr(skb)->type;
593 const int code = icmp_hdr(skb)->code;
594 struct sock *sk;
595 int harderr;
596 int err;
597 struct net *net = dev_net(skb->dev);
598
599 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
600 iph->saddr, uh->source, skb->dev->ifindex, udptable);
601 if (sk == NULL) {
602 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
603 return; /* No socket for error */
604 }
605
606 err = 0;
607 harderr = 0;
608 inet = inet_sk(sk);
609
610 switch (type) {
611 default:
612 case ICMP_TIME_EXCEEDED:
613 err = EHOSTUNREACH;
614 break;
615 case ICMP_SOURCE_QUENCH:
616 goto out;
617 case ICMP_PARAMETERPROB:
618 err = EPROTO;
619 harderr = 1;
620 break;
621 case ICMP_DEST_UNREACH:
622 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
623 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
624 err = EMSGSIZE;
625 harderr = 1;
626 break;
627 }
628 goto out;
629 }
630 err = EHOSTUNREACH;
631 if (code <= NR_ICMP_UNREACH) {
632 harderr = icmp_err_convert[code].fatal;
633 err = icmp_err_convert[code].errno;
634 }
635 break;
636 }
637
638 /*
639 * RFC1122: OK. Passes ICMP errors back to application, as per
640 * 4.1.3.3.
641 */
642 if (!inet->recverr) {
643 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
644 goto out;
645 } else
646 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
647
648 sk->sk_err = err;
649 sk->sk_error_report(sk);
650out:
651 sock_put(sk);
652}
653
654void udp_err(struct sk_buff *skb, u32 info)
655{
656 __udp4_lib_err(skb, info, &udp_table);
657}
658
659/*
660 * Throw away all pending data and cancel the corking. Socket is locked.
661 */
662void udp_flush_pending_frames(struct sock *sk)
663{
664 struct udp_sock *up = udp_sk(sk);
665
666 if (up->pending) {
667 up->len = 0;
668 up->pending = 0;
669 ip_flush_pending_frames(sk);
670 }
671}
672EXPORT_SYMBOL(udp_flush_pending_frames);
673
674/**
675 * udp4_hwcsum - handle outgoing HW checksumming
676 * @skb: sk_buff containing the filled-in UDP header
677 * (checksum field must be zeroed out)
678 * @src: source IP address
679 * @dst: destination IP address
680 */
681static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
682{
683 struct udphdr *uh = udp_hdr(skb);
684 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
685 int offset = skb_transport_offset(skb);
686 int len = skb->len - offset;
687 int hlen = len;
688 __wsum csum = 0;
689
690 if (!frags) {
691 /*
692 * Only one fragment on the socket.
693 */
694 skb->csum_start = skb_transport_header(skb) - skb->head;
695 skb->csum_offset = offsetof(struct udphdr, check);
696 uh->check = ~csum_tcpudp_magic(src, dst, len,
697 IPPROTO_UDP, 0);
698 } else {
699 /*
700 * HW-checksum won't work as there are two or more
701 * fragments on the socket so that all csums of sk_buffs
702 * should be together
703 */
704 do {
705 csum = csum_add(csum, frags->csum);
706 hlen -= frags->len;
707 } while ((frags = frags->next));
708
709 csum = skb_checksum(skb, offset, hlen, csum);
710 skb->ip_summed = CHECKSUM_NONE;
711
712 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
713 if (uh->check == 0)
714 uh->check = CSUM_MANGLED_0;
715 }
716}
717
718static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
719{
720 struct sock *sk = skb->sk;
721 struct inet_sock *inet = inet_sk(sk);
722 struct udphdr *uh;
723 int err = 0;
724 int is_udplite = IS_UDPLITE(sk);
725 int offset = skb_transport_offset(skb);
726 int len = skb->len - offset;
727 __wsum csum = 0;
728
729 /*
730 * Create a UDP header
731 */
732 uh = udp_hdr(skb);
733 uh->source = inet->inet_sport;
734 uh->dest = fl4->fl4_dport;
735 uh->len = htons(len);
736 uh->check = 0;
737
738 if (is_udplite) /* UDP-Lite */
739 csum = udplite_csum(skb);
740
741 else if (sk->sk_no_check == UDP_CSUM_NOXMIT
742 && !skb_is_gso(skb)//CVE-2017-1000112
743 ) { /* UDP csum disabled */
744
745 skb->ip_summed = CHECKSUM_NONE;
746 goto send;
747
748 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
749
750 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
751 goto send;
752
753 } else
754 csum = udp_csum(skb);
755
756 /* add protocol-dependent pseudo-header */
757 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
758 sk->sk_protocol, csum);
759 if (uh->check == 0)
760 uh->check = CSUM_MANGLED_0;
761
762send:
763 err = ip_send_skb(skb);
764 if (err) {
765 if (err == -ENOBUFS && !inet->recverr) {
766 UDP_INC_STATS_USER(sock_net(sk),
767 UDP_MIB_SNDBUFERRORS, is_udplite);
768 err = 0;
769 }
770 } else
771 UDP_INC_STATS_USER(sock_net(sk),
772 UDP_MIB_OUTDATAGRAMS, is_udplite);
773 return err;
774}
775
776/*
777 * Push out all pending data as one UDP datagram. Socket is locked.
778 */
779int udp_push_pending_frames(struct sock *sk)
780{
781 struct udp_sock *up = udp_sk(sk);
782 struct inet_sock *inet = inet_sk(sk);
783 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
784 struct sk_buff *skb;
785 int err = 0;
786
787 skb = ip_finish_skb(sk, fl4);
788 if (!skb)
789 goto out;
790
791 err = udp_send_skb(skb, fl4);
792
793out:
794 up->len = 0;
795 up->pending = 0;
796 return err;
797}
798EXPORT_SYMBOL(udp_push_pending_frames);
799
800int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
801 size_t len)
802{
803 struct inet_sock *inet = inet_sk(sk);
804 struct udp_sock *up = udp_sk(sk);
805 struct flowi4 fl4_stack;
806 struct flowi4 *fl4;
807 int ulen = len;
808 struct ipcm_cookie ipc;
809 struct rtable *rt = NULL;
810 int free = 0;
811 int connected = 0;
812 __be32 daddr, faddr, saddr;
813 __be16 dport;
814 u8 tos;
815 int err, is_udplite = IS_UDPLITE(sk);
816 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
817 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
818 struct sk_buff *skb;
819 struct ip_options_data opt_copy;
820
821 if (len > 0xFFFF)
822 return -EMSGSIZE;
823
824 /*
825 * Check the flags.
826 */
827
828 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
829 return -EOPNOTSUPP;
830
831 ipc.opt = NULL;
832 ipc.tx_flags = 0;
833
834 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
835
836 fl4 = &inet->cork.fl.u.ip4;
837 if (up->pending) {
838 /*
839 * There are pending frames.
840 * The socket lock must be held while it's corked.
841 */
842 lock_sock(sk);
843 if (likely(up->pending)) {
844 if (unlikely(up->pending != AF_INET)) {
845 release_sock(sk);
846 return -EINVAL;
847 }
848 goto do_append_data;
849 }
850 release_sock(sk);
851 }
852 ulen += sizeof(struct udphdr);
853
854 /*
855 * Get and verify the address.
856 */
857 if (msg->msg_name) {
858 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
859 if (msg->msg_namelen < sizeof(*usin))
860 return -EINVAL;
861 if (usin->sin_family != AF_INET) {
862 if (usin->sin_family != AF_UNSPEC)
863 return -EAFNOSUPPORT;
864 }
865
866 daddr = usin->sin_addr.s_addr;
867 dport = usin->sin_port;
868 if (dport == 0)
869 return -EINVAL;
870 } else {
871 if (sk->sk_state != TCP_ESTABLISHED)
872 return -EDESTADDRREQ;
873 daddr = inet->inet_daddr;
874 dport = inet->inet_dport;
875 /* Open fast path for connected socket.
876 Route will not be used, if at least one option is set.
877 */
878 connected = 1;
879 }
880 ipc.addr = inet->inet_saddr;
881
882 ipc.oif = sk->sk_bound_dev_if;
883 err = sock_tx_timestamp(sk, &ipc.tx_flags);
884 if (err)
885 return err;
886 if (msg->msg_controllen) {
887 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
888 if (err)
889 return err;
890 if (ipc.opt)
891 free = 1;
892 connected = 0;
893 }
894 if (!ipc.opt) {
895 struct ip_options_rcu *inet_opt;
896
897 rcu_read_lock();
898 inet_opt = rcu_dereference(inet->inet_opt);
899 if (inet_opt) {
900 memcpy(&opt_copy, inet_opt,
901 sizeof(*inet_opt) + inet_opt->opt.optlen);
902 ipc.opt = &opt_copy.opt;
903 }
904 rcu_read_unlock();
905 }
906
907 saddr = ipc.addr;
908 ipc.addr = faddr = daddr;
909
910 if (ipc.opt && ipc.opt->opt.srr) {
911 if (!daddr)
912 return -EINVAL;
913 faddr = ipc.opt->opt.faddr;
914 connected = 0;
915 }
916 tos = RT_TOS(inet->tos);
917 if (sock_flag(sk, SOCK_LOCALROUTE) ||
918 (msg->msg_flags & MSG_DONTROUTE) ||
919 (ipc.opt && ipc.opt->opt.is_strictroute)) {
920 tos |= RTO_ONLINK;
921 connected = 0;
922 }
923
924 if (ipv4_is_multicast(daddr)) {
925 if (!ipc.oif)
926 ipc.oif = inet->mc_index;
927 if (!saddr)
928 saddr = inet->mc_addr;
929 connected = 0;
930 } else if (!ipc.oif)
931 ipc.oif = inet->uc_index;
932
933 if (connected)
934 rt = (struct rtable *)sk_dst_check(sk, 0);
935
936 if (rt == NULL) {
937 struct net *net = sock_net(sk);
938
939 fl4 = &fl4_stack;
940 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
941 RT_SCOPE_UNIVERSE, sk->sk_protocol,
942 inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
943 faddr, saddr, dport, inet->inet_sport);
944
945 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
946 rt = ip_route_output_flow(net, fl4, sk);
947 if (IS_ERR(rt)) {
948 err = PTR_ERR(rt);
949 rt = NULL;
950 if (err == -ENETUNREACH)
951 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
952 goto out;
953 }
954
955 err = -EACCES;
956 if ((rt->rt_flags & RTCF_BROADCAST) &&
957 !sock_flag(sk, SOCK_BROADCAST))
958 goto out;
959 if (connected)
960 sk_dst_set(sk, dst_clone(&rt->dst));
961 }
962
963 if (msg->msg_flags&MSG_CONFIRM)
964 goto do_confirm;
965back_from_confirm:
966
967 saddr = fl4->saddr;
968 if (!ipc.addr)
969 daddr = ipc.addr = fl4->daddr;
970
971 /* Lockless fast path for the non-corking case. */
972 if (!corkreq) {
973 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
974 sizeof(struct udphdr), &ipc, &rt,
975 msg->msg_flags);
976 err = PTR_ERR(skb);
977 if (skb && !IS_ERR(skb))
978 err = udp_send_skb(skb, fl4);
979 goto out;
980 }
981
982 lock_sock(sk);
983 if (unlikely(up->pending)) {
984 /* The socket is already corked while preparing it. */
985 /* ... which is an evident application bug. --ANK */
986 release_sock(sk);
987
988 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
989 err = -EINVAL;
990 goto out;
991 }
992 /*
993 * Now cork the socket to pend data.
994 */
995 fl4 = &inet->cork.fl.u.ip4;
996 fl4->daddr = daddr;
997 fl4->saddr = saddr;
998 fl4->fl4_dport = dport;
999 fl4->fl4_sport = inet->inet_sport;
1000 up->pending = AF_INET;
1001
1002do_append_data:
1003 up->len += ulen;
1004 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1005 sizeof(struct udphdr), &ipc, &rt,
1006 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1007 if (err)
1008 udp_flush_pending_frames(sk);
1009 else if (!corkreq)
1010 err = udp_push_pending_frames(sk);
1011 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1012 up->pending = 0;
1013 release_sock(sk);
1014
1015out:
1016 ip_rt_put(rt);
1017 if (free)
1018 kfree(ipc.opt);
1019 if (!err)
1020 return len;
1021 /*
1022 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1023 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1024 * we don't have a good statistic (IpOutDiscards but it can be too many
1025 * things). We could add another new stat but at least for now that
1026 * seems like overkill.
1027 */
1028 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1029 UDP_INC_STATS_USER(sock_net(sk),
1030 UDP_MIB_SNDBUFERRORS, is_udplite);
1031 }
1032 return err;
1033
1034do_confirm:
1035 dst_confirm(&rt->dst);
1036 if (!(msg->msg_flags&MSG_PROBE) || len)
1037 goto back_from_confirm;
1038 err = 0;
1039 goto out;
1040}
1041EXPORT_SYMBOL(udp_sendmsg);
1042
1043int udp_sendpage(struct sock *sk, struct page *page, int offset,
1044 size_t size, int flags)
1045{
1046 struct inet_sock *inet = inet_sk(sk);
1047 struct udp_sock *up = udp_sk(sk);
1048 int ret;
1049
1050 if (flags & MSG_SENDPAGE_NOTLAST)
1051 flags |= MSG_MORE;
1052
1053 if (!up->pending) {
1054 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1055
1056 /* Call udp_sendmsg to specify destination address which
1057 * sendpage interface can't pass.
1058 * This will succeed only when the socket is connected.
1059 */
1060 ret = udp_sendmsg(NULL, sk, &msg, 0);
1061 if (ret < 0)
1062 return ret;
1063 }
1064
1065 lock_sock(sk);
1066
1067 if (unlikely(!up->pending)) {
1068 release_sock(sk);
1069
1070 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1071 return -EINVAL;
1072 }
1073
1074 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1075 page, offset, size, flags);
1076 if (ret == -EOPNOTSUPP) {
1077 release_sock(sk);
1078 return sock_no_sendpage(sk->sk_socket, page, offset,
1079 size, flags);
1080 }
1081 if (ret < 0) {
1082 udp_flush_pending_frames(sk);
1083 goto out;
1084 }
1085
1086 up->len += size;
1087 if (!(up->corkflag || (flags&MSG_MORE)))
1088 ret = udp_push_pending_frames(sk);
1089 if (!ret)
1090 ret = size;
1091out:
1092 release_sock(sk);
1093 return ret;
1094}
1095
1096
1097/**
1098 * first_packet_length - return length of first packet in receive queue
1099 * @sk: socket
1100 *
1101 * Drops all bad checksum frames, until a valid one is found.
1102 * Returns the length of found skb, or 0 if none is found.
1103 */
1104static unsigned int first_packet_length(struct sock *sk)
1105{
1106 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1107 struct sk_buff *skb;
1108 unsigned int res;
1109
1110 __skb_queue_head_init(&list_kill);
1111
1112 spin_lock_bh(&rcvq->lock);
1113 while ((skb = skb_peek(rcvq)) != NULL &&
1114 udp_lib_checksum_complete(skb)) {
1115 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1116 IS_UDPLITE(sk));
1117 atomic_inc(&sk->sk_drops);
1118 __skb_unlink(skb, rcvq);
1119 __skb_queue_tail(&list_kill, skb);
1120 }
1121 res = skb ? skb->len : 0;
1122 spin_unlock_bh(&rcvq->lock);
1123
1124 if (!skb_queue_empty(&list_kill)) {
1125 bool slow = lock_sock_fast(sk);
1126
1127 __skb_queue_purge(&list_kill);
1128 sk_mem_reclaim_partial(sk);
1129 unlock_sock_fast(sk, slow);
1130 }
1131 return res;
1132}
1133
1134/*
1135 * IOCTL requests applicable to the UDP protocol
1136 */
1137
1138int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1139{
1140 switch (cmd) {
1141 case SIOCOUTQ:
1142 {
1143 int amount = sk_wmem_alloc_get(sk);
1144
1145 return put_user(amount, (int __user *)arg);
1146 }
1147
1148 case SIOCINQ:
1149 {
1150 unsigned int amount = first_packet_length(sk);
1151
1152 if (amount)
1153 /*
1154 * We will only return the amount
1155 * of this packet since that is all
1156 * that will be read.
1157 */
1158 amount -= sizeof(struct udphdr);
1159
1160 return put_user(amount, (int __user *)arg);
1161 }
1162
1163 default:
1164 return -ENOIOCTLCMD;
1165 }
1166
1167 return 0;
1168}
1169EXPORT_SYMBOL(udp_ioctl);
1170
1171/*
1172 * This should be easy, if there is something there we
1173 * return it, otherwise we block.
1174 */
1175
1176int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1177 size_t len, int noblock, int flags, int *addr_len)
1178{
1179 struct inet_sock *inet = inet_sk(sk);
1180 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1181 struct sk_buff *skb;
1182 unsigned int ulen, copied;
1183 int peeked, off = 0;
1184 int err;
1185 int is_udplite = IS_UDPLITE(sk);
1186 bool checksum_valid = false;
1187 bool slow;
1188
1189 if (flags & MSG_ERRQUEUE)
1190 return ip_recv_error(sk, msg, len, addr_len);
1191
1192try_again:
1193 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1194 &peeked, &off, &err);
1195 if (!skb)
1196 goto out;
1197
1198 ulen = skb->len - sizeof(struct udphdr);
1199 copied = len;
1200 if (copied > ulen)
1201 copied = ulen;
1202 else if (copied < ulen)
1203 msg->msg_flags |= MSG_TRUNC;
1204
1205 /*
1206 * If checksum is needed at all, try to do it while copying the
1207 * data. If the data is truncated, or if we only want a partial
1208 * coverage checksum (UDP-Lite), do it before the copy.
1209 */
1210
1211 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1212 checksum_valid = !udp_lib_checksum_complete(skb);
1213 if (!checksum_valid)
1214 goto csum_copy_err;
1215 }
1216
1217 if (checksum_valid || skb_csum_unnecessary(skb))
1218 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1219 msg->msg_iov, copied);
1220 else {
1221 err = skb_copy_and_csum_datagram_iovec(skb,
1222 sizeof(struct udphdr),
1223 msg->msg_iov);
1224
1225 if (err == -EINVAL)
1226 goto csum_copy_err;
1227 }
1228
1229 if (err)
1230 goto out_free;
1231
1232 if (!peeked)
1233 UDP_INC_STATS_USER(sock_net(sk),
1234 UDP_MIB_INDATAGRAMS, is_udplite);
1235
1236 sock_recv_ts_and_drops(msg, sk, skb);
1237
1238 /* Copy the address. */
1239 if (sin) {
1240 sin->sin_family = AF_INET;
1241 sin->sin_port = udp_hdr(skb)->source;
1242 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1243 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1244 *addr_len = sizeof(*sin);
1245 }
1246 if (inet->cmsg_flags)
1247 ip_cmsg_recv(msg, skb);
1248
1249 err = copied;
1250 if (flags & MSG_TRUNC)
1251 err = ulen;
1252
1253out_free:
1254 skb_free_datagram_locked(sk, skb);
1255out:
1256 return err;
1257
1258csum_copy_err:
1259 slow = lock_sock_fast(sk);
1260 if (!skb_kill_datagram(sk, skb, flags))
1261 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1262 unlock_sock_fast(sk, slow);
1263
1264 /* starting over for a new packet, but check if we need to yield */
1265 cond_resched();
1266 msg->msg_flags &= ~MSG_TRUNC;
1267 goto try_again;
1268}
1269
1270
1271int udp_disconnect(struct sock *sk, int flags)
1272{
1273 struct inet_sock *inet = inet_sk(sk);
1274 /*
1275 * 1003.1g - break association.
1276 */
1277
1278 sk->sk_state = TCP_CLOSE;
1279 inet->inet_daddr = 0;
1280 inet->inet_dport = 0;
1281 sock_rps_reset_rxhash(sk);
1282 sk->sk_bound_dev_if = 0;
1283 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1284 inet_reset_saddr(sk);
1285
1286 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1287 sk->sk_prot->unhash(sk);
1288 inet->inet_sport = 0;
1289 }
1290 sk_dst_reset(sk);
1291 return 0;
1292}
1293EXPORT_SYMBOL(udp_disconnect);
1294
1295void udp_lib_unhash(struct sock *sk)
1296{
1297 if (sk_hashed(sk)) {
1298 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1299 struct udp_hslot *hslot, *hslot2;
1300
1301 hslot = udp_hashslot(udptable, sock_net(sk),
1302 udp_sk(sk)->udp_port_hash);
1303 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1304
1305 spin_lock_bh(&hslot->lock);
1306 if (sk_nulls_del_node_init_rcu(sk)) {
1307 hslot->count--;
1308 inet_sk(sk)->inet_num = 0;
1309 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1310
1311 spin_lock(&hslot2->lock);
1312 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1313 hslot2->count--;
1314 spin_unlock(&hslot2->lock);
1315 }
1316 spin_unlock_bh(&hslot->lock);
1317 }
1318}
1319EXPORT_SYMBOL(udp_lib_unhash);
1320
1321/*
1322 * inet_rcv_saddr was changed, we must rehash secondary hash
1323 */
1324void udp_lib_rehash(struct sock *sk, u16 newhash)
1325{
1326 if (sk_hashed(sk)) {
1327 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1328 struct udp_hslot *hslot, *hslot2, *nhslot2;
1329
1330 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1331 nhslot2 = udp_hashslot2(udptable, newhash);
1332 udp_sk(sk)->udp_portaddr_hash = newhash;
1333 if (hslot2 != nhslot2) {
1334 hslot = udp_hashslot(udptable, sock_net(sk),
1335 udp_sk(sk)->udp_port_hash);
1336 /* we must lock primary chain too */
1337 spin_lock_bh(&hslot->lock);
1338
1339 spin_lock(&hslot2->lock);
1340 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1341 hslot2->count--;
1342 spin_unlock(&hslot2->lock);
1343
1344 spin_lock(&nhslot2->lock);
1345 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1346 &nhslot2->head);
1347 nhslot2->count++;
1348 spin_unlock(&nhslot2->lock);
1349
1350 spin_unlock_bh(&hslot->lock);
1351 }
1352 }
1353}
1354EXPORT_SYMBOL(udp_lib_rehash);
1355
1356static void udp_v4_rehash(struct sock *sk)
1357{
1358 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1359 inet_sk(sk)->inet_rcv_saddr,
1360 inet_sk(sk)->inet_num);
1361 udp_lib_rehash(sk, new_hash);
1362}
1363
1364static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1365{
1366 int rc;
1367
1368 if (inet_sk(sk)->inet_daddr)
1369 sock_rps_save_rxhash(sk, skb);
1370
1371 rc = sock_queue_rcv_skb(sk, skb);
1372 if (rc < 0) {
1373 int is_udplite = IS_UDPLITE(sk);
1374
1375 /* Note that an ENOMEM error is charged twice */
1376 if (rc == -ENOMEM)
1377 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1378 is_udplite);
1379 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1380 kfree_skb(skb);
1381 trace_udp_fail_queue_rcv_skb(rc, sk);
1382 return -1;
1383 }
1384
1385 return 0;
1386
1387}
1388
1389/* returns:
1390 * -1: error
1391 * 0: success
1392 * >0: "udp encap" protocol resubmission
1393 *
1394 * Note that in the success and error cases, the skb is assumed to
1395 * have either been requeued or freed.
1396 */
1397int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1398{
1399 struct udp_sock *up = udp_sk(sk);
1400 int rc;
1401 int is_udplite = IS_UDPLITE(sk);
1402
1403 /*
1404 * Charge it to the socket, dropping if the queue is full.
1405 */
1406 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1407 goto drop;
1408 nf_reset(skb);
1409
1410 if (up->encap_type) {
1411 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1412
1413 /*
1414 * This is an encapsulation socket so pass the skb to
1415 * the socket's udp_encap_rcv() hook. Otherwise, just
1416 * fall through and pass this up the UDP socket.
1417 * up->encap_rcv() returns the following value:
1418 * =0 if skb was successfully passed to the encap
1419 * handler or was discarded by it.
1420 * >0 if skb should be passed on to UDP.
1421 * <0 if skb should be resubmitted as proto -N
1422 */
1423
1424 /* if we're overly short, let UDP handle it */
1425 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1426 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1427 int ret;
1428
1429 ret = encap_rcv(sk, skb);
1430 if (ret <= 0) {
1431 UDP_INC_STATS_BH(sock_net(sk),
1432 UDP_MIB_INDATAGRAMS,
1433 is_udplite);
1434 return -ret;
1435 }
1436 }
1437
1438 /* FALLTHROUGH -- it's a UDP Packet */
1439 }
1440
1441 /*
1442 * UDP-Lite specific tests, ignored on UDP sockets
1443 */
1444 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1445
1446 /*
1447 * MIB statistics other than incrementing the error count are
1448 * disabled for the following two types of errors: these depend
1449 * on the application settings, not on the functioning of the
1450 * protocol stack as such.
1451 *
1452 * RFC 3828 here recommends (sec 3.3): "There should also be a
1453 * way ... to ... at least let the receiving application block
1454 * delivery of packets with coverage values less than a value
1455 * provided by the application."
1456 */
1457 if (up->pcrlen == 0) { /* full coverage was set */
1458 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1459 UDP_SKB_CB(skb)->cscov, skb->len);
1460 goto drop;
1461 }
1462 /* The next case involves violating the min. coverage requested
1463 * by the receiver. This is subtle: if receiver wants x and x is
1464 * greater than the buffersize/MTU then receiver will complain
1465 * that it wants x while sender emits packets of smaller size y.
1466 * Therefore the above ...()->partial_cov statement is essential.
1467 */
1468 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1469 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1470 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1471 goto drop;
1472 }
1473 }
1474
1475 if (rcu_access_pointer(sk->sk_filter) &&
1476 udp_lib_checksum_complete(skb))
1477 goto drop;
1478
1479
1480 if (sk_rcvqueues_full(sk, skb))
1481 goto drop;
1482
1483 rc = 0;
1484
1485 ipv4_pktinfo_prepare(skb);
1486 bh_lock_sock(sk);
1487 if (!sock_owned_by_user(sk))
1488 rc = __udp_queue_rcv_skb(sk, skb);
1489 else if (sk_add_backlog(sk, skb)) {
1490 bh_unlock_sock(sk);
1491 goto drop;
1492 }
1493 bh_unlock_sock(sk);
1494
1495 return rc;
1496
1497drop:
1498 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1499 atomic_inc(&sk->sk_drops);
1500 kfree_skb(skb);
1501 return -1;
1502}
1503
1504
1505static void flush_stack(struct sock **stack, unsigned int count,
1506 struct sk_buff *skb, unsigned int final)
1507{
1508 unsigned int i;
1509 struct sk_buff *skb1 = NULL;
1510 struct sock *sk;
1511
1512 for (i = 0; i < count; i++) {
1513 sk = stack[i];
1514 if (likely(skb1 == NULL))
1515 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1516
1517 if (!skb1) {
1518 atomic_inc(&sk->sk_drops);
1519 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1520 IS_UDPLITE(sk));
1521 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1522 IS_UDPLITE(sk));
1523 }
1524
1525 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1526 skb1 = NULL;
1527 }
1528 if (unlikely(skb1))
1529 kfree_skb(skb1);
1530}
1531
1532/*
1533 * Multicasts and broadcasts go to each listener.
1534 *
1535 * Note: called only from the BH handler context.
1536 */
1537static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1538 struct udphdr *uh,
1539 __be32 saddr, __be32 daddr,
1540 struct udp_table *udptable)
1541{
1542 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1543 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1544 int dif;
1545 unsigned int i, count = 0;
1546
1547 spin_lock(&hslot->lock);
1548 sk = sk_nulls_head(&hslot->head);
1549 dif = skb->dev->ifindex;
1550 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1551 while (sk) {
1552 stack[count++] = sk;
1553 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1554 daddr, uh->source, saddr, dif);
1555 if (unlikely(count == ARRAY_SIZE(stack))) {
1556 if (!sk)
1557 break;
1558 flush_stack(stack, count, skb, ~0);
1559 count = 0;
1560 }
1561 }
1562 /*
1563 * before releasing chain lock, we must take a reference on sockets
1564 */
1565 for (i = 0; i < count; i++)
1566 sock_hold(stack[i]);
1567
1568 spin_unlock(&hslot->lock);
1569
1570 /*
1571 * do the slow work with no lock held
1572 */
1573 if (count) {
1574 flush_stack(stack, count, skb, count - 1);
1575
1576 for (i = 0; i < count; i++)
1577 sock_put(stack[i]);
1578 } else {
1579 kfree_skb(skb);
1580 }
1581 return 0;
1582}
1583
1584/* Initialize UDP checksum. If exited with zero value (success),
1585 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1586 * Otherwise, csum completion requires chacksumming packet body,
1587 * including udp header and folding it to skb->csum.
1588 */
1589static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1590 int proto)
1591{
1592 const struct iphdr *iph;
1593 int err;
1594
1595 UDP_SKB_CB(skb)->partial_cov = 0;
1596 UDP_SKB_CB(skb)->cscov = skb->len;
1597
1598 if (proto == IPPROTO_UDPLITE) {
1599 err = udplite_checksum_init(skb, uh);
1600 if (err)
1601 return err;
1602 }
1603
1604 iph = ip_hdr(skb);
1605 if (uh->check == 0) {
1606 skb->ip_summed = CHECKSUM_UNNECESSARY;
1607 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1608 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1609 proto, skb->csum))
1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611 }
1612 if (!skb_csum_unnecessary(skb))
1613 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1614 skb->len, proto, 0);
1615 /* Probably, we should checksum udp header (it should be in cache
1616 * in any case) and data in tiny packets (< rx copybreak).
1617 */
1618
1619 return 0;
1620}
1621
1622/*
1623 * All we need to do is get the socket, and then do a checksum.
1624 */
1625extern void fast_sk_add_ct(struct sk_buff *skb,struct sock *sk);
1626
1627int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1628 int proto)
1629{
1630 struct sock *sk;
1631 struct udphdr *uh;
1632 unsigned short ulen;
1633 struct rtable *rt ;
1634 __be32 saddr, daddr;
1635 struct net *net = dev_net(skb->dev);
1636 struct nf_conn *ct = (struct nf_conn *)skb->nfct;
1637 /*
1638 * Validate the packet.
1639 */
1640 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1641 goto drop; /* No space for header. */
1642
1643 uh = udp_hdr(skb);
1644 ulen = ntohs(uh->len);
1645 saddr = ip_hdr(skb)->saddr;
1646 daddr = ip_hdr(skb)->daddr;
1647
1648 if (ulen > skb->len)
1649 goto short_packet;
1650
1651 if (proto == IPPROTO_UDP) {
1652 /* UDP validates ulen. */
1653 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1654 goto short_packet;
1655 uh = udp_hdr(skb);
1656 }
1657
1658 if (udp4_csum_init(skb, uh, proto))
1659 goto csum_error;
1660
1661 if (skb->isFastlocal && ct && ct->fast_ct.isFast == FAST_CT_LOCAL4)
1662 {
1663 sk = ct->fast_ct.sk;
1664 }
1665 else
1666 {
1667 rt = skb_rtable(skb);
1668 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1669 return __udp4_lib_mcast_deliver(net, skb, uh,
1670 saddr, daddr, udptable);
1671
1672 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1673 }
1674 if (sk != NULL) {
1675 if (skb->isFastlocal == 0)
1676 fast_sk_add_ct(skb, sk);
1677 int ret = udp_queue_rcv_skb(sk, skb);
1678 sock_put(sk);
1679
1680 /* a return value > 0 means to resubmit the input, but
1681 * it wants the return to be -protocol, or 0
1682 */
1683 if (ret > 0)
1684 return -ret;
1685 return 0;
1686 }
1687
1688 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1689 goto drop;
1690 nf_reset(skb);
1691
1692 /* No socket. Drop packet silently, if checksum is wrong */
1693 if (udp_lib_checksum_complete(skb))
1694 goto csum_error;
1695
1696 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1697 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1698
1699 /*
1700 * Hmm. We got an UDP packet to a port to which we
1701 * don't wanna listen. Ignore it.
1702 */
1703 kfree_skb(skb);
1704 return 0;
1705
1706short_packet:
1707 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1708 proto == IPPROTO_UDPLITE ? "Lite" : "",
1709 &saddr, ntohs(uh->source),
1710 ulen, skb->len,
1711 &daddr, ntohs(uh->dest));
1712 goto drop;
1713
1714csum_error:
1715 /*
1716 * RFC1122: OK. Discards the bad packet silently (as far as
1717 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1718 */
1719 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1720 proto == IPPROTO_UDPLITE ? "Lite" : "",
1721 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1722 ulen);
1723drop:
1724 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1725 kfree_skb(skb);
1726 return 0;
1727}
1728
1729int udp_rcv(struct sk_buff *skb)
1730{
1731 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1732}
1733
1734void udp_destroy_sock(struct sock *sk)
1735{
1736 bool slow = lock_sock_fast(sk);
1737 udp_flush_pending_frames(sk);
1738 unlock_sock_fast(sk, slow);
1739}
1740
1741/*
1742 * Socket option code for UDP
1743 */
1744int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1745 char __user *optval, unsigned int optlen,
1746 int (*push_pending_frames)(struct sock *))
1747{
1748 struct udp_sock *up = udp_sk(sk);
1749 int val;
1750 int err = 0;
1751 int is_udplite = IS_UDPLITE(sk);
1752
1753 if (optlen < sizeof(int))
1754 return -EINVAL;
1755
1756 if (get_user(val, (int __user *)optval))
1757 return -EFAULT;
1758
1759 switch (optname) {
1760 case UDP_CORK:
1761 if (val != 0) {
1762 up->corkflag = 1;
1763 } else {
1764 up->corkflag = 0;
1765 lock_sock(sk);
1766 (*push_pending_frames)(sk);
1767 release_sock(sk);
1768 }
1769 break;
1770
1771 case UDP_ENCAP:
1772 switch (val) {
1773 case 0:
1774 case UDP_ENCAP_ESPINUDP:
1775 case UDP_ENCAP_ESPINUDP_NON_IKE:
1776 up->encap_rcv = xfrm4_udp_encap_rcv;
1777 /* FALLTHROUGH */
1778 case UDP_ENCAP_L2TPINUDP:
1779 up->encap_type = val;
1780 break;
1781 default:
1782 err = -ENOPROTOOPT;
1783 break;
1784 }
1785 break;
1786
1787 /*
1788 * UDP-Lite's partial checksum coverage (RFC 3828).
1789 */
1790 /* The sender sets actual checksum coverage length via this option.
1791 * The case coverage > packet length is handled by send module. */
1792 case UDPLITE_SEND_CSCOV:
1793 if (!is_udplite) /* Disable the option on UDP sockets */
1794 return -ENOPROTOOPT;
1795 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1796 val = 8;
1797 else if (val > USHRT_MAX)
1798 val = USHRT_MAX;
1799 up->pcslen = val;
1800 up->pcflag |= UDPLITE_SEND_CC;
1801 break;
1802
1803 /* The receiver specifies a minimum checksum coverage value. To make
1804 * sense, this should be set to at least 8 (as done below). If zero is
1805 * used, this again means full checksum coverage. */
1806 case UDPLITE_RECV_CSCOV:
1807 if (!is_udplite) /* Disable the option on UDP sockets */
1808 return -ENOPROTOOPT;
1809 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1810 val = 8;
1811 else if (val > USHRT_MAX)
1812 val = USHRT_MAX;
1813 up->pcrlen = val;
1814 up->pcflag |= UDPLITE_RECV_CC;
1815 break;
1816
1817 default:
1818 err = -ENOPROTOOPT;
1819 break;
1820 }
1821
1822 return err;
1823}
1824EXPORT_SYMBOL(udp_lib_setsockopt);
1825
1826int udp_setsockopt(struct sock *sk, int level, int optname,
1827 char __user *optval, unsigned int optlen)
1828{
1829 if (level == SOL_UDP || level == SOL_UDPLITE)
1830 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1831 udp_push_pending_frames);
1832 return ip_setsockopt(sk, level, optname, optval, optlen);
1833}
1834
1835#ifdef CONFIG_COMPAT
1836int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1837 char __user *optval, unsigned int optlen)
1838{
1839 if (level == SOL_UDP || level == SOL_UDPLITE)
1840 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1841 udp_push_pending_frames);
1842 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1843}
1844#endif
1845
1846int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1847 char __user *optval, int __user *optlen)
1848{
1849 struct udp_sock *up = udp_sk(sk);
1850 int val, len;
1851
1852 if (get_user(len, optlen))
1853 return -EFAULT;
1854
1855 len = min_t(unsigned int, len, sizeof(int));
1856
1857 if (len < 0)
1858 return -EINVAL;
1859
1860 switch (optname) {
1861 case UDP_CORK:
1862 val = up->corkflag;
1863 break;
1864
1865 case UDP_ENCAP:
1866 val = up->encap_type;
1867 break;
1868
1869 /* The following two cannot be changed on UDP sockets, the return is
1870 * always 0 (which corresponds to the full checksum coverage of UDP). */
1871 case UDPLITE_SEND_CSCOV:
1872 val = up->pcslen;
1873 break;
1874
1875 case UDPLITE_RECV_CSCOV:
1876 val = up->pcrlen;
1877 break;
1878
1879 default:
1880 return -ENOPROTOOPT;
1881 }
1882
1883 if (put_user(len, optlen))
1884 return -EFAULT;
1885 if (copy_to_user(optval, &val, len))
1886 return -EFAULT;
1887 return 0;
1888}
1889EXPORT_SYMBOL(udp_lib_getsockopt);
1890
1891int udp_getsockopt(struct sock *sk, int level, int optname,
1892 char __user *optval, int __user *optlen)
1893{
1894 if (level == SOL_UDP || level == SOL_UDPLITE)
1895 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1896 return ip_getsockopt(sk, level, optname, optval, optlen);
1897}
1898
1899#ifdef CONFIG_COMPAT
1900int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1901 char __user *optval, int __user *optlen)
1902{
1903 if (level == SOL_UDP || level == SOL_UDPLITE)
1904 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1905 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1906}
1907#endif
1908/**
1909 * udp_poll - wait for a UDP event.
1910 * @file - file struct
1911 * @sock - socket
1912 * @wait - poll table
1913 *
1914 * This is same as datagram poll, except for the special case of
1915 * blocking sockets. If application is using a blocking fd
1916 * and a packet with checksum error is in the queue;
1917 * then it could get return from select indicating data available
1918 * but then block when reading it. Add special case code
1919 * to work around these arguably broken applications.
1920 */
1921unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1922{
1923 unsigned int mask = datagram_poll(file, sock, wait);
1924 struct sock *sk = sock->sk;
1925
1926 /* Check for false positives due to checksum errors */
1927 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1928 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1929 mask &= ~(POLLIN | POLLRDNORM);
1930
1931 return mask;
1932
1933}
1934EXPORT_SYMBOL(udp_poll);
1935
1936struct proto udp_prot = {
1937 .name = "UDP",
1938 .owner = THIS_MODULE,
1939 .close = udp_lib_close,
1940 .connect = ip4_datagram_connect,
1941 .disconnect = udp_disconnect,
1942 .ioctl = udp_ioctl,
1943 .destroy = udp_destroy_sock,
1944 .setsockopt = udp_setsockopt,
1945 .getsockopt = udp_getsockopt,
1946 .sendmsg = udp_sendmsg,
1947 .recvmsg = udp_recvmsg,
1948 .sendpage = udp_sendpage,
1949 .backlog_rcv = __udp_queue_rcv_skb,
1950 .hash = udp_lib_hash,
1951 .unhash = udp_lib_unhash,
1952 .rehash = udp_v4_rehash,
1953 .get_port = udp_v4_get_port,
1954 .memory_allocated = &udp_memory_allocated,
1955 .sysctl_mem = sysctl_udp_mem,
1956 .sysctl_wmem = &sysctl_udp_wmem_min,
1957 .sysctl_rmem = &sysctl_udp_rmem_min,
1958 .obj_size = sizeof(struct udp_sock),
1959 .slab_flags = SLAB_DESTROY_BY_RCU,
1960 .h.udp_table = &udp_table,
1961#ifdef CONFIG_COMPAT
1962 .compat_setsockopt = compat_udp_setsockopt,
1963 .compat_getsockopt = compat_udp_getsockopt,
1964#endif
1965 .clear_sk = sk_prot_clear_portaddr_nulls,
1966};
1967EXPORT_SYMBOL(udp_prot);
1968
1969/* ------------------------------------------------------------------------ */
1970#ifdef CONFIG_PROC_FS
1971
1972static struct sock *udp_get_first(struct seq_file *seq, int start)
1973{
1974 struct sock *sk;
1975 struct udp_iter_state *state = seq->private;
1976 struct net *net = seq_file_net(seq);
1977
1978 for (state->bucket = start; state->bucket <= state->udp_table->mask;
1979 ++state->bucket) {
1980 struct hlist_nulls_node *node;
1981 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1982
1983 if (hlist_nulls_empty(&hslot->head))
1984 continue;
1985
1986 spin_lock_bh(&hslot->lock);
1987 sk_nulls_for_each(sk, node, &hslot->head) {
1988 if (!net_eq(sock_net(sk), net))
1989 continue;
1990 if (sk->sk_family == state->family)
1991 goto found;
1992 }
1993 spin_unlock_bh(&hslot->lock);
1994 }
1995 sk = NULL;
1996found:
1997 return sk;
1998}
1999
2000static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2001{
2002 struct udp_iter_state *state = seq->private;
2003 struct net *net = seq_file_net(seq);
2004
2005 do {
2006 sk = sk_nulls_next(sk);
2007 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2008
2009 if (!sk) {
2010 if (state->bucket <= state->udp_table->mask)
2011 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2012 return udp_get_first(seq, state->bucket + 1);
2013 }
2014 return sk;
2015}
2016
2017static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2018{
2019 struct sock *sk = udp_get_first(seq, 0);
2020
2021 if (sk)
2022 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2023 --pos;
2024 return pos ? NULL : sk;
2025}
2026
2027static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2028{
2029 struct udp_iter_state *state = seq->private;
2030 state->bucket = MAX_UDP_PORTS;
2031
2032 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2033}
2034
2035static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2036{
2037 struct sock *sk;
2038
2039 if (v == SEQ_START_TOKEN)
2040 sk = udp_get_idx(seq, 0);
2041 else
2042 sk = udp_get_next(seq, v);
2043
2044 ++*pos;
2045 return sk;
2046}
2047
2048static void udp_seq_stop(struct seq_file *seq, void *v)
2049{
2050 struct udp_iter_state *state = seq->private;
2051
2052 if (state->bucket <= state->udp_table->mask)
2053 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2054}
2055
2056int udp_seq_open(struct inode *inode, struct file *file)
2057{
2058 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2059 struct udp_iter_state *s;
2060 int err;
2061
2062 err = seq_open_net(inode, file, &afinfo->seq_ops,
2063 sizeof(struct udp_iter_state));
2064 if (err < 0)
2065 return err;
2066
2067 s = ((struct seq_file *)file->private_data)->private;
2068 s->family = afinfo->family;
2069 s->udp_table = afinfo->udp_table;
2070 return err;
2071}
2072EXPORT_SYMBOL(udp_seq_open);
2073
2074/* ------------------------------------------------------------------------ */
2075int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2076{
2077 struct proc_dir_entry *p;
2078 int rc = 0;
2079
2080 afinfo->seq_ops.start = udp_seq_start;
2081 afinfo->seq_ops.next = udp_seq_next;
2082 afinfo->seq_ops.stop = udp_seq_stop;
2083
2084 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2085 afinfo->seq_fops, afinfo);
2086 if (!p)
2087 rc = -ENOMEM;
2088 return rc;
2089}
2090EXPORT_SYMBOL(udp_proc_register);
2091
2092void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2093{
2094 proc_net_remove(net, afinfo->name);
2095}
2096EXPORT_SYMBOL(udp_proc_unregister);
2097
2098/* ------------------------------------------------------------------------ */
2099static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2100 int bucket, int *len)
2101{
2102 struct inet_sock *inet = inet_sk(sp);
2103 __be32 dest = inet->inet_daddr;
2104 __be32 src = inet->inet_rcv_saddr;
2105 __u16 destp = ntohs(inet->inet_dport);
2106 __u16 srcp = ntohs(inet->inet_sport);
2107
2108 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2109 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2110 bucket, src, srcp, dest, destp, sp->sk_state,
2111 sk_wmem_alloc_get(sp),
2112 sk_rmem_alloc_get(sp),
2113 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2114 atomic_read(&sp->sk_refcnt), sp,
2115 atomic_read(&sp->sk_drops), len);
2116}
2117
2118int udp4_seq_show(struct seq_file *seq, void *v)
2119{
2120 if (v == SEQ_START_TOKEN)
2121 seq_printf(seq, "%-127s\n",
2122 " sl local_address rem_address st tx_queue "
2123 "rx_queue tr tm->when retrnsmt uid timeout "
2124 "inode ref pointer drops");
2125 else {
2126 struct udp_iter_state *state = seq->private;
2127 int len;
2128
2129 udp4_format_sock(v, seq, state->bucket, &len);
2130 seq_printf(seq, "%*s\n", 127 - len, "");
2131 }
2132 return 0;
2133}
2134
2135static const struct file_operations udp_afinfo_seq_fops = {
2136 .owner = THIS_MODULE,
2137 .open = udp_seq_open,
2138 .read = seq_read,
2139 .llseek = seq_lseek,
2140 .release = seq_release_net
2141};
2142
2143/* ------------------------------------------------------------------------ */
2144static struct udp_seq_afinfo udp4_seq_afinfo = {
2145 .name = "udp",
2146 .family = AF_INET,
2147 .udp_table = &udp_table,
2148 .seq_fops = &udp_afinfo_seq_fops,
2149 .seq_ops = {
2150 .show = udp4_seq_show,
2151 },
2152};
2153
2154static int __net_init udp4_proc_init_net(struct net *net)
2155{
2156 return udp_proc_register(net, &udp4_seq_afinfo);
2157}
2158
2159static void __net_exit udp4_proc_exit_net(struct net *net)
2160{
2161 udp_proc_unregister(net, &udp4_seq_afinfo);
2162}
2163
2164static struct pernet_operations udp4_net_ops = {
2165 .init = udp4_proc_init_net,
2166 .exit = udp4_proc_exit_net,
2167};
2168
2169int __init udp4_proc_init(void)
2170{
2171 return register_pernet_subsys(&udp4_net_ops);
2172}
2173
2174void udp4_proc_exit(void)
2175{
2176 unregister_pernet_subsys(&udp4_net_ops);
2177}
2178#endif /* CONFIG_PROC_FS */
2179
2180static __initdata unsigned long uhash_entries;
2181static int __init set_uhash_entries(char *str)
2182{
2183 if (!str)
2184 return 0;
2185 uhash_entries = simple_strtoul(str, &str, 0);
2186 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2187 uhash_entries = UDP_HTABLE_SIZE_MIN;
2188 return 1;
2189}
2190__setup("uhash_entries=", set_uhash_entries);
2191
2192void __init udp_table_init(struct udp_table *table, const char *name)
2193{
2194 unsigned int i;
2195
2196 if (!CONFIG_BASE_SMALL)
2197 table->hash = alloc_large_system_hash(name,
2198 2 * sizeof(struct udp_hslot),
2199 uhash_entries,
2200 21, /* one slot per 2 MB */
2201 0,
2202 &table->log,
2203 &table->mask,
2204 64 * 1024);
2205 /*
2206 * Make sure hash table has the minimum size
2207 */
2208 if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2209 table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2210 2 * sizeof(struct udp_hslot), GFP_KERNEL);
2211 if (!table->hash)
2212 panic(name);
2213 table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2214 table->mask = UDP_HTABLE_SIZE_MIN - 1;
2215 }
2216 table->hash2 = table->hash + (table->mask + 1);
2217 for (i = 0; i <= table->mask; i++) {
2218 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2219 table->hash[i].count = 0;
2220 spin_lock_init(&table->hash[i].lock);
2221 }
2222 for (i = 0; i <= table->mask; i++) {
2223 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2224 table->hash2[i].count = 0;
2225 spin_lock_init(&table->hash2[i].lock);
2226 }
2227}
2228
2229void __init udp_init(void)
2230{
2231 unsigned long limit;
2232
2233 udp_table_init(&udp_table, "UDP");
2234 limit = nr_free_buffer_pages() / 8;
2235 limit = max(limit, 128UL);
2236 sysctl_udp_mem[0] = limit / 4 * 3;
2237 sysctl_udp_mem[1] = limit;
2238 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2239
2240 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2241 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2242}
2243
2244int udp4_ufo_send_check(struct sk_buff *skb)
2245{
2246 const struct iphdr *iph;
2247 struct udphdr *uh;
2248
2249 if (!pskb_may_pull(skb, sizeof(*uh)))
2250 return -EINVAL;
2251
2252 iph = ip_hdr(skb);
2253 uh = udp_hdr(skb);
2254
2255 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2256 IPPROTO_UDP, 0);
2257 skb->csum_start = skb_transport_header(skb) - skb->head;
2258 skb->csum_offset = offsetof(struct udphdr, check);
2259 skb->ip_summed = CHECKSUM_PARTIAL;
2260 return 0;
2261}
2262
2263struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
2264 netdev_features_t features)
2265{
2266 struct sk_buff *segs = ERR_PTR(-EINVAL);
2267 unsigned int mss;
2268 int offset;
2269 __wsum csum;
2270
2271 mss = skb_shinfo(skb)->gso_size;
2272 if (unlikely(skb->len <= mss))
2273 goto out;
2274
2275 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2276 /* Packet is from an untrusted source, reset gso_segs. */
2277 int type = skb_shinfo(skb)->gso_type;
2278
2279 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2280 !(type & (SKB_GSO_UDP))))
2281 goto out;
2282
2283 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2284
2285 segs = NULL;
2286 goto out;
2287 }
2288
2289 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2290 * do checksum of UDP packets sent as multiple IP fragments.
2291 */
2292 offset = skb_checksum_start_offset(skb);
2293 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2294 offset += skb->csum_offset;
2295 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2296 skb->ip_summed = CHECKSUM_NONE;
2297
2298 /* Fragment the skb. IP headers of the fragments are updated in
2299 * inet_gso_segment()
2300 */
2301 segs = skb_segment(skb, features);
2302out:
2303 return segs;
2304}
2305