blob: 2e26a542c8189470784ce28c64ab052fa9855ba1 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/jbd2.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/proc_fs.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/cleancache.h>
42#include <asm/uaccess.h>
43
44#include <linux/kthread.h>
45#include <linux/freezer.h>
46
47#include "ext4.h"
48#include "ext4_extents.h"
49#include "ext4_jbd2.h"
50#include "xattr.h"
51#include "acl.h"
52#include "mballoc.h"
53
54#define CREATE_TRACE_POINTS
55#include <trace/events/ext4.h>
56
57static struct proc_dir_entry *ext4_proc_root;
58static struct kset *ext4_kset;
59static struct ext4_lazy_init *ext4_li_info;
60static struct mutex ext4_li_mtx;
61static struct ext4_features *ext4_feat;
62
63static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66static int ext4_commit_super(struct super_block *sb, int sync);
67static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71static int ext4_sync_fs(struct super_block *sb, int wait);
72static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74static int ext4_remount(struct super_block *sb, int *flags, char *data);
75static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76static int ext4_unfreeze(struct super_block *sb);
77static void ext4_write_super(struct super_block *sb);
78static int ext4_freeze(struct super_block *sb);
79static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81static inline int ext2_feature_set_ok(struct super_block *sb);
82static inline int ext3_feature_set_ok(struct super_block *sb);
83static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84static void ext4_destroy_lazyinit_thread(void);
85static void ext4_unregister_li_request(struct super_block *sb);
86static void ext4_clear_request_list(void);
87
88#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89static struct file_system_type ext2_fs_type = {
90 .owner = THIS_MODULE,
91 .name = "ext2",
92 .mount = ext4_mount,
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
95};
96#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97#else
98#define IS_EXT2_SB(sb) (0)
99#endif
100
101
102#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109};
110#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
111#else
112#define IS_EXT3_SB(sb) (0)
113#endif
114
115void *ext4_kvmalloc(size_t size, gfp_t flags)
116{
117 void *ret;
118
119 ret = kmalloc(size, flags);
120 if (!ret)
121 ret = __vmalloc(size, flags, PAGE_KERNEL);
122 return ret;
123}
124
125void *ext4_kvzalloc(size_t size, gfp_t flags)
126{
127 void *ret;
128
129 ret = kzalloc(size, flags);
130 if (!ret)
131 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
132 return ret;
133}
134
135void ext4_kvfree(void *ptr)
136{
137 if (is_vmalloc_addr(ptr))
138 vfree(ptr);
139 else
140 kfree(ptr);
141
142}
143
144ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
145 struct ext4_group_desc *bg)
146{
147 return le32_to_cpu(bg->bg_block_bitmap_lo) |
148 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
149 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
150}
151
152ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
153 struct ext4_group_desc *bg)
154{
155 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
156 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
157 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
158}
159
160ext4_fsblk_t ext4_inode_table(struct super_block *sb,
161 struct ext4_group_desc *bg)
162{
163 return le32_to_cpu(bg->bg_inode_table_lo) |
164 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
165 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
166}
167
168__u32 ext4_free_group_clusters(struct super_block *sb,
169 struct ext4_group_desc *bg)
170{
171 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
172 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
173 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
174}
175
176__u32 ext4_free_inodes_count(struct super_block *sb,
177 struct ext4_group_desc *bg)
178{
179 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
180 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
181 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
182}
183
184__u32 ext4_used_dirs_count(struct super_block *sb,
185 struct ext4_group_desc *bg)
186{
187 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
189 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
190}
191
192__u32 ext4_itable_unused_count(struct super_block *sb,
193 struct ext4_group_desc *bg)
194{
195 return le16_to_cpu(bg->bg_itable_unused_lo) |
196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
197 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
198}
199
200void ext4_block_bitmap_set(struct super_block *sb,
201 struct ext4_group_desc *bg, ext4_fsblk_t blk)
202{
203 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
204 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
205 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
206}
207
208void ext4_inode_bitmap_set(struct super_block *sb,
209 struct ext4_group_desc *bg, ext4_fsblk_t blk)
210{
211 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
212 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
213 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
214}
215
216void ext4_inode_table_set(struct super_block *sb,
217 struct ext4_group_desc *bg, ext4_fsblk_t blk)
218{
219 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
220 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
221 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
222}
223
224void ext4_free_group_clusters_set(struct super_block *sb,
225 struct ext4_group_desc *bg, __u32 count)
226{
227 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
228 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
229 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
230}
231
232void ext4_free_inodes_set(struct super_block *sb,
233 struct ext4_group_desc *bg, __u32 count)
234{
235 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
236 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
237 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
238}
239
240void ext4_used_dirs_set(struct super_block *sb,
241 struct ext4_group_desc *bg, __u32 count)
242{
243 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
245 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
246}
247
248void ext4_itable_unused_set(struct super_block *sb,
249 struct ext4_group_desc *bg, __u32 count)
250{
251 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
253 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
254}
255
256
257/* Just increment the non-pointer handle value */
258static handle_t *ext4_get_nojournal(void)
259{
260 handle_t *handle = current->journal_info;
261 unsigned long ref_cnt = (unsigned long)handle;
262
263 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
264
265 ref_cnt++;
266 handle = (handle_t *)ref_cnt;
267
268 current->journal_info = handle;
269 return handle;
270}
271
272
273/* Decrement the non-pointer handle value */
274static void ext4_put_nojournal(handle_t *handle)
275{
276 unsigned long ref_cnt = (unsigned long)handle;
277
278 BUG_ON(ref_cnt == 0);
279
280 ref_cnt--;
281 handle = (handle_t *)ref_cnt;
282
283 current->journal_info = handle;
284}
285
286/*
287 * Wrappers for jbd2_journal_start/end.
288 *
289 * The only special thing we need to do here is to make sure that all
290 * journal_end calls result in the superblock being marked dirty, so
291 * that sync() will call the filesystem's write_super callback if
292 * appropriate.
293 *
294 * To avoid j_barrier hold in userspace when a user calls freeze(),
295 * ext4 prevents a new handle from being started by s_frozen, which
296 * is in an upper layer.
297 */
298handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
299{
300 journal_t *journal;
301 handle_t *handle;
302
303 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
304 if (sb->s_flags & MS_RDONLY)
305 return ERR_PTR(-EROFS);
306
307 journal = EXT4_SB(sb)->s_journal;
308 handle = ext4_journal_current_handle();
309
310 /*
311 * If a handle has been started, it should be allowed to
312 * finish, otherwise deadlock could happen between freeze
313 * and others(e.g. truncate) due to the restart of the
314 * journal handle if the filesystem is forzen and active
315 * handles are not stopped.
316 */
317 if (!handle)
318 vfs_check_frozen(sb, SB_FREEZE_TRANS);
319
320 if (!journal)
321 return ext4_get_nojournal();
322 /*
323 * Special case here: if the journal has aborted behind our
324 * backs (eg. EIO in the commit thread), then we still need to
325 * take the FS itself readonly cleanly.
326 */
327 if (is_journal_aborted(journal)) {
328 ext4_abort(sb, "Detected aborted journal");
329 return ERR_PTR(-EROFS);
330 }
331 return jbd2_journal_start(journal, nblocks);
332}
333
334/*
335 * The only special thing we need to do here is to make sure that all
336 * jbd2_journal_stop calls result in the superblock being marked dirty, so
337 * that sync() will call the filesystem's write_super callback if
338 * appropriate.
339 */
340int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
341{
342 struct super_block *sb;
343 int err;
344 int rc;
345
346 if (!ext4_handle_valid(handle)) {
347 ext4_put_nojournal(handle);
348 return 0;
349 }
350 sb = handle->h_transaction->t_journal->j_private;
351 err = handle->h_err;
352 rc = jbd2_journal_stop(handle);
353
354 if (!err)
355 err = rc;
356 if (err)
357 __ext4_std_error(sb, where, line, err);
358 return err;
359}
360
361void ext4_journal_abort_handle(const char *caller, unsigned int line,
362 const char *err_fn, struct buffer_head *bh,
363 handle_t *handle, int err)
364{
365 char nbuf[16];
366 const char *errstr = ext4_decode_error(NULL, err, nbuf);
367
368 BUG_ON(!ext4_handle_valid(handle));
369
370 if (bh)
371 BUFFER_TRACE(bh, "abort");
372
373 if (!handle->h_err)
374 handle->h_err = err;
375
376 if (is_handle_aborted(handle))
377 return;
378
379 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
380 caller, line, errstr, err_fn);
381
382 jbd2_journal_abort_handle(handle);
383}
384
385static void __save_error_info(struct super_block *sb, const char *func,
386 unsigned int line)
387{
388 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
389
390 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
391 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
392 es->s_last_error_time = cpu_to_le32(get_seconds());
393 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
394 es->s_last_error_line = cpu_to_le32(line);
395 if (!es->s_first_error_time) {
396 es->s_first_error_time = es->s_last_error_time;
397 strncpy(es->s_first_error_func, func,
398 sizeof(es->s_first_error_func));
399 es->s_first_error_line = cpu_to_le32(line);
400 es->s_first_error_ino = es->s_last_error_ino;
401 es->s_first_error_block = es->s_last_error_block;
402 }
403 /*
404 * Start the daily error reporting function if it hasn't been
405 * started already
406 */
407 if (!es->s_error_count)
408 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
409 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
410}
411
412static void save_error_info(struct super_block *sb, const char *func,
413 unsigned int line)
414{
415 __save_error_info(sb, func, line);
416 ext4_commit_super(sb, 1);
417}
418
419/*
420 * The del_gendisk() function uninitializes the disk-specific data
421 * structures, including the bdi structure, without telling anyone
422 * else. Once this happens, any attempt to call mark_buffer_dirty()
423 * (for example, by ext4_commit_super), will cause a kernel OOPS.
424 * This is a kludge to prevent these oops until we can put in a proper
425 * hook in del_gendisk() to inform the VFS and file system layers.
426 */
427static int block_device_ejected(struct super_block *sb)
428{
429 struct inode *bd_inode = sb->s_bdev->bd_inode;
430 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
431
432 return bdi->dev == NULL;
433}
434
435static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
436{
437 struct super_block *sb = journal->j_private;
438 struct ext4_sb_info *sbi = EXT4_SB(sb);
439 int error = is_journal_aborted(journal);
440 struct ext4_journal_cb_entry *jce;
441
442 BUG_ON(txn->t_state == T_FINISHED);
443 spin_lock(&sbi->s_md_lock);
444 while (!list_empty(&txn->t_private_list)) {
445 jce = list_entry(txn->t_private_list.next,
446 struct ext4_journal_cb_entry, jce_list);
447 list_del_init(&jce->jce_list);
448 spin_unlock(&sbi->s_md_lock);
449 jce->jce_func(sb, jce, error);
450 spin_lock(&sbi->s_md_lock);
451 }
452 spin_unlock(&sbi->s_md_lock);
453}
454
455/* Deal with the reporting of failure conditions on a filesystem such as
456 * inconsistencies detected or read IO failures.
457 *
458 * On ext2, we can store the error state of the filesystem in the
459 * superblock. That is not possible on ext4, because we may have other
460 * write ordering constraints on the superblock which prevent us from
461 * writing it out straight away; and given that the journal is about to
462 * be aborted, we can't rely on the current, or future, transactions to
463 * write out the superblock safely.
464 *
465 * We'll just use the jbd2_journal_abort() error code to record an error in
466 * the journal instead. On recovery, the journal will complain about
467 * that error until we've noted it down and cleared it.
468 */
469
470static void ext4_handle_error(struct super_block *sb)
471{
472 if (sb->s_flags & MS_RDONLY)
473 return;
474
475 if (!test_opt(sb, ERRORS_CONT)) {
476 journal_t *journal = EXT4_SB(sb)->s_journal;
477
478 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
479 if (journal)
480 jbd2_journal_abort(journal, -EIO);
481 }
482 if (test_opt(sb, ERRORS_RO)) {
483 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
484 sb->s_flags |= MS_RDONLY;
485 }
486 if (test_opt(sb, ERRORS_PANIC))
487 panic("EXT4-fs (device %s): panic forced after error\n",
488 sb->s_id);
489}
490
491void __ext4_error(struct super_block *sb, const char *function,
492 unsigned int line, const char *fmt, ...)
493{
494 struct va_format vaf;
495 va_list args;
496
497 va_start(args, fmt);
498 vaf.fmt = fmt;
499 vaf.va = &args;
500 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
501 sb->s_id, function, line, current->comm, &vaf);
502 va_end(args);
503 save_error_info(sb, function, line);
504
505 ext4_handle_error(sb);
506}
507
508void ext4_error_inode(struct inode *inode, const char *function,
509 unsigned int line, ext4_fsblk_t block,
510 const char *fmt, ...)
511{
512 va_list args;
513 struct va_format vaf;
514 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
515
516 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
517 es->s_last_error_block = cpu_to_le64(block);
518 save_error_info(inode->i_sb, function, line);
519 va_start(args, fmt);
520 vaf.fmt = fmt;
521 vaf.va = &args;
522 if (block)
523 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
524 "inode #%lu: block %llu: comm %s: %pV\n",
525 inode->i_sb->s_id, function, line, inode->i_ino,
526 block, current->comm, &vaf);
527 else
528 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
529 "inode #%lu: comm %s: %pV\n",
530 inode->i_sb->s_id, function, line, inode->i_ino,
531 current->comm, &vaf);
532 va_end(args);
533
534 ext4_handle_error(inode->i_sb);
535}
536
537void ext4_error_file(struct file *file, const char *function,
538 unsigned int line, ext4_fsblk_t block,
539 const char *fmt, ...)
540{
541 va_list args;
542 struct va_format vaf;
543 struct ext4_super_block *es;
544 struct inode *inode = file->f_dentry->d_inode;
545 char pathname[80], *path;
546
547 es = EXT4_SB(inode->i_sb)->s_es;
548 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
549 save_error_info(inode->i_sb, function, line);
550 path = d_path(&(file->f_path), pathname, sizeof(pathname));
551 if (IS_ERR(path))
552 path = "(unknown)";
553 va_start(args, fmt);
554 vaf.fmt = fmt;
555 vaf.va = &args;
556 if (block)
557 printk(KERN_CRIT
558 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
559 "block %llu: comm %s: path %s: %pV\n",
560 inode->i_sb->s_id, function, line, inode->i_ino,
561 block, current->comm, path, &vaf);
562 else
563 printk(KERN_CRIT
564 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
565 "comm %s: path %s: %pV\n",
566 inode->i_sb->s_id, function, line, inode->i_ino,
567 current->comm, path, &vaf);
568 va_end(args);
569
570 ext4_handle_error(inode->i_sb);
571}
572
573static const char *ext4_decode_error(struct super_block *sb, int errno,
574 char nbuf[16])
575{
576 char *errstr = NULL;
577
578 switch (errno) {
579 case -EIO:
580 errstr = "IO failure";
581 break;
582 case -ENOMEM:
583 errstr = "Out of memory";
584 break;
585 case -EROFS:
586 if (!sb || (EXT4_SB(sb)->s_journal &&
587 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
588 errstr = "Journal has aborted";
589 else
590 errstr = "Readonly filesystem";
591 break;
592 default:
593 /* If the caller passed in an extra buffer for unknown
594 * errors, textualise them now. Else we just return
595 * NULL. */
596 if (nbuf) {
597 /* Check for truncated error codes... */
598 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
599 errstr = nbuf;
600 }
601 break;
602 }
603
604 return errstr;
605}
606
607/* __ext4_std_error decodes expected errors from journaling functions
608 * automatically and invokes the appropriate error response. */
609
610void __ext4_std_error(struct super_block *sb, const char *function,
611 unsigned int line, int errno)
612{
613 char nbuf[16];
614 const char *errstr;
615
616 /* Special case: if the error is EROFS, and we're not already
617 * inside a transaction, then there's really no point in logging
618 * an error. */
619 if (errno == -EROFS && journal_current_handle() == NULL &&
620 (sb->s_flags & MS_RDONLY))
621 return;
622
623 errstr = ext4_decode_error(sb, errno, nbuf);
624 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
625 sb->s_id, function, line, errstr);
626 save_error_info(sb, function, line);
627
628 ext4_handle_error(sb);
629}
630
631/*
632 * ext4_abort is a much stronger failure handler than ext4_error. The
633 * abort function may be used to deal with unrecoverable failures such
634 * as journal IO errors or ENOMEM at a critical moment in log management.
635 *
636 * We unconditionally force the filesystem into an ABORT|READONLY state,
637 * unless the error response on the fs has been set to panic in which
638 * case we take the easy way out and panic immediately.
639 */
640
641void __ext4_abort(struct super_block *sb, const char *function,
642 unsigned int line, const char *fmt, ...)
643{
644 va_list args;
645
646 save_error_info(sb, function, line);
647 va_start(args, fmt);
648 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
649 function, line);
650 vprintk(fmt, args);
651 printk("\n");
652 va_end(args);
653
654 if ((sb->s_flags & MS_RDONLY) == 0) {
655 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
656 sb->s_flags |= MS_RDONLY;
657 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
658 if (EXT4_SB(sb)->s_journal)
659 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
660 save_error_info(sb, function, line);
661 }
662 if (test_opt(sb, ERRORS_PANIC))
663 panic("EXT4-fs panic from previous error\n");
664}
665
666void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
667{
668 struct va_format vaf;
669 va_list args;
670
671 va_start(args, fmt);
672 vaf.fmt = fmt;
673 vaf.va = &args;
674 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
675 va_end(args);
676}
677
678void __ext4_warning(struct super_block *sb, const char *function,
679 unsigned int line, const char *fmt, ...)
680{
681 struct va_format vaf;
682 va_list args;
683
684 va_start(args, fmt);
685 vaf.fmt = fmt;
686 vaf.va = &args;
687 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
688 sb->s_id, function, line, &vaf);
689 va_end(args);
690}
691
692void __ext4_grp_locked_error(const char *function, unsigned int line,
693 struct super_block *sb, ext4_group_t grp,
694 unsigned long ino, ext4_fsblk_t block,
695 const char *fmt, ...)
696__releases(bitlock)
697__acquires(bitlock)
698{
699 struct va_format vaf;
700 va_list args;
701 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
702
703 es->s_last_error_ino = cpu_to_le32(ino);
704 es->s_last_error_block = cpu_to_le64(block);
705 __save_error_info(sb, function, line);
706
707 va_start(args, fmt);
708
709 vaf.fmt = fmt;
710 vaf.va = &args;
711 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
712 sb->s_id, function, line, grp);
713 if (ino)
714 printk(KERN_CONT "inode %lu: ", ino);
715 if (block)
716 printk(KERN_CONT "block %llu:", (unsigned long long) block);
717 printk(KERN_CONT "%pV\n", &vaf);
718 va_end(args);
719
720 if (test_opt(sb, ERRORS_CONT)) {
721 ext4_commit_super(sb, 0);
722 return;
723 }
724
725 ext4_unlock_group(sb, grp);
726 ext4_handle_error(sb);
727 /*
728 * We only get here in the ERRORS_RO case; relocking the group
729 * may be dangerous, but nothing bad will happen since the
730 * filesystem will have already been marked read/only and the
731 * journal has been aborted. We return 1 as a hint to callers
732 * who might what to use the return value from
733 * ext4_grp_locked_error() to distinguish between the
734 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
735 * aggressively from the ext4 function in question, with a
736 * more appropriate error code.
737 */
738 ext4_lock_group(sb, grp);
739 return;
740}
741
742void ext4_update_dynamic_rev(struct super_block *sb)
743{
744 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
745
746 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
747 return;
748
749 ext4_warning(sb,
750 "updating to rev %d because of new feature flag, "
751 "running e2fsck is recommended",
752 EXT4_DYNAMIC_REV);
753
754 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
755 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
756 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
757 /* leave es->s_feature_*compat flags alone */
758 /* es->s_uuid will be set by e2fsck if empty */
759
760 /*
761 * The rest of the superblock fields should be zero, and if not it
762 * means they are likely already in use, so leave them alone. We
763 * can leave it up to e2fsck to clean up any inconsistencies there.
764 */
765}
766
767/*
768 * Open the external journal device
769 */
770static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
771{
772 struct block_device *bdev;
773 char b[BDEVNAME_SIZE];
774
775 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
776 if (IS_ERR(bdev))
777 goto fail;
778 return bdev;
779
780fail:
781 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
782 __bdevname(dev, b), PTR_ERR(bdev));
783 return NULL;
784}
785
786/*
787 * Release the journal device
788 */
789static int ext4_blkdev_put(struct block_device *bdev)
790{
791 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
792}
793
794static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
795{
796 struct block_device *bdev;
797 int ret = -ENODEV;
798
799 bdev = sbi->journal_bdev;
800 if (bdev) {
801 ret = ext4_blkdev_put(bdev);
802 sbi->journal_bdev = NULL;
803 }
804 return ret;
805}
806
807static inline struct inode *orphan_list_entry(struct list_head *l)
808{
809 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
810}
811
812static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
813{
814 struct list_head *l;
815
816 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
817 le32_to_cpu(sbi->s_es->s_last_orphan));
818
819 printk(KERN_ERR "sb_info orphan list:\n");
820 list_for_each(l, &sbi->s_orphan) {
821 struct inode *inode = orphan_list_entry(l);
822 printk(KERN_ERR " "
823 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
824 inode->i_sb->s_id, inode->i_ino, inode,
825 inode->i_mode, inode->i_nlink,
826 NEXT_ORPHAN(inode));
827 }
828}
829
830static void ext4_put_super(struct super_block *sb)
831{
832 struct ext4_sb_info *sbi = EXT4_SB(sb);
833 struct ext4_super_block *es = sbi->s_es;
834 int i, err;
835
836 ext4_unregister_li_request(sb);
837 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
838
839 flush_workqueue(sbi->dio_unwritten_wq);
840 destroy_workqueue(sbi->dio_unwritten_wq);
841
842 lock_super(sb);
843 if (sbi->s_journal) {
844 err = jbd2_journal_destroy(sbi->s_journal);
845 sbi->s_journal = NULL;
846 if (err < 0)
847 ext4_abort(sb, "Couldn't clean up the journal");
848 }
849
850 del_timer(&sbi->s_err_report);
851 ext4_release_system_zone(sb);
852 ext4_mb_release(sb);
853 ext4_ext_release(sb);
854 ext4_xattr_put_super(sb);
855
856 if (!(sb->s_flags & MS_RDONLY)) {
857 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
858 es->s_state = cpu_to_le16(sbi->s_mount_state);
859 }
860 if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
861 ext4_commit_super(sb, 1);
862
863 if (sbi->s_proc) {
864 remove_proc_entry("options", sbi->s_proc);
865 remove_proc_entry(sb->s_id, ext4_proc_root);
866 }
867 kobject_del(&sbi->s_kobj);
868
869 for (i = 0; i < sbi->s_gdb_count; i++)
870 brelse(sbi->s_group_desc[i]);
871 ext4_kvfree(sbi->s_group_desc);
872 ext4_kvfree(sbi->s_flex_groups);
873 percpu_counter_destroy(&sbi->s_freeclusters_counter);
874 percpu_counter_destroy(&sbi->s_freeinodes_counter);
875 percpu_counter_destroy(&sbi->s_dirs_counter);
876 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
877 brelse(sbi->s_sbh);
878#ifdef CONFIG_QUOTA
879 for (i = 0; i < MAXQUOTAS; i++)
880 kfree(sbi->s_qf_names[i]);
881#endif
882
883 /* Debugging code just in case the in-memory inode orphan list
884 * isn't empty. The on-disk one can be non-empty if we've
885 * detected an error and taken the fs readonly, but the
886 * in-memory list had better be clean by this point. */
887 if (!list_empty(&sbi->s_orphan))
888 dump_orphan_list(sb, sbi);
889 J_ASSERT(list_empty(&sbi->s_orphan));
890
891 sync_blockdev(sb->s_bdev);
892 invalidate_bdev(sb->s_bdev);
893 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
894 /*
895 * Invalidate the journal device's buffers. We don't want them
896 * floating about in memory - the physical journal device may
897 * hotswapped, and it breaks the `ro-after' testing code.
898 */
899 sync_blockdev(sbi->journal_bdev);
900 invalidate_bdev(sbi->journal_bdev);
901 ext4_blkdev_remove(sbi);
902 }
903 if (sbi->s_mmp_tsk)
904 kthread_stop(sbi->s_mmp_tsk);
905 sb->s_fs_info = NULL;
906 /*
907 * Now that we are completely done shutting down the
908 * superblock, we need to actually destroy the kobject.
909 */
910 unlock_super(sb);
911 kobject_put(&sbi->s_kobj);
912 wait_for_completion(&sbi->s_kobj_unregister);
913 kfree(sbi->s_blockgroup_lock);
914 kfree(sbi);
915}
916
917static struct kmem_cache *ext4_inode_cachep;
918
919/*
920 * Called inside transaction, so use GFP_NOFS
921 */
922static struct inode *ext4_alloc_inode(struct super_block *sb)
923{
924 struct ext4_inode_info *ei;
925
926 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
927 if (!ei)
928 return NULL;
929
930 ei->vfs_inode.i_version = 1;
931 ei->vfs_inode.i_data.writeback_index = 0;
932 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
933 INIT_LIST_HEAD(&ei->i_prealloc_list);
934 spin_lock_init(&ei->i_prealloc_lock);
935 ei->i_reserved_data_blocks = 0;
936 ei->i_reserved_meta_blocks = 0;
937 ei->i_allocated_meta_blocks = 0;
938 ei->i_da_metadata_calc_len = 0;
939 ei->i_da_metadata_calc_last_lblock = 0;
940 spin_lock_init(&(ei->i_block_reservation_lock));
941#ifdef CONFIG_QUOTA
942 ei->i_reserved_quota = 0;
943#endif
944 ei->jinode = NULL;
945 INIT_LIST_HEAD(&ei->i_completed_io_list);
946 spin_lock_init(&ei->i_completed_io_lock);
947 ei->cur_aio_dio = NULL;
948 ei->i_sync_tid = 0;
949 ei->i_datasync_tid = 0;
950 atomic_set(&ei->i_ioend_count, 0);
951 atomic_set(&ei->i_aiodio_unwritten, 0);
952
953 return &ei->vfs_inode;
954}
955
956static int ext4_drop_inode(struct inode *inode)
957{
958 int drop = generic_drop_inode(inode);
959
960 trace_ext4_drop_inode(inode, drop);
961 return drop;
962}
963
964static void ext4_i_callback(struct rcu_head *head)
965{
966 struct inode *inode = container_of(head, struct inode, i_rcu);
967 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
968}
969
970static void ext4_destroy_inode(struct inode *inode)
971{
972 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
973 ext4_msg(inode->i_sb, KERN_ERR,
974 "Inode %lu (%p): orphan list check failed!",
975 inode->i_ino, EXT4_I(inode));
976 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
977 EXT4_I(inode), sizeof(struct ext4_inode_info),
978 true);
979 dump_stack();
980 }
981 call_rcu(&inode->i_rcu, ext4_i_callback);
982}
983
984static void init_once(void *foo)
985{
986 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
987
988 INIT_LIST_HEAD(&ei->i_orphan);
989#ifdef CONFIG_EXT4_FS_XATTR
990 init_rwsem(&ei->xattr_sem);
991#endif
992 init_rwsem(&ei->i_data_sem);
993 inode_init_once(&ei->vfs_inode);
994}
995
996static int init_inodecache(void)
997{
998 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
999 sizeof(struct ext4_inode_info),
1000 0, (SLAB_RECLAIM_ACCOUNT|
1001 SLAB_MEM_SPREAD),
1002 init_once);
1003 if (ext4_inode_cachep == NULL)
1004 return -ENOMEM;
1005 return 0;
1006}
1007
1008static void destroy_inodecache(void)
1009{
1010 kmem_cache_destroy(ext4_inode_cachep);
1011}
1012
1013void ext4_clear_inode(struct inode *inode)
1014{
1015 invalidate_inode_buffers(inode);
1016 end_writeback(inode);
1017 dquot_drop(inode);
1018 ext4_discard_preallocations(inode);
1019 if (EXT4_I(inode)->jinode) {
1020 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1021 EXT4_I(inode)->jinode);
1022 jbd2_free_inode(EXT4_I(inode)->jinode);
1023 EXT4_I(inode)->jinode = NULL;
1024 }
1025}
1026
1027static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1028 u64 ino, u32 generation)
1029{
1030 struct inode *inode;
1031
1032 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1033 return ERR_PTR(-ESTALE);
1034 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1035 return ERR_PTR(-ESTALE);
1036
1037 /* iget isn't really right if the inode is currently unallocated!!
1038 *
1039 * ext4_read_inode will return a bad_inode if the inode had been
1040 * deleted, so we should be safe.
1041 *
1042 * Currently we don't know the generation for parent directory, so
1043 * a generation of 0 means "accept any"
1044 */
1045 inode = ext4_iget_normal(sb, ino);
1046 if (IS_ERR(inode))
1047 return ERR_CAST(inode);
1048 if (generation && inode->i_generation != generation) {
1049 iput(inode);
1050 return ERR_PTR(-ESTALE);
1051 }
1052
1053 return inode;
1054}
1055
1056static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1057 int fh_len, int fh_type)
1058{
1059 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1060 ext4_nfs_get_inode);
1061}
1062
1063static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1064 int fh_len, int fh_type)
1065{
1066 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1067 ext4_nfs_get_inode);
1068}
1069
1070/*
1071 * Try to release metadata pages (indirect blocks, directories) which are
1072 * mapped via the block device. Since these pages could have journal heads
1073 * which would prevent try_to_free_buffers() from freeing them, we must use
1074 * jbd2 layer's try_to_free_buffers() function to release them.
1075 */
1076static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1077 gfp_t wait)
1078{
1079 journal_t *journal = EXT4_SB(sb)->s_journal;
1080
1081 WARN_ON(PageChecked(page));
1082 if (!page_has_buffers(page))
1083 return 0;
1084 if (journal)
1085 return jbd2_journal_try_to_free_buffers(journal, page,
1086 wait & ~__GFP_WAIT);
1087 return try_to_free_buffers(page);
1088}
1089
1090#ifdef CONFIG_QUOTA
1091#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1092#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1093
1094static int ext4_write_dquot(struct dquot *dquot);
1095static int ext4_acquire_dquot(struct dquot *dquot);
1096static int ext4_release_dquot(struct dquot *dquot);
1097static int ext4_mark_dquot_dirty(struct dquot *dquot);
1098static int ext4_write_info(struct super_block *sb, int type);
1099static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1100 struct path *path);
1101static int ext4_quota_off(struct super_block *sb, int type);
1102static int ext4_quota_on_mount(struct super_block *sb, int type);
1103static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1104 size_t len, loff_t off);
1105static ssize_t ext4_quota_write(struct super_block *sb, int type,
1106 const char *data, size_t len, loff_t off);
1107
1108static const struct dquot_operations ext4_quota_operations = {
1109 .get_reserved_space = ext4_get_reserved_space,
1110 .write_dquot = ext4_write_dquot,
1111 .acquire_dquot = ext4_acquire_dquot,
1112 .release_dquot = ext4_release_dquot,
1113 .mark_dirty = ext4_mark_dquot_dirty,
1114 .write_info = ext4_write_info,
1115 .alloc_dquot = dquot_alloc,
1116 .destroy_dquot = dquot_destroy,
1117};
1118
1119static const struct quotactl_ops ext4_qctl_operations = {
1120 .quota_on = ext4_quota_on,
1121 .quota_off = ext4_quota_off,
1122 .quota_sync = dquot_quota_sync,
1123 .get_info = dquot_get_dqinfo,
1124 .set_info = dquot_set_dqinfo,
1125 .get_dqblk = dquot_get_dqblk,
1126 .set_dqblk = dquot_set_dqblk
1127};
1128#endif
1129
1130static const struct super_operations ext4_sops = {
1131 .alloc_inode = ext4_alloc_inode,
1132 .destroy_inode = ext4_destroy_inode,
1133 .write_inode = ext4_write_inode,
1134 .dirty_inode = ext4_dirty_inode,
1135 .drop_inode = ext4_drop_inode,
1136 .evict_inode = ext4_evict_inode,
1137 .put_super = ext4_put_super,
1138 .sync_fs = ext4_sync_fs,
1139 .freeze_fs = ext4_freeze,
1140 .unfreeze_fs = ext4_unfreeze,
1141 .statfs = ext4_statfs,
1142 .remount_fs = ext4_remount,
1143 .show_options = ext4_show_options,
1144#ifdef CONFIG_QUOTA
1145 .quota_read = ext4_quota_read,
1146 .quota_write = ext4_quota_write,
1147#endif
1148 .bdev_try_to_free_page = bdev_try_to_free_page,
1149};
1150
1151static const struct super_operations ext4_nojournal_sops = {
1152 .alloc_inode = ext4_alloc_inode,
1153 .destroy_inode = ext4_destroy_inode,
1154 .write_inode = ext4_write_inode,
1155 .dirty_inode = ext4_dirty_inode,
1156 .drop_inode = ext4_drop_inode,
1157 .evict_inode = ext4_evict_inode,
1158 .write_super = ext4_write_super,
1159 .put_super = ext4_put_super,
1160 .statfs = ext4_statfs,
1161 .remount_fs = ext4_remount,
1162 .show_options = ext4_show_options,
1163#ifdef CONFIG_QUOTA
1164 .quota_read = ext4_quota_read,
1165 .quota_write = ext4_quota_write,
1166#endif
1167 .bdev_try_to_free_page = bdev_try_to_free_page,
1168};
1169
1170static const struct export_operations ext4_export_ops = {
1171 .fh_to_dentry = ext4_fh_to_dentry,
1172 .fh_to_parent = ext4_fh_to_parent,
1173 .get_parent = ext4_get_parent,
1174};
1175
1176enum {
1177 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1178 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1179 Opt_nouid32, Opt_debug, Opt_removed,
1180 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1181 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1182 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1183 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1184 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1185 Opt_data_err_abort, Opt_data_err_ignore,
1186 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1187 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1188 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1189 Opt_usrquota, Opt_grpquota, Opt_i_version,
1190 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1191 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1192 Opt_inode_readahead_blks, Opt_journal_ioprio,
1193 Opt_dioread_nolock, Opt_dioread_lock,
1194 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1195};
1196
1197static const match_table_t tokens = {
1198 {Opt_bsd_df, "bsddf"},
1199 {Opt_minix_df, "minixdf"},
1200 {Opt_grpid, "grpid"},
1201 {Opt_grpid, "bsdgroups"},
1202 {Opt_nogrpid, "nogrpid"},
1203 {Opt_nogrpid, "sysvgroups"},
1204 {Opt_resgid, "resgid=%u"},
1205 {Opt_resuid, "resuid=%u"},
1206 {Opt_sb, "sb=%u"},
1207 {Opt_err_cont, "errors=continue"},
1208 {Opt_err_panic, "errors=panic"},
1209 {Opt_err_ro, "errors=remount-ro"},
1210 {Opt_nouid32, "nouid32"},
1211 {Opt_debug, "debug"},
1212 {Opt_removed, "oldalloc"},
1213 {Opt_removed, "orlov"},
1214 {Opt_user_xattr, "user_xattr"},
1215 {Opt_nouser_xattr, "nouser_xattr"},
1216 {Opt_acl, "acl"},
1217 {Opt_noacl, "noacl"},
1218 {Opt_noload, "norecovery"},
1219 {Opt_noload, "noload"},
1220 {Opt_removed, "nobh"},
1221 {Opt_removed, "bh"},
1222 {Opt_commit, "commit=%u"},
1223 {Opt_min_batch_time, "min_batch_time=%u"},
1224 {Opt_max_batch_time, "max_batch_time=%u"},
1225 {Opt_journal_dev, "journal_dev=%u"},
1226 {Opt_journal_checksum, "journal_checksum"},
1227 {Opt_journal_async_commit, "journal_async_commit"},
1228 {Opt_abort, "abort"},
1229 {Opt_data_journal, "data=journal"},
1230 {Opt_data_ordered, "data=ordered"},
1231 {Opt_data_writeback, "data=writeback"},
1232 {Opt_data_err_abort, "data_err=abort"},
1233 {Opt_data_err_ignore, "data_err=ignore"},
1234 {Opt_offusrjquota, "usrjquota="},
1235 {Opt_usrjquota, "usrjquota=%s"},
1236 {Opt_offgrpjquota, "grpjquota="},
1237 {Opt_grpjquota, "grpjquota=%s"},
1238 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1239 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1240 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1241 {Opt_grpquota, "grpquota"},
1242 {Opt_noquota, "noquota"},
1243 {Opt_quota, "quota"},
1244 {Opt_usrquota, "usrquota"},
1245 {Opt_barrier, "barrier=%u"},
1246 {Opt_barrier, "barrier"},
1247 {Opt_nobarrier, "nobarrier"},
1248 {Opt_i_version, "i_version"},
1249 {Opt_stripe, "stripe=%u"},
1250 {Opt_delalloc, "delalloc"},
1251 {Opt_nodelalloc, "nodelalloc"},
1252 {Opt_mblk_io_submit, "mblk_io_submit"},
1253 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1254 {Opt_block_validity, "block_validity"},
1255 {Opt_noblock_validity, "noblock_validity"},
1256 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1257 {Opt_journal_ioprio, "journal_ioprio=%u"},
1258 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1259 {Opt_auto_da_alloc, "auto_da_alloc"},
1260 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1261 {Opt_dioread_nolock, "dioread_nolock"},
1262 {Opt_dioread_lock, "dioread_lock"},
1263 {Opt_discard, "discard"},
1264 {Opt_nodiscard, "nodiscard"},
1265 {Opt_init_itable, "init_itable=%u"},
1266 {Opt_init_itable, "init_itable"},
1267 {Opt_noinit_itable, "noinit_itable"},
1268 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1269 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1270 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1271 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1272 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1273 {Opt_err, NULL},
1274};
1275
1276static ext4_fsblk_t get_sb_block(void **data)
1277{
1278 ext4_fsblk_t sb_block;
1279 char *options = (char *) *data;
1280
1281 if (!options || strncmp(options, "sb=", 3) != 0)
1282 return 1; /* Default location */
1283
1284 options += 3;
1285 /* TODO: use simple_strtoll with >32bit ext4 */
1286 sb_block = simple_strtoul(options, &options, 0);
1287 if (*options && *options != ',') {
1288 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1289 (char *) *data);
1290 return 1;
1291 }
1292 if (*options == ',')
1293 options++;
1294 *data = (void *) options;
1295
1296 return sb_block;
1297}
1298
1299#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1300static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1301 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1302
1303#ifdef CONFIG_QUOTA
1304static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1305{
1306 struct ext4_sb_info *sbi = EXT4_SB(sb);
1307 char *qname;
1308
1309 if (sb_any_quota_loaded(sb) &&
1310 !sbi->s_qf_names[qtype]) {
1311 ext4_msg(sb, KERN_ERR,
1312 "Cannot change journaled "
1313 "quota options when quota turned on");
1314 return -1;
1315 }
1316 qname = match_strdup(args);
1317 if (!qname) {
1318 ext4_msg(sb, KERN_ERR,
1319 "Not enough memory for storing quotafile name");
1320 return -1;
1321 }
1322 if (sbi->s_qf_names[qtype] &&
1323 strcmp(sbi->s_qf_names[qtype], qname)) {
1324 ext4_msg(sb, KERN_ERR,
1325 "%s quota file already specified", QTYPE2NAME(qtype));
1326 kfree(qname);
1327 return -1;
1328 }
1329 sbi->s_qf_names[qtype] = qname;
1330 if (strchr(sbi->s_qf_names[qtype], '/')) {
1331 ext4_msg(sb, KERN_ERR,
1332 "quotafile must be on filesystem root");
1333 kfree(sbi->s_qf_names[qtype]);
1334 sbi->s_qf_names[qtype] = NULL;
1335 return -1;
1336 }
1337 set_opt(sb, QUOTA);
1338 return 1;
1339}
1340
1341static int clear_qf_name(struct super_block *sb, int qtype)
1342{
1343
1344 struct ext4_sb_info *sbi = EXT4_SB(sb);
1345
1346 if (sb_any_quota_loaded(sb) &&
1347 sbi->s_qf_names[qtype]) {
1348 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1349 " when quota turned on");
1350 return -1;
1351 }
1352 /*
1353 * The space will be released later when all options are confirmed
1354 * to be correct
1355 */
1356 sbi->s_qf_names[qtype] = NULL;
1357 return 1;
1358}
1359#endif
1360
1361#define MOPT_SET 0x0001
1362#define MOPT_CLEAR 0x0002
1363#define MOPT_NOSUPPORT 0x0004
1364#define MOPT_EXPLICIT 0x0008
1365#define MOPT_CLEAR_ERR 0x0010
1366#define MOPT_GTE0 0x0020
1367#ifdef CONFIG_QUOTA
1368#define MOPT_Q 0
1369#define MOPT_QFMT 0x0040
1370#else
1371#define MOPT_Q MOPT_NOSUPPORT
1372#define MOPT_QFMT MOPT_NOSUPPORT
1373#endif
1374#define MOPT_DATAJ 0x0080
1375
1376static const struct mount_opts {
1377 int token;
1378 int mount_opt;
1379 int flags;
1380} ext4_mount_opts[] = {
1381 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1382 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1383 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1384 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1385 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1386 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1387 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1388 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1389 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1390 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1391 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1392 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1393 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1394 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1395 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1396 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1397 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1398 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1399 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1400 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1401 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1402 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1403 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1404 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1405 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1406 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1407 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1408 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1409 {Opt_commit, 0, MOPT_GTE0},
1410 {Opt_max_batch_time, 0, MOPT_GTE0},
1411 {Opt_min_batch_time, 0, MOPT_GTE0},
1412 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1413 {Opt_init_itable, 0, MOPT_GTE0},
1414 {Opt_stripe, 0, MOPT_GTE0},
1415 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1416 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1417 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1418#ifdef CONFIG_EXT4_FS_XATTR
1419 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1420 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1421#else
1422 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1423 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1424#endif
1425#ifdef CONFIG_EXT4_FS_POSIX_ACL
1426 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1427 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1428#else
1429 {Opt_acl, 0, MOPT_NOSUPPORT},
1430 {Opt_noacl, 0, MOPT_NOSUPPORT},
1431#endif
1432 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1433 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1434 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1435 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1436 MOPT_SET | MOPT_Q},
1437 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1438 MOPT_SET | MOPT_Q},
1439 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1440 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1441 {Opt_usrjquota, 0, MOPT_Q},
1442 {Opt_grpjquota, 0, MOPT_Q},
1443 {Opt_offusrjquota, 0, MOPT_Q},
1444 {Opt_offgrpjquota, 0, MOPT_Q},
1445 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1446 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1447 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1448 {Opt_err, 0, 0}
1449};
1450
1451static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1452 substring_t *args, unsigned long *journal_devnum,
1453 unsigned int *journal_ioprio, int is_remount)
1454{
1455 struct ext4_sb_info *sbi = EXT4_SB(sb);
1456 const struct mount_opts *m;
1457 int arg = 0;
1458
1459#ifdef CONFIG_QUOTA
1460 if (token == Opt_usrjquota)
1461 return set_qf_name(sb, USRQUOTA, &args[0]);
1462 else if (token == Opt_grpjquota)
1463 return set_qf_name(sb, GRPQUOTA, &args[0]);
1464 else if (token == Opt_offusrjquota)
1465 return clear_qf_name(sb, USRQUOTA);
1466 else if (token == Opt_offgrpjquota)
1467 return clear_qf_name(sb, GRPQUOTA);
1468#endif
1469 if (args->from && match_int(args, &arg))
1470 return -1;
1471 switch (token) {
1472 case Opt_noacl:
1473 case Opt_nouser_xattr:
1474 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1475 break;
1476 case Opt_sb:
1477 return 1; /* handled by get_sb_block() */
1478 case Opt_removed:
1479 ext4_msg(sb, KERN_WARNING,
1480 "Ignoring removed %s option", opt);
1481 return 1;
1482 case Opt_resuid:
1483 sbi->s_resuid = arg;
1484 return 1;
1485 case Opt_resgid:
1486 sbi->s_resgid = arg;
1487 return 1;
1488 case Opt_abort:
1489 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1490 return 1;
1491 case Opt_i_version:
1492 sb->s_flags |= MS_I_VERSION;
1493 return 1;
1494 case Opt_journal_dev:
1495 if (is_remount) {
1496 ext4_msg(sb, KERN_ERR,
1497 "Cannot specify journal on remount");
1498 return -1;
1499 }
1500 *journal_devnum = arg;
1501 return 1;
1502 case Opt_journal_ioprio:
1503 if (arg < 0 || arg > 7)
1504 return -1;
1505 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1506 return 1;
1507 }
1508
1509 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1510 if (token != m->token)
1511 continue;
1512 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1513 return -1;
1514 if (m->flags & MOPT_EXPLICIT)
1515 set_opt2(sb, EXPLICIT_DELALLOC);
1516 if (m->flags & MOPT_CLEAR_ERR)
1517 clear_opt(sb, ERRORS_MASK);
1518 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1519 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1520 "options when quota turned on");
1521 return -1;
1522 }
1523
1524 if (m->flags & MOPT_NOSUPPORT) {
1525 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1526 } else if (token == Opt_commit) {
1527 if (arg == 0)
1528 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1529 sbi->s_commit_interval = HZ * arg;
1530 } else if (token == Opt_max_batch_time) {
1531 if (arg == 0)
1532 arg = EXT4_DEF_MAX_BATCH_TIME;
1533 sbi->s_max_batch_time = arg;
1534 } else if (token == Opt_min_batch_time) {
1535 sbi->s_min_batch_time = arg;
1536 } else if (token == Opt_inode_readahead_blks) {
1537 if (arg > (1 << 30))
1538 return -1;
1539 if (arg && !is_power_of_2(arg)) {
1540 ext4_msg(sb, KERN_ERR,
1541 "EXT4-fs: inode_readahead_blks"
1542 " must be a power of 2");
1543 return -1;
1544 }
1545 sbi->s_inode_readahead_blks = arg;
1546 } else if (token == Opt_init_itable) {
1547 set_opt(sb, INIT_INODE_TABLE);
1548 if (!args->from)
1549 arg = EXT4_DEF_LI_WAIT_MULT;
1550 sbi->s_li_wait_mult = arg;
1551 } else if (token == Opt_stripe) {
1552 sbi->s_stripe = arg;
1553 } else if (m->flags & MOPT_DATAJ) {
1554 if (is_remount) {
1555 if (!sbi->s_journal)
1556 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1557 else if (test_opt(sb, DATA_FLAGS) !=
1558 m->mount_opt) {
1559 ext4_msg(sb, KERN_ERR,
1560 "Cannot change data mode on remount");
1561 return -1;
1562 }
1563 } else {
1564 clear_opt(sb, DATA_FLAGS);
1565 sbi->s_mount_opt |= m->mount_opt;
1566 }
1567#ifdef CONFIG_QUOTA
1568 } else if (m->flags & MOPT_QFMT) {
1569 if (sb_any_quota_loaded(sb) &&
1570 sbi->s_jquota_fmt != m->mount_opt) {
1571 ext4_msg(sb, KERN_ERR, "Cannot "
1572 "change journaled quota options "
1573 "when quota turned on");
1574 return -1;
1575 }
1576 sbi->s_jquota_fmt = m->mount_opt;
1577#endif
1578 } else {
1579 if (!args->from)
1580 arg = 1;
1581 if (m->flags & MOPT_CLEAR)
1582 arg = !arg;
1583 else if (unlikely(!(m->flags & MOPT_SET))) {
1584 ext4_msg(sb, KERN_WARNING,
1585 "buggy handling of option %s", opt);
1586 WARN_ON(1);
1587 return -1;
1588 }
1589 if (arg != 0)
1590 sbi->s_mount_opt |= m->mount_opt;
1591 else
1592 sbi->s_mount_opt &= ~m->mount_opt;
1593 }
1594 return 1;
1595 }
1596 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1597 "or missing value", opt);
1598 return -1;
1599}
1600
1601static int parse_options(char *options, struct super_block *sb,
1602 unsigned long *journal_devnum,
1603 unsigned int *journal_ioprio,
1604 int is_remount)
1605{
1606 struct ext4_sb_info *sbi = EXT4_SB(sb);
1607 char *p;
1608 substring_t args[MAX_OPT_ARGS];
1609 int token;
1610
1611 if (!options)
1612 return 1;
1613
1614 while ((p = strsep(&options, ",")) != NULL) {
1615 if (!*p)
1616 continue;
1617 /*
1618 * Initialize args struct so we know whether arg was
1619 * found; some options take optional arguments.
1620 */
1621 args[0].to = args[0].from = 0;
1622 token = match_token(p, tokens, args);
1623 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1624 journal_ioprio, is_remount) < 0)
1625 return 0;
1626 }
1627#ifdef CONFIG_QUOTA
1628 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1629 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1630 clear_opt(sb, USRQUOTA);
1631
1632 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1633 clear_opt(sb, GRPQUOTA);
1634
1635 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1636 ext4_msg(sb, KERN_ERR, "old and new quota "
1637 "format mixing");
1638 return 0;
1639 }
1640
1641 if (!sbi->s_jquota_fmt) {
1642 ext4_msg(sb, KERN_ERR, "journaled quota format "
1643 "not specified");
1644 return 0;
1645 }
1646 }
1647#endif
1648 if (test_opt(sb, DIOREAD_NOLOCK)) {
1649 int blocksize =
1650 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1651
1652 if (blocksize < PAGE_CACHE_SIZE) {
1653 ext4_msg(sb, KERN_ERR, "can't mount with "
1654 "dioread_nolock if block size != PAGE_SIZE");
1655 return 0;
1656 }
1657 }
1658 return 1;
1659}
1660
1661static inline void ext4_show_quota_options(struct seq_file *seq,
1662 struct super_block *sb)
1663{
1664#if defined(CONFIG_QUOTA)
1665 struct ext4_sb_info *sbi = EXT4_SB(sb);
1666
1667 if (sbi->s_jquota_fmt) {
1668 char *fmtname = "";
1669
1670 switch (sbi->s_jquota_fmt) {
1671 case QFMT_VFS_OLD:
1672 fmtname = "vfsold";
1673 break;
1674 case QFMT_VFS_V0:
1675 fmtname = "vfsv0";
1676 break;
1677 case QFMT_VFS_V1:
1678 fmtname = "vfsv1";
1679 break;
1680 }
1681 seq_printf(seq, ",jqfmt=%s", fmtname);
1682 }
1683
1684 if (sbi->s_qf_names[USRQUOTA])
1685 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1686
1687 if (sbi->s_qf_names[GRPQUOTA])
1688 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1689
1690 if (test_opt(sb, USRQUOTA))
1691 seq_puts(seq, ",usrquota");
1692
1693 if (test_opt(sb, GRPQUOTA))
1694 seq_puts(seq, ",grpquota");
1695#endif
1696}
1697
1698static const char *token2str(int token)
1699{
1700 const struct match_token *t;
1701
1702 for (t = tokens; t->token != Opt_err; t++)
1703 if (t->token == token && !strchr(t->pattern, '='))
1704 break;
1705 return t->pattern;
1706}
1707
1708/*
1709 * Show an option if
1710 * - it's set to a non-default value OR
1711 * - if the per-sb default is different from the global default
1712 */
1713static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1714 int nodefs)
1715{
1716 struct ext4_sb_info *sbi = EXT4_SB(sb);
1717 struct ext4_super_block *es = sbi->s_es;
1718 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1719 const struct mount_opts *m;
1720 char sep = nodefs ? '\n' : ',';
1721
1722#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1723#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1724
1725 if (sbi->s_sb_block != 1)
1726 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1727
1728 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1729 int want_set = m->flags & MOPT_SET;
1730 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1731 (m->flags & MOPT_CLEAR_ERR))
1732 continue;
1733 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1734 continue; /* skip if same as the default */
1735 if ((want_set &&
1736 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1737 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1738 continue; /* select Opt_noFoo vs Opt_Foo */
1739 SEQ_OPTS_PRINT("%s", token2str(m->token));
1740 }
1741
1742 if (nodefs || sbi->s_resuid != EXT4_DEF_RESUID ||
1743 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1744 SEQ_OPTS_PRINT("resuid=%u", sbi->s_resuid);
1745 if (nodefs || sbi->s_resgid != EXT4_DEF_RESGID ||
1746 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1747 SEQ_OPTS_PRINT("resgid=%u", sbi->s_resgid);
1748 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1749 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1750 SEQ_OPTS_PUTS("errors=remount-ro");
1751 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1752 SEQ_OPTS_PUTS("errors=continue");
1753 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1754 SEQ_OPTS_PUTS("errors=panic");
1755 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1756 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1757 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1758 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1759 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1760 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1761 if (sb->s_flags & MS_I_VERSION)
1762 SEQ_OPTS_PUTS("i_version");
1763 if (nodefs || sbi->s_stripe)
1764 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1765 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1766 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1767 SEQ_OPTS_PUTS("data=journal");
1768 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1769 SEQ_OPTS_PUTS("data=ordered");
1770 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1771 SEQ_OPTS_PUTS("data=writeback");
1772 }
1773 if (nodefs ||
1774 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1775 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1776 sbi->s_inode_readahead_blks);
1777
1778 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1779 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1780 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1781
1782 ext4_show_quota_options(seq, sb);
1783 return 0;
1784}
1785
1786static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1787{
1788 return _ext4_show_options(seq, root->d_sb, 0);
1789}
1790
1791static int options_seq_show(struct seq_file *seq, void *offset)
1792{
1793 struct super_block *sb = seq->private;
1794 int rc;
1795
1796 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1797 rc = _ext4_show_options(seq, sb, 1);
1798 seq_puts(seq, "\n");
1799 return rc;
1800}
1801
1802static int options_open_fs(struct inode *inode, struct file *file)
1803{
1804 return single_open(file, options_seq_show, PDE(inode)->data);
1805}
1806
1807static const struct file_operations ext4_seq_options_fops = {
1808 .owner = THIS_MODULE,
1809 .open = options_open_fs,
1810 .read = seq_read,
1811 .llseek = seq_lseek,
1812 .release = single_release,
1813};
1814
1815static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1816 int read_only)
1817{
1818 struct ext4_sb_info *sbi = EXT4_SB(sb);
1819 int res = 0;
1820
1821 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1822 ext4_msg(sb, KERN_ERR, "revision level too high, "
1823 "forcing read-only mode");
1824 res = MS_RDONLY;
1825 }
1826 if (read_only)
1827 goto done;
1828 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1829 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1830 "running e2fsck is recommended");
1831 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1832 ext4_msg(sb, KERN_WARNING,
1833 "warning: mounting fs with errors, "
1834 "running e2fsck is recommended");
1835 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1836 le16_to_cpu(es->s_mnt_count) >=
1837 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1838 ext4_msg(sb, KERN_WARNING,
1839 "warning: maximal mount count reached, "
1840 "running e2fsck is recommended");
1841 else if (le32_to_cpu(es->s_checkinterval) &&
1842 (le32_to_cpu(es->s_lastcheck) +
1843 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1844 ext4_msg(sb, KERN_WARNING,
1845 "warning: checktime reached, "
1846 "running e2fsck is recommended");
1847 if (!sbi->s_journal)
1848 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1849 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1850 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1851 le16_add_cpu(&es->s_mnt_count, 1);
1852 es->s_mtime = cpu_to_le32(get_seconds());
1853 ext4_update_dynamic_rev(sb);
1854 if (sbi->s_journal)
1855 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1856
1857 ext4_commit_super(sb, 1);
1858done:
1859 if (test_opt(sb, DEBUG))
1860 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1861 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1862 sb->s_blocksize,
1863 sbi->s_groups_count,
1864 EXT4_BLOCKS_PER_GROUP(sb),
1865 EXT4_INODES_PER_GROUP(sb),
1866 sbi->s_mount_opt, sbi->s_mount_opt2);
1867
1868 cleancache_init_fs(sb);
1869 return res;
1870}
1871
1872static int ext4_fill_flex_info(struct super_block *sb)
1873{
1874 struct ext4_sb_info *sbi = EXT4_SB(sb);
1875 struct ext4_group_desc *gdp = NULL;
1876 ext4_group_t flex_group_count;
1877 ext4_group_t flex_group;
1878 unsigned int groups_per_flex = 0;
1879 size_t size;
1880 int i;
1881
1882 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1883 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1884 sbi->s_log_groups_per_flex = 0;
1885 return 1;
1886 }
1887 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1888
1889 /* We allocate both existing and potentially added groups */
1890 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1891 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1892 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1893 size = flex_group_count * sizeof(struct flex_groups);
1894 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1895 if (sbi->s_flex_groups == NULL) {
1896 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1897 flex_group_count);
1898 goto failed;
1899 }
1900
1901 for (i = 0; i < sbi->s_groups_count; i++) {
1902 gdp = ext4_get_group_desc(sb, i, NULL);
1903
1904 flex_group = ext4_flex_group(sbi, i);
1905 atomic_add(ext4_free_inodes_count(sb, gdp),
1906 &sbi->s_flex_groups[flex_group].free_inodes);
1907 atomic64_add(ext4_free_group_clusters(sb, gdp),
1908 &sbi->s_flex_groups[flex_group].free_clusters);
1909 atomic_add(ext4_used_dirs_count(sb, gdp),
1910 &sbi->s_flex_groups[flex_group].used_dirs);
1911 }
1912
1913 return 1;
1914failed:
1915 return 0;
1916}
1917
1918__le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1919 struct ext4_group_desc *gdp)
1920{
1921 __u16 crc = 0;
1922
1923 if (sbi->s_es->s_feature_ro_compat &
1924 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1925 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1926 __le32 le_group = cpu_to_le32(block_group);
1927
1928 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1929 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1930 crc = crc16(crc, (__u8 *)gdp, offset);
1931 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1932 /* for checksum of struct ext4_group_desc do the rest...*/
1933 if ((sbi->s_es->s_feature_incompat &
1934 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1935 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1936 crc = crc16(crc, (__u8 *)gdp + offset,
1937 le16_to_cpu(sbi->s_es->s_desc_size) -
1938 offset);
1939 }
1940
1941 return cpu_to_le16(crc);
1942}
1943
1944int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1945 struct ext4_group_desc *gdp)
1946{
1947 if ((sbi->s_es->s_feature_ro_compat &
1948 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1949 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1950 return 0;
1951
1952 return 1;
1953}
1954
1955/* Called at mount-time, super-block is locked */
1956static int ext4_check_descriptors(struct super_block *sb,
1957 ext4_group_t *first_not_zeroed)
1958{
1959 struct ext4_sb_info *sbi = EXT4_SB(sb);
1960 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1961 ext4_fsblk_t last_block;
1962 ext4_fsblk_t block_bitmap;
1963 ext4_fsblk_t inode_bitmap;
1964 ext4_fsblk_t inode_table;
1965 int flexbg_flag = 0;
1966 ext4_group_t i, grp = sbi->s_groups_count;
1967
1968 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1969 flexbg_flag = 1;
1970
1971 ext4_debug("Checking group descriptors");
1972
1973 for (i = 0; i < sbi->s_groups_count; i++) {
1974 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1975
1976 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1977 last_block = ext4_blocks_count(sbi->s_es) - 1;
1978 else
1979 last_block = first_block +
1980 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1981
1982 if ((grp == sbi->s_groups_count) &&
1983 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
1984 grp = i;
1985
1986 block_bitmap = ext4_block_bitmap(sb, gdp);
1987 if (block_bitmap < first_block || block_bitmap > last_block) {
1988 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1989 "Block bitmap for group %u not in group "
1990 "(block %llu)!", i, block_bitmap);
1991 return 0;
1992 }
1993 inode_bitmap = ext4_inode_bitmap(sb, gdp);
1994 if (inode_bitmap < first_block || inode_bitmap > last_block) {
1995 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1996 "Inode bitmap for group %u not in group "
1997 "(block %llu)!", i, inode_bitmap);
1998 return 0;
1999 }
2000 inode_table = ext4_inode_table(sb, gdp);
2001 if (inode_table < first_block ||
2002 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2003 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2004 "Inode table for group %u not in group "
2005 "(block %llu)!", i, inode_table);
2006 return 0;
2007 }
2008 ext4_lock_group(sb, i);
2009 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2010 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2011 "Checksum for group %u failed (%u!=%u)",
2012 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2013 gdp)), le16_to_cpu(gdp->bg_checksum));
2014 if (!(sb->s_flags & MS_RDONLY)) {
2015 ext4_unlock_group(sb, i);
2016 return 0;
2017 }
2018 }
2019 ext4_unlock_group(sb, i);
2020 if (!flexbg_flag)
2021 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2022 }
2023 if (NULL != first_not_zeroed)
2024 *first_not_zeroed = grp;
2025
2026 ext4_free_blocks_count_set(sbi->s_es,
2027 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2028 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2029 return 1;
2030}
2031
2032/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2033 * the superblock) which were deleted from all directories, but held open by
2034 * a process at the time of a crash. We walk the list and try to delete these
2035 * inodes at recovery time (only with a read-write filesystem).
2036 *
2037 * In order to keep the orphan inode chain consistent during traversal (in
2038 * case of crash during recovery), we link each inode into the superblock
2039 * orphan list_head and handle it the same way as an inode deletion during
2040 * normal operation (which journals the operations for us).
2041 *
2042 * We only do an iget() and an iput() on each inode, which is very safe if we
2043 * accidentally point at an in-use or already deleted inode. The worst that
2044 * can happen in this case is that we get a "bit already cleared" message from
2045 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2046 * e2fsck was run on this filesystem, and it must have already done the orphan
2047 * inode cleanup for us, so we can safely abort without any further action.
2048 */
2049static void ext4_orphan_cleanup(struct super_block *sb,
2050 struct ext4_super_block *es)
2051{
2052 unsigned int s_flags = sb->s_flags;
2053 int nr_orphans = 0, nr_truncates = 0;
2054#ifdef CONFIG_QUOTA
2055 int i;
2056#endif
2057 if (!es->s_last_orphan) {
2058 jbd_debug(4, "no orphan inodes to clean up\n");
2059 return;
2060 }
2061
2062 if (bdev_read_only(sb->s_bdev)) {
2063 ext4_msg(sb, KERN_ERR, "write access "
2064 "unavailable, skipping orphan cleanup");
2065 return;
2066 }
2067
2068 /* Check if feature set would not allow a r/w mount */
2069 if (!ext4_feature_set_ok(sb, 0)) {
2070 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2071 "unknown ROCOMPAT features");
2072 return;
2073 }
2074
2075 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2076 if (es->s_last_orphan)
2077 jbd_debug(1, "Errors on filesystem, "
2078 "clearing orphan list.\n");
2079 es->s_last_orphan = 0;
2080 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2081 return;
2082 }
2083
2084 if (s_flags & MS_RDONLY) {
2085 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2086 sb->s_flags &= ~MS_RDONLY;
2087 }
2088#ifdef CONFIG_QUOTA
2089 /* Needed for iput() to work correctly and not trash data */
2090 sb->s_flags |= MS_ACTIVE;
2091 /* Turn on quotas so that they are updated correctly */
2092 for (i = 0; i < MAXQUOTAS; i++) {
2093 if (EXT4_SB(sb)->s_qf_names[i]) {
2094 int ret = ext4_quota_on_mount(sb, i);
2095 if (ret < 0)
2096 ext4_msg(sb, KERN_ERR,
2097 "Cannot turn on journaled "
2098 "quota: error %d", ret);
2099 }
2100 }
2101#endif
2102
2103 while (es->s_last_orphan) {
2104 struct inode *inode;
2105
2106 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2107 if (IS_ERR(inode)) {
2108 es->s_last_orphan = 0;
2109 break;
2110 }
2111
2112 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2113 dquot_initialize(inode);
2114 if (inode->i_nlink) {
2115 ext4_msg(sb, KERN_DEBUG,
2116 "%s: truncating inode %lu to %lld bytes",
2117 __func__, inode->i_ino, inode->i_size);
2118 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2119 inode->i_ino, inode->i_size);
2120 mutex_lock(&inode->i_mutex);
2121 ext4_truncate(inode);
2122 mutex_unlock(&inode->i_mutex);
2123 nr_truncates++;
2124 } else {
2125 ext4_msg(sb, KERN_DEBUG,
2126 "%s: deleting unreferenced inode %lu",
2127 __func__, inode->i_ino);
2128 jbd_debug(2, "deleting unreferenced inode %lu\n",
2129 inode->i_ino);
2130 nr_orphans++;
2131 }
2132 iput(inode); /* The delete magic happens here! */
2133 }
2134
2135#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2136
2137 if (nr_orphans)
2138 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2139 PLURAL(nr_orphans));
2140 if (nr_truncates)
2141 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2142 PLURAL(nr_truncates));
2143#ifdef CONFIG_QUOTA
2144 /* Turn quotas off */
2145 for (i = 0; i < MAXQUOTAS; i++) {
2146 if (sb_dqopt(sb)->files[i])
2147 dquot_quota_off(sb, i);
2148 }
2149#endif
2150 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2151}
2152
2153/*
2154 * Maximal extent format file size.
2155 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2156 * extent format containers, within a sector_t, and within i_blocks
2157 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2158 * so that won't be a limiting factor.
2159 *
2160 * However there is other limiting factor. We do store extents in the form
2161 * of starting block and length, hence the resulting length of the extent
2162 * covering maximum file size must fit into on-disk format containers as
2163 * well. Given that length is always by 1 unit bigger than max unit (because
2164 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2165 *
2166 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2167 */
2168static loff_t ext4_max_size(int blkbits, int has_huge_files)
2169{
2170 loff_t res;
2171 loff_t upper_limit = MAX_LFS_FILESIZE;
2172
2173 /* small i_blocks in vfs inode? */
2174 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2175 /*
2176 * CONFIG_LBDAF is not enabled implies the inode
2177 * i_block represent total blocks in 512 bytes
2178 * 32 == size of vfs inode i_blocks * 8
2179 */
2180 upper_limit = (1LL << 32) - 1;
2181
2182 /* total blocks in file system block size */
2183 upper_limit >>= (blkbits - 9);
2184 upper_limit <<= blkbits;
2185 }
2186
2187 /*
2188 * 32-bit extent-start container, ee_block. We lower the maxbytes
2189 * by one fs block, so ee_len can cover the extent of maximum file
2190 * size
2191 */
2192 res = (1LL << 32) - 1;
2193 res <<= blkbits;
2194
2195 /* Sanity check against vm- & vfs- imposed limits */
2196 if (res > upper_limit)
2197 res = upper_limit;
2198
2199 return res;
2200}
2201
2202/*
2203 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2204 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2205 * We need to be 1 filesystem block less than the 2^48 sector limit.
2206 */
2207static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2208{
2209 loff_t res = EXT4_NDIR_BLOCKS;
2210 int meta_blocks;
2211 loff_t upper_limit;
2212 /* This is calculated to be the largest file size for a dense, block
2213 * mapped file such that the file's total number of 512-byte sectors,
2214 * including data and all indirect blocks, does not exceed (2^48 - 1).
2215 *
2216 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2217 * number of 512-byte sectors of the file.
2218 */
2219
2220 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2221 /*
2222 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2223 * the inode i_block field represents total file blocks in
2224 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2225 */
2226 upper_limit = (1LL << 32) - 1;
2227
2228 /* total blocks in file system block size */
2229 upper_limit >>= (bits - 9);
2230
2231 } else {
2232 /*
2233 * We use 48 bit ext4_inode i_blocks
2234 * With EXT4_HUGE_FILE_FL set the i_blocks
2235 * represent total number of blocks in
2236 * file system block size
2237 */
2238 upper_limit = (1LL << 48) - 1;
2239
2240 }
2241
2242 /* indirect blocks */
2243 meta_blocks = 1;
2244 /* double indirect blocks */
2245 meta_blocks += 1 + (1LL << (bits-2));
2246 /* tripple indirect blocks */
2247 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2248
2249 upper_limit -= meta_blocks;
2250 upper_limit <<= bits;
2251
2252 res += 1LL << (bits-2);
2253 res += 1LL << (2*(bits-2));
2254 res += 1LL << (3*(bits-2));
2255 res <<= bits;
2256 if (res > upper_limit)
2257 res = upper_limit;
2258
2259 if (res > MAX_LFS_FILESIZE)
2260 res = MAX_LFS_FILESIZE;
2261
2262 return res;
2263}
2264
2265static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2266 ext4_fsblk_t logical_sb_block, int nr)
2267{
2268 struct ext4_sb_info *sbi = EXT4_SB(sb);
2269 ext4_group_t bg, first_meta_bg;
2270 int has_super = 0;
2271
2272 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2273
2274 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2275 nr < first_meta_bg)
2276 return logical_sb_block + nr + 1;
2277 bg = sbi->s_desc_per_block * nr;
2278 if (ext4_bg_has_super(sb, bg))
2279 has_super = 1;
2280
2281 return (has_super + ext4_group_first_block_no(sb, bg));
2282}
2283
2284/**
2285 * ext4_get_stripe_size: Get the stripe size.
2286 * @sbi: In memory super block info
2287 *
2288 * If we have specified it via mount option, then
2289 * use the mount option value. If the value specified at mount time is
2290 * greater than the blocks per group use the super block value.
2291 * If the super block value is greater than blocks per group return 0.
2292 * Allocator needs it be less than blocks per group.
2293 *
2294 */
2295static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2296{
2297 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2298 unsigned long stripe_width =
2299 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2300 int ret;
2301
2302 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2303 ret = sbi->s_stripe;
2304 else if (stripe_width <= sbi->s_blocks_per_group)
2305 ret = stripe_width;
2306 else if (stride <= sbi->s_blocks_per_group)
2307 ret = stride;
2308 else
2309 ret = 0;
2310
2311 /*
2312 * If the stripe width is 1, this makes no sense and
2313 * we set it to 0 to turn off stripe handling code.
2314 */
2315 if (ret <= 1)
2316 ret = 0;
2317
2318 return ret;
2319}
2320
2321/* sysfs supprt */
2322
2323struct ext4_attr {
2324 struct attribute attr;
2325 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2326 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2327 const char *, size_t);
2328 int offset;
2329};
2330
2331static int parse_strtoul(const char *buf,
2332 unsigned long max, unsigned long *value)
2333{
2334 char *endp;
2335
2336 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2337 endp = skip_spaces(endp);
2338 if (*endp || *value > max)
2339 return -EINVAL;
2340
2341 return 0;
2342}
2343
2344static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2345 struct ext4_sb_info *sbi,
2346 char *buf)
2347{
2348 return snprintf(buf, PAGE_SIZE, "%llu\n",
2349 (s64) EXT4_C2B(sbi,
2350 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2351}
2352
2353static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2354 struct ext4_sb_info *sbi, char *buf)
2355{
2356 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2357
2358 if (!sb->s_bdev->bd_part)
2359 return snprintf(buf, PAGE_SIZE, "0\n");
2360 return snprintf(buf, PAGE_SIZE, "%lu\n",
2361 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2362 sbi->s_sectors_written_start) >> 1);
2363}
2364
2365static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2366 struct ext4_sb_info *sbi, char *buf)
2367{
2368 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2369
2370 if (!sb->s_bdev->bd_part)
2371 return snprintf(buf, PAGE_SIZE, "0\n");
2372 return snprintf(buf, PAGE_SIZE, "%llu\n",
2373 (unsigned long long)(sbi->s_kbytes_written +
2374 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2375 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2376}
2377
2378static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2379 struct ext4_sb_info *sbi,
2380 const char *buf, size_t count)
2381{
2382 unsigned long t;
2383
2384 if (parse_strtoul(buf, 0x40000000, &t))
2385 return -EINVAL;
2386
2387 if (t && !is_power_of_2(t))
2388 return -EINVAL;
2389
2390 sbi->s_inode_readahead_blks = t;
2391 return count;
2392}
2393
2394static ssize_t sbi_ui_show(struct ext4_attr *a,
2395 struct ext4_sb_info *sbi, char *buf)
2396{
2397 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2398
2399 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2400}
2401
2402static ssize_t sbi_ui_store(struct ext4_attr *a,
2403 struct ext4_sb_info *sbi,
2404 const char *buf, size_t count)
2405{
2406 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2407 unsigned long t;
2408
2409 if (parse_strtoul(buf, 0xffffffff, &t))
2410 return -EINVAL;
2411 *ui = t;
2412 return count;
2413}
2414
2415#define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2416static struct ext4_attr ext4_attr_##_name = { \
2417 .attr = {.name = __stringify(_name), .mode = _mode }, \
2418 .show = _show, \
2419 .store = _store, \
2420 .offset = offsetof(struct ext4_sb_info, _elname), \
2421}
2422#define EXT4_ATTR(name, mode, show, store) \
2423static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2424
2425#define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2426#define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2427#define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2428#define EXT4_RW_ATTR_SBI_UI(name, elname) \
2429 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2430#define ATTR_LIST(name) &ext4_attr_##name.attr
2431
2432EXT4_RO_ATTR(delayed_allocation_blocks);
2433EXT4_RO_ATTR(session_write_kbytes);
2434EXT4_RO_ATTR(lifetime_write_kbytes);
2435EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2436 inode_readahead_blks_store, s_inode_readahead_blks);
2437EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2438EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2439EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2440EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2441EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2442EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2443EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2444EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2445
2446static struct attribute *ext4_attrs[] = {
2447 ATTR_LIST(delayed_allocation_blocks),
2448 ATTR_LIST(session_write_kbytes),
2449 ATTR_LIST(lifetime_write_kbytes),
2450 ATTR_LIST(inode_readahead_blks),
2451 ATTR_LIST(inode_goal),
2452 ATTR_LIST(mb_stats),
2453 ATTR_LIST(mb_max_to_scan),
2454 ATTR_LIST(mb_min_to_scan),
2455 ATTR_LIST(mb_order2_req),
2456 ATTR_LIST(mb_stream_req),
2457 ATTR_LIST(mb_group_prealloc),
2458 ATTR_LIST(max_writeback_mb_bump),
2459 NULL,
2460};
2461
2462/* Features this copy of ext4 supports */
2463EXT4_INFO_ATTR(lazy_itable_init);
2464EXT4_INFO_ATTR(batched_discard);
2465
2466static struct attribute *ext4_feat_attrs[] = {
2467 ATTR_LIST(lazy_itable_init),
2468 ATTR_LIST(batched_discard),
2469 NULL,
2470};
2471
2472static ssize_t ext4_attr_show(struct kobject *kobj,
2473 struct attribute *attr, char *buf)
2474{
2475 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2476 s_kobj);
2477 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2478
2479 return a->show ? a->show(a, sbi, buf) : 0;
2480}
2481
2482static ssize_t ext4_attr_store(struct kobject *kobj,
2483 struct attribute *attr,
2484 const char *buf, size_t len)
2485{
2486 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2487 s_kobj);
2488 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2489
2490 return a->store ? a->store(a, sbi, buf, len) : 0;
2491}
2492
2493static void ext4_sb_release(struct kobject *kobj)
2494{
2495 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2496 s_kobj);
2497 complete(&sbi->s_kobj_unregister);
2498}
2499
2500static const struct sysfs_ops ext4_attr_ops = {
2501 .show = ext4_attr_show,
2502 .store = ext4_attr_store,
2503};
2504
2505static struct kobj_type ext4_ktype = {
2506 .default_attrs = ext4_attrs,
2507 .sysfs_ops = &ext4_attr_ops,
2508 .release = ext4_sb_release,
2509};
2510
2511static void ext4_feat_release(struct kobject *kobj)
2512{
2513 complete(&ext4_feat->f_kobj_unregister);
2514}
2515
2516static struct kobj_type ext4_feat_ktype = {
2517 .default_attrs = ext4_feat_attrs,
2518 .sysfs_ops = &ext4_attr_ops,
2519 .release = ext4_feat_release,
2520};
2521
2522/*
2523 * Check whether this filesystem can be mounted based on
2524 * the features present and the RDONLY/RDWR mount requested.
2525 * Returns 1 if this filesystem can be mounted as requested,
2526 * 0 if it cannot be.
2527 */
2528static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2529{
2530 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2531 ext4_msg(sb, KERN_ERR,
2532 "Couldn't mount because of "
2533 "unsupported optional features (%x)",
2534 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2535 ~EXT4_FEATURE_INCOMPAT_SUPP));
2536 return 0;
2537 }
2538
2539 if (readonly)
2540 return 1;
2541
2542 /* Check that feature set is OK for a read-write mount */
2543 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2544 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2545 "unsupported optional features (%x)",
2546 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2547 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2548 return 0;
2549 }
2550 /*
2551 * Large file size enabled file system can only be mounted
2552 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2553 */
2554 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2555 if (sizeof(blkcnt_t) < sizeof(u64)) {
2556 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2557 "cannot be mounted RDWR without "
2558 "CONFIG_LBDAF");
2559 return 0;
2560 }
2561 }
2562 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2563 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2564 ext4_msg(sb, KERN_ERR,
2565 "Can't support bigalloc feature without "
2566 "extents feature\n");
2567 return 0;
2568 }
2569 return 1;
2570}
2571
2572/*
2573 * This function is called once a day if we have errors logged
2574 * on the file system
2575 */
2576static void print_daily_error_info(unsigned long arg)
2577{
2578 struct super_block *sb = (struct super_block *) arg;
2579 struct ext4_sb_info *sbi;
2580 struct ext4_super_block *es;
2581
2582 sbi = EXT4_SB(sb);
2583 es = sbi->s_es;
2584
2585 if (es->s_error_count)
2586 /* fsck newer than v1.41.13 is needed to clean this condition. */
2587 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2588 le32_to_cpu(es->s_error_count));
2589 if (es->s_first_error_time) {
2590 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2591 sb->s_id, le32_to_cpu(es->s_first_error_time),
2592 (int) sizeof(es->s_first_error_func),
2593 es->s_first_error_func,
2594 le32_to_cpu(es->s_first_error_line));
2595 if (es->s_first_error_ino)
2596 printk(": inode %u",
2597 le32_to_cpu(es->s_first_error_ino));
2598 if (es->s_first_error_block)
2599 printk(": block %llu", (unsigned long long)
2600 le64_to_cpu(es->s_first_error_block));
2601 printk("\n");
2602 }
2603 if (es->s_last_error_time) {
2604 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2605 sb->s_id, le32_to_cpu(es->s_last_error_time),
2606 (int) sizeof(es->s_last_error_func),
2607 es->s_last_error_func,
2608 le32_to_cpu(es->s_last_error_line));
2609 if (es->s_last_error_ino)
2610 printk(": inode %u",
2611 le32_to_cpu(es->s_last_error_ino));
2612 if (es->s_last_error_block)
2613 printk(": block %llu", (unsigned long long)
2614 le64_to_cpu(es->s_last_error_block));
2615 printk("\n");
2616 }
2617 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2618}
2619
2620/* Find next suitable group and run ext4_init_inode_table */
2621static int ext4_run_li_request(struct ext4_li_request *elr)
2622{
2623 struct ext4_group_desc *gdp = NULL;
2624 ext4_group_t group, ngroups;
2625 struct super_block *sb;
2626 unsigned long timeout = 0;
2627 int ret = 0;
2628
2629 sb = elr->lr_super;
2630 ngroups = EXT4_SB(sb)->s_groups_count;
2631
2632 for (group = elr->lr_next_group; group < ngroups; group++) {
2633 gdp = ext4_get_group_desc(sb, group, NULL);
2634 if (!gdp) {
2635 ret = 1;
2636 break;
2637 }
2638
2639 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2640 break;
2641 }
2642
2643 if (group == ngroups)
2644 ret = 1;
2645
2646 if (!ret) {
2647 timeout = jiffies;
2648 ret = ext4_init_inode_table(sb, group,
2649 elr->lr_timeout ? 0 : 1);
2650 if (elr->lr_timeout == 0) {
2651 timeout = (jiffies - timeout) *
2652 elr->lr_sbi->s_li_wait_mult;
2653 elr->lr_timeout = timeout;
2654 }
2655 elr->lr_next_sched = jiffies + elr->lr_timeout;
2656 elr->lr_next_group = group + 1;
2657 }
2658
2659 return ret;
2660}
2661
2662/*
2663 * Remove lr_request from the list_request and free the
2664 * request structure. Should be called with li_list_mtx held
2665 */
2666static void ext4_remove_li_request(struct ext4_li_request *elr)
2667{
2668 struct ext4_sb_info *sbi;
2669
2670 if (!elr)
2671 return;
2672
2673 sbi = elr->lr_sbi;
2674
2675 list_del(&elr->lr_request);
2676 sbi->s_li_request = NULL;
2677 kfree(elr);
2678}
2679
2680static void ext4_unregister_li_request(struct super_block *sb)
2681{
2682 mutex_lock(&ext4_li_mtx);
2683 if (!ext4_li_info) {
2684 mutex_unlock(&ext4_li_mtx);
2685 return;
2686 }
2687
2688 mutex_lock(&ext4_li_info->li_list_mtx);
2689 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2690 mutex_unlock(&ext4_li_info->li_list_mtx);
2691 mutex_unlock(&ext4_li_mtx);
2692}
2693
2694static struct task_struct *ext4_lazyinit_task;
2695
2696/*
2697 * This is the function where ext4lazyinit thread lives. It walks
2698 * through the request list searching for next scheduled filesystem.
2699 * When such a fs is found, run the lazy initialization request
2700 * (ext4_rn_li_request) and keep track of the time spend in this
2701 * function. Based on that time we compute next schedule time of
2702 * the request. When walking through the list is complete, compute
2703 * next waking time and put itself into sleep.
2704 */
2705static int ext4_lazyinit_thread(void *arg)
2706{
2707 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2708 struct list_head *pos, *n;
2709 struct ext4_li_request *elr;
2710 unsigned long next_wakeup, cur;
2711
2712 BUG_ON(NULL == eli);
2713
2714cont_thread:
2715 while (true) {
2716 next_wakeup = MAX_JIFFY_OFFSET;
2717
2718 mutex_lock(&eli->li_list_mtx);
2719 if (list_empty(&eli->li_request_list)) {
2720 mutex_unlock(&eli->li_list_mtx);
2721 goto exit_thread;
2722 }
2723
2724 list_for_each_safe(pos, n, &eli->li_request_list) {
2725 elr = list_entry(pos, struct ext4_li_request,
2726 lr_request);
2727
2728 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2729 if (ext4_run_li_request(elr) != 0) {
2730 /* error, remove the lazy_init job */
2731 ext4_remove_li_request(elr);
2732 continue;
2733 }
2734 }
2735
2736 if (time_before(elr->lr_next_sched, next_wakeup))
2737 next_wakeup = elr->lr_next_sched;
2738 }
2739 mutex_unlock(&eli->li_list_mtx);
2740
2741 try_to_freeze();
2742
2743 cur = jiffies;
2744 if ((time_after_eq(cur, next_wakeup)) ||
2745 (MAX_JIFFY_OFFSET == next_wakeup)) {
2746 cond_resched();
2747 continue;
2748 }
2749
2750 schedule_timeout_interruptible(next_wakeup - cur);
2751
2752 if (kthread_should_stop()) {
2753 ext4_clear_request_list();
2754 goto exit_thread;
2755 }
2756 }
2757
2758exit_thread:
2759 /*
2760 * It looks like the request list is empty, but we need
2761 * to check it under the li_list_mtx lock, to prevent any
2762 * additions into it, and of course we should lock ext4_li_mtx
2763 * to atomically free the list and ext4_li_info, because at
2764 * this point another ext4 filesystem could be registering
2765 * new one.
2766 */
2767 mutex_lock(&ext4_li_mtx);
2768 mutex_lock(&eli->li_list_mtx);
2769 if (!list_empty(&eli->li_request_list)) {
2770 mutex_unlock(&eli->li_list_mtx);
2771 mutex_unlock(&ext4_li_mtx);
2772 goto cont_thread;
2773 }
2774 mutex_unlock(&eli->li_list_mtx);
2775 kfree(ext4_li_info);
2776 ext4_li_info = NULL;
2777 mutex_unlock(&ext4_li_mtx);
2778
2779 return 0;
2780}
2781
2782static void ext4_clear_request_list(void)
2783{
2784 struct list_head *pos, *n;
2785 struct ext4_li_request *elr;
2786
2787 mutex_lock(&ext4_li_info->li_list_mtx);
2788 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2789 elr = list_entry(pos, struct ext4_li_request,
2790 lr_request);
2791 ext4_remove_li_request(elr);
2792 }
2793 mutex_unlock(&ext4_li_info->li_list_mtx);
2794}
2795
2796static int ext4_run_lazyinit_thread(void)
2797{
2798 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2799 ext4_li_info, "ext4lazyinit");
2800 if (IS_ERR(ext4_lazyinit_task)) {
2801 int err = PTR_ERR(ext4_lazyinit_task);
2802 ext4_clear_request_list();
2803 kfree(ext4_li_info);
2804 ext4_li_info = NULL;
2805 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2806 "initialization thread\n",
2807 err);
2808 return err;
2809 }
2810 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2811 return 0;
2812}
2813
2814/*
2815 * Check whether it make sense to run itable init. thread or not.
2816 * If there is at least one uninitialized inode table, return
2817 * corresponding group number, else the loop goes through all
2818 * groups and return total number of groups.
2819 */
2820static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2821{
2822 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2823 struct ext4_group_desc *gdp = NULL;
2824
2825 for (group = 0; group < ngroups; group++) {
2826 gdp = ext4_get_group_desc(sb, group, NULL);
2827 if (!gdp)
2828 continue;
2829
2830 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2831 break;
2832 }
2833
2834 return group;
2835}
2836
2837static int ext4_li_info_new(void)
2838{
2839 struct ext4_lazy_init *eli = NULL;
2840
2841 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2842 if (!eli)
2843 return -ENOMEM;
2844
2845 INIT_LIST_HEAD(&eli->li_request_list);
2846 mutex_init(&eli->li_list_mtx);
2847
2848 eli->li_state |= EXT4_LAZYINIT_QUIT;
2849
2850 ext4_li_info = eli;
2851
2852 return 0;
2853}
2854
2855static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2856 ext4_group_t start)
2857{
2858 struct ext4_sb_info *sbi = EXT4_SB(sb);
2859 struct ext4_li_request *elr;
2860 unsigned long rnd;
2861
2862 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2863 if (!elr)
2864 return NULL;
2865
2866 elr->lr_super = sb;
2867 elr->lr_sbi = sbi;
2868 elr->lr_next_group = start;
2869
2870 /*
2871 * Randomize first schedule time of the request to
2872 * spread the inode table initialization requests
2873 * better.
2874 */
2875 get_random_bytes(&rnd, sizeof(rnd));
2876 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2877 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2878
2879 return elr;
2880}
2881
2882static int ext4_register_li_request(struct super_block *sb,
2883 ext4_group_t first_not_zeroed)
2884{
2885 struct ext4_sb_info *sbi = EXT4_SB(sb);
2886 struct ext4_li_request *elr;
2887 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2888 int ret = 0;
2889
2890 if (sbi->s_li_request != NULL) {
2891 /*
2892 * Reset timeout so it can be computed again, because
2893 * s_li_wait_mult might have changed.
2894 */
2895 sbi->s_li_request->lr_timeout = 0;
2896 return 0;
2897 }
2898
2899 if (first_not_zeroed == ngroups ||
2900 (sb->s_flags & MS_RDONLY) ||
2901 !test_opt(sb, INIT_INODE_TABLE))
2902 return 0;
2903
2904 elr = ext4_li_request_new(sb, first_not_zeroed);
2905 if (!elr)
2906 return -ENOMEM;
2907
2908 mutex_lock(&ext4_li_mtx);
2909
2910 if (NULL == ext4_li_info) {
2911 ret = ext4_li_info_new();
2912 if (ret)
2913 goto out;
2914 }
2915
2916 mutex_lock(&ext4_li_info->li_list_mtx);
2917 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2918 mutex_unlock(&ext4_li_info->li_list_mtx);
2919
2920 sbi->s_li_request = elr;
2921 /*
2922 * set elr to NULL here since it has been inserted to
2923 * the request_list and the removal and free of it is
2924 * handled by ext4_clear_request_list from now on.
2925 */
2926 elr = NULL;
2927
2928 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2929 ret = ext4_run_lazyinit_thread();
2930 if (ret)
2931 goto out;
2932 }
2933out:
2934 mutex_unlock(&ext4_li_mtx);
2935 if (ret)
2936 kfree(elr);
2937 return ret;
2938}
2939
2940/*
2941 * We do not need to lock anything since this is called on
2942 * module unload.
2943 */
2944static void ext4_destroy_lazyinit_thread(void)
2945{
2946 /*
2947 * If thread exited earlier
2948 * there's nothing to be done.
2949 */
2950 if (!ext4_li_info || !ext4_lazyinit_task)
2951 return;
2952
2953 kthread_stop(ext4_lazyinit_task);
2954}
2955
2956/*
2957 * Note: calculating the overhead so we can be compatible with
2958 * historical BSD practice is quite difficult in the face of
2959 * clusters/bigalloc. This is because multiple metadata blocks from
2960 * different block group can end up in the same allocation cluster.
2961 * Calculating the exact overhead in the face of clustered allocation
2962 * requires either O(all block bitmaps) in memory or O(number of block
2963 * groups**2) in time. We will still calculate the superblock for
2964 * older file systems --- and if we come across with a bigalloc file
2965 * system with zero in s_overhead_clusters the estimate will be close to
2966 * correct especially for very large cluster sizes --- but for newer
2967 * file systems, it's better to calculate this figure once at mkfs
2968 * time, and store it in the superblock. If the superblock value is
2969 * present (even for non-bigalloc file systems), we will use it.
2970 */
2971static int count_overhead(struct super_block *sb, ext4_group_t grp,
2972 char *buf)
2973{
2974 struct ext4_sb_info *sbi = EXT4_SB(sb);
2975 struct ext4_group_desc *gdp;
2976 ext4_fsblk_t first_block, last_block, b;
2977 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
2978 int s, j, count = 0;
2979
2980 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
2981 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
2982 sbi->s_itb_per_group + 2);
2983
2984 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
2985 (grp * EXT4_BLOCKS_PER_GROUP(sb));
2986 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
2987 for (i = 0; i < ngroups; i++) {
2988 gdp = ext4_get_group_desc(sb, i, NULL);
2989 b = ext4_block_bitmap(sb, gdp);
2990 if (b >= first_block && b <= last_block) {
2991 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
2992 count++;
2993 }
2994 b = ext4_inode_bitmap(sb, gdp);
2995 if (b >= first_block && b <= last_block) {
2996 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
2997 count++;
2998 }
2999 b = ext4_inode_table(sb, gdp);
3000 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3001 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3002 int c = EXT4_B2C(sbi, b - first_block);
3003 ext4_set_bit(c, buf);
3004 count++;
3005 }
3006 if (i != grp)
3007 continue;
3008 s = 0;
3009 if (ext4_bg_has_super(sb, grp)) {
3010 ext4_set_bit(s++, buf);
3011 count++;
3012 }
3013 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3014 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3015 count++;
3016 }
3017 }
3018 if (!count)
3019 return 0;
3020 return EXT4_CLUSTERS_PER_GROUP(sb) -
3021 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3022}
3023
3024/*
3025 * Compute the overhead and stash it in sbi->s_overhead
3026 */
3027int ext4_calculate_overhead(struct super_block *sb)
3028{
3029 struct ext4_sb_info *sbi = EXT4_SB(sb);
3030 struct ext4_super_block *es = sbi->s_es;
3031 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3032 ext4_fsblk_t overhead = 0;
3033 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3034
3035 memset(buf, 0, PAGE_SIZE);
3036 if (!buf)
3037 return -ENOMEM;
3038
3039 /*
3040 * Compute the overhead (FS structures). This is constant
3041 * for a given filesystem unless the number of block groups
3042 * changes so we cache the previous value until it does.
3043 */
3044
3045 /*
3046 * All of the blocks before first_data_block are overhead
3047 */
3048 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3049
3050 /*
3051 * Add the overhead found in each block group
3052 */
3053 for (i = 0; i < ngroups; i++) {
3054 int blks;
3055
3056 blks = count_overhead(sb, i, buf);
3057 overhead += blks;
3058 if (blks)
3059 memset(buf, 0, PAGE_SIZE);
3060 cond_resched();
3061 }
3062 sbi->s_overhead = overhead;
3063 smp_wmb();
3064 free_page((unsigned long) buf);
3065 return 0;
3066}
3067
3068static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3069{
3070 char *orig_data = kstrdup(data, GFP_KERNEL);
3071 struct buffer_head *bh;
3072 struct ext4_super_block *es = NULL;
3073 struct ext4_sb_info *sbi;
3074 ext4_fsblk_t block;
3075 ext4_fsblk_t sb_block = get_sb_block(&data);
3076 ext4_fsblk_t logical_sb_block;
3077 unsigned long offset = 0;
3078 unsigned long journal_devnum = 0;
3079 unsigned long def_mount_opts;
3080 struct inode *root;
3081 char *cp;
3082 const char *descr;
3083 int ret = -ENOMEM;
3084 int blocksize, clustersize;
3085 unsigned int db_count;
3086 unsigned int i;
3087 int needs_recovery, has_huge_files, has_bigalloc;
3088 __u64 blocks_count;
3089 int err;
3090 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3091 ext4_group_t first_not_zeroed;
3092
3093 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3094 if (!sbi)
3095 goto out_free_orig;
3096
3097 sbi->s_blockgroup_lock =
3098 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3099 if (!sbi->s_blockgroup_lock) {
3100 kfree(sbi);
3101 goto out_free_orig;
3102 }
3103 sb->s_fs_info = sbi;
3104 sbi->s_mount_opt = 0;
3105 sbi->s_resuid = EXT4_DEF_RESUID;
3106 sbi->s_resgid = EXT4_DEF_RESGID;
3107 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3108 sbi->s_sb_block = sb_block;
3109 if (sb->s_bdev->bd_part)
3110 sbi->s_sectors_written_start =
3111 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3112
3113 /* Cleanup superblock name */
3114 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3115 *cp = '!';
3116
3117 ret = -EINVAL;
3118 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3119 if (!blocksize) {
3120 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3121 goto out_fail;
3122 }
3123
3124 /*
3125 * The ext4 superblock will not be buffer aligned for other than 1kB
3126 * block sizes. We need to calculate the offset from buffer start.
3127 */
3128 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3129 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3130 offset = do_div(logical_sb_block, blocksize);
3131 } else {
3132 logical_sb_block = sb_block;
3133 }
3134
3135 if (!(bh = sb_bread(sb, logical_sb_block))) {
3136 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3137 goto out_fail;
3138 }
3139 /*
3140 * Note: s_es must be initialized as soon as possible because
3141 * some ext4 macro-instructions depend on its value
3142 */
3143 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3144 sbi->s_es = es;
3145 sb->s_magic = le16_to_cpu(es->s_magic);
3146 if (sb->s_magic != EXT4_SUPER_MAGIC)
3147 goto cantfind_ext4;
3148 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3149
3150 /* Set defaults before we parse the mount options */
3151 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3152 set_opt(sb, INIT_INODE_TABLE);
3153 if (def_mount_opts & EXT4_DEFM_DEBUG)
3154 set_opt(sb, DEBUG);
3155 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3156 set_opt(sb, GRPID);
3157 if (def_mount_opts & EXT4_DEFM_UID16)
3158 set_opt(sb, NO_UID32);
3159 /* xattr user namespace & acls are now defaulted on */
3160#ifdef CONFIG_EXT4_FS_XATTR
3161 set_opt(sb, XATTR_USER);
3162#endif
3163#ifdef CONFIG_EXT4_FS_POSIX_ACL
3164 set_opt(sb, POSIX_ACL);
3165#endif
3166 set_opt(sb, MBLK_IO_SUBMIT);
3167 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3168 set_opt(sb, JOURNAL_DATA);
3169 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3170 set_opt(sb, ORDERED_DATA);
3171 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3172 set_opt(sb, WRITEBACK_DATA);
3173
3174 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3175 set_opt(sb, ERRORS_PANIC);
3176 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3177 set_opt(sb, ERRORS_CONT);
3178 else
3179 set_opt(sb, ERRORS_RO);
3180 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3181 set_opt(sb, BLOCK_VALIDITY);
3182 if (def_mount_opts & EXT4_DEFM_DISCARD)
3183 set_opt(sb, DISCARD);
3184
3185 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3186 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3187 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3188 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3189 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3190
3191 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3192 set_opt(sb, BARRIER);
3193
3194 /*
3195 * enable delayed allocation by default
3196 * Use -o nodelalloc to turn it off
3197 */
3198 if (!IS_EXT3_SB(sb) &&
3199 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3200 set_opt(sb, DELALLOC);
3201
3202 /*
3203 * set default s_li_wait_mult for lazyinit, for the case there is
3204 * no mount option specified.
3205 */
3206 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3207
3208 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3209 &journal_devnum, &journal_ioprio, 0)) {
3210 ext4_msg(sb, KERN_WARNING,
3211 "failed to parse options in superblock: %s",
3212 sbi->s_es->s_mount_opts);
3213 }
3214 sbi->s_def_mount_opt = sbi->s_mount_opt;
3215 if (!parse_options((char *) data, sb, &journal_devnum,
3216 &journal_ioprio, 0))
3217 goto failed_mount;
3218
3219 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3220 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3221 "with data=journal disables delayed "
3222 "allocation and O_DIRECT support!\n");
3223 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3224 ext4_msg(sb, KERN_ERR, "can't mount with "
3225 "both data=journal and delalloc");
3226 goto failed_mount;
3227 }
3228 if (test_opt(sb, DIOREAD_NOLOCK)) {
3229 ext4_msg(sb, KERN_ERR, "can't mount with "
3230 "both data=journal and dioread_nolock");
3231 goto failed_mount;
3232 }
3233 if (test_opt(sb, DELALLOC))
3234 clear_opt(sb, DELALLOC);
3235 }
3236
3237 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3238 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3239
3240 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3241 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3242 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3243 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3244 ext4_msg(sb, KERN_WARNING,
3245 "feature flags set on rev 0 fs, "
3246 "running e2fsck is recommended");
3247
3248 if (IS_EXT2_SB(sb)) {
3249 if (ext2_feature_set_ok(sb))
3250 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3251 "using the ext4 subsystem");
3252 else {
3253 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3254 "to feature incompatibilities");
3255 goto failed_mount;
3256 }
3257 }
3258
3259 if (IS_EXT3_SB(sb)) {
3260 if (ext3_feature_set_ok(sb))
3261 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3262 "using the ext4 subsystem");
3263 else {
3264 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3265 "to feature incompatibilities");
3266 goto failed_mount;
3267 }
3268 }
3269
3270 /*
3271 * Check feature flags regardless of the revision level, since we
3272 * previously didn't change the revision level when setting the flags,
3273 * so there is a chance incompat flags are set on a rev 0 filesystem.
3274 */
3275 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3276 goto failed_mount;
3277
3278 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3279 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3280 blocksize > EXT4_MAX_BLOCK_SIZE) {
3281 ext4_msg(sb, KERN_ERR,
3282 "Unsupported filesystem blocksize %d", blocksize);
3283 goto failed_mount;
3284 }
3285
3286 if (sb->s_blocksize != blocksize) {
3287 /* Validate the filesystem blocksize */
3288 if (!sb_set_blocksize(sb, blocksize)) {
3289 ext4_msg(sb, KERN_ERR, "bad block size %d",
3290 blocksize);
3291 goto failed_mount;
3292 }
3293
3294 brelse(bh);
3295 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3296 offset = do_div(logical_sb_block, blocksize);
3297 bh = sb_bread(sb, logical_sb_block);
3298 if (!bh) {
3299 ext4_msg(sb, KERN_ERR,
3300 "Can't read superblock on 2nd try");
3301 goto failed_mount;
3302 }
3303 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3304 sbi->s_es = es;
3305 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3306 ext4_msg(sb, KERN_ERR,
3307 "Magic mismatch, very weird!");
3308 goto failed_mount;
3309 }
3310 }
3311
3312 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3313 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3314 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3315 has_huge_files);
3316 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3317
3318 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3319 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3320 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3321 } else {
3322 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3323 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3324 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3325 (!is_power_of_2(sbi->s_inode_size)) ||
3326 (sbi->s_inode_size > blocksize)) {
3327 ext4_msg(sb, KERN_ERR,
3328 "unsupported inode size: %d",
3329 sbi->s_inode_size);
3330 goto failed_mount;
3331 }
3332 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3333 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3334 }
3335
3336 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3337 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3338 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3339 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3340 !is_power_of_2(sbi->s_desc_size)) {
3341 ext4_msg(sb, KERN_ERR,
3342 "unsupported descriptor size %lu",
3343 sbi->s_desc_size);
3344 goto failed_mount;
3345 }
3346 } else
3347 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3348
3349 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3350 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3351 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3352 goto cantfind_ext4;
3353
3354 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3355 if (sbi->s_inodes_per_block == 0)
3356 goto cantfind_ext4;
3357 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3358 sbi->s_inodes_per_block;
3359 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3360 sbi->s_sbh = bh;
3361 sbi->s_mount_state = le16_to_cpu(es->s_state);
3362 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3363 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3364
3365 for (i = 0; i < 4; i++)
3366 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3367 sbi->s_def_hash_version = es->s_def_hash_version;
3368 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3369 i = le32_to_cpu(es->s_flags);
3370 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3371 sbi->s_hash_unsigned = 3;
3372 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3373#ifdef __CHAR_UNSIGNED__
3374 if (!(sb->s_flags & MS_RDONLY))
3375 es->s_flags |=
3376 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3377 sbi->s_hash_unsigned = 3;
3378#else
3379 if (!(sb->s_flags & MS_RDONLY))
3380 es->s_flags |=
3381 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3382#endif
3383 }
3384 }
3385
3386 /* Handle clustersize */
3387 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3388 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3389 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3390 if (has_bigalloc) {
3391 if (clustersize < blocksize) {
3392 ext4_msg(sb, KERN_ERR,
3393 "cluster size (%d) smaller than "
3394 "block size (%d)", clustersize, blocksize);
3395 goto failed_mount;
3396 }
3397 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3398 le32_to_cpu(es->s_log_block_size);
3399 sbi->s_clusters_per_group =
3400 le32_to_cpu(es->s_clusters_per_group);
3401 if (sbi->s_clusters_per_group > blocksize * 8) {
3402 ext4_msg(sb, KERN_ERR,
3403 "#clusters per group too big: %lu",
3404 sbi->s_clusters_per_group);
3405 goto failed_mount;
3406 }
3407 if (sbi->s_blocks_per_group !=
3408 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3409 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3410 "clusters per group (%lu) inconsistent",
3411 sbi->s_blocks_per_group,
3412 sbi->s_clusters_per_group);
3413 goto failed_mount;
3414 }
3415 } else {
3416 if (clustersize != blocksize) {
3417 ext4_warning(sb, "fragment/cluster size (%d) != "
3418 "block size (%d)", clustersize,
3419 blocksize);
3420 clustersize = blocksize;
3421 }
3422 if (sbi->s_blocks_per_group > blocksize * 8) {
3423 ext4_msg(sb, KERN_ERR,
3424 "#blocks per group too big: %lu",
3425 sbi->s_blocks_per_group);
3426 goto failed_mount;
3427 }
3428 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3429 sbi->s_cluster_bits = 0;
3430 }
3431 sbi->s_cluster_ratio = clustersize / blocksize;
3432
3433 if (sbi->s_inodes_per_group > blocksize * 8) {
3434 ext4_msg(sb, KERN_ERR,
3435 "#inodes per group too big: %lu",
3436 sbi->s_inodes_per_group);
3437 goto failed_mount;
3438 }
3439
3440 /*
3441 * Test whether we have more sectors than will fit in sector_t,
3442 * and whether the max offset is addressable by the page cache.
3443 */
3444 err = generic_check_addressable(sb->s_blocksize_bits,
3445 ext4_blocks_count(es));
3446 if (err) {
3447 ext4_msg(sb, KERN_ERR, "filesystem"
3448 " too large to mount safely on this system");
3449 if (sizeof(sector_t) < 8)
3450 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3451 ret = err;
3452 goto failed_mount;
3453 }
3454
3455 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3456 goto cantfind_ext4;
3457
3458 /* check blocks count against device size */
3459 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3460 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3461 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3462 "exceeds size of device (%llu blocks)",
3463 ext4_blocks_count(es), blocks_count);
3464 goto failed_mount;
3465 }
3466
3467 /*
3468 * It makes no sense for the first data block to be beyond the end
3469 * of the filesystem.
3470 */
3471 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3472 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3473 "block %u is beyond end of filesystem (%llu)",
3474 le32_to_cpu(es->s_first_data_block),
3475 ext4_blocks_count(es));
3476 goto failed_mount;
3477 }
3478 blocks_count = (ext4_blocks_count(es) -
3479 le32_to_cpu(es->s_first_data_block) +
3480 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3481 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3482 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3483 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3484 "(block count %llu, first data block %u, "
3485 "blocks per group %lu)", sbi->s_groups_count,
3486 ext4_blocks_count(es),
3487 le32_to_cpu(es->s_first_data_block),
3488 EXT4_BLOCKS_PER_GROUP(sb));
3489 goto failed_mount;
3490 }
3491 sbi->s_groups_count = blocks_count;
3492 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3493 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3494 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3495 EXT4_DESC_PER_BLOCK(sb);
3496 sbi->s_group_desc = ext4_kvmalloc(db_count *
3497 sizeof(struct buffer_head *),
3498 GFP_KERNEL);
3499 if (sbi->s_group_desc == NULL) {
3500 ext4_msg(sb, KERN_ERR, "not enough memory");
3501 goto failed_mount;
3502 }
3503
3504 if (ext4_proc_root)
3505 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3506
3507 if (sbi->s_proc)
3508 proc_create_data("options", S_IRUGO, sbi->s_proc,
3509 &ext4_seq_options_fops, sb);
3510
3511 bgl_lock_init(sbi->s_blockgroup_lock);
3512
3513 for (i = 0; i < db_count; i++) {
3514 block = descriptor_loc(sb, logical_sb_block, i);
3515 sbi->s_group_desc[i] = sb_bread(sb, block);
3516 if (!sbi->s_group_desc[i]) {
3517 ext4_msg(sb, KERN_ERR,
3518 "can't read group descriptor %d", i);
3519 db_count = i;
3520 goto failed_mount2;
3521 }
3522 }
3523 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3524 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3525 goto failed_mount2;
3526 }
3527 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3528 if (!ext4_fill_flex_info(sb)) {
3529 ext4_msg(sb, KERN_ERR,
3530 "unable to initialize "
3531 "flex_bg meta info!");
3532 goto failed_mount2;
3533 }
3534
3535 sbi->s_gdb_count = db_count;
3536 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3537 spin_lock_init(&sbi->s_next_gen_lock);
3538
3539 init_timer(&sbi->s_err_report);
3540 sbi->s_err_report.function = print_daily_error_info;
3541 sbi->s_err_report.data = (unsigned long) sb;
3542
3543 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3544 ext4_count_free_clusters(sb));
3545 if (!err) {
3546 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3547 ext4_count_free_inodes(sb));
3548 }
3549 if (!err) {
3550 err = percpu_counter_init(&sbi->s_dirs_counter,
3551 ext4_count_dirs(sb));
3552 }
3553 if (!err) {
3554 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3555 }
3556 if (err) {
3557 ext4_msg(sb, KERN_ERR, "insufficient memory");
3558 goto failed_mount3;
3559 }
3560
3561 sbi->s_stripe = ext4_get_stripe_size(sbi);
3562 sbi->s_max_writeback_mb_bump = 128;
3563
3564 /*
3565 * set up enough so that it can read an inode
3566 */
3567 if (!test_opt(sb, NOLOAD) &&
3568 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3569 sb->s_op = &ext4_sops;
3570 else
3571 sb->s_op = &ext4_nojournal_sops;
3572 sb->s_export_op = &ext4_export_ops;
3573 sb->s_xattr = ext4_xattr_handlers;
3574#ifdef CONFIG_QUOTA
3575 sb->s_qcop = &ext4_qctl_operations;
3576 sb->dq_op = &ext4_quota_operations;
3577#endif
3578 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3579
3580 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3581 mutex_init(&sbi->s_orphan_lock);
3582 sbi->s_resize_flags = 0;
3583
3584 sb->s_root = NULL;
3585
3586 needs_recovery = (es->s_last_orphan != 0 ||
3587 EXT4_HAS_INCOMPAT_FEATURE(sb,
3588 EXT4_FEATURE_INCOMPAT_RECOVER));
3589
3590 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3591 !(sb->s_flags & MS_RDONLY))
3592 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3593 goto failed_mount3;
3594
3595 /*
3596 * The first inode we look at is the journal inode. Don't try
3597 * root first: it may be modified in the journal!
3598 */
3599 if (!test_opt(sb, NOLOAD) &&
3600 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3601 if (ext4_load_journal(sb, es, journal_devnum))
3602 goto failed_mount3;
3603 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3604 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3605 ext4_msg(sb, KERN_ERR, "required journal recovery "
3606 "suppressed and not mounted read-only");
3607 goto failed_mount_wq;
3608 } else {
3609 clear_opt(sb, DATA_FLAGS);
3610 sbi->s_journal = NULL;
3611 needs_recovery = 0;
3612 goto no_journal;
3613 }
3614
3615 if (ext4_blocks_count(es) > 0xffffffffULL &&
3616 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3617 JBD2_FEATURE_INCOMPAT_64BIT)) {
3618 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3619 goto failed_mount_wq;
3620 }
3621
3622 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3623 jbd2_journal_set_features(sbi->s_journal,
3624 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3625 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3626 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3627 jbd2_journal_set_features(sbi->s_journal,
3628 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3629 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3630 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3631 } else {
3632 jbd2_journal_clear_features(sbi->s_journal,
3633 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3634 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3635 }
3636
3637 /* We have now updated the journal if required, so we can
3638 * validate the data journaling mode. */
3639 switch (test_opt(sb, DATA_FLAGS)) {
3640 case 0:
3641 /* No mode set, assume a default based on the journal
3642 * capabilities: ORDERED_DATA if the journal can
3643 * cope, else JOURNAL_DATA
3644 */
3645 if (jbd2_journal_check_available_features
3646 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3647 set_opt(sb, ORDERED_DATA);
3648 else
3649 set_opt(sb, JOURNAL_DATA);
3650 break;
3651
3652 case EXT4_MOUNT_ORDERED_DATA:
3653 case EXT4_MOUNT_WRITEBACK_DATA:
3654 if (!jbd2_journal_check_available_features
3655 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3656 ext4_msg(sb, KERN_ERR, "Journal does not support "
3657 "requested data journaling mode");
3658 goto failed_mount_wq;
3659 }
3660 default:
3661 break;
3662 }
3663 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3664
3665 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3666
3667 /*
3668 * The journal may have updated the bg summary counts, so we
3669 * need to update the global counters.
3670 */
3671 percpu_counter_set(&sbi->s_freeclusters_counter,
3672 ext4_count_free_clusters(sb));
3673 percpu_counter_set(&sbi->s_freeinodes_counter,
3674 ext4_count_free_inodes(sb));
3675 percpu_counter_set(&sbi->s_dirs_counter,
3676 ext4_count_dirs(sb));
3677 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3678
3679no_journal:
3680 /*
3681 * Get the # of file system overhead blocks from the
3682 * superblock if present.
3683 */
3684 if (es->s_overhead_clusters)
3685 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3686 else {
3687 ret = ext4_calculate_overhead(sb);
3688 if (ret)
3689 goto failed_mount_wq;
3690 }
3691
3692 /*
3693 * The maximum number of concurrent works can be high and
3694 * concurrency isn't really necessary. Limit it to 1.
3695 */
3696 EXT4_SB(sb)->dio_unwritten_wq =
3697 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3698 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3699 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3700 goto failed_mount_wq;
3701 }
3702
3703 /*
3704 * The jbd2_journal_load will have done any necessary log recovery,
3705 * so we can safely mount the rest of the filesystem now.
3706 */
3707
3708 root = ext4_iget(sb, EXT4_ROOT_INO);
3709 if (IS_ERR(root)) {
3710 ext4_msg(sb, KERN_ERR, "get root inode failed");
3711 ret = PTR_ERR(root);
3712 root = NULL;
3713 goto failed_mount4;
3714 }
3715 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3716 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3717 iput(root);
3718 goto failed_mount4;
3719 }
3720 sb->s_root = d_make_root(root);
3721 if (!sb->s_root) {
3722 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3723 ret = -ENOMEM;
3724 goto failed_mount4;
3725 }
3726
3727 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3728 sb->s_flags |= MS_RDONLY;
3729
3730 /* determine the minimum size of new large inodes, if present */
3731 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3732 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3733 EXT4_GOOD_OLD_INODE_SIZE;
3734 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3735 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3736 if (sbi->s_want_extra_isize <
3737 le16_to_cpu(es->s_want_extra_isize))
3738 sbi->s_want_extra_isize =
3739 le16_to_cpu(es->s_want_extra_isize);
3740 if (sbi->s_want_extra_isize <
3741 le16_to_cpu(es->s_min_extra_isize))
3742 sbi->s_want_extra_isize =
3743 le16_to_cpu(es->s_min_extra_isize);
3744 }
3745 }
3746 /* Check if enough inode space is available */
3747 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3748 sbi->s_inode_size) {
3749 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3750 EXT4_GOOD_OLD_INODE_SIZE;
3751 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3752 "available");
3753 }
3754
3755 err = ext4_setup_system_zone(sb);
3756 if (err) {
3757 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3758 "zone (%d)", err);
3759 goto failed_mount4a;
3760 }
3761
3762 ext4_ext_init(sb);
3763 err = ext4_mb_init(sb, needs_recovery);
3764 if (err) {
3765 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3766 err);
3767 goto failed_mount5;
3768 }
3769
3770 err = ext4_register_li_request(sb, first_not_zeroed);
3771 if (err)
3772 goto failed_mount6;
3773
3774 sbi->s_kobj.kset = ext4_kset;
3775 init_completion(&sbi->s_kobj_unregister);
3776 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3777 "%s", sb->s_id);
3778 if (err)
3779 goto failed_mount7;
3780
3781 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3782 ext4_orphan_cleanup(sb, es);
3783 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3784 if (needs_recovery) {
3785 ext4_msg(sb, KERN_INFO, "recovery complete");
3786 ext4_mark_recovery_complete(sb, es);
3787 }
3788 if (EXT4_SB(sb)->s_journal) {
3789 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3790 descr = " journalled data mode";
3791 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3792 descr = " ordered data mode";
3793 else
3794 descr = " writeback data mode";
3795 } else
3796 descr = "out journal";
3797
3798 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3799 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3800 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3801
3802 if (es->s_error_count)
3803 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3804
3805 kfree(orig_data);
3806 return 0;
3807
3808cantfind_ext4:
3809 if (!silent)
3810 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3811 goto failed_mount;
3812
3813failed_mount7:
3814 ext4_unregister_li_request(sb);
3815failed_mount6:
3816 ext4_mb_release(sb);
3817failed_mount5:
3818 ext4_ext_release(sb);
3819 ext4_release_system_zone(sb);
3820failed_mount4a:
3821 dput(sb->s_root);
3822 sb->s_root = NULL;
3823failed_mount4:
3824 ext4_msg(sb, KERN_ERR, "mount failed");
3825 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3826failed_mount_wq:
3827 if (sbi->s_journal) {
3828 jbd2_journal_destroy(sbi->s_journal);
3829 sbi->s_journal = NULL;
3830 }
3831failed_mount3:
3832 del_timer(&sbi->s_err_report);
3833 if (sbi->s_flex_groups)
3834 ext4_kvfree(sbi->s_flex_groups);
3835 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3836 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3837 percpu_counter_destroy(&sbi->s_dirs_counter);
3838 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3839 if (sbi->s_mmp_tsk)
3840 kthread_stop(sbi->s_mmp_tsk);
3841failed_mount2:
3842 for (i = 0; i < db_count; i++)
3843 brelse(sbi->s_group_desc[i]);
3844 ext4_kvfree(sbi->s_group_desc);
3845failed_mount:
3846 if (sbi->s_proc) {
3847 remove_proc_entry("options", sbi->s_proc);
3848 remove_proc_entry(sb->s_id, ext4_proc_root);
3849 }
3850#ifdef CONFIG_QUOTA
3851 for (i = 0; i < MAXQUOTAS; i++)
3852 kfree(sbi->s_qf_names[i]);
3853#endif
3854 ext4_blkdev_remove(sbi);
3855 brelse(bh);
3856out_fail:
3857 sb->s_fs_info = NULL;
3858 kfree(sbi->s_blockgroup_lock);
3859 kfree(sbi);
3860out_free_orig:
3861 kfree(orig_data);
3862 return ret;
3863}
3864
3865/*
3866 * Setup any per-fs journal parameters now. We'll do this both on
3867 * initial mount, once the journal has been initialised but before we've
3868 * done any recovery; and again on any subsequent remount.
3869 */
3870static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3871{
3872 struct ext4_sb_info *sbi = EXT4_SB(sb);
3873
3874 journal->j_commit_interval = sbi->s_commit_interval;
3875 journal->j_min_batch_time = sbi->s_min_batch_time;
3876 journal->j_max_batch_time = sbi->s_max_batch_time;
3877
3878 write_lock(&journal->j_state_lock);
3879 if (test_opt(sb, BARRIER))
3880 journal->j_flags |= JBD2_BARRIER;
3881 else
3882 journal->j_flags &= ~JBD2_BARRIER;
3883 if (test_opt(sb, DATA_ERR_ABORT))
3884 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3885 else
3886 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3887 write_unlock(&journal->j_state_lock);
3888}
3889
3890static journal_t *ext4_get_journal(struct super_block *sb,
3891 unsigned int journal_inum)
3892{
3893 struct inode *journal_inode;
3894 journal_t *journal;
3895
3896 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3897
3898 /* First, test for the existence of a valid inode on disk. Bad
3899 * things happen if we iget() an unused inode, as the subsequent
3900 * iput() will try to delete it. */
3901
3902 journal_inode = ext4_iget(sb, journal_inum);
3903 if (IS_ERR(journal_inode)) {
3904 ext4_msg(sb, KERN_ERR, "no journal found");
3905 return NULL;
3906 }
3907 if (!journal_inode->i_nlink) {
3908 make_bad_inode(journal_inode);
3909 iput(journal_inode);
3910 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3911 return NULL;
3912 }
3913
3914 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3915 journal_inode, journal_inode->i_size);
3916 if (!S_ISREG(journal_inode->i_mode)) {
3917 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3918 iput(journal_inode);
3919 return NULL;
3920 }
3921
3922 journal = jbd2_journal_init_inode(journal_inode);
3923 if (!journal) {
3924 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3925 iput(journal_inode);
3926 return NULL;
3927 }
3928 journal->j_private = sb;
3929 ext4_init_journal_params(sb, journal);
3930 return journal;
3931}
3932
3933static journal_t *ext4_get_dev_journal(struct super_block *sb,
3934 dev_t j_dev)
3935{
3936 struct buffer_head *bh;
3937 journal_t *journal;
3938 ext4_fsblk_t start;
3939 ext4_fsblk_t len;
3940 int hblock, blocksize;
3941 ext4_fsblk_t sb_block;
3942 unsigned long offset;
3943 struct ext4_super_block *es;
3944 struct block_device *bdev;
3945
3946 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3947
3948 bdev = ext4_blkdev_get(j_dev, sb);
3949 if (bdev == NULL)
3950 return NULL;
3951
3952 blocksize = sb->s_blocksize;
3953 hblock = bdev_logical_block_size(bdev);
3954 if (blocksize < hblock) {
3955 ext4_msg(sb, KERN_ERR,
3956 "blocksize too small for journal device");
3957 goto out_bdev;
3958 }
3959
3960 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3961 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3962 set_blocksize(bdev, blocksize);
3963 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3964 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3965 "external journal");
3966 goto out_bdev;
3967 }
3968
3969 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3970 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3971 !(le32_to_cpu(es->s_feature_incompat) &
3972 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3973 ext4_msg(sb, KERN_ERR, "external journal has "
3974 "bad superblock");
3975 brelse(bh);
3976 goto out_bdev;
3977 }
3978
3979 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3980 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3981 brelse(bh);
3982 goto out_bdev;
3983 }
3984
3985 len = ext4_blocks_count(es);
3986 start = sb_block + 1;
3987 brelse(bh); /* we're done with the superblock */
3988
3989 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3990 start, len, blocksize);
3991 if (!journal) {
3992 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3993 goto out_bdev;
3994 }
3995 journal->j_private = sb;
3996 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3997 wait_on_buffer(journal->j_sb_buffer);
3998 if (!buffer_uptodate(journal->j_sb_buffer)) {
3999 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4000 goto out_journal;
4001 }
4002 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4003 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4004 "user (unsupported) - %d",
4005 be32_to_cpu(journal->j_superblock->s_nr_users));
4006 goto out_journal;
4007 }
4008 EXT4_SB(sb)->journal_bdev = bdev;
4009 ext4_init_journal_params(sb, journal);
4010 return journal;
4011
4012out_journal:
4013 jbd2_journal_destroy(journal);
4014out_bdev:
4015 ext4_blkdev_put(bdev);
4016 return NULL;
4017}
4018
4019static int ext4_load_journal(struct super_block *sb,
4020 struct ext4_super_block *es,
4021 unsigned long journal_devnum)
4022{
4023 journal_t *journal;
4024 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4025 dev_t journal_dev;
4026 int err = 0;
4027 int really_read_only;
4028
4029 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4030
4031 if (journal_devnum &&
4032 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4033 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4034 "numbers have changed");
4035 journal_dev = new_decode_dev(journal_devnum);
4036 } else
4037 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4038
4039 really_read_only = bdev_read_only(sb->s_bdev);
4040
4041 /*
4042 * Are we loading a blank journal or performing recovery after a
4043 * crash? For recovery, we need to check in advance whether we
4044 * can get read-write access to the device.
4045 */
4046 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4047 if (sb->s_flags & MS_RDONLY) {
4048 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4049 "required on readonly filesystem");
4050 if (really_read_only) {
4051 ext4_msg(sb, KERN_ERR, "write access "
4052 "unavailable, cannot proceed");
4053 return -EROFS;
4054 }
4055 ext4_msg(sb, KERN_INFO, "write access will "
4056 "be enabled during recovery");
4057 }
4058 }
4059
4060 if (journal_inum && journal_dev) {
4061 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4062 "and inode journals!");
4063 return -EINVAL;
4064 }
4065
4066 if (journal_inum) {
4067 if (!(journal = ext4_get_journal(sb, journal_inum)))
4068 return -EINVAL;
4069 } else {
4070 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4071 return -EINVAL;
4072 }
4073
4074 if (!(journal->j_flags & JBD2_BARRIER))
4075 ext4_msg(sb, KERN_INFO, "barriers disabled");
4076
4077 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4078 err = jbd2_journal_wipe(journal, !really_read_only);
4079 if (!err) {
4080 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4081 if (save)
4082 memcpy(save, ((char *) es) +
4083 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4084 err = jbd2_journal_load(journal);
4085 if (save)
4086 memcpy(((char *) es) + EXT4_S_ERR_START,
4087 save, EXT4_S_ERR_LEN);
4088 kfree(save);
4089 }
4090
4091 if (err) {
4092 ext4_msg(sb, KERN_ERR, "error loading journal");
4093 jbd2_journal_destroy(journal);
4094 return err;
4095 }
4096
4097 EXT4_SB(sb)->s_journal = journal;
4098 ext4_clear_journal_err(sb, es);
4099
4100 if (!really_read_only && journal_devnum &&
4101 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4102 es->s_journal_dev = cpu_to_le32(journal_devnum);
4103
4104 /* Make sure we flush the recovery flag to disk. */
4105 ext4_commit_super(sb, 1);
4106 }
4107
4108 return 0;
4109}
4110
4111static int ext4_commit_super(struct super_block *sb, int sync)
4112{
4113 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4114 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4115 int error = 0;
4116
4117 if (!sbh || block_device_ejected(sb))
4118 return error;
4119 if (buffer_write_io_error(sbh)) {
4120 /*
4121 * Oh, dear. A previous attempt to write the
4122 * superblock failed. This could happen because the
4123 * USB device was yanked out. Or it could happen to
4124 * be a transient write error and maybe the block will
4125 * be remapped. Nothing we can do but to retry the
4126 * write and hope for the best.
4127 */
4128 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4129 "superblock detected");
4130 clear_buffer_write_io_error(sbh);
4131 set_buffer_uptodate(sbh);
4132 }
4133 /*
4134 * If the file system is mounted read-only, don't update the
4135 * superblock write time. This avoids updating the superblock
4136 * write time when we are mounting the root file system
4137 * read/only but we need to replay the journal; at that point,
4138 * for people who are east of GMT and who make their clock
4139 * tick in localtime for Windows bug-for-bug compatibility,
4140 * the clock is set in the future, and this will cause e2fsck
4141 * to complain and force a full file system check.
4142 */
4143 if (!(sb->s_flags & MS_RDONLY))
4144 es->s_wtime = cpu_to_le32(get_seconds());
4145 if (sb->s_bdev->bd_part)
4146 es->s_kbytes_written =
4147 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4148 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4149 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4150 else
4151 es->s_kbytes_written =
4152 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4153 ext4_free_blocks_count_set(es,
4154 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4155 &EXT4_SB(sb)->s_freeclusters_counter)));
4156 es->s_free_inodes_count =
4157 cpu_to_le32(percpu_counter_sum_positive(
4158 &EXT4_SB(sb)->s_freeinodes_counter));
4159 sb->s_dirt = 0;
4160 BUFFER_TRACE(sbh, "marking dirty");
4161 mark_buffer_dirty(sbh);
4162 if (sync) {
4163 error = sync_dirty_buffer(sbh);
4164 if (error)
4165 return error;
4166
4167 error = buffer_write_io_error(sbh);
4168 if (error) {
4169 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4170 "superblock");
4171 clear_buffer_write_io_error(sbh);
4172 set_buffer_uptodate(sbh);
4173 }
4174 }
4175 return error;
4176}
4177
4178/*
4179 * Have we just finished recovery? If so, and if we are mounting (or
4180 * remounting) the filesystem readonly, then we will end up with a
4181 * consistent fs on disk. Record that fact.
4182 */
4183static void ext4_mark_recovery_complete(struct super_block *sb,
4184 struct ext4_super_block *es)
4185{
4186 journal_t *journal = EXT4_SB(sb)->s_journal;
4187
4188 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4189 BUG_ON(journal != NULL);
4190 return;
4191 }
4192 jbd2_journal_lock_updates(journal);
4193 if (jbd2_journal_flush(journal) < 0)
4194 goto out;
4195
4196 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4197 sb->s_flags & MS_RDONLY) {
4198 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4199 ext4_commit_super(sb, 1);
4200 }
4201
4202out:
4203 jbd2_journal_unlock_updates(journal);
4204}
4205
4206/*
4207 * If we are mounting (or read-write remounting) a filesystem whose journal
4208 * has recorded an error from a previous lifetime, move that error to the
4209 * main filesystem now.
4210 */
4211static void ext4_clear_journal_err(struct super_block *sb,
4212 struct ext4_super_block *es)
4213{
4214 journal_t *journal;
4215 int j_errno;
4216 const char *errstr;
4217
4218 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4219
4220 journal = EXT4_SB(sb)->s_journal;
4221
4222 /*
4223 * Now check for any error status which may have been recorded in the
4224 * journal by a prior ext4_error() or ext4_abort()
4225 */
4226
4227 j_errno = jbd2_journal_errno(journal);
4228 if (j_errno) {
4229 char nbuf[16];
4230
4231 errstr = ext4_decode_error(sb, j_errno, nbuf);
4232 ext4_warning(sb, "Filesystem error recorded "
4233 "from previous mount: %s", errstr);
4234 ext4_warning(sb, "Marking fs in need of filesystem check.");
4235
4236 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4237 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4238 ext4_commit_super(sb, 1);
4239
4240 jbd2_journal_clear_err(journal);
4241 jbd2_journal_update_sb_errno(journal);
4242 }
4243}
4244
4245/*
4246 * Force the running and committing transactions to commit,
4247 * and wait on the commit.
4248 */
4249int ext4_force_commit(struct super_block *sb)
4250{
4251 journal_t *journal;
4252 int ret = 0;
4253
4254 if (sb->s_flags & MS_RDONLY)
4255 return 0;
4256
4257 journal = EXT4_SB(sb)->s_journal;
4258 if (journal) {
4259 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4260 ret = ext4_journal_force_commit(journal);
4261 }
4262
4263 return ret;
4264}
4265
4266static void ext4_write_super(struct super_block *sb)
4267{
4268 lock_super(sb);
4269 ext4_commit_super(sb, 1);
4270 unlock_super(sb);
4271}
4272
4273static int ext4_sync_fs(struct super_block *sb, int wait)
4274{
4275 int ret = 0;
4276 tid_t target;
4277 struct ext4_sb_info *sbi = EXT4_SB(sb);
4278
4279 trace_ext4_sync_fs(sb, wait);
4280 flush_workqueue(sbi->dio_unwritten_wq);
4281 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4282 if (wait)
4283 jbd2_log_wait_commit(sbi->s_journal, target);
4284 }
4285 return ret;
4286}
4287
4288/*
4289 * LVM calls this function before a (read-only) snapshot is created. This
4290 * gives us a chance to flush the journal completely and mark the fs clean.
4291 *
4292 * Note that only this function cannot bring a filesystem to be in a clean
4293 * state independently, because ext4 prevents a new handle from being started
4294 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4295 * the upper layer.
4296 */
4297static int ext4_freeze(struct super_block *sb)
4298{
4299 int error = 0;
4300 journal_t *journal;
4301
4302 if (sb->s_flags & MS_RDONLY)
4303 return 0;
4304
4305 journal = EXT4_SB(sb)->s_journal;
4306
4307 /* Now we set up the journal barrier. */
4308 jbd2_journal_lock_updates(journal);
4309
4310 /*
4311 * Don't clear the needs_recovery flag if we failed to flush
4312 * the journal.
4313 */
4314 error = jbd2_journal_flush(journal);
4315 if (error < 0)
4316 goto out;
4317
4318 /* Journal blocked and flushed, clear needs_recovery flag. */
4319 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4320 error = ext4_commit_super(sb, 1);
4321out:
4322 /* we rely on s_frozen to stop further updates */
4323 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4324 return error;
4325}
4326
4327/*
4328 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4329 * flag here, even though the filesystem is not technically dirty yet.
4330 */
4331static int ext4_unfreeze(struct super_block *sb)
4332{
4333 if (sb->s_flags & MS_RDONLY)
4334 return 0;
4335
4336 lock_super(sb);
4337 /* Reset the needs_recovery flag before the fs is unlocked. */
4338 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4339 ext4_commit_super(sb, 1);
4340 unlock_super(sb);
4341 return 0;
4342}
4343
4344/*
4345 * Structure to save mount options for ext4_remount's benefit
4346 */
4347struct ext4_mount_options {
4348 unsigned long s_mount_opt;
4349 unsigned long s_mount_opt2;
4350 uid_t s_resuid;
4351 gid_t s_resgid;
4352 unsigned long s_commit_interval;
4353 u32 s_min_batch_time, s_max_batch_time;
4354#ifdef CONFIG_QUOTA
4355 int s_jquota_fmt;
4356 char *s_qf_names[MAXQUOTAS];
4357#endif
4358};
4359
4360static int ext4_remount(struct super_block *sb, int *flags, char *data)
4361{
4362 struct ext4_super_block *es;
4363 struct ext4_sb_info *sbi = EXT4_SB(sb);
4364 unsigned long old_sb_flags;
4365 struct ext4_mount_options old_opts;
4366 int enable_quota = 0;
4367 ext4_group_t g;
4368 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4369 int err = 0;
4370#ifdef CONFIG_QUOTA
4371 int i;
4372#endif
4373 char *orig_data = kstrdup(data, GFP_KERNEL);
4374
4375 /* Store the original options */
4376 lock_super(sb);
4377 old_sb_flags = sb->s_flags;
4378 old_opts.s_mount_opt = sbi->s_mount_opt;
4379 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4380 old_opts.s_resuid = sbi->s_resuid;
4381 old_opts.s_resgid = sbi->s_resgid;
4382 old_opts.s_commit_interval = sbi->s_commit_interval;
4383 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4384 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4385#ifdef CONFIG_QUOTA
4386 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4387 for (i = 0; i < MAXQUOTAS; i++)
4388 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4389#endif
4390 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4391 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4392
4393 /*
4394 * Allow the "check" option to be passed as a remount option.
4395 */
4396 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4397 err = -EINVAL;
4398 goto restore_opts;
4399 }
4400
4401 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4402 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4403 ext4_msg(sb, KERN_ERR, "can't mount with "
4404 "both data=journal and delalloc");
4405 err = -EINVAL;
4406 goto restore_opts;
4407 }
4408 if (test_opt(sb, DIOREAD_NOLOCK)) {
4409 ext4_msg(sb, KERN_ERR, "can't mount with "
4410 "both data=journal and dioread_nolock");
4411 err = -EINVAL;
4412 goto restore_opts;
4413 }
4414 }
4415
4416 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4417 ext4_abort(sb, "Abort forced by user");
4418
4419 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4420 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4421
4422 es = sbi->s_es;
4423
4424 if (sbi->s_journal) {
4425 ext4_init_journal_params(sb, sbi->s_journal);
4426 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4427 }
4428
4429 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4430 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4431 err = -EROFS;
4432 goto restore_opts;
4433 }
4434
4435 if (*flags & MS_RDONLY) {
4436 err = dquot_suspend(sb, -1);
4437 if (err < 0)
4438 goto restore_opts;
4439
4440 /*
4441 * First of all, the unconditional stuff we have to do
4442 * to disable replay of the journal when we next remount
4443 */
4444 sb->s_flags |= MS_RDONLY;
4445
4446 /*
4447 * OK, test if we are remounting a valid rw partition
4448 * readonly, and if so set the rdonly flag and then
4449 * mark the partition as valid again.
4450 */
4451 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4452 (sbi->s_mount_state & EXT4_VALID_FS))
4453 es->s_state = cpu_to_le16(sbi->s_mount_state);
4454
4455 if (sbi->s_journal)
4456 ext4_mark_recovery_complete(sb, es);
4457 } else {
4458 /* Make sure we can mount this feature set readwrite */
4459 if (!ext4_feature_set_ok(sb, 0)) {
4460 err = -EROFS;
4461 goto restore_opts;
4462 }
4463 /*
4464 * Make sure the group descriptor checksums
4465 * are sane. If they aren't, refuse to remount r/w.
4466 */
4467 for (g = 0; g < sbi->s_groups_count; g++) {
4468 struct ext4_group_desc *gdp =
4469 ext4_get_group_desc(sb, g, NULL);
4470
4471 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4472 ext4_msg(sb, KERN_ERR,
4473 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4474 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4475 le16_to_cpu(gdp->bg_checksum));
4476 err = -EINVAL;
4477 goto restore_opts;
4478 }
4479 }
4480
4481 /*
4482 * If we have an unprocessed orphan list hanging
4483 * around from a previously readonly bdev mount,
4484 * require a full umount/remount for now.
4485 */
4486 if (es->s_last_orphan) {
4487 ext4_msg(sb, KERN_WARNING, "Couldn't "
4488 "remount RDWR because of unprocessed "
4489 "orphan inode list. Please "
4490 "umount/remount instead");
4491 err = -EINVAL;
4492 goto restore_opts;
4493 }
4494
4495 /*
4496 * Mounting a RDONLY partition read-write, so reread
4497 * and store the current valid flag. (It may have
4498 * been changed by e2fsck since we originally mounted
4499 * the partition.)
4500 */
4501 if (sbi->s_journal)
4502 ext4_clear_journal_err(sb, es);
4503 sbi->s_mount_state = le16_to_cpu(es->s_state);
4504 if (!ext4_setup_super(sb, es, 0))
4505 sb->s_flags &= ~MS_RDONLY;
4506 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4507 EXT4_FEATURE_INCOMPAT_MMP))
4508 if (ext4_multi_mount_protect(sb,
4509 le64_to_cpu(es->s_mmp_block))) {
4510 err = -EROFS;
4511 goto restore_opts;
4512 }
4513 enable_quota = 1;
4514 }
4515 }
4516
4517 /*
4518 * Reinitialize lazy itable initialization thread based on
4519 * current settings
4520 */
4521 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4522 ext4_unregister_li_request(sb);
4523 else {
4524 ext4_group_t first_not_zeroed;
4525 first_not_zeroed = ext4_has_uninit_itable(sb);
4526 ext4_register_li_request(sb, first_not_zeroed);
4527 }
4528
4529 ext4_setup_system_zone(sb);
4530 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4531 ext4_commit_super(sb, 1);
4532
4533#ifdef CONFIG_QUOTA
4534 /* Release old quota file names */
4535 for (i = 0; i < MAXQUOTAS; i++)
4536 if (old_opts.s_qf_names[i] &&
4537 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4538 kfree(old_opts.s_qf_names[i]);
4539#endif
4540 unlock_super(sb);
4541 if (enable_quota)
4542 dquot_resume(sb, -1);
4543
4544 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4545 kfree(orig_data);
4546 return 0;
4547
4548restore_opts:
4549 sb->s_flags = old_sb_flags;
4550 sbi->s_mount_opt = old_opts.s_mount_opt;
4551 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4552 sbi->s_resuid = old_opts.s_resuid;
4553 sbi->s_resgid = old_opts.s_resgid;
4554 sbi->s_commit_interval = old_opts.s_commit_interval;
4555 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4556 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4557#ifdef CONFIG_QUOTA
4558 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4559 for (i = 0; i < MAXQUOTAS; i++) {
4560 if (sbi->s_qf_names[i] &&
4561 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4562 kfree(sbi->s_qf_names[i]);
4563 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4564 }
4565#endif
4566 unlock_super(sb);
4567 kfree(orig_data);
4568 return err;
4569}
4570
4571static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4572{
4573 struct super_block *sb = dentry->d_sb;
4574 struct ext4_sb_info *sbi = EXT4_SB(sb);
4575 struct ext4_super_block *es = sbi->s_es;
4576 ext4_fsblk_t overhead = 0;
4577 u64 fsid;
4578 s64 bfree;
4579
4580 if (!test_opt(sb, MINIX_DF))
4581 overhead = sbi->s_overhead;
4582
4583 buf->f_type = EXT4_SUPER_MAGIC;
4584 buf->f_bsize = sb->s_blocksize;
4585 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4586 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4587 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4588 /* prevent underflow in case that few free space is available */
4589 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4590 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4591 if (buf->f_bfree < ext4_r_blocks_count(es))
4592 buf->f_bavail = 0;
4593 buf->f_files = le32_to_cpu(es->s_inodes_count);
4594 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4595 buf->f_namelen = EXT4_NAME_LEN;
4596 fsid = le64_to_cpup((void *)es->s_uuid) ^
4597 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4598 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4599 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4600
4601 return 0;
4602}
4603
4604/* Helper function for writing quotas on sync - we need to start transaction
4605 * before quota file is locked for write. Otherwise the are possible deadlocks:
4606 * Process 1 Process 2
4607 * ext4_create() quota_sync()
4608 * jbd2_journal_start() write_dquot()
4609 * dquot_initialize() down(dqio_mutex)
4610 * down(dqio_mutex) jbd2_journal_start()
4611 *
4612 */
4613
4614#ifdef CONFIG_QUOTA
4615
4616static inline struct inode *dquot_to_inode(struct dquot *dquot)
4617{
4618 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4619}
4620
4621static int ext4_write_dquot(struct dquot *dquot)
4622{
4623 int ret, err;
4624 handle_t *handle;
4625 struct inode *inode;
4626
4627 inode = dquot_to_inode(dquot);
4628 handle = ext4_journal_start(inode,
4629 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4630 if (IS_ERR(handle))
4631 return PTR_ERR(handle);
4632 ret = dquot_commit(dquot);
4633 err = ext4_journal_stop(handle);
4634 if (!ret)
4635 ret = err;
4636 return ret;
4637}
4638
4639static int ext4_acquire_dquot(struct dquot *dquot)
4640{
4641 int ret, err;
4642 handle_t *handle;
4643
4644 handle = ext4_journal_start(dquot_to_inode(dquot),
4645 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4646 if (IS_ERR(handle))
4647 return PTR_ERR(handle);
4648 ret = dquot_acquire(dquot);
4649 err = ext4_journal_stop(handle);
4650 if (!ret)
4651 ret = err;
4652 return ret;
4653}
4654
4655static int ext4_release_dquot(struct dquot *dquot)
4656{
4657 int ret, err;
4658 handle_t *handle;
4659
4660 handle = ext4_journal_start(dquot_to_inode(dquot),
4661 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4662 if (IS_ERR(handle)) {
4663 /* Release dquot anyway to avoid endless cycle in dqput() */
4664 dquot_release(dquot);
4665 return PTR_ERR(handle);
4666 }
4667 ret = dquot_release(dquot);
4668 err = ext4_journal_stop(handle);
4669 if (!ret)
4670 ret = err;
4671 return ret;
4672}
4673
4674static int ext4_mark_dquot_dirty(struct dquot *dquot)
4675{
4676 /* Are we journaling quotas? */
4677 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4678 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4679 dquot_mark_dquot_dirty(dquot);
4680 return ext4_write_dquot(dquot);
4681 } else {
4682 return dquot_mark_dquot_dirty(dquot);
4683 }
4684}
4685
4686static int ext4_write_info(struct super_block *sb, int type)
4687{
4688 int ret, err;
4689 handle_t *handle;
4690
4691 /* Data block + inode block */
4692 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4693 if (IS_ERR(handle))
4694 return PTR_ERR(handle);
4695 ret = dquot_commit_info(sb, type);
4696 err = ext4_journal_stop(handle);
4697 if (!ret)
4698 ret = err;
4699 return ret;
4700}
4701
4702/*
4703 * Turn on quotas during mount time - we need to find
4704 * the quota file and such...
4705 */
4706static int ext4_quota_on_mount(struct super_block *sb, int type)
4707{
4708 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4709 EXT4_SB(sb)->s_jquota_fmt, type);
4710}
4711
4712/*
4713 * Standard function to be called on quota_on
4714 */
4715static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4716 struct path *path)
4717{
4718 int err;
4719
4720 if (!test_opt(sb, QUOTA))
4721 return -EINVAL;
4722
4723 /* Quotafile not on the same filesystem? */
4724 if (path->dentry->d_sb != sb)
4725 return -EXDEV;
4726 /* Journaling quota? */
4727 if (EXT4_SB(sb)->s_qf_names[type]) {
4728 /* Quotafile not in fs root? */
4729 if (path->dentry->d_parent != sb->s_root)
4730 ext4_msg(sb, KERN_WARNING,
4731 "Quota file not on filesystem root. "
4732 "Journaled quota will not work");
4733 }
4734
4735 /*
4736 * When we journal data on quota file, we have to flush journal to see
4737 * all updates to the file when we bypass pagecache...
4738 */
4739 if (EXT4_SB(sb)->s_journal &&
4740 ext4_should_journal_data(path->dentry->d_inode)) {
4741 /*
4742 * We don't need to lock updates but journal_flush() could
4743 * otherwise be livelocked...
4744 */
4745 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4746 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4747 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4748 if (err)
4749 return err;
4750 }
4751
4752 return dquot_quota_on(sb, type, format_id, path);
4753}
4754
4755static int ext4_quota_off(struct super_block *sb, int type)
4756{
4757 struct inode *inode = sb_dqopt(sb)->files[type];
4758 handle_t *handle;
4759
4760 /* Force all delayed allocation blocks to be allocated.
4761 * Caller already holds s_umount sem */
4762 if (test_opt(sb, DELALLOC))
4763 sync_filesystem(sb);
4764
4765 if (!inode)
4766 goto out;
4767
4768 /* Update modification times of quota files when userspace can
4769 * start looking at them */
4770 handle = ext4_journal_start(inode, 1);
4771 if (IS_ERR(handle))
4772 goto out;
4773 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4774 ext4_mark_inode_dirty(handle, inode);
4775 ext4_journal_stop(handle);
4776
4777out:
4778 return dquot_quota_off(sb, type);
4779}
4780
4781/* Read data from quotafile - avoid pagecache and such because we cannot afford
4782 * acquiring the locks... As quota files are never truncated and quota code
4783 * itself serializes the operations (and no one else should touch the files)
4784 * we don't have to be afraid of races */
4785static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4786 size_t len, loff_t off)
4787{
4788 struct inode *inode = sb_dqopt(sb)->files[type];
4789 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4790 int err = 0;
4791 int offset = off & (sb->s_blocksize - 1);
4792 int tocopy;
4793 size_t toread;
4794 struct buffer_head *bh;
4795 loff_t i_size = i_size_read(inode);
4796
4797 if (off > i_size)
4798 return 0;
4799 if (off+len > i_size)
4800 len = i_size-off;
4801 toread = len;
4802 while (toread > 0) {
4803 tocopy = sb->s_blocksize - offset < toread ?
4804 sb->s_blocksize - offset : toread;
4805 bh = ext4_bread(NULL, inode, blk, 0, &err);
4806 if (err)
4807 return err;
4808 if (!bh) /* A hole? */
4809 memset(data, 0, tocopy);
4810 else
4811 memcpy(data, bh->b_data+offset, tocopy);
4812 brelse(bh);
4813 offset = 0;
4814 toread -= tocopy;
4815 data += tocopy;
4816 blk++;
4817 }
4818 return len;
4819}
4820
4821/* Write to quotafile (we know the transaction is already started and has
4822 * enough credits) */
4823static ssize_t ext4_quota_write(struct super_block *sb, int type,
4824 const char *data, size_t len, loff_t off)
4825{
4826 struct inode *inode = sb_dqopt(sb)->files[type];
4827 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4828 int err = 0;
4829 int offset = off & (sb->s_blocksize - 1);
4830 struct buffer_head *bh;
4831 handle_t *handle = journal_current_handle();
4832
4833 if (EXT4_SB(sb)->s_journal && !handle) {
4834 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4835 " cancelled because transaction is not started",
4836 (unsigned long long)off, (unsigned long long)len);
4837 return -EIO;
4838 }
4839 /*
4840 * Since we account only one data block in transaction credits,
4841 * then it is impossible to cross a block boundary.
4842 */
4843 if (sb->s_blocksize - offset < len) {
4844 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4845 " cancelled because not block aligned",
4846 (unsigned long long)off, (unsigned long long)len);
4847 return -EIO;
4848 }
4849
4850 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4851 bh = ext4_bread(handle, inode, blk, 1, &err);
4852 if (!bh)
4853 goto out;
4854 err = ext4_journal_get_write_access(handle, bh);
4855 if (err) {
4856 brelse(bh);
4857 goto out;
4858 }
4859 lock_buffer(bh);
4860 memcpy(bh->b_data+offset, data, len);
4861 flush_dcache_page(bh->b_page);
4862 unlock_buffer(bh);
4863 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4864 brelse(bh);
4865out:
4866 if (err) {
4867 mutex_unlock(&inode->i_mutex);
4868 return err;
4869 }
4870 if (inode->i_size < off + len) {
4871 i_size_write(inode, off + len);
4872 EXT4_I(inode)->i_disksize = inode->i_size;
4873 ext4_mark_inode_dirty(handle, inode);
4874 }
4875 mutex_unlock(&inode->i_mutex);
4876 return len;
4877}
4878
4879#endif
4880
4881static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4882 const char *dev_name, void *data)
4883{
4884 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4885}
4886
4887#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4888static inline void register_as_ext2(void)
4889{
4890 int err = register_filesystem(&ext2_fs_type);
4891 if (err)
4892 printk(KERN_WARNING
4893 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4894}
4895
4896static inline void unregister_as_ext2(void)
4897{
4898 unregister_filesystem(&ext2_fs_type);
4899}
4900
4901static inline int ext2_feature_set_ok(struct super_block *sb)
4902{
4903 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4904 return 0;
4905 if (sb->s_flags & MS_RDONLY)
4906 return 1;
4907 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4908 return 0;
4909 return 1;
4910}
4911MODULE_ALIAS("ext2");
4912#else
4913static inline void register_as_ext2(void) { }
4914static inline void unregister_as_ext2(void) { }
4915static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4916#endif
4917
4918#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4919static inline void register_as_ext3(void)
4920{
4921 int err = register_filesystem(&ext3_fs_type);
4922 if (err)
4923 printk(KERN_WARNING
4924 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4925}
4926
4927static inline void unregister_as_ext3(void)
4928{
4929 unregister_filesystem(&ext3_fs_type);
4930}
4931
4932static inline int ext3_feature_set_ok(struct super_block *sb)
4933{
4934 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4935 return 0;
4936 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4937 return 0;
4938 if (sb->s_flags & MS_RDONLY)
4939 return 1;
4940 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4941 return 0;
4942 return 1;
4943}
4944MODULE_ALIAS("ext3");
4945#else
4946static inline void register_as_ext3(void) { }
4947static inline void unregister_as_ext3(void) { }
4948static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4949#endif
4950
4951static struct file_system_type ext4_fs_type = {
4952 .owner = THIS_MODULE,
4953 .name = "ext4",
4954 .mount = ext4_mount,
4955 .kill_sb = kill_block_super,
4956 .fs_flags = FS_REQUIRES_DEV,
4957};
4958
4959static int __init ext4_init_feat_adverts(void)
4960{
4961 struct ext4_features *ef;
4962 int ret = -ENOMEM;
4963
4964 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4965 if (!ef)
4966 goto out;
4967
4968 ef->f_kobj.kset = ext4_kset;
4969 init_completion(&ef->f_kobj_unregister);
4970 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4971 "features");
4972 if (ret) {
4973 kfree(ef);
4974 goto out;
4975 }
4976
4977 ext4_feat = ef;
4978 ret = 0;
4979out:
4980 return ret;
4981}
4982
4983static void ext4_exit_feat_adverts(void)
4984{
4985 kobject_put(&ext4_feat->f_kobj);
4986 wait_for_completion(&ext4_feat->f_kobj_unregister);
4987 kfree(ext4_feat);
4988}
4989
4990/* Shared across all ext4 file systems */
4991wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4992struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4993
4994static int __init ext4_init_fs(void)
4995{
4996 int i, err;
4997
4998 ext4_li_info = NULL;
4999 mutex_init(&ext4_li_mtx);
5000
5001 ext4_check_flag_values();
5002
5003 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5004 mutex_init(&ext4__aio_mutex[i]);
5005 init_waitqueue_head(&ext4__ioend_wq[i]);
5006 }
5007
5008 err = ext4_init_pageio();
5009 if (err)
5010 return err;
5011 err = ext4_init_system_zone();
5012 if (err)
5013 goto out6;
5014 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5015 if (!ext4_kset)
5016 goto out5;
5017 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5018
5019 err = ext4_init_feat_adverts();
5020 if (err)
5021 goto out4;
5022
5023 err = ext4_init_mballoc();
5024 if (err)
5025 goto out3;
5026
5027 err = ext4_init_xattr();
5028 if (err)
5029 goto out2;
5030 err = init_inodecache();
5031 if (err)
5032 goto out1;
5033 register_as_ext3();
5034 register_as_ext2();
5035 err = register_filesystem(&ext4_fs_type);
5036 if (err)
5037 goto out;
5038
5039 return 0;
5040out:
5041 unregister_as_ext2();
5042 unregister_as_ext3();
5043 destroy_inodecache();
5044out1:
5045 ext4_exit_xattr();
5046out2:
5047 ext4_exit_mballoc();
5048out3:
5049 ext4_exit_feat_adverts();
5050out4:
5051 if (ext4_proc_root)
5052 remove_proc_entry("fs/ext4", NULL);
5053 kset_unregister(ext4_kset);
5054out5:
5055 ext4_exit_system_zone();
5056out6:
5057 ext4_exit_pageio();
5058 return err;
5059}
5060
5061static void __exit ext4_exit_fs(void)
5062{
5063 ext4_destroy_lazyinit_thread();
5064 unregister_as_ext2();
5065 unregister_as_ext3();
5066 unregister_filesystem(&ext4_fs_type);
5067 destroy_inodecache();
5068 ext4_exit_xattr();
5069 ext4_exit_mballoc();
5070 ext4_exit_feat_adverts();
5071 remove_proc_entry("fs/ext4", NULL);
5072 kset_unregister(ext4_kset);
5073 ext4_exit_system_zone();
5074 ext4_exit_pageio();
5075}
5076
5077MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5078MODULE_DESCRIPTION("Fourth Extended Filesystem");
5079MODULE_LICENSE("GPL");
5080module_init(ext4_init_fs)
5081module_exit(ext4_exit_fs)