blob: dbf2283e67e6697f2f237c1420c52f40fd95a67d [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50#include <asm/uaccess.h>
51
52#include <linux/errno.h>
53#include <linux/time.h>
54#include <linux/proc_fs.h>
55#include <linux/stat.h>
56#include <linux/task_io_accounting_ops.h>
57#include <linux/init.h>
58#include <linux/capability.h>
59#include <linux/file.h>
60#include <linux/fdtable.h>
61#include <linux/string.h>
62#include <linux/seq_file.h>
63#include <linux/namei.h>
64#include <linux/mnt_namespace.h>
65#include <linux/mm.h>
66#include <linux/swap.h>
67#include <linux/rcupdate.h>
68#include <linux/kallsyms.h>
69#include <linux/stacktrace.h>
70#include <linux/resource.h>
71#include <linux/module.h>
72#include <linux/mount.h>
73#include <linux/security.h>
74#include <linux/ptrace.h>
75#include <linux/tracehook.h>
76#include <linux/cgroup.h>
77#include <linux/cpuset.h>
78#include <linux/audit.h>
79#include <linux/poll.h>
80#include <linux/nsproxy.h>
81#include <linux/oom.h>
82#include <linux/elf.h>
83#include <linux/pid_namespace.h>
84#include <linux/fs_struct.h>
85#include <linux/slab.h>
86#include <linux/flex_array.h>
87#ifdef CONFIG_HARDWALL
88#include <asm/hardwall.h>
89#endif
90#include <trace/events/oom.h>
91#include "internal.h"
92
93/* NOTE:
94 * Implementing inode permission operations in /proc is almost
95 * certainly an error. Permission checks need to happen during
96 * each system call not at open time. The reason is that most of
97 * what we wish to check for permissions in /proc varies at runtime.
98 *
99 * The classic example of a problem is opening file descriptors
100 * in /proc for a task before it execs a suid executable.
101 */
102
103struct pid_entry {
104 char *name;
105 int len;
106 umode_t mode;
107 const struct inode_operations *iop;
108 const struct file_operations *fop;
109 union proc_op op;
110};
111
112#define NOD(NAME, MODE, IOP, FOP, OP) { \
113 .name = (NAME), \
114 .len = sizeof(NAME) - 1, \
115 .mode = MODE, \
116 .iop = IOP, \
117 .fop = FOP, \
118 .op = OP, \
119}
120
121#define DIR(NAME, MODE, iops, fops) \
122 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
123#define LNK(NAME, get_link) \
124 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
125 &proc_pid_link_inode_operations, NULL, \
126 { .proc_get_link = get_link } )
127#define REG(NAME, MODE, fops) \
128 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
129#define INF(NAME, MODE, read) \
130 NOD(NAME, (S_IFREG|(MODE)), \
131 NULL, &proc_info_file_operations, \
132 { .proc_read = read } )
133#define ONE(NAME, MODE, show) \
134 NOD(NAME, (S_IFREG|(MODE)), \
135 NULL, &proc_single_file_operations, \
136 { .proc_show = show } )
137
138static int proc_fd_permission(struct inode *inode, int mask);
139
140/* ANDROID is for special files in /proc. */
141#define ANDROID(NAME, MODE, OTYPE) \
142 NOD(NAME, (S_IFREG|(MODE)), \
143 &proc_##OTYPE##_inode_operations, \
144 &proc_##OTYPE##_operations, {})
145
146/*
147 * Count the number of hardlinks for the pid_entry table, excluding the .
148 * and .. links.
149 */
150static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
151 unsigned int n)
152{
153 unsigned int i;
154 unsigned int count;
155
156 count = 0;
157 for (i = 0; i < n; ++i) {
158 if (S_ISDIR(entries[i].mode))
159 ++count;
160 }
161
162 return count;
163}
164
165static int get_task_root(struct task_struct *task, struct path *root)
166{
167 int result = -ENOENT;
168
169 task_lock(task);
170 if (task->fs) {
171 get_fs_root(task->fs, root);
172 result = 0;
173 }
174 task_unlock(task);
175 return result;
176}
177
178static int proc_cwd_link(struct dentry *dentry, struct path *path)
179{
180 struct task_struct *task = get_proc_task(dentry->d_inode);
181 int result = -ENOENT;
182
183 if (task) {
184 task_lock(task);
185 if (task->fs) {
186 get_fs_pwd(task->fs, path);
187 result = 0;
188 }
189 task_unlock(task);
190 put_task_struct(task);
191 }
192 return result;
193}
194
195static int proc_root_link(struct dentry *dentry, struct path *path)
196{
197 struct task_struct *task = get_proc_task(dentry->d_inode);
198 int result = -ENOENT;
199
200 if (task) {
201 result = get_task_root(task, path);
202 put_task_struct(task);
203 }
204 return result;
205}
206
207struct mm_struct *mm_for_maps(struct task_struct *task)
208{
209 return mm_access(task, PTRACE_MODE_READ);
210}
211
212static int proc_pid_cmdline(struct task_struct *task, char * buffer)
213{
214 int res = 0;
215 unsigned int len;
216 struct mm_struct *mm = get_task_mm(task);
217 if (!mm)
218 goto out;
219 if (!mm->arg_end)
220 goto out_mm; /* Shh! No looking before we're done */
221
222 len = mm->arg_end - mm->arg_start;
223
224 if (len > PAGE_SIZE)
225 len = PAGE_SIZE;
226
227 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
228
229 // If the nul at the end of args has been overwritten, then
230 // assume application is using setproctitle(3).
231 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
232 len = strnlen(buffer, res);
233 if (len < res) {
234 res = len;
235 } else {
236 len = mm->env_end - mm->env_start;
237 if (len > PAGE_SIZE - res)
238 len = PAGE_SIZE - res;
239 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
240 res = strnlen(buffer, res);
241 }
242 }
243out_mm:
244 mmput(mm);
245out:
246 return res;
247}
248
249static int proc_pid_auxv(struct task_struct *task, char *buffer)
250{
251 struct mm_struct *mm = mm_for_maps(task);
252 int res = PTR_ERR(mm);
253 if (mm && !IS_ERR(mm)) {
254 unsigned int nwords = 0;
255 do {
256 nwords += 2;
257 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
258 res = nwords * sizeof(mm->saved_auxv[0]);
259 if (res > PAGE_SIZE)
260 res = PAGE_SIZE;
261 memcpy(buffer, mm->saved_auxv, res);
262 mmput(mm);
263 }
264 return res;
265}
266
267
268#ifdef CONFIG_KALLSYMS
269/*
270 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
271 * Returns the resolved symbol. If that fails, simply return the address.
272 */
273static int proc_pid_wchan(struct task_struct *task, char *buffer)
274{
275 unsigned long wchan;
276 char symname[KSYM_NAME_LEN];
277
278 wchan = get_wchan(task);
279
280 if (lookup_symbol_name(wchan, symname) < 0)
281 if (!ptrace_may_access(task, PTRACE_MODE_READ))
282 return 0;
283 else
284 return sprintf(buffer, "%lu", wchan);
285 else
286 return sprintf(buffer, "%s", symname);
287}
288#endif /* CONFIG_KALLSYMS */
289
290static int lock_trace(struct task_struct *task)
291{
292 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
293 if (err)
294 return err;
295 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
296 mutex_unlock(&task->signal->cred_guard_mutex);
297 return -EPERM;
298 }
299 return 0;
300}
301
302static void unlock_trace(struct task_struct *task)
303{
304 mutex_unlock(&task->signal->cred_guard_mutex);
305}
306
307#ifdef CONFIG_STACKTRACE
308
309#define MAX_STACK_TRACE_DEPTH 64
310
311static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
312 struct pid *pid, struct task_struct *task)
313{
314 struct stack_trace trace;
315 unsigned long *entries;
316 int err;
317 int i;
318
319 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
320 if (!entries)
321 return -ENOMEM;
322
323 trace.nr_entries = 0;
324 trace.max_entries = MAX_STACK_TRACE_DEPTH;
325 trace.entries = entries;
326 trace.skip = 0;
327
328 err = lock_trace(task);
329 if (!err) {
330 save_stack_trace_tsk(task, &trace);
331
332 for (i = 0; i < trace.nr_entries; i++) {
333 seq_printf(m, "[<%pK>] %pS\n",
334 (void *)entries[i], (void *)entries[i]);
335 }
336 unlock_trace(task);
337 }
338 kfree(entries);
339
340 return err;
341}
342#endif
343
344#ifdef CONFIG_SCHEDSTATS
345/*
346 * Provides /proc/PID/schedstat
347 */
348static int proc_pid_schedstat(struct task_struct *task, char *buffer)
349{
350 return sprintf(buffer, "%llu %llu %lu\n",
351 (unsigned long long)task->se.sum_exec_runtime,
352 (unsigned long long)task->sched_info.run_delay,
353 task->sched_info.pcount);
354}
355#endif
356
357#ifdef CONFIG_LATENCYTOP
358static int lstats_show_proc(struct seq_file *m, void *v)
359{
360 int i;
361 struct inode *inode = m->private;
362 struct task_struct *task = get_proc_task(inode);
363
364 if (!task)
365 return -ESRCH;
366 seq_puts(m, "Latency Top version : v0.1\n");
367 for (i = 0; i < 32; i++) {
368 struct latency_record *lr = &task->latency_record[i];
369 if (lr->backtrace[0]) {
370 int q;
371 seq_printf(m, "%i %li %li",
372 lr->count, lr->time, lr->max);
373 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
374 unsigned long bt = lr->backtrace[q];
375 if (!bt)
376 break;
377 if (bt == ULONG_MAX)
378 break;
379 seq_printf(m, " %ps", (void *)bt);
380 }
381 seq_putc(m, '\n');
382 }
383
384 }
385 put_task_struct(task);
386 return 0;
387}
388
389static int lstats_open(struct inode *inode, struct file *file)
390{
391 return single_open(file, lstats_show_proc, inode);
392}
393
394static ssize_t lstats_write(struct file *file, const char __user *buf,
395 size_t count, loff_t *offs)
396{
397 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
398
399 if (!task)
400 return -ESRCH;
401 clear_all_latency_tracing(task);
402 put_task_struct(task);
403
404 return count;
405}
406
407static const struct file_operations proc_lstats_operations = {
408 .open = lstats_open,
409 .read = seq_read,
410 .write = lstats_write,
411 .llseek = seq_lseek,
412 .release = single_release,
413};
414
415#endif
416
417static int proc_oom_score(struct task_struct *task, char *buffer)
418{
419 unsigned long points = 0;
420
421 read_lock(&tasklist_lock);
422 if (pid_alive(task))
423 points = oom_badness(task, NULL, NULL,
424 totalram_pages + total_swap_pages);
425 read_unlock(&tasklist_lock);
426 return sprintf(buffer, "%lu\n", points);
427}
428
429struct limit_names {
430 char *name;
431 char *unit;
432};
433
434static const struct limit_names lnames[RLIM_NLIMITS] = {
435 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
436 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
437 [RLIMIT_DATA] = {"Max data size", "bytes"},
438 [RLIMIT_STACK] = {"Max stack size", "bytes"},
439 [RLIMIT_CORE] = {"Max core file size", "bytes"},
440 [RLIMIT_RSS] = {"Max resident set", "bytes"},
441 [RLIMIT_NPROC] = {"Max processes", "processes"},
442 [RLIMIT_NOFILE] = {"Max open files", "files"},
443 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
444 [RLIMIT_AS] = {"Max address space", "bytes"},
445 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
446 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
447 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
448 [RLIMIT_NICE] = {"Max nice priority", NULL},
449 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
450 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
451};
452
453/* Display limits for a process */
454static int proc_pid_limits(struct task_struct *task, char *buffer)
455{
456 unsigned int i;
457 int count = 0;
458 unsigned long flags;
459 char *bufptr = buffer;
460
461 struct rlimit rlim[RLIM_NLIMITS];
462
463 if (!lock_task_sighand(task, &flags))
464 return 0;
465 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
466 unlock_task_sighand(task, &flags);
467
468 /*
469 * print the file header
470 */
471 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
472 "Limit", "Soft Limit", "Hard Limit", "Units");
473
474 for (i = 0; i < RLIM_NLIMITS; i++) {
475 if (rlim[i].rlim_cur == RLIM_INFINITY)
476 count += sprintf(&bufptr[count], "%-25s %-20s ",
477 lnames[i].name, "unlimited");
478 else
479 count += sprintf(&bufptr[count], "%-25s %-20lu ",
480 lnames[i].name, rlim[i].rlim_cur);
481
482 if (rlim[i].rlim_max == RLIM_INFINITY)
483 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
484 else
485 count += sprintf(&bufptr[count], "%-20lu ",
486 rlim[i].rlim_max);
487
488 if (lnames[i].unit)
489 count += sprintf(&bufptr[count], "%-10s\n",
490 lnames[i].unit);
491 else
492 count += sprintf(&bufptr[count], "\n");
493 }
494
495 return count;
496}
497
498#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
499static int proc_pid_syscall(struct task_struct *task, char *buffer)
500{
501 long nr;
502 unsigned long args[6], sp, pc;
503 int res = lock_trace(task);
504 if (res)
505 return res;
506
507 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
508 res = sprintf(buffer, "running\n");
509 else if (nr < 0)
510 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
511 else
512 res = sprintf(buffer,
513 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
514 nr,
515 args[0], args[1], args[2], args[3], args[4], args[5],
516 sp, pc);
517 unlock_trace(task);
518 return res;
519}
520#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
521
522/************************************************************************/
523/* Here the fs part begins */
524/************************************************************************/
525
526/* permission checks */
527static int proc_fd_access_allowed(struct inode *inode)
528{
529 struct task_struct *task;
530 int allowed = 0;
531 /* Allow access to a task's file descriptors if it is us or we
532 * may use ptrace attach to the process and find out that
533 * information.
534 */
535 task = get_proc_task(inode);
536 if (task) {
537 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
538 put_task_struct(task);
539 }
540 return allowed;
541}
542
543int proc_setattr(struct dentry *dentry, struct iattr *attr)
544{
545 int error;
546 struct inode *inode = dentry->d_inode;
547
548 if (attr->ia_valid & ATTR_MODE)
549 return -EPERM;
550
551 error = inode_change_ok(inode, attr);
552 if (error)
553 return error;
554
555 if ((attr->ia_valid & ATTR_SIZE) &&
556 attr->ia_size != i_size_read(inode)) {
557 error = vmtruncate(inode, attr->ia_size);
558 if (error)
559 return error;
560 }
561
562 setattr_copy(inode, attr);
563 mark_inode_dirty(inode);
564 return 0;
565}
566
567/*
568 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
569 * or euid/egid (for hide_pid_min=2)?
570 */
571static bool has_pid_permissions(struct pid_namespace *pid,
572 struct task_struct *task,
573 int hide_pid_min)
574{
575 if (pid->hide_pid < hide_pid_min)
576 return true;
577 if (in_group_p(pid->pid_gid))
578 return true;
579 return ptrace_may_access(task, PTRACE_MODE_READ);
580}
581
582
583static int proc_pid_permission(struct inode *inode, int mask)
584{
585 struct pid_namespace *pid = inode->i_sb->s_fs_info;
586 struct task_struct *task;
587 bool has_perms;
588
589 task = get_proc_task(inode);
590 if (!task)
591 return -ESRCH;
592 has_perms = has_pid_permissions(pid, task, 1);
593 put_task_struct(task);
594
595 if (!has_perms) {
596 if (pid->hide_pid == 2) {
597 /*
598 * Let's make getdents(), stat(), and open()
599 * consistent with each other. If a process
600 * may not stat() a file, it shouldn't be seen
601 * in procfs at all.
602 */
603 return -ENOENT;
604 }
605
606 return -EPERM;
607 }
608 return generic_permission(inode, mask);
609}
610
611
612
613static const struct inode_operations proc_def_inode_operations = {
614 .setattr = proc_setattr,
615};
616
617#define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
618
619static ssize_t proc_info_read(struct file * file, char __user * buf,
620 size_t count, loff_t *ppos)
621{
622 struct inode * inode = file->f_path.dentry->d_inode;
623 unsigned long page;
624 ssize_t length;
625 struct task_struct *task = get_proc_task(inode);
626
627 length = -ESRCH;
628 if (!task)
629 goto out_no_task;
630
631 if (count > PROC_BLOCK_SIZE)
632 count = PROC_BLOCK_SIZE;
633
634 length = -ENOMEM;
635 if (!(page = __get_free_page(GFP_TEMPORARY)))
636 goto out;
637
638 length = PROC_I(inode)->op.proc_read(task, (char*)page);
639
640 if (length >= 0)
641 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
642 free_page(page);
643out:
644 put_task_struct(task);
645out_no_task:
646 return length;
647}
648
649static const struct file_operations proc_info_file_operations = {
650 .read = proc_info_read,
651 .llseek = generic_file_llseek,
652};
653
654static int proc_single_show(struct seq_file *m, void *v)
655{
656 struct inode *inode = m->private;
657 struct pid_namespace *ns;
658 struct pid *pid;
659 struct task_struct *task;
660 int ret;
661
662 ns = inode->i_sb->s_fs_info;
663 pid = proc_pid(inode);
664 task = get_pid_task(pid, PIDTYPE_PID);
665 if (!task)
666 return -ESRCH;
667
668 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
669
670 put_task_struct(task);
671 return ret;
672}
673
674static int proc_single_open(struct inode *inode, struct file *filp)
675{
676 return single_open(filp, proc_single_show, inode);
677}
678
679static const struct file_operations proc_single_file_operations = {
680 .open = proc_single_open,
681 .read = seq_read,
682 .llseek = seq_lseek,
683 .release = single_release,
684};
685
686static int mem_open(struct inode* inode, struct file* file)
687{
688 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
689 struct mm_struct *mm;
690
691 if (!task)
692 return -ESRCH;
693
694 mm = mm_access(task, PTRACE_MODE_ATTACH);
695 put_task_struct(task);
696
697 if (IS_ERR(mm))
698 return PTR_ERR(mm);
699
700 if (mm) {
701 /* ensure this mm_struct can't be freed */
702 atomic_inc(&mm->mm_count);
703 /* but do not pin its memory */
704 mmput(mm);
705 }
706
707 /* OK to pass negative loff_t, we can catch out-of-range */
708 file->f_mode |= FMODE_UNSIGNED_OFFSET;
709 file->private_data = mm;
710
711 return 0;
712}
713
714static ssize_t mem_rw(struct file *file, char __user *buf,
715 size_t count, loff_t *ppos, int write)
716{
717 struct mm_struct *mm = file->private_data;
718 unsigned long addr = *ppos;
719 ssize_t copied;
720 char *page;
721
722 if (!mm)
723 return 0;
724
725 page = (char *)__get_free_page(GFP_TEMPORARY);
726 if (!page)
727 return -ENOMEM;
728
729 copied = 0;
730 if (!atomic_inc_not_zero(&mm->mm_users))
731 goto free;
732
733 while (count > 0) {
734 int this_len = min_t(int, count, PAGE_SIZE);
735
736 if (write && copy_from_user(page, buf, this_len)) {
737 copied = -EFAULT;
738 break;
739 }
740
741 this_len = access_remote_vm(mm, addr, page, this_len, write);
742 if (!this_len) {
743 if (!copied)
744 copied = -EIO;
745 break;
746 }
747
748 if (!write && copy_to_user(buf, page, this_len)) {
749 copied = -EFAULT;
750 break;
751 }
752
753 buf += this_len;
754 addr += this_len;
755 copied += this_len;
756 count -= this_len;
757 }
758 *ppos = addr;
759
760 mmput(mm);
761free:
762 free_page((unsigned long) page);
763 return copied;
764}
765
766static ssize_t mem_read(struct file *file, char __user *buf,
767 size_t count, loff_t *ppos)
768{
769 return mem_rw(file, buf, count, ppos, 0);
770}
771
772static ssize_t mem_write(struct file *file, const char __user *buf,
773 size_t count, loff_t *ppos)
774{
775 return mem_rw(file, (char __user*)buf, count, ppos, 1);
776}
777
778loff_t mem_lseek(struct file *file, loff_t offset, int orig)
779{
780 switch (orig) {
781 case 0:
782 file->f_pos = offset;
783 break;
784 case 1:
785 file->f_pos += offset;
786 break;
787 default:
788 return -EINVAL;
789 }
790 force_successful_syscall_return();
791 return file->f_pos;
792}
793
794static int mem_release(struct inode *inode, struct file *file)
795{
796 struct mm_struct *mm = file->private_data;
797 if (mm)
798 mmdrop(mm);
799 return 0;
800}
801
802static const struct file_operations proc_mem_operations = {
803 .llseek = mem_lseek,
804 .read = mem_read,
805 .write = mem_write,
806 .open = mem_open,
807 .release = mem_release,
808};
809
810static ssize_t environ_read(struct file *file, char __user *buf,
811 size_t count, loff_t *ppos)
812{
813 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
814 char *page;
815 unsigned long src = *ppos;
816 int ret = -ESRCH;
817 struct mm_struct *mm;
818
819 if (!task)
820 goto out_no_task;
821
822 ret = -ENOMEM;
823 page = (char *)__get_free_page(GFP_TEMPORARY);
824 if (!page)
825 goto out;
826
827
828 mm = mm_for_maps(task);
829 ret = PTR_ERR(mm);
830 if (!mm || IS_ERR(mm))
831 goto out_free;
832
833 ret = 0;
834 while (count > 0) {
835 int this_len, retval, max_len;
836
837 this_len = mm->env_end - (mm->env_start + src);
838
839 if (this_len <= 0)
840 break;
841
842 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
843 this_len = (this_len > max_len) ? max_len : this_len;
844
845 retval = access_process_vm(task, (mm->env_start + src),
846 page, this_len, 0);
847
848 if (retval <= 0) {
849 ret = retval;
850 break;
851 }
852
853 if (copy_to_user(buf, page, retval)) {
854 ret = -EFAULT;
855 break;
856 }
857
858 ret += retval;
859 src += retval;
860 buf += retval;
861 count -= retval;
862 }
863 *ppos = src;
864
865 mmput(mm);
866out_free:
867 free_page((unsigned long) page);
868out:
869 put_task_struct(task);
870out_no_task:
871 return ret;
872}
873
874static const struct file_operations proc_environ_operations = {
875 .read = environ_read,
876 .llseek = generic_file_llseek,
877};
878
879static ssize_t oom_adjust_read(struct file *file, char __user *buf,
880 size_t count, loff_t *ppos)
881{
882 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
883 char buffer[PROC_NUMBUF];
884 size_t len;
885 int oom_adjust = OOM_DISABLE;
886 unsigned long flags;
887
888 if (!task)
889 return -ESRCH;
890
891 if (lock_task_sighand(task, &flags)) {
892 oom_adjust = task->signal->oom_adj;
893 unlock_task_sighand(task, &flags);
894 }
895
896 put_task_struct(task);
897
898 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
899
900 return simple_read_from_buffer(buf, count, ppos, buffer, len);
901}
902
903static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
904 size_t count, loff_t *ppos)
905{
906 struct task_struct *task;
907 char buffer[PROC_NUMBUF];
908 int oom_adjust;
909 unsigned long flags;
910 int err;
911
912 memset(buffer, 0, sizeof(buffer));
913 if (count > sizeof(buffer) - 1)
914 count = sizeof(buffer) - 1;
915 if (copy_from_user(buffer, buf, count)) {
916 err = -EFAULT;
917 goto out;
918 }
919
920 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
921 if (err)
922 goto out;
923 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
924 oom_adjust != OOM_DISABLE) {
925 err = -EINVAL;
926 goto out;
927 }
928
929 task = get_proc_task(file->f_path.dentry->d_inode);
930 if (!task) {
931 err = -ESRCH;
932 goto out;
933 }
934
935 task_lock(task);
936 if (!task->mm) {
937 err = -EINVAL;
938 goto err_task_lock;
939 }
940
941 if (!lock_task_sighand(task, &flags)) {
942 err = -ESRCH;
943 goto err_task_lock;
944 }
945
946 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
947 err = -EACCES;
948 goto err_sighand;
949 }
950
951 /*
952 * Warn that /proc/pid/oom_adj is deprecated, see
953 * Documentation/feature-removal-schedule.txt.
954 */
955 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
956 current->comm, task_pid_nr(current), task_pid_nr(task),
957 task_pid_nr(task));
958 task->signal->oom_adj = oom_adjust;
959 /*
960 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
961 * value is always attainable.
962 */
963 if (task->signal->oom_adj == OOM_ADJUST_MAX)
964 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
965 else
966 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
967 -OOM_DISABLE;
968 trace_oom_score_adj_update(task);
969err_sighand:
970 unlock_task_sighand(task, &flags);
971err_task_lock:
972 task_unlock(task);
973 put_task_struct(task);
974out:
975 return err < 0 ? err : count;
976}
977
978static int oom_adjust_permission(struct inode *inode, int mask)
979{
980 uid_t uid;
981 struct task_struct *p;
982
983 p = get_proc_task(inode);
984 if(p) {
985 uid = task_uid(p);
986 put_task_struct(p);
987 }
988
989 /*
990 * System Server (uid == 1000) is granted access to oom_adj of all
991 * android applications (uid > 10000) as and services (uid >= 1000)
992 */
993 if (p && (current_fsuid() == 1000) && (uid >= 1000)) {
994 if (inode->i_mode >> 6 & mask) {
995 return 0;
996 }
997 }
998
999 /* Fall back to default. */
1000 return generic_permission(inode, mask);
1001}
1002
1003static const struct inode_operations proc_oom_adjust_inode_operations = {
1004 .permission = oom_adjust_permission,
1005};
1006
1007static const struct file_operations proc_oom_adjust_operations = {
1008 .read = oom_adjust_read,
1009 .write = oom_adjust_write,
1010 .llseek = generic_file_llseek,
1011};
1012
1013static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1014 size_t count, loff_t *ppos)
1015{
1016 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1017 char buffer[PROC_NUMBUF];
1018 int oom_score_adj = OOM_SCORE_ADJ_MIN;
1019 unsigned long flags;
1020 size_t len;
1021
1022 if (!task)
1023 return -ESRCH;
1024 if (lock_task_sighand(task, &flags)) {
1025 oom_score_adj = task->signal->oom_score_adj;
1026 unlock_task_sighand(task, &flags);
1027 }
1028 put_task_struct(task);
1029 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1030 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1031}
1032
1033static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1034 size_t count, loff_t *ppos)
1035{
1036 struct task_struct *task;
1037 char buffer[PROC_NUMBUF];
1038 unsigned long flags;
1039 int oom_score_adj;
1040 int err;
1041
1042 memset(buffer, 0, sizeof(buffer));
1043 if (count > sizeof(buffer) - 1)
1044 count = sizeof(buffer) - 1;
1045 if (copy_from_user(buffer, buf, count)) {
1046 err = -EFAULT;
1047 goto out;
1048 }
1049
1050 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1051 if (err)
1052 goto out;
1053 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1054 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1055 err = -EINVAL;
1056 goto out;
1057 }
1058
1059 task = get_proc_task(file->f_path.dentry->d_inode);
1060 if (!task) {
1061 err = -ESRCH;
1062 goto out;
1063 }
1064
1065 task_lock(task);
1066 if (!task->mm) {
1067 err = -EINVAL;
1068 goto err_task_lock;
1069 }
1070
1071 if (!lock_task_sighand(task, &flags)) {
1072 err = -ESRCH;
1073 goto err_task_lock;
1074 }
1075
1076 if (oom_score_adj < task->signal->oom_score_adj_min &&
1077 !capable(CAP_SYS_RESOURCE)) {
1078 err = -EACCES;
1079 goto err_sighand;
1080 }
1081
1082 task->signal->oom_score_adj = oom_score_adj;
1083 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1084 task->signal->oom_score_adj_min = oom_score_adj;
1085 trace_oom_score_adj_update(task);
1086 /*
1087 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1088 * always attainable.
1089 */
1090 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1091 task->signal->oom_adj = OOM_DISABLE;
1092 else
1093 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1094 OOM_SCORE_ADJ_MAX;
1095err_sighand:
1096 unlock_task_sighand(task, &flags);
1097err_task_lock:
1098 task_unlock(task);
1099 put_task_struct(task);
1100out:
1101 return err < 0 ? err : count;
1102}
1103
1104static const struct file_operations proc_oom_score_adj_operations = {
1105 .read = oom_score_adj_read,
1106 .write = oom_score_adj_write,
1107 .llseek = default_llseek,
1108};
1109
1110#ifdef CONFIG_AUDITSYSCALL
1111#define TMPBUFLEN 21
1112static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1113 size_t count, loff_t *ppos)
1114{
1115 struct inode * inode = file->f_path.dentry->d_inode;
1116 struct task_struct *task = get_proc_task(inode);
1117 ssize_t length;
1118 char tmpbuf[TMPBUFLEN];
1119
1120 if (!task)
1121 return -ESRCH;
1122 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1123 audit_get_loginuid(task));
1124 put_task_struct(task);
1125 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1126}
1127
1128static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1129 size_t count, loff_t *ppos)
1130{
1131 struct inode * inode = file->f_path.dentry->d_inode;
1132 char *page, *tmp;
1133 ssize_t length;
1134 uid_t loginuid;
1135
1136 rcu_read_lock();
1137 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1138 rcu_read_unlock();
1139 return -EPERM;
1140 }
1141 rcu_read_unlock();
1142
1143 if (count >= PAGE_SIZE)
1144 count = PAGE_SIZE - 1;
1145
1146 if (*ppos != 0) {
1147 /* No partial writes. */
1148 return -EINVAL;
1149 }
1150 page = (char*)__get_free_page(GFP_TEMPORARY);
1151 if (!page)
1152 return -ENOMEM;
1153 length = -EFAULT;
1154 if (copy_from_user(page, buf, count))
1155 goto out_free_page;
1156
1157 page[count] = '\0';
1158 loginuid = simple_strtoul(page, &tmp, 10);
1159 if (tmp == page) {
1160 length = -EINVAL;
1161 goto out_free_page;
1162
1163 }
1164 length = audit_set_loginuid(loginuid);
1165 if (likely(length == 0))
1166 length = count;
1167
1168out_free_page:
1169 free_page((unsigned long) page);
1170 return length;
1171}
1172
1173static const struct file_operations proc_loginuid_operations = {
1174 .read = proc_loginuid_read,
1175 .write = proc_loginuid_write,
1176 .llseek = generic_file_llseek,
1177};
1178
1179static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1180 size_t count, loff_t *ppos)
1181{
1182 struct inode * inode = file->f_path.dentry->d_inode;
1183 struct task_struct *task = get_proc_task(inode);
1184 ssize_t length;
1185 char tmpbuf[TMPBUFLEN];
1186
1187 if (!task)
1188 return -ESRCH;
1189 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1190 audit_get_sessionid(task));
1191 put_task_struct(task);
1192 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1193}
1194
1195static const struct file_operations proc_sessionid_operations = {
1196 .read = proc_sessionid_read,
1197 .llseek = generic_file_llseek,
1198};
1199#endif
1200
1201#ifdef CONFIG_FAULT_INJECTION
1202static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1203 size_t count, loff_t *ppos)
1204{
1205 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1206 char buffer[PROC_NUMBUF];
1207 size_t len;
1208 int make_it_fail;
1209
1210 if (!task)
1211 return -ESRCH;
1212 make_it_fail = task->make_it_fail;
1213 put_task_struct(task);
1214
1215 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1216
1217 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1218}
1219
1220static ssize_t proc_fault_inject_write(struct file * file,
1221 const char __user * buf, size_t count, loff_t *ppos)
1222{
1223 struct task_struct *task;
1224 char buffer[PROC_NUMBUF], *end;
1225 int make_it_fail;
1226
1227 if (!capable(CAP_SYS_RESOURCE))
1228 return -EPERM;
1229 memset(buffer, 0, sizeof(buffer));
1230 if (count > sizeof(buffer) - 1)
1231 count = sizeof(buffer) - 1;
1232 if (copy_from_user(buffer, buf, count))
1233 return -EFAULT;
1234 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1235 if (*end)
1236 return -EINVAL;
1237 task = get_proc_task(file->f_dentry->d_inode);
1238 if (!task)
1239 return -ESRCH;
1240 task->make_it_fail = make_it_fail;
1241 put_task_struct(task);
1242
1243 return count;
1244}
1245
1246static const struct file_operations proc_fault_inject_operations = {
1247 .read = proc_fault_inject_read,
1248 .write = proc_fault_inject_write,
1249 .llseek = generic_file_llseek,
1250};
1251#endif
1252
1253
1254#ifdef CONFIG_SCHED_DEBUG
1255/*
1256 * Print out various scheduling related per-task fields:
1257 */
1258static int sched_show(struct seq_file *m, void *v)
1259{
1260 struct inode *inode = m->private;
1261 struct task_struct *p;
1262
1263 p = get_proc_task(inode);
1264 if (!p)
1265 return -ESRCH;
1266 proc_sched_show_task(p, m);
1267
1268 put_task_struct(p);
1269
1270 return 0;
1271}
1272
1273static ssize_t
1274sched_write(struct file *file, const char __user *buf,
1275 size_t count, loff_t *offset)
1276{
1277 struct inode *inode = file->f_path.dentry->d_inode;
1278 struct task_struct *p;
1279
1280 p = get_proc_task(inode);
1281 if (!p)
1282 return -ESRCH;
1283 proc_sched_set_task(p);
1284
1285 put_task_struct(p);
1286
1287 return count;
1288}
1289
1290static int sched_open(struct inode *inode, struct file *filp)
1291{
1292 return single_open(filp, sched_show, inode);
1293}
1294
1295static const struct file_operations proc_pid_sched_operations = {
1296 .open = sched_open,
1297 .read = seq_read,
1298 .write = sched_write,
1299 .llseek = seq_lseek,
1300 .release = single_release,
1301};
1302
1303#endif
1304
1305#ifdef CONFIG_SCHED_AUTOGROUP
1306/*
1307 * Print out autogroup related information:
1308 */
1309static int sched_autogroup_show(struct seq_file *m, void *v)
1310{
1311 struct inode *inode = m->private;
1312 struct task_struct *p;
1313
1314 p = get_proc_task(inode);
1315 if (!p)
1316 return -ESRCH;
1317 proc_sched_autogroup_show_task(p, m);
1318
1319 put_task_struct(p);
1320
1321 return 0;
1322}
1323
1324static ssize_t
1325sched_autogroup_write(struct file *file, const char __user *buf,
1326 size_t count, loff_t *offset)
1327{
1328 struct inode *inode = file->f_path.dentry->d_inode;
1329 struct task_struct *p;
1330 char buffer[PROC_NUMBUF];
1331 int nice;
1332 int err;
1333
1334 memset(buffer, 0, sizeof(buffer));
1335 if (count > sizeof(buffer) - 1)
1336 count = sizeof(buffer) - 1;
1337 if (copy_from_user(buffer, buf, count))
1338 return -EFAULT;
1339
1340 err = kstrtoint(strstrip(buffer), 0, &nice);
1341 if (err < 0)
1342 return err;
1343
1344 p = get_proc_task(inode);
1345 if (!p)
1346 return -ESRCH;
1347
1348 err = proc_sched_autogroup_set_nice(p, nice);
1349 if (err)
1350 count = err;
1351
1352 put_task_struct(p);
1353
1354 return count;
1355}
1356
1357static int sched_autogroup_open(struct inode *inode, struct file *filp)
1358{
1359 int ret;
1360
1361 ret = single_open(filp, sched_autogroup_show, NULL);
1362 if (!ret) {
1363 struct seq_file *m = filp->private_data;
1364
1365 m->private = inode;
1366 }
1367 return ret;
1368}
1369
1370static const struct file_operations proc_pid_sched_autogroup_operations = {
1371 .open = sched_autogroup_open,
1372 .read = seq_read,
1373 .write = sched_autogroup_write,
1374 .llseek = seq_lseek,
1375 .release = single_release,
1376};
1377
1378#endif /* CONFIG_SCHED_AUTOGROUP */
1379
1380static ssize_t comm_write(struct file *file, const char __user *buf,
1381 size_t count, loff_t *offset)
1382{
1383 struct inode *inode = file->f_path.dentry->d_inode;
1384 struct task_struct *p;
1385 char buffer[TASK_COMM_LEN];
1386
1387 memset(buffer, 0, sizeof(buffer));
1388 if (count > sizeof(buffer) - 1)
1389 count = sizeof(buffer) - 1;
1390 if (copy_from_user(buffer, buf, count))
1391 return -EFAULT;
1392
1393 p = get_proc_task(inode);
1394 if (!p)
1395 return -ESRCH;
1396
1397 if (same_thread_group(current, p))
1398 set_task_comm(p, buffer);
1399 else
1400 count = -EINVAL;
1401
1402 put_task_struct(p);
1403
1404 return count;
1405}
1406
1407static int comm_show(struct seq_file *m, void *v)
1408{
1409 struct inode *inode = m->private;
1410 struct task_struct *p;
1411
1412 p = get_proc_task(inode);
1413 if (!p)
1414 return -ESRCH;
1415
1416 task_lock(p);
1417 seq_printf(m, "%s\n", p->comm);
1418 task_unlock(p);
1419
1420 put_task_struct(p);
1421
1422 return 0;
1423}
1424
1425static int comm_open(struct inode *inode, struct file *filp)
1426{
1427 return single_open(filp, comm_show, inode);
1428}
1429
1430static const struct file_operations proc_pid_set_comm_operations = {
1431 .open = comm_open,
1432 .read = seq_read,
1433 .write = comm_write,
1434 .llseek = seq_lseek,
1435 .release = single_release,
1436};
1437
1438static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1439{
1440 struct task_struct *task;
1441 struct mm_struct *mm;
1442 struct file *exe_file;
1443
1444 task = get_proc_task(dentry->d_inode);
1445 if (!task)
1446 return -ENOENT;
1447 mm = get_task_mm(task);
1448 put_task_struct(task);
1449 if (!mm)
1450 return -ENOENT;
1451 exe_file = get_mm_exe_file(mm);
1452 mmput(mm);
1453 if (exe_file) {
1454 *exe_path = exe_file->f_path;
1455 path_get(&exe_file->f_path);
1456 fput(exe_file);
1457 return 0;
1458 } else
1459 return -ENOENT;
1460}
1461
1462static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1463{
1464 struct inode *inode = dentry->d_inode;
1465 int error = -EACCES;
1466
1467 /* We don't need a base pointer in the /proc filesystem */
1468 path_put(&nd->path);
1469
1470 /* Are we allowed to snoop on the tasks file descriptors? */
1471 if (!proc_fd_access_allowed(inode))
1472 goto out;
1473
1474 error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path);
1475out:
1476 return ERR_PTR(error);
1477}
1478
1479static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1480{
1481 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1482 char *pathname;
1483 int len;
1484
1485 if (!tmp)
1486 return -ENOMEM;
1487
1488 pathname = d_path(path, tmp, PAGE_SIZE);
1489 len = PTR_ERR(pathname);
1490 if (IS_ERR(pathname))
1491 goto out;
1492 len = tmp + PAGE_SIZE - 1 - pathname;
1493
1494 if (len > buflen)
1495 len = buflen;
1496 if (copy_to_user(buffer, pathname, len))
1497 len = -EFAULT;
1498 out:
1499 free_page((unsigned long)tmp);
1500 return len;
1501}
1502
1503static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1504{
1505 int error = -EACCES;
1506 struct inode *inode = dentry->d_inode;
1507 struct path path;
1508
1509 /* Are we allowed to snoop on the tasks file descriptors? */
1510 if (!proc_fd_access_allowed(inode))
1511 goto out;
1512
1513 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1514 if (error)
1515 goto out;
1516
1517 error = do_proc_readlink(&path, buffer, buflen);
1518 path_put(&path);
1519out:
1520 return error;
1521}
1522
1523static const struct inode_operations proc_pid_link_inode_operations = {
1524 .readlink = proc_pid_readlink,
1525 .follow_link = proc_pid_follow_link,
1526 .setattr = proc_setattr,
1527};
1528
1529
1530/* building an inode */
1531
1532static int task_dumpable(struct task_struct *task)
1533{
1534 int dumpable = 0;
1535 struct mm_struct *mm;
1536
1537 task_lock(task);
1538 mm = task->mm;
1539 if (mm)
1540 dumpable = get_dumpable(mm);
1541 task_unlock(task);
1542 if(dumpable == 1)
1543 return 1;
1544 return 0;
1545}
1546
1547struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1548{
1549 struct inode * inode;
1550 struct proc_inode *ei;
1551 const struct cred *cred;
1552
1553 /* We need a new inode */
1554
1555 inode = new_inode(sb);
1556 if (!inode)
1557 goto out;
1558
1559 /* Common stuff */
1560 ei = PROC_I(inode);
1561 inode->i_ino = get_next_ino();
1562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1563 inode->i_op = &proc_def_inode_operations;
1564
1565 /*
1566 * grab the reference to task.
1567 */
1568 ei->pid = get_task_pid(task, PIDTYPE_PID);
1569 if (!ei->pid)
1570 goto out_unlock;
1571
1572 if (task_dumpable(task)) {
1573 rcu_read_lock();
1574 cred = __task_cred(task);
1575 inode->i_uid = cred->euid;
1576 inode->i_gid = cred->egid;
1577 rcu_read_unlock();
1578 }
1579 security_task_to_inode(task, inode);
1580
1581out:
1582 return inode;
1583
1584out_unlock:
1585 iput(inode);
1586 return NULL;
1587}
1588
1589int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1590{
1591 struct inode *inode = dentry->d_inode;
1592 struct task_struct *task;
1593 const struct cred *cred;
1594 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1595
1596 generic_fillattr(inode, stat);
1597
1598 rcu_read_lock();
1599 stat->uid = 0;
1600 stat->gid = 0;
1601 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1602 if (task) {
1603 if (!has_pid_permissions(pid, task, 2)) {
1604 rcu_read_unlock();
1605 /*
1606 * This doesn't prevent learning whether PID exists,
1607 * it only makes getattr() consistent with readdir().
1608 */
1609 return -ENOENT;
1610 }
1611 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1612 task_dumpable(task)) {
1613 cred = __task_cred(task);
1614 stat->uid = cred->euid;
1615 stat->gid = cred->egid;
1616 }
1617 }
1618 rcu_read_unlock();
1619 return 0;
1620}
1621
1622/* dentry stuff */
1623
1624/*
1625 * Exceptional case: normally we are not allowed to unhash a busy
1626 * directory. In this case, however, we can do it - no aliasing problems
1627 * due to the way we treat inodes.
1628 *
1629 * Rewrite the inode's ownerships here because the owning task may have
1630 * performed a setuid(), etc.
1631 *
1632 * Before the /proc/pid/status file was created the only way to read
1633 * the effective uid of a /process was to stat /proc/pid. Reading
1634 * /proc/pid/status is slow enough that procps and other packages
1635 * kept stating /proc/pid. To keep the rules in /proc simple I have
1636 * made this apply to all per process world readable and executable
1637 * directories.
1638 */
1639int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1640{
1641 struct inode *inode;
1642 struct task_struct *task;
1643 const struct cred *cred;
1644
1645 if (nd && nd->flags & LOOKUP_RCU)
1646 return -ECHILD;
1647
1648 inode = dentry->d_inode;
1649 task = get_proc_task(inode);
1650
1651 if (task) {
1652 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1653 task_dumpable(task)) {
1654 rcu_read_lock();
1655 cred = __task_cred(task);
1656 inode->i_uid = cred->euid;
1657 inode->i_gid = cred->egid;
1658 rcu_read_unlock();
1659 } else {
1660 inode->i_uid = 0;
1661 inode->i_gid = 0;
1662 }
1663 inode->i_mode &= ~(S_ISUID | S_ISGID);
1664 security_task_to_inode(task, inode);
1665 put_task_struct(task);
1666 return 1;
1667 }
1668 d_drop(dentry);
1669 return 0;
1670}
1671
1672static int pid_delete_dentry(const struct dentry * dentry)
1673{
1674 /* Is the task we represent dead?
1675 * If so, then don't put the dentry on the lru list,
1676 * kill it immediately.
1677 */
1678 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1679}
1680
1681const struct dentry_operations pid_dentry_operations =
1682{
1683 .d_revalidate = pid_revalidate,
1684 .d_delete = pid_delete_dentry,
1685};
1686
1687/* Lookups */
1688
1689/*
1690 * Fill a directory entry.
1691 *
1692 * If possible create the dcache entry and derive our inode number and
1693 * file type from dcache entry.
1694 *
1695 * Since all of the proc inode numbers are dynamically generated, the inode
1696 * numbers do not exist until the inode is cache. This means creating the
1697 * the dcache entry in readdir is necessary to keep the inode numbers
1698 * reported by readdir in sync with the inode numbers reported
1699 * by stat.
1700 */
1701int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1702 const char *name, int len,
1703 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1704{
1705 struct dentry *child, *dir = filp->f_path.dentry;
1706 struct inode *inode;
1707 struct qstr qname;
1708 ino_t ino = 0;
1709 unsigned type = DT_UNKNOWN;
1710
1711 qname.name = name;
1712 qname.len = len;
1713 qname.hash = full_name_hash(name, len);
1714
1715 child = d_lookup(dir, &qname);
1716 if (!child) {
1717 struct dentry *new;
1718 new = d_alloc(dir, &qname);
1719 if (new) {
1720 child = instantiate(dir->d_inode, new, task, ptr);
1721 if (child)
1722 dput(new);
1723 else
1724 child = new;
1725 }
1726 }
1727 if (!child || IS_ERR(child) || !child->d_inode)
1728 goto end_instantiate;
1729 inode = child->d_inode;
1730 if (inode) {
1731 ino = inode->i_ino;
1732 type = inode->i_mode >> 12;
1733 }
1734 dput(child);
1735end_instantiate:
1736 if (!ino)
1737 ino = find_inode_number(dir, &qname);
1738 if (!ino)
1739 ino = 1;
1740 return filldir(dirent, name, len, filp->f_pos, ino, type);
1741}
1742
1743static unsigned name_to_int(struct dentry *dentry)
1744{
1745 const char *name = dentry->d_name.name;
1746 int len = dentry->d_name.len;
1747 unsigned n = 0;
1748
1749 if (len > 1 && *name == '0')
1750 goto out;
1751 while (len-- > 0) {
1752 unsigned c = *name++ - '0';
1753 if (c > 9)
1754 goto out;
1755 if (n >= (~0U-9)/10)
1756 goto out;
1757 n *= 10;
1758 n += c;
1759 }
1760 return n;
1761out:
1762 return ~0U;
1763}
1764
1765#define PROC_FDINFO_MAX 64
1766
1767static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1768{
1769 struct task_struct *task = get_proc_task(inode);
1770 struct files_struct *files = NULL;
1771 struct file *file;
1772 int fd = proc_fd(inode);
1773
1774 if (task) {
1775 files = get_files_struct(task);
1776 put_task_struct(task);
1777 }
1778 if (files) {
1779 /*
1780 * We are not taking a ref to the file structure, so we must
1781 * hold ->file_lock.
1782 */
1783 spin_lock(&files->file_lock);
1784 file = fcheck_files(files, fd);
1785 if (file) {
1786 unsigned int f_flags;
1787 struct fdtable *fdt;
1788
1789 fdt = files_fdtable(files);
1790 f_flags = file->f_flags & ~O_CLOEXEC;
1791 if (close_on_exec(fd, fdt))
1792 f_flags |= O_CLOEXEC;
1793
1794 if (path) {
1795 *path = file->f_path;
1796 path_get(&file->f_path);
1797 }
1798 if (info)
1799 snprintf(info, PROC_FDINFO_MAX,
1800 "pos:\t%lli\n"
1801 "flags:\t0%o\n",
1802 (long long) file->f_pos,
1803 f_flags);
1804 spin_unlock(&files->file_lock);
1805 put_files_struct(files);
1806 return 0;
1807 }
1808 spin_unlock(&files->file_lock);
1809 put_files_struct(files);
1810 }
1811 return -ENOENT;
1812}
1813
1814static int proc_fd_link(struct dentry *dentry, struct path *path)
1815{
1816 return proc_fd_info(dentry->d_inode, path, NULL);
1817}
1818
1819static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1820{
1821 struct inode *inode;
1822 struct task_struct *task;
1823 int fd;
1824 struct files_struct *files;
1825 const struct cred *cred;
1826
1827 if (nd && nd->flags & LOOKUP_RCU)
1828 return -ECHILD;
1829
1830 inode = dentry->d_inode;
1831 task = get_proc_task(inode);
1832 fd = proc_fd(inode);
1833
1834 if (task) {
1835 files = get_files_struct(task);
1836 if (files) {
1837 struct file *file;
1838 rcu_read_lock();
1839 file = fcheck_files(files, fd);
1840 if (file) {
1841 unsigned f_mode = file->f_mode;
1842
1843 rcu_read_unlock();
1844 put_files_struct(files);
1845
1846 if (task_dumpable(task)) {
1847 rcu_read_lock();
1848 cred = __task_cred(task);
1849 inode->i_uid = cred->euid;
1850 inode->i_gid = cred->egid;
1851 rcu_read_unlock();
1852 } else {
1853 inode->i_uid = 0;
1854 inode->i_gid = 0;
1855 }
1856
1857 if (S_ISLNK(inode->i_mode)) {
1858 unsigned i_mode = S_IFLNK;
1859 if (f_mode & FMODE_READ)
1860 i_mode |= S_IRUSR | S_IXUSR;
1861 if (f_mode & FMODE_WRITE)
1862 i_mode |= S_IWUSR | S_IXUSR;
1863 inode->i_mode = i_mode;
1864 }
1865
1866 security_task_to_inode(task, inode);
1867 put_task_struct(task);
1868 return 1;
1869 }
1870 rcu_read_unlock();
1871 put_files_struct(files);
1872 }
1873 put_task_struct(task);
1874 }
1875 d_drop(dentry);
1876 return 0;
1877}
1878
1879static const struct dentry_operations tid_fd_dentry_operations =
1880{
1881 .d_revalidate = tid_fd_revalidate,
1882 .d_delete = pid_delete_dentry,
1883};
1884
1885static struct dentry *proc_fd_instantiate(struct inode *dir,
1886 struct dentry *dentry, struct task_struct *task, const void *ptr)
1887{
1888 unsigned fd = *(const unsigned *)ptr;
1889 struct inode *inode;
1890 struct proc_inode *ei;
1891 struct dentry *error = ERR_PTR(-ENOENT);
1892
1893 inode = proc_pid_make_inode(dir->i_sb, task);
1894 if (!inode)
1895 goto out;
1896 ei = PROC_I(inode);
1897 ei->fd = fd;
1898
1899 inode->i_mode = S_IFLNK;
1900 inode->i_op = &proc_pid_link_inode_operations;
1901 inode->i_size = 64;
1902 ei->op.proc_get_link = proc_fd_link;
1903 d_set_d_op(dentry, &tid_fd_dentry_operations);
1904 d_add(dentry, inode);
1905 /* Close the race of the process dying before we return the dentry */
1906 if (tid_fd_revalidate(dentry, NULL))
1907 error = NULL;
1908
1909 out:
1910 return error;
1911}
1912
1913static struct dentry *proc_lookupfd_common(struct inode *dir,
1914 struct dentry *dentry,
1915 instantiate_t instantiate)
1916{
1917 struct task_struct *task = get_proc_task(dir);
1918 unsigned fd = name_to_int(dentry);
1919 struct dentry *result = ERR_PTR(-ENOENT);
1920
1921 if (!task)
1922 goto out_no_task;
1923 if (fd == ~0U)
1924 goto out;
1925
1926 result = instantiate(dir, dentry, task, &fd);
1927out:
1928 put_task_struct(task);
1929out_no_task:
1930 return result;
1931}
1932
1933static int proc_readfd_common(struct file * filp, void * dirent,
1934 filldir_t filldir, instantiate_t instantiate)
1935{
1936 struct dentry *dentry = filp->f_path.dentry;
1937 struct inode *inode = dentry->d_inode;
1938 struct task_struct *p = get_proc_task(inode);
1939 unsigned int fd, ino;
1940 int retval;
1941 struct files_struct * files;
1942
1943 retval = -ENOENT;
1944 if (!p)
1945 goto out_no_task;
1946 retval = 0;
1947
1948 fd = filp->f_pos;
1949 switch (fd) {
1950 case 0:
1951 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1952 goto out;
1953 filp->f_pos++;
1954 case 1:
1955 ino = parent_ino(dentry);
1956 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1957 goto out;
1958 filp->f_pos++;
1959 default:
1960 files = get_files_struct(p);
1961 if (!files)
1962 goto out;
1963 rcu_read_lock();
1964 for (fd = filp->f_pos-2;
1965 fd < files_fdtable(files)->max_fds;
1966 fd++, filp->f_pos++) {
1967 char name[PROC_NUMBUF];
1968 int len;
1969
1970 if (!fcheck_files(files, fd))
1971 continue;
1972 rcu_read_unlock();
1973
1974 len = snprintf(name, sizeof(name), "%d", fd);
1975 if (proc_fill_cache(filp, dirent, filldir,
1976 name, len, instantiate,
1977 p, &fd) < 0) {
1978 rcu_read_lock();
1979 break;
1980 }
1981 rcu_read_lock();
1982 }
1983 rcu_read_unlock();
1984 put_files_struct(files);
1985 }
1986out:
1987 put_task_struct(p);
1988out_no_task:
1989 return retval;
1990}
1991
1992static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1993 struct nameidata *nd)
1994{
1995 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1996}
1997
1998static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1999{
2000 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2001}
2002
2003static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2004 size_t len, loff_t *ppos)
2005{
2006 char tmp[PROC_FDINFO_MAX];
2007 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2008 if (!err)
2009 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2010 return err;
2011}
2012
2013static const struct file_operations proc_fdinfo_file_operations = {
2014 .open = nonseekable_open,
2015 .read = proc_fdinfo_read,
2016 .llseek = no_llseek,
2017};
2018
2019static const struct file_operations proc_fd_operations = {
2020 .read = generic_read_dir,
2021 .readdir = proc_readfd,
2022 .llseek = default_llseek,
2023};
2024
2025#ifdef CONFIG_CHECKPOINT_RESTORE
2026
2027/*
2028 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2029 * which represent vma start and end addresses.
2030 */
2031static int dname_to_vma_addr(struct dentry *dentry,
2032 unsigned long *start, unsigned long *end)
2033{
2034 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2035 return -EINVAL;
2036
2037 return 0;
2038}
2039
2040static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd)
2041{
2042 unsigned long vm_start, vm_end;
2043 bool exact_vma_exists = false;
2044 struct mm_struct *mm = NULL;
2045 struct task_struct *task;
2046 const struct cred *cred;
2047 struct inode *inode;
2048 int status = 0;
2049
2050 if (nd && nd->flags & LOOKUP_RCU)
2051 return -ECHILD;
2052
2053 if (!capable(CAP_SYS_ADMIN)) {
2054 status = -EACCES;
2055 goto out_notask;
2056 }
2057
2058 inode = dentry->d_inode;
2059 task = get_proc_task(inode);
2060 if (!task)
2061 goto out_notask;
2062
2063 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2064 goto out;
2065
2066 mm = get_task_mm(task);
2067 if (!mm)
2068 goto out;
2069
2070 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2071 down_read(&mm->mmap_sem);
2072 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2073 up_read(&mm->mmap_sem);
2074 }
2075
2076 mmput(mm);
2077
2078 if (exact_vma_exists) {
2079 if (task_dumpable(task)) {
2080 rcu_read_lock();
2081 cred = __task_cred(task);
2082 inode->i_uid = cred->euid;
2083 inode->i_gid = cred->egid;
2084 rcu_read_unlock();
2085 } else {
2086 inode->i_uid = 0;
2087 inode->i_gid = 0;
2088 }
2089 security_task_to_inode(task, inode);
2090 status = 1;
2091 }
2092
2093out:
2094 put_task_struct(task);
2095
2096out_notask:
2097 if (status <= 0)
2098 d_drop(dentry);
2099
2100 return status;
2101}
2102
2103static const struct dentry_operations tid_map_files_dentry_operations = {
2104 .d_revalidate = map_files_d_revalidate,
2105 .d_delete = pid_delete_dentry,
2106};
2107
2108static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2109{
2110 unsigned long vm_start, vm_end;
2111 struct vm_area_struct *vma;
2112 struct task_struct *task;
2113 struct mm_struct *mm;
2114 int rc;
2115
2116 rc = -ENOENT;
2117 task = get_proc_task(dentry->d_inode);
2118 if (!task)
2119 goto out;
2120
2121 mm = get_task_mm(task);
2122 put_task_struct(task);
2123 if (!mm)
2124 goto out;
2125
2126 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2127 if (rc)
2128 goto out_mmput;
2129
2130 rc = -ENOENT;
2131 down_read(&mm->mmap_sem);
2132 vma = find_exact_vma(mm, vm_start, vm_end);
2133 if (vma && vma->vm_file) {
2134 *path = vma->vm_file->f_path;
2135 path_get(path);
2136 rc = 0;
2137 }
2138 up_read(&mm->mmap_sem);
2139
2140out_mmput:
2141 mmput(mm);
2142out:
2143 return rc;
2144}
2145
2146struct map_files_info {
2147 struct file *file;
2148 unsigned long len;
2149 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2150};
2151
2152static struct dentry *
2153proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2154 struct task_struct *task, const void *ptr)
2155{
2156 const struct file *file = ptr;
2157 struct proc_inode *ei;
2158 struct inode *inode;
2159
2160 if (!file)
2161 return ERR_PTR(-ENOENT);
2162
2163 inode = proc_pid_make_inode(dir->i_sb, task);
2164 if (!inode)
2165 return ERR_PTR(-ENOENT);
2166
2167 ei = PROC_I(inode);
2168 ei->op.proc_get_link = proc_map_files_get_link;
2169
2170 inode->i_op = &proc_pid_link_inode_operations;
2171 inode->i_size = 64;
2172 inode->i_mode = S_IFLNK;
2173
2174 if (file->f_mode & FMODE_READ)
2175 inode->i_mode |= S_IRUSR;
2176 if (file->f_mode & FMODE_WRITE)
2177 inode->i_mode |= S_IWUSR;
2178
2179 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2180 d_add(dentry, inode);
2181
2182 return NULL;
2183}
2184
2185static struct dentry *proc_map_files_lookup(struct inode *dir,
2186 struct dentry *dentry, struct nameidata *nd)
2187{
2188 unsigned long vm_start, vm_end;
2189 struct vm_area_struct *vma;
2190 struct task_struct *task;
2191 struct dentry *result;
2192 struct mm_struct *mm;
2193
2194 result = ERR_PTR(-EACCES);
2195 if (!capable(CAP_SYS_ADMIN))
2196 goto out;
2197
2198 result = ERR_PTR(-ENOENT);
2199 task = get_proc_task(dir);
2200 if (!task)
2201 goto out;
2202
2203 result = ERR_PTR(-EACCES);
2204 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2205 goto out_put_task;
2206
2207 result = ERR_PTR(-ENOENT);
2208 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2209 goto out_put_task;
2210
2211 mm = get_task_mm(task);
2212 if (!mm)
2213 goto out_put_task;
2214
2215 down_read(&mm->mmap_sem);
2216 vma = find_exact_vma(mm, vm_start, vm_end);
2217 if (!vma)
2218 goto out_no_vma;
2219
2220 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2221
2222out_no_vma:
2223 up_read(&mm->mmap_sem);
2224 mmput(mm);
2225out_put_task:
2226 put_task_struct(task);
2227out:
2228 return result;
2229}
2230
2231static const struct inode_operations proc_map_files_inode_operations = {
2232 .lookup = proc_map_files_lookup,
2233 .permission = proc_fd_permission,
2234 .setattr = proc_setattr,
2235};
2236
2237static int
2238proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2239{
2240 struct dentry *dentry = filp->f_path.dentry;
2241 struct inode *inode = dentry->d_inode;
2242 struct vm_area_struct *vma;
2243 struct task_struct *task;
2244 struct mm_struct *mm;
2245 ino_t ino;
2246 int ret;
2247
2248 ret = -EACCES;
2249 if (!capable(CAP_SYS_ADMIN))
2250 goto out;
2251
2252 ret = -ENOENT;
2253 task = get_proc_task(inode);
2254 if (!task)
2255 goto out;
2256
2257 ret = -EACCES;
2258 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2259 goto out_put_task;
2260
2261 ret = 0;
2262 switch (filp->f_pos) {
2263 case 0:
2264 ino = inode->i_ino;
2265 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2266 goto out_put_task;
2267 filp->f_pos++;
2268 case 1:
2269 ino = parent_ino(dentry);
2270 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2271 goto out_put_task;
2272 filp->f_pos++;
2273 default:
2274 {
2275 unsigned long nr_files, pos, i;
2276 struct flex_array *fa = NULL;
2277 struct map_files_info info;
2278 struct map_files_info *p;
2279
2280 mm = get_task_mm(task);
2281 if (!mm)
2282 goto out_put_task;
2283 down_read(&mm->mmap_sem);
2284
2285 nr_files = 0;
2286
2287 /*
2288 * We need two passes here:
2289 *
2290 * 1) Collect vmas of mapped files with mmap_sem taken
2291 * 2) Release mmap_sem and instantiate entries
2292 *
2293 * otherwise we get lockdep complained, since filldir()
2294 * routine might require mmap_sem taken in might_fault().
2295 */
2296
2297 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2298 if (vma->vm_file && ++pos > filp->f_pos)
2299 nr_files++;
2300 }
2301
2302 if (nr_files) {
2303 fa = flex_array_alloc(sizeof(info), nr_files,
2304 GFP_KERNEL);
2305 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2306 GFP_KERNEL)) {
2307 ret = -ENOMEM;
2308 if (fa)
2309 flex_array_free(fa);
2310 up_read(&mm->mmap_sem);
2311 mmput(mm);
2312 goto out_put_task;
2313 }
2314 for (i = 0, vma = mm->mmap, pos = 2; vma;
2315 vma = vma->vm_next) {
2316 if (!vma->vm_file)
2317 continue;
2318 if (++pos <= filp->f_pos)
2319 continue;
2320
2321 get_file(vma->vm_file);
2322 info.file = vma->vm_file;
2323 info.len = snprintf(info.name,
2324 sizeof(info.name), "%lx-%lx",
2325 vma->vm_start, vma->vm_end);
2326 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2327 BUG();
2328 }
2329 }
2330 up_read(&mm->mmap_sem);
2331
2332 for (i = 0; i < nr_files; i++) {
2333 p = flex_array_get(fa, i);
2334 ret = proc_fill_cache(filp, dirent, filldir,
2335 p->name, p->len,
2336 proc_map_files_instantiate,
2337 task, p->file);
2338 if (ret)
2339 break;
2340 filp->f_pos++;
2341 fput(p->file);
2342 }
2343 for (; i < nr_files; i++) {
2344 /*
2345 * In case of error don't forget
2346 * to put rest of file refs.
2347 */
2348 p = flex_array_get(fa, i);
2349 fput(p->file);
2350 }
2351 if (fa)
2352 flex_array_free(fa);
2353 mmput(mm);
2354 }
2355 }
2356
2357out_put_task:
2358 put_task_struct(task);
2359out:
2360 return ret;
2361}
2362
2363static const struct file_operations proc_map_files_operations = {
2364 .read = generic_read_dir,
2365 .readdir = proc_map_files_readdir,
2366 .llseek = default_llseek,
2367};
2368
2369#endif /* CONFIG_CHECKPOINT_RESTORE */
2370
2371/*
2372 * /proc/pid/fd needs a special permission handler so that a process can still
2373 * access /proc/self/fd after it has executed a setuid().
2374 */
2375static int proc_fd_permission(struct inode *inode, int mask)
2376{
2377 int rv = generic_permission(inode, mask);
2378 if (rv == 0)
2379 return 0;
2380 if (task_pid(current) == proc_pid(inode))
2381 rv = 0;
2382 return rv;
2383}
2384
2385/*
2386 * proc directories can do almost nothing..
2387 */
2388static const struct inode_operations proc_fd_inode_operations = {
2389 .lookup = proc_lookupfd,
2390 .permission = proc_fd_permission,
2391 .setattr = proc_setattr,
2392};
2393
2394static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2395 struct dentry *dentry, struct task_struct *task, const void *ptr)
2396{
2397 unsigned fd = *(unsigned *)ptr;
2398 struct inode *inode;
2399 struct proc_inode *ei;
2400 struct dentry *error = ERR_PTR(-ENOENT);
2401
2402 inode = proc_pid_make_inode(dir->i_sb, task);
2403 if (!inode)
2404 goto out;
2405 ei = PROC_I(inode);
2406 ei->fd = fd;
2407 inode->i_mode = S_IFREG | S_IRUSR;
2408 inode->i_fop = &proc_fdinfo_file_operations;
2409 d_set_d_op(dentry, &tid_fd_dentry_operations);
2410 d_add(dentry, inode);
2411 /* Close the race of the process dying before we return the dentry */
2412 if (tid_fd_revalidate(dentry, NULL))
2413 error = NULL;
2414
2415 out:
2416 return error;
2417}
2418
2419static struct dentry *proc_lookupfdinfo(struct inode *dir,
2420 struct dentry *dentry,
2421 struct nameidata *nd)
2422{
2423 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2424}
2425
2426static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2427{
2428 return proc_readfd_common(filp, dirent, filldir,
2429 proc_fdinfo_instantiate);
2430}
2431
2432static const struct file_operations proc_fdinfo_operations = {
2433 .read = generic_read_dir,
2434 .readdir = proc_readfdinfo,
2435 .llseek = default_llseek,
2436};
2437
2438/*
2439 * proc directories can do almost nothing..
2440 */
2441static const struct inode_operations proc_fdinfo_inode_operations = {
2442 .lookup = proc_lookupfdinfo,
2443 .setattr = proc_setattr,
2444};
2445
2446
2447static struct dentry *proc_pident_instantiate(struct inode *dir,
2448 struct dentry *dentry, struct task_struct *task, const void *ptr)
2449{
2450 const struct pid_entry *p = ptr;
2451 struct inode *inode;
2452 struct proc_inode *ei;
2453 struct dentry *error = ERR_PTR(-ENOENT);
2454
2455 inode = proc_pid_make_inode(dir->i_sb, task);
2456 if (!inode)
2457 goto out;
2458
2459 ei = PROC_I(inode);
2460 inode->i_mode = p->mode;
2461 if (S_ISDIR(inode->i_mode))
2462 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2463 if (p->iop)
2464 inode->i_op = p->iop;
2465 if (p->fop)
2466 inode->i_fop = p->fop;
2467 ei->op = p->op;
2468 d_set_d_op(dentry, &pid_dentry_operations);
2469 d_add(dentry, inode);
2470 /* Close the race of the process dying before we return the dentry */
2471 if (pid_revalidate(dentry, NULL))
2472 error = NULL;
2473out:
2474 return error;
2475}
2476
2477static struct dentry *proc_pident_lookup(struct inode *dir,
2478 struct dentry *dentry,
2479 const struct pid_entry *ents,
2480 unsigned int nents)
2481{
2482 struct dentry *error;
2483 struct task_struct *task = get_proc_task(dir);
2484 const struct pid_entry *p, *last;
2485
2486 error = ERR_PTR(-ENOENT);
2487
2488 if (!task)
2489 goto out_no_task;
2490
2491 /*
2492 * Yes, it does not scale. And it should not. Don't add
2493 * new entries into /proc/<tgid>/ without very good reasons.
2494 */
2495 last = &ents[nents - 1];
2496 for (p = ents; p <= last; p++) {
2497 if (p->len != dentry->d_name.len)
2498 continue;
2499 if (!memcmp(dentry->d_name.name, p->name, p->len))
2500 break;
2501 }
2502 if (p > last)
2503 goto out;
2504
2505 error = proc_pident_instantiate(dir, dentry, task, p);
2506out:
2507 put_task_struct(task);
2508out_no_task:
2509 return error;
2510}
2511
2512static int proc_pident_fill_cache(struct file *filp, void *dirent,
2513 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2514{
2515 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2516 proc_pident_instantiate, task, p);
2517}
2518
2519static int proc_pident_readdir(struct file *filp,
2520 void *dirent, filldir_t filldir,
2521 const struct pid_entry *ents, unsigned int nents)
2522{
2523 int i;
2524 struct dentry *dentry = filp->f_path.dentry;
2525 struct inode *inode = dentry->d_inode;
2526 struct task_struct *task = get_proc_task(inode);
2527 const struct pid_entry *p, *last;
2528 ino_t ino;
2529 int ret;
2530
2531 ret = -ENOENT;
2532 if (!task)
2533 goto out_no_task;
2534
2535 ret = 0;
2536 i = filp->f_pos;
2537 switch (i) {
2538 case 0:
2539 ino = inode->i_ino;
2540 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2541 goto out;
2542 i++;
2543 filp->f_pos++;
2544 /* fall through */
2545 case 1:
2546 ino = parent_ino(dentry);
2547 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2548 goto out;
2549 i++;
2550 filp->f_pos++;
2551 /* fall through */
2552 default:
2553 i -= 2;
2554 if (i >= nents) {
2555 ret = 1;
2556 goto out;
2557 }
2558 p = ents + i;
2559 last = &ents[nents - 1];
2560 while (p <= last) {
2561 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2562 goto out;
2563 filp->f_pos++;
2564 p++;
2565 }
2566 }
2567
2568 ret = 1;
2569out:
2570 put_task_struct(task);
2571out_no_task:
2572 return ret;
2573}
2574
2575#ifdef CONFIG_SECURITY
2576static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2577 size_t count, loff_t *ppos)
2578{
2579 struct inode * inode = file->f_path.dentry->d_inode;
2580 char *p = NULL;
2581 ssize_t length;
2582 struct task_struct *task = get_proc_task(inode);
2583
2584 if (!task)
2585 return -ESRCH;
2586
2587 length = security_getprocattr(task,
2588 (char*)file->f_path.dentry->d_name.name,
2589 &p);
2590 put_task_struct(task);
2591 if (length > 0)
2592 length = simple_read_from_buffer(buf, count, ppos, p, length);
2593 kfree(p);
2594 return length;
2595}
2596
2597static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2598 size_t count, loff_t *ppos)
2599{
2600 struct inode * inode = file->f_path.dentry->d_inode;
2601 char *page;
2602 ssize_t length;
2603 struct task_struct *task = get_proc_task(inode);
2604
2605 length = -ESRCH;
2606 if (!task)
2607 goto out_no_task;
2608 if (count > PAGE_SIZE)
2609 count = PAGE_SIZE;
2610
2611 /* No partial writes. */
2612 length = -EINVAL;
2613 if (*ppos != 0)
2614 goto out;
2615
2616 length = -ENOMEM;
2617 page = (char*)__get_free_page(GFP_TEMPORARY);
2618 if (!page)
2619 goto out;
2620
2621 length = -EFAULT;
2622 if (copy_from_user(page, buf, count))
2623 goto out_free;
2624
2625 /* Guard against adverse ptrace interaction */
2626 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2627 if (length < 0)
2628 goto out_free;
2629
2630 length = security_setprocattr(task,
2631 (char*)file->f_path.dentry->d_name.name,
2632 (void*)page, count);
2633 mutex_unlock(&task->signal->cred_guard_mutex);
2634out_free:
2635 free_page((unsigned long) page);
2636out:
2637 put_task_struct(task);
2638out_no_task:
2639 return length;
2640}
2641
2642static const struct file_operations proc_pid_attr_operations = {
2643 .read = proc_pid_attr_read,
2644 .write = proc_pid_attr_write,
2645 .llseek = generic_file_llseek,
2646};
2647
2648static const struct pid_entry attr_dir_stuff[] = {
2649 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2650 REG("prev", S_IRUGO, proc_pid_attr_operations),
2651 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2652 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2653 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2654 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2655};
2656
2657static int proc_attr_dir_readdir(struct file * filp,
2658 void * dirent, filldir_t filldir)
2659{
2660 return proc_pident_readdir(filp,dirent,filldir,
2661 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2662}
2663
2664static const struct file_operations proc_attr_dir_operations = {
2665 .read = generic_read_dir,
2666 .readdir = proc_attr_dir_readdir,
2667 .llseek = default_llseek,
2668};
2669
2670static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2671 struct dentry *dentry, struct nameidata *nd)
2672{
2673 return proc_pident_lookup(dir, dentry,
2674 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2675}
2676
2677static const struct inode_operations proc_attr_dir_inode_operations = {
2678 .lookup = proc_attr_dir_lookup,
2679 .getattr = pid_getattr,
2680 .setattr = proc_setattr,
2681};
2682
2683#endif
2684
2685#ifdef CONFIG_ELF_CORE
2686static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2687 size_t count, loff_t *ppos)
2688{
2689 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2690 struct mm_struct *mm;
2691 char buffer[PROC_NUMBUF];
2692 size_t len;
2693 int ret;
2694
2695 if (!task)
2696 return -ESRCH;
2697
2698 ret = 0;
2699 mm = get_task_mm(task);
2700 if (mm) {
2701 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2702 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2703 MMF_DUMP_FILTER_SHIFT));
2704 mmput(mm);
2705 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2706 }
2707
2708 put_task_struct(task);
2709
2710 return ret;
2711}
2712
2713static ssize_t proc_coredump_filter_write(struct file *file,
2714 const char __user *buf,
2715 size_t count,
2716 loff_t *ppos)
2717{
2718 struct task_struct *task;
2719 struct mm_struct *mm;
2720 char buffer[PROC_NUMBUF], *end;
2721 unsigned int val;
2722 int ret;
2723 int i;
2724 unsigned long mask;
2725
2726 ret = -EFAULT;
2727 memset(buffer, 0, sizeof(buffer));
2728 if (count > sizeof(buffer) - 1)
2729 count = sizeof(buffer) - 1;
2730 if (copy_from_user(buffer, buf, count))
2731 goto out_no_task;
2732
2733 ret = -EINVAL;
2734 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2735 if (*end == '\n')
2736 end++;
2737 if (end - buffer == 0)
2738 goto out_no_task;
2739
2740 ret = -ESRCH;
2741 task = get_proc_task(file->f_dentry->d_inode);
2742 if (!task)
2743 goto out_no_task;
2744
2745 ret = end - buffer;
2746 mm = get_task_mm(task);
2747 if (!mm)
2748 goto out_no_mm;
2749
2750 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2751 if (val & mask)
2752 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2753 else
2754 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2755 }
2756
2757 mmput(mm);
2758 out_no_mm:
2759 put_task_struct(task);
2760 out_no_task:
2761 return ret;
2762}
2763
2764static const struct file_operations proc_coredump_filter_operations = {
2765 .read = proc_coredump_filter_read,
2766 .write = proc_coredump_filter_write,
2767 .llseek = generic_file_llseek,
2768};
2769#endif
2770
2771/*
2772 * /proc/self:
2773 */
2774static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2775 int buflen)
2776{
2777 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2778 pid_t tgid = task_tgid_nr_ns(current, ns);
2779 char tmp[PROC_NUMBUF];
2780 if (!tgid)
2781 return -ENOENT;
2782 sprintf(tmp, "%d", tgid);
2783 return vfs_readlink(dentry,buffer,buflen,tmp);
2784}
2785
2786static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2787{
2788 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2789 pid_t tgid = task_tgid_nr_ns(current, ns);
2790 char *name = ERR_PTR(-ENOENT);
2791 if (tgid) {
2792 name = __getname();
2793 if (!name)
2794 name = ERR_PTR(-ENOMEM);
2795 else
2796 sprintf(name, "%d", tgid);
2797 }
2798 nd_set_link(nd, name);
2799 return NULL;
2800}
2801
2802static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2803 void *cookie)
2804{
2805 char *s = nd_get_link(nd);
2806 if (!IS_ERR(s))
2807 __putname(s);
2808}
2809
2810static const struct inode_operations proc_self_inode_operations = {
2811 .readlink = proc_self_readlink,
2812 .follow_link = proc_self_follow_link,
2813 .put_link = proc_self_put_link,
2814};
2815
2816/*
2817 * proc base
2818 *
2819 * These are the directory entries in the root directory of /proc
2820 * that properly belong to the /proc filesystem, as they describe
2821 * describe something that is process related.
2822 */
2823static const struct pid_entry proc_base_stuff[] = {
2824 NOD("self", S_IFLNK|S_IRWXUGO,
2825 &proc_self_inode_operations, NULL, {}),
2826};
2827
2828static struct dentry *proc_base_instantiate(struct inode *dir,
2829 struct dentry *dentry, struct task_struct *task, const void *ptr)
2830{
2831 const struct pid_entry *p = ptr;
2832 struct inode *inode;
2833 struct proc_inode *ei;
2834 struct dentry *error;
2835
2836 /* Allocate the inode */
2837 error = ERR_PTR(-ENOMEM);
2838 inode = new_inode(dir->i_sb);
2839 if (!inode)
2840 goto out;
2841
2842 /* Initialize the inode */
2843 ei = PROC_I(inode);
2844 inode->i_ino = get_next_ino();
2845 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2846
2847 /*
2848 * grab the reference to the task.
2849 */
2850 ei->pid = get_task_pid(task, PIDTYPE_PID);
2851 if (!ei->pid)
2852 goto out_iput;
2853
2854 inode->i_mode = p->mode;
2855 if (S_ISDIR(inode->i_mode))
2856 set_nlink(inode, 2);
2857 if (S_ISLNK(inode->i_mode))
2858 inode->i_size = 64;
2859 if (p->iop)
2860 inode->i_op = p->iop;
2861 if (p->fop)
2862 inode->i_fop = p->fop;
2863 ei->op = p->op;
2864 d_add(dentry, inode);
2865 error = NULL;
2866out:
2867 return error;
2868out_iput:
2869 iput(inode);
2870 goto out;
2871}
2872
2873static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2874{
2875 struct dentry *error;
2876 struct task_struct *task = get_proc_task(dir);
2877 const struct pid_entry *p, *last;
2878
2879 error = ERR_PTR(-ENOENT);
2880
2881 if (!task)
2882 goto out_no_task;
2883
2884 /* Lookup the directory entry */
2885 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2886 for (p = proc_base_stuff; p <= last; p++) {
2887 if (p->len != dentry->d_name.len)
2888 continue;
2889 if (!memcmp(dentry->d_name.name, p->name, p->len))
2890 break;
2891 }
2892 if (p > last)
2893 goto out;
2894
2895 error = proc_base_instantiate(dir, dentry, task, p);
2896
2897out:
2898 put_task_struct(task);
2899out_no_task:
2900 return error;
2901}
2902
2903static int proc_base_fill_cache(struct file *filp, void *dirent,
2904 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2905{
2906 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2907 proc_base_instantiate, task, p);
2908}
2909
2910#ifdef CONFIG_TASK_IO_ACCOUNTING
2911static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2912{
2913 struct task_io_accounting acct = task->ioac;
2914 unsigned long flags;
2915 int result;
2916
2917 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2918 if (result)
2919 return result;
2920
2921 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2922 result = -EACCES;
2923 goto out_unlock;
2924 }
2925
2926 if (whole && lock_task_sighand(task, &flags)) {
2927 struct task_struct *t = task;
2928
2929 task_io_accounting_add(&acct, &task->signal->ioac);
2930 while_each_thread(task, t)
2931 task_io_accounting_add(&acct, &t->ioac);
2932
2933 unlock_task_sighand(task, &flags);
2934 }
2935 result = sprintf(buffer,
2936 "rchar: %llu\n"
2937 "wchar: %llu\n"
2938 "syscr: %llu\n"
2939 "syscw: %llu\n"
2940 "read_bytes: %llu\n"
2941 "write_bytes: %llu\n"
2942 "cancelled_write_bytes: %llu\n",
2943 (unsigned long long)acct.rchar,
2944 (unsigned long long)acct.wchar,
2945 (unsigned long long)acct.syscr,
2946 (unsigned long long)acct.syscw,
2947 (unsigned long long)acct.read_bytes,
2948 (unsigned long long)acct.write_bytes,
2949 (unsigned long long)acct.cancelled_write_bytes);
2950out_unlock:
2951 mutex_unlock(&task->signal->cred_guard_mutex);
2952 return result;
2953}
2954
2955static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2956{
2957 return do_io_accounting(task, buffer, 0);
2958}
2959
2960static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2961{
2962 return do_io_accounting(task, buffer, 1);
2963}
2964#endif /* CONFIG_TASK_IO_ACCOUNTING */
2965
2966static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2967 struct pid *pid, struct task_struct *task)
2968{
2969 int err = lock_trace(task);
2970 if (!err) {
2971 seq_printf(m, "%08x\n", task->personality);
2972 unlock_trace(task);
2973 }
2974 return err;
2975}
2976
2977/*
2978 * Thread groups
2979 */
2980static const struct file_operations proc_task_operations;
2981static const struct inode_operations proc_task_inode_operations;
2982
2983static const struct pid_entry tgid_base_stuff[] = {
2984 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2985 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2986#ifdef CONFIG_CHECKPOINT_RESTORE
2987 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2988#endif
2989 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2990 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2991#ifdef CONFIG_NET
2992 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2993#endif
2994 REG("environ", S_IRUSR, proc_environ_operations),
2995 INF("auxv", S_IRUSR, proc_pid_auxv),
2996 ONE("status", S_IRUGO, proc_pid_status),
2997 ONE("personality", S_IRUGO, proc_pid_personality),
2998 INF("limits", S_IRUGO, proc_pid_limits),
2999#ifdef CONFIG_SCHED_DEBUG
3000 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3001#endif
3002#ifdef CONFIG_SCHED_AUTOGROUP
3003 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3004#endif
3005 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3006#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3007 INF("syscall", S_IRUGO, proc_pid_syscall),
3008#endif
3009 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3010 ONE("stat", S_IRUGO, proc_tgid_stat),
3011 ONE("statm", S_IRUGO, proc_pid_statm),
3012 REG("maps", S_IRUGO, proc_pid_maps_operations),
3013#ifdef CONFIG_NUMA
3014 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3015#endif
3016 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3017 LNK("cwd", proc_cwd_link),
3018 LNK("root", proc_root_link),
3019 LNK("exe", proc_exe_link),
3020 REG("mounts", S_IRUGO, proc_mounts_operations),
3021 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3022 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3023#ifdef CONFIG_PROC_PAGE_MONITOR
3024 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3025 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3026 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3027#endif
3028#ifdef CONFIG_SECURITY
3029 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3030#endif
3031#ifdef CONFIG_KALLSYMS
3032 INF("wchan", S_IRUGO, proc_pid_wchan),
3033#endif
3034#ifdef CONFIG_STACKTRACE
3035 ONE("stack", S_IRUGO, proc_pid_stack),
3036#endif
3037#ifdef CONFIG_SCHEDSTATS
3038 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3039#endif
3040#ifdef CONFIG_LATENCYTOP
3041 REG("latency", S_IRUGO, proc_lstats_operations),
3042#endif
3043#ifdef CONFIG_PROC_PID_CPUSET
3044 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3045#endif
3046#ifdef CONFIG_CGROUPS
3047 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3048#endif
3049 INF("oom_score", S_IRUGO, proc_oom_score),
3050 ANDROID("oom_adj",S_IRUGO|S_IWUSR, oom_adjust),
3051 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3052#ifdef CONFIG_AUDITSYSCALL
3053 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3054 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3055#endif
3056#ifdef CONFIG_FAULT_INJECTION
3057 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3058#endif
3059#ifdef CONFIG_ELF_CORE
3060 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3061#endif
3062#ifdef CONFIG_TASK_IO_ACCOUNTING
3063 INF("io", S_IRUSR, proc_tgid_io_accounting),
3064#endif
3065#ifdef CONFIG_HARDWALL
3066 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3067#endif
3068};
3069
3070static int proc_tgid_base_readdir(struct file * filp,
3071 void * dirent, filldir_t filldir)
3072{
3073 return proc_pident_readdir(filp,dirent,filldir,
3074 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3075}
3076
3077static const struct file_operations proc_tgid_base_operations = {
3078 .read = generic_read_dir,
3079 .readdir = proc_tgid_base_readdir,
3080 .llseek = default_llseek,
3081};
3082
3083static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3084 return proc_pident_lookup(dir, dentry,
3085 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3086}
3087
3088static const struct inode_operations proc_tgid_base_inode_operations = {
3089 .lookup = proc_tgid_base_lookup,
3090 .getattr = pid_getattr,
3091 .setattr = proc_setattr,
3092 .permission = proc_pid_permission,
3093};
3094
3095static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3096{
3097 struct dentry *dentry, *leader, *dir;
3098 char buf[PROC_NUMBUF];
3099 struct qstr name;
3100
3101 name.name = buf;
3102 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3103 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3104 if (dentry) {
3105 shrink_dcache_parent(dentry);
3106 d_drop(dentry);
3107 dput(dentry);
3108 }
3109
3110 name.name = buf;
3111 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3112 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3113 if (!leader)
3114 goto out;
3115
3116 name.name = "task";
3117 name.len = strlen(name.name);
3118 dir = d_hash_and_lookup(leader, &name);
3119 if (!dir)
3120 goto out_put_leader;
3121
3122 name.name = buf;
3123 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3124 dentry = d_hash_and_lookup(dir, &name);
3125 if (dentry) {
3126 shrink_dcache_parent(dentry);
3127 d_drop(dentry);
3128 dput(dentry);
3129 }
3130
3131 dput(dir);
3132out_put_leader:
3133 dput(leader);
3134out:
3135 return;
3136}
3137
3138/**
3139 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3140 * @task: task that should be flushed.
3141 *
3142 * When flushing dentries from proc, one needs to flush them from global
3143 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3144 * in. This call is supposed to do all of this job.
3145 *
3146 * Looks in the dcache for
3147 * /proc/@pid
3148 * /proc/@tgid/task/@pid
3149 * if either directory is present flushes it and all of it'ts children
3150 * from the dcache.
3151 *
3152 * It is safe and reasonable to cache /proc entries for a task until
3153 * that task exits. After that they just clog up the dcache with
3154 * useless entries, possibly causing useful dcache entries to be
3155 * flushed instead. This routine is proved to flush those useless
3156 * dcache entries at process exit time.
3157 *
3158 * NOTE: This routine is just an optimization so it does not guarantee
3159 * that no dcache entries will exist at process exit time it
3160 * just makes it very unlikely that any will persist.
3161 */
3162
3163void proc_flush_task(struct task_struct *task)
3164{
3165 int i;
3166 struct pid *pid, *tgid;
3167 struct upid *upid;
3168
3169 pid = task_pid(task);
3170 tgid = task_tgid(task);
3171
3172 for (i = 0; i <= pid->level; i++) {
3173 upid = &pid->numbers[i];
3174 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3175 tgid->numbers[i].nr);
3176 }
3177
3178 upid = &pid->numbers[pid->level];
3179 if (upid->nr == 1)
3180 pid_ns_release_proc(upid->ns);
3181}
3182
3183static struct dentry *proc_pid_instantiate(struct inode *dir,
3184 struct dentry * dentry,
3185 struct task_struct *task, const void *ptr)
3186{
3187 struct dentry *error = ERR_PTR(-ENOENT);
3188 struct inode *inode;
3189
3190 inode = proc_pid_make_inode(dir->i_sb, task);
3191 if (!inode)
3192 goto out;
3193
3194 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3195 inode->i_op = &proc_tgid_base_inode_operations;
3196 inode->i_fop = &proc_tgid_base_operations;
3197 inode->i_flags|=S_IMMUTABLE;
3198
3199 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3200 ARRAY_SIZE(tgid_base_stuff)));
3201
3202 d_set_d_op(dentry, &pid_dentry_operations);
3203
3204 d_add(dentry, inode);
3205 /* Close the race of the process dying before we return the dentry */
3206 if (pid_revalidate(dentry, NULL))
3207 error = NULL;
3208out:
3209 return error;
3210}
3211
3212struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3213{
3214 struct dentry *result;
3215 struct task_struct *task;
3216 unsigned tgid;
3217 struct pid_namespace *ns;
3218
3219 result = proc_base_lookup(dir, dentry);
3220 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3221 goto out;
3222
3223 tgid = name_to_int(dentry);
3224 if (tgid == ~0U)
3225 goto out;
3226
3227 ns = dentry->d_sb->s_fs_info;
3228 rcu_read_lock();
3229 task = find_task_by_pid_ns(tgid, ns);
3230 if (task)
3231 get_task_struct(task);
3232 rcu_read_unlock();
3233 if (!task)
3234 goto out;
3235
3236 result = proc_pid_instantiate(dir, dentry, task, NULL);
3237 put_task_struct(task);
3238out:
3239 return result;
3240}
3241
3242/*
3243 * Find the first task with tgid >= tgid
3244 *
3245 */
3246struct tgid_iter {
3247 unsigned int tgid;
3248 struct task_struct *task;
3249};
3250static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3251{
3252 struct pid *pid;
3253
3254 if (iter.task)
3255 put_task_struct(iter.task);
3256 rcu_read_lock();
3257retry:
3258 iter.task = NULL;
3259 pid = find_ge_pid(iter.tgid, ns);
3260 if (pid) {
3261 iter.tgid = pid_nr_ns(pid, ns);
3262 iter.task = pid_task(pid, PIDTYPE_PID);
3263 /* What we to know is if the pid we have find is the
3264 * pid of a thread_group_leader. Testing for task
3265 * being a thread_group_leader is the obvious thing
3266 * todo but there is a window when it fails, due to
3267 * the pid transfer logic in de_thread.
3268 *
3269 * So we perform the straight forward test of seeing
3270 * if the pid we have found is the pid of a thread
3271 * group leader, and don't worry if the task we have
3272 * found doesn't happen to be a thread group leader.
3273 * As we don't care in the case of readdir.
3274 */
3275 if (!iter.task || !has_group_leader_pid(iter.task)) {
3276 iter.tgid += 1;
3277 goto retry;
3278 }
3279 get_task_struct(iter.task);
3280 }
3281 rcu_read_unlock();
3282 return iter;
3283}
3284
3285#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3286
3287static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3288 struct tgid_iter iter)
3289{
3290 char name[PROC_NUMBUF];
3291 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3292 return proc_fill_cache(filp, dirent, filldir, name, len,
3293 proc_pid_instantiate, iter.task, NULL);
3294}
3295
3296static int fake_filldir(void *buf, const char *name, int namelen,
3297 loff_t offset, u64 ino, unsigned d_type)
3298{
3299 return 0;
3300}
3301
3302/* for the /proc/ directory itself, after non-process stuff has been done */
3303int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3304{
3305 unsigned int nr;
3306 struct task_struct *reaper;
3307 struct tgid_iter iter;
3308 struct pid_namespace *ns;
3309 filldir_t __filldir;
3310
3311 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3312 goto out_no_task;
3313 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3314
3315 reaper = get_proc_task(filp->f_path.dentry->d_inode);
3316 if (!reaper)
3317 goto out_no_task;
3318
3319 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3320 const struct pid_entry *p = &proc_base_stuff[nr];
3321 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3322 goto out;
3323 }
3324
3325 ns = filp->f_dentry->d_sb->s_fs_info;
3326 iter.task = NULL;
3327 iter.tgid = filp->f_pos - TGID_OFFSET;
3328 for (iter = next_tgid(ns, iter);
3329 iter.task;
3330 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3331 if (has_pid_permissions(ns, iter.task, 2))
3332 __filldir = filldir;
3333 else
3334 __filldir = fake_filldir;
3335
3336 filp->f_pos = iter.tgid + TGID_OFFSET;
3337 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3338 put_task_struct(iter.task);
3339 goto out;
3340 }
3341 }
3342 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3343out:
3344 put_task_struct(reaper);
3345out_no_task:
3346 return 0;
3347}
3348
3349/*
3350 * Tasks
3351 */
3352static const struct pid_entry tid_base_stuff[] = {
3353 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3354 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3355 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3356 REG("environ", S_IRUSR, proc_environ_operations),
3357 INF("auxv", S_IRUSR, proc_pid_auxv),
3358 ONE("status", S_IRUGO, proc_pid_status),
3359 ONE("personality", S_IRUGO, proc_pid_personality),
3360 INF("limits", S_IRUGO, proc_pid_limits),
3361#ifdef CONFIG_SCHED_DEBUG
3362 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3363#endif
3364 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3365#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3366 INF("syscall", S_IRUGO, proc_pid_syscall),
3367#endif
3368 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3369 ONE("stat", S_IRUGO, proc_tid_stat),
3370 ONE("statm", S_IRUGO, proc_pid_statm),
3371 REG("maps", S_IRUGO, proc_tid_maps_operations),
3372#ifdef CONFIG_NUMA
3373 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3374#endif
3375 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3376 LNK("cwd", proc_cwd_link),
3377 LNK("root", proc_root_link),
3378 LNK("exe", proc_exe_link),
3379 REG("mounts", S_IRUGO, proc_mounts_operations),
3380 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3381#ifdef CONFIG_PROC_PAGE_MONITOR
3382 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3383 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3384 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3385#endif
3386#ifdef CONFIG_SECURITY
3387 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3388#endif
3389#ifdef CONFIG_KALLSYMS
3390 INF("wchan", S_IRUGO, proc_pid_wchan),
3391#endif
3392#ifdef CONFIG_STACKTRACE
3393 ONE("stack", S_IRUGO, proc_pid_stack),
3394#endif
3395#ifdef CONFIG_SCHEDSTATS
3396 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3397#endif
3398#ifdef CONFIG_LATENCYTOP
3399 REG("latency", S_IRUGO, proc_lstats_operations),
3400#endif
3401#ifdef CONFIG_PROC_PID_CPUSET
3402 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3403#endif
3404#ifdef CONFIG_CGROUPS
3405 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3406#endif
3407 INF("oom_score", S_IRUGO, proc_oom_score),
3408 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3409 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3410#ifdef CONFIG_AUDITSYSCALL
3411 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3412 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3413#endif
3414#ifdef CONFIG_FAULT_INJECTION
3415 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3416#endif
3417#ifdef CONFIG_TASK_IO_ACCOUNTING
3418 INF("io", S_IRUSR, proc_tid_io_accounting),
3419#endif
3420#ifdef CONFIG_HARDWALL
3421 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3422#endif
3423};
3424
3425static int proc_tid_base_readdir(struct file * filp,
3426 void * dirent, filldir_t filldir)
3427{
3428 return proc_pident_readdir(filp,dirent,filldir,
3429 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3430}
3431
3432static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3433 return proc_pident_lookup(dir, dentry,
3434 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3435}
3436
3437static const struct file_operations proc_tid_base_operations = {
3438 .read = generic_read_dir,
3439 .readdir = proc_tid_base_readdir,
3440 .llseek = default_llseek,
3441};
3442
3443static const struct inode_operations proc_tid_base_inode_operations = {
3444 .lookup = proc_tid_base_lookup,
3445 .getattr = pid_getattr,
3446 .setattr = proc_setattr,
3447};
3448
3449static struct dentry *proc_task_instantiate(struct inode *dir,
3450 struct dentry *dentry, struct task_struct *task, const void *ptr)
3451{
3452 struct dentry *error = ERR_PTR(-ENOENT);
3453 struct inode *inode;
3454 inode = proc_pid_make_inode(dir->i_sb, task);
3455
3456 if (!inode)
3457 goto out;
3458 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3459 inode->i_op = &proc_tid_base_inode_operations;
3460 inode->i_fop = &proc_tid_base_operations;
3461 inode->i_flags|=S_IMMUTABLE;
3462
3463 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3464 ARRAY_SIZE(tid_base_stuff)));
3465
3466 d_set_d_op(dentry, &pid_dentry_operations);
3467
3468 d_add(dentry, inode);
3469 /* Close the race of the process dying before we return the dentry */
3470 if (pid_revalidate(dentry, NULL))
3471 error = NULL;
3472out:
3473 return error;
3474}
3475
3476static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3477{
3478 struct dentry *result = ERR_PTR(-ENOENT);
3479 struct task_struct *task;
3480 struct task_struct *leader = get_proc_task(dir);
3481 unsigned tid;
3482 struct pid_namespace *ns;
3483
3484 if (!leader)
3485 goto out_no_task;
3486
3487 tid = name_to_int(dentry);
3488 if (tid == ~0U)
3489 goto out;
3490
3491 ns = dentry->d_sb->s_fs_info;
3492 rcu_read_lock();
3493 task = find_task_by_pid_ns(tid, ns);
3494 if (task)
3495 get_task_struct(task);
3496 rcu_read_unlock();
3497 if (!task)
3498 goto out;
3499 if (!same_thread_group(leader, task))
3500 goto out_drop_task;
3501
3502 result = proc_task_instantiate(dir, dentry, task, NULL);
3503out_drop_task:
3504 put_task_struct(task);
3505out:
3506 put_task_struct(leader);
3507out_no_task:
3508 return result;
3509}
3510
3511/*
3512 * Find the first tid of a thread group to return to user space.
3513 *
3514 * Usually this is just the thread group leader, but if the users
3515 * buffer was too small or there was a seek into the middle of the
3516 * directory we have more work todo.
3517 *
3518 * In the case of a short read we start with find_task_by_pid.
3519 *
3520 * In the case of a seek we start with the leader and walk nr
3521 * threads past it.
3522 */
3523static struct task_struct *first_tid(struct task_struct *leader,
3524 int tid, int nr, struct pid_namespace *ns)
3525{
3526 struct task_struct *pos;
3527
3528 rcu_read_lock();
3529 /* Attempt to start with the pid of a thread */
3530 if (tid && (nr > 0)) {
3531 pos = find_task_by_pid_ns(tid, ns);
3532 if (pos && (pos->group_leader == leader))
3533 goto found;
3534 }
3535
3536 /* If nr exceeds the number of threads there is nothing todo */
3537 pos = NULL;
3538 if (nr && nr >= get_nr_threads(leader))
3539 goto out;
3540
3541 /* If we haven't found our starting place yet start
3542 * with the leader and walk nr threads forward.
3543 */
3544 for (pos = leader; nr > 0; --nr) {
3545 pos = next_thread(pos);
3546 if (pos == leader) {
3547 pos = NULL;
3548 goto out;
3549 }
3550 }
3551found:
3552 get_task_struct(pos);
3553out:
3554 rcu_read_unlock();
3555 return pos;
3556}
3557
3558/*
3559 * Find the next thread in the thread list.
3560 * Return NULL if there is an error or no next thread.
3561 *
3562 * The reference to the input task_struct is released.
3563 */
3564static struct task_struct *next_tid(struct task_struct *start)
3565{
3566 struct task_struct *pos = NULL;
3567 rcu_read_lock();
3568 if (pid_alive(start)) {
3569 pos = next_thread(start);
3570 if (thread_group_leader(pos))
3571 pos = NULL;
3572 else
3573 get_task_struct(pos);
3574 }
3575 rcu_read_unlock();
3576 put_task_struct(start);
3577 return pos;
3578}
3579
3580static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3581 struct task_struct *task, int tid)
3582{
3583 char name[PROC_NUMBUF];
3584 int len = snprintf(name, sizeof(name), "%d", tid);
3585 return proc_fill_cache(filp, dirent, filldir, name, len,
3586 proc_task_instantiate, task, NULL);
3587}
3588
3589/* for the /proc/TGID/task/ directories */
3590static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3591{
3592 struct dentry *dentry = filp->f_path.dentry;
3593 struct inode *inode = dentry->d_inode;
3594 struct task_struct *leader = NULL;
3595 struct task_struct *task;
3596 int retval = -ENOENT;
3597 ino_t ino;
3598 int tid;
3599 struct pid_namespace *ns;
3600
3601 task = get_proc_task(inode);
3602 if (!task)
3603 goto out_no_task;
3604 rcu_read_lock();
3605 if (pid_alive(task)) {
3606 leader = task->group_leader;
3607 get_task_struct(leader);
3608 }
3609 rcu_read_unlock();
3610 put_task_struct(task);
3611 if (!leader)
3612 goto out_no_task;
3613 retval = 0;
3614
3615 switch ((unsigned long)filp->f_pos) {
3616 case 0:
3617 ino = inode->i_ino;
3618 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3619 goto out;
3620 filp->f_pos++;
3621 /* fall through */
3622 case 1:
3623 ino = parent_ino(dentry);
3624 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3625 goto out;
3626 filp->f_pos++;
3627 /* fall through */
3628 }
3629
3630 /* f_version caches the tgid value that the last readdir call couldn't
3631 * return. lseek aka telldir automagically resets f_version to 0.
3632 */
3633 ns = filp->f_dentry->d_sb->s_fs_info;
3634 tid = (int)filp->f_version;
3635 filp->f_version = 0;
3636 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3637 task;
3638 task = next_tid(task), filp->f_pos++) {
3639 tid = task_pid_nr_ns(task, ns);
3640 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3641 /* returning this tgid failed, save it as the first
3642 * pid for the next readir call */
3643 filp->f_version = (u64)tid;
3644 put_task_struct(task);
3645 break;
3646 }
3647 }
3648out:
3649 put_task_struct(leader);
3650out_no_task:
3651 return retval;
3652}
3653
3654static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3655{
3656 struct inode *inode = dentry->d_inode;
3657 struct task_struct *p = get_proc_task(inode);
3658 generic_fillattr(inode, stat);
3659
3660 if (p) {
3661 stat->nlink += get_nr_threads(p);
3662 put_task_struct(p);
3663 }
3664
3665 return 0;
3666}
3667
3668static const struct inode_operations proc_task_inode_operations = {
3669 .lookup = proc_task_lookup,
3670 .getattr = proc_task_getattr,
3671 .setattr = proc_setattr,
3672 .permission = proc_pid_permission,
3673};
3674
3675static const struct file_operations proc_task_operations = {
3676 .read = generic_read_dir,
3677 .readdir = proc_task_readdir,
3678 .llseek = default_llseek,
3679};