lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <string.h> |
| 12 | #include <stdlib.h> |
| 13 | #include <openssl/crypto.h> |
| 14 | #include <openssl/lhash.h> |
| 15 | #include <openssl/err.h> |
| 16 | #include "crypto/ctype.h" |
| 17 | #include "crypto/lhash.h" |
| 18 | #include "lhash_local.h" |
| 19 | |
| 20 | /* |
| 21 | * A hashing implementation that appears to be based on the linear hashing |
| 22 | * algorithm: |
| 23 | * https://en.wikipedia.org/wiki/Linear_hashing |
| 24 | * |
| 25 | * Litwin, Witold (1980), "Linear hashing: A new tool for file and table |
| 26 | * addressing", Proc. 6th Conference on Very Large Databases: 212-223 |
| 27 | * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf |
| 28 | * |
| 29 | * From the Wikipedia article "Linear hashing is used in the BDB Berkeley |
| 30 | * database system, which in turn is used by many software systems such as |
| 31 | * OpenLDAP, using a C implementation derived from the CACM article and first |
| 32 | * published on the Usenet in 1988 by Esmond Pitt." |
| 33 | * |
| 34 | * The CACM paper is available here: |
| 35 | * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf |
| 36 | */ |
| 37 | |
| 38 | #undef MIN_NODES |
| 39 | #define MIN_NODES 16 |
| 40 | #define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */ |
| 41 | #define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */ |
| 42 | |
| 43 | static int expand(OPENSSL_LHASH *lh); |
| 44 | static void contract(OPENSSL_LHASH *lh); |
| 45 | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash); |
| 46 | |
| 47 | OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c) |
| 48 | { |
| 49 | OPENSSL_LHASH *ret; |
| 50 | |
| 51 | if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { |
| 52 | /* |
| 53 | * Do not set the error code, because the ERR code uses LHASH |
| 54 | * and we want to avoid possible endless error loop. |
| 55 | * CRYPTOerr(CRYPTO_F_OPENSSL_LH_NEW, ERR_R_MALLOC_FAILURE); |
| 56 | */ |
| 57 | return NULL; |
| 58 | } |
| 59 | if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL) |
| 60 | goto err; |
| 61 | ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c); |
| 62 | ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h); |
| 63 | ret->num_nodes = MIN_NODES / 2; |
| 64 | ret->num_alloc_nodes = MIN_NODES; |
| 65 | ret->pmax = MIN_NODES / 2; |
| 66 | ret->up_load = UP_LOAD; |
| 67 | ret->down_load = DOWN_LOAD; |
| 68 | return ret; |
| 69 | |
| 70 | err: |
| 71 | OPENSSL_free(ret->b); |
| 72 | OPENSSL_free(ret); |
| 73 | return NULL; |
| 74 | } |
| 75 | |
| 76 | void OPENSSL_LH_free(OPENSSL_LHASH *lh) |
| 77 | { |
| 78 | unsigned int i; |
| 79 | OPENSSL_LH_NODE *n, *nn; |
| 80 | |
| 81 | if (lh == NULL) |
| 82 | return; |
| 83 | |
| 84 | for (i = 0; i < lh->num_nodes; i++) { |
| 85 | n = lh->b[i]; |
| 86 | while (n != NULL) { |
| 87 | nn = n->next; |
| 88 | OPENSSL_free(n); |
| 89 | n = nn; |
| 90 | } |
| 91 | } |
| 92 | OPENSSL_free(lh->b); |
| 93 | OPENSSL_free(lh); |
| 94 | } |
| 95 | |
| 96 | void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data) |
| 97 | { |
| 98 | unsigned long hash; |
| 99 | OPENSSL_LH_NODE *nn, **rn; |
| 100 | void *ret; |
| 101 | |
| 102 | lh->error = 0; |
| 103 | if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh)) |
| 104 | return NULL; /* 'lh->error++' already done in 'expand' */ |
| 105 | |
| 106 | rn = getrn(lh, data, &hash); |
| 107 | |
| 108 | if (*rn == NULL) { |
| 109 | if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) { |
| 110 | lh->error++; |
| 111 | return NULL; |
| 112 | } |
| 113 | nn->data = data; |
| 114 | nn->next = NULL; |
| 115 | nn->hash = hash; |
| 116 | *rn = nn; |
| 117 | ret = NULL; |
| 118 | lh->num_insert++; |
| 119 | lh->num_items++; |
| 120 | } else { /* replace same key */ |
| 121 | ret = (*rn)->data; |
| 122 | (*rn)->data = data; |
| 123 | lh->num_replace++; |
| 124 | } |
| 125 | return ret; |
| 126 | } |
| 127 | |
| 128 | void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data) |
| 129 | { |
| 130 | unsigned long hash; |
| 131 | OPENSSL_LH_NODE *nn, **rn; |
| 132 | void *ret; |
| 133 | |
| 134 | lh->error = 0; |
| 135 | rn = getrn(lh, data, &hash); |
| 136 | |
| 137 | if (*rn == NULL) { |
| 138 | lh->num_no_delete++; |
| 139 | return NULL; |
| 140 | } else { |
| 141 | nn = *rn; |
| 142 | *rn = nn->next; |
| 143 | ret = nn->data; |
| 144 | OPENSSL_free(nn); |
| 145 | lh->num_delete++; |
| 146 | } |
| 147 | |
| 148 | lh->num_items--; |
| 149 | if ((lh->num_nodes > MIN_NODES) && |
| 150 | (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes))) |
| 151 | contract(lh); |
| 152 | |
| 153 | return ret; |
| 154 | } |
| 155 | |
| 156 | void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data) |
| 157 | { |
| 158 | unsigned long hash; |
| 159 | OPENSSL_LH_NODE **rn; |
| 160 | void *ret; |
| 161 | |
| 162 | tsan_store((TSAN_QUALIFIER int *)&lh->error, 0); |
| 163 | |
| 164 | rn = getrn(lh, data, &hash); |
| 165 | |
| 166 | if (*rn == NULL) { |
| 167 | tsan_counter(&lh->num_retrieve_miss); |
| 168 | return NULL; |
| 169 | } else { |
| 170 | ret = (*rn)->data; |
| 171 | tsan_counter(&lh->num_retrieve); |
| 172 | } |
| 173 | |
| 174 | return ret; |
| 175 | } |
| 176 | |
| 177 | static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg, |
| 178 | OPENSSL_LH_DOALL_FUNC func, |
| 179 | OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg) |
| 180 | { |
| 181 | int i; |
| 182 | OPENSSL_LH_NODE *a, *n; |
| 183 | |
| 184 | if (lh == NULL) |
| 185 | return; |
| 186 | |
| 187 | /* |
| 188 | * reverse the order so we search from 'top to bottom' We were having |
| 189 | * memory leaks otherwise |
| 190 | */ |
| 191 | for (i = lh->num_nodes - 1; i >= 0; i--) { |
| 192 | a = lh->b[i]; |
| 193 | while (a != NULL) { |
| 194 | n = a->next; |
| 195 | if (use_arg) |
| 196 | func_arg(a->data, arg); |
| 197 | else |
| 198 | func(a->data); |
| 199 | a = n; |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func) |
| 205 | { |
| 206 | doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL); |
| 207 | } |
| 208 | |
| 209 | void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg) |
| 210 | { |
| 211 | doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg); |
| 212 | } |
| 213 | |
| 214 | static int expand(OPENSSL_LHASH *lh) |
| 215 | { |
| 216 | OPENSSL_LH_NODE **n, **n1, **n2, *np; |
| 217 | unsigned int p, pmax, nni, j; |
| 218 | unsigned long hash; |
| 219 | |
| 220 | nni = lh->num_alloc_nodes; |
| 221 | p = lh->p; |
| 222 | pmax = lh->pmax; |
| 223 | if (p + 1 >= pmax) { |
| 224 | j = nni * 2; |
| 225 | n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j); |
| 226 | if (n == NULL) { |
| 227 | lh->error++; |
| 228 | return 0; |
| 229 | } |
| 230 | lh->b = n; |
| 231 | memset(n + nni, 0, sizeof(*n) * (j - nni)); |
| 232 | lh->pmax = nni; |
| 233 | lh->num_alloc_nodes = j; |
| 234 | lh->num_expand_reallocs++; |
| 235 | lh->p = 0; |
| 236 | } else { |
| 237 | lh->p++; |
| 238 | } |
| 239 | |
| 240 | lh->num_nodes++; |
| 241 | lh->num_expands++; |
| 242 | n1 = &(lh->b[p]); |
| 243 | n2 = &(lh->b[p + pmax]); |
| 244 | *n2 = NULL; |
| 245 | |
| 246 | for (np = *n1; np != NULL;) { |
| 247 | hash = np->hash; |
| 248 | if ((hash % nni) != p) { /* move it */ |
| 249 | *n1 = (*n1)->next; |
| 250 | np->next = *n2; |
| 251 | *n2 = np; |
| 252 | } else |
| 253 | n1 = &((*n1)->next); |
| 254 | np = *n1; |
| 255 | } |
| 256 | |
| 257 | return 1; |
| 258 | } |
| 259 | |
| 260 | static void contract(OPENSSL_LHASH *lh) |
| 261 | { |
| 262 | OPENSSL_LH_NODE **n, *n1, *np; |
| 263 | |
| 264 | np = lh->b[lh->p + lh->pmax - 1]; |
| 265 | lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */ |
| 266 | if (lh->p == 0) { |
| 267 | n = OPENSSL_realloc(lh->b, |
| 268 | (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax)); |
| 269 | if (n == NULL) { |
| 270 | /* fputs("realloc error in lhash",stderr); */ |
| 271 | lh->error++; |
| 272 | return; |
| 273 | } |
| 274 | lh->num_contract_reallocs++; |
| 275 | lh->num_alloc_nodes /= 2; |
| 276 | lh->pmax /= 2; |
| 277 | lh->p = lh->pmax - 1; |
| 278 | lh->b = n; |
| 279 | } else |
| 280 | lh->p--; |
| 281 | |
| 282 | lh->num_nodes--; |
| 283 | lh->num_contracts++; |
| 284 | |
| 285 | n1 = lh->b[(int)lh->p]; |
| 286 | if (n1 == NULL) |
| 287 | lh->b[(int)lh->p] = np; |
| 288 | else { |
| 289 | while (n1->next != NULL) |
| 290 | n1 = n1->next; |
| 291 | n1->next = np; |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, |
| 296 | const void *data, unsigned long *rhash) |
| 297 | { |
| 298 | OPENSSL_LH_NODE **ret, *n1; |
| 299 | unsigned long hash, nn; |
| 300 | OPENSSL_LH_COMPFUNC cf; |
| 301 | |
| 302 | hash = (*(lh->hash)) (data); |
| 303 | tsan_counter(&lh->num_hash_calls); |
| 304 | *rhash = hash; |
| 305 | |
| 306 | nn = hash % lh->pmax; |
| 307 | if (nn < lh->p) |
| 308 | nn = hash % lh->num_alloc_nodes; |
| 309 | |
| 310 | cf = lh->comp; |
| 311 | ret = &(lh->b[(int)nn]); |
| 312 | for (n1 = *ret; n1 != NULL; n1 = n1->next) { |
| 313 | tsan_counter(&lh->num_hash_comps); |
| 314 | if (n1->hash != hash) { |
| 315 | ret = &(n1->next); |
| 316 | continue; |
| 317 | } |
| 318 | tsan_counter(&lh->num_comp_calls); |
| 319 | if (cf(n1->data, data) == 0) |
| 320 | break; |
| 321 | ret = &(n1->next); |
| 322 | } |
| 323 | return ret; |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * The following hash seems to work very well on normal text strings no |
| 328 | * collisions on /usr/dict/words and it distributes on %2^n quite well, not |
| 329 | * as good as MD5, but still good. |
| 330 | */ |
| 331 | unsigned long OPENSSL_LH_strhash(const char *c) |
| 332 | { |
| 333 | unsigned long ret = 0; |
| 334 | long n; |
| 335 | unsigned long v; |
| 336 | int r; |
| 337 | |
| 338 | if ((c == NULL) || (*c == '\0')) |
| 339 | return ret; |
| 340 | |
| 341 | n = 0x100; |
| 342 | while (*c) { |
| 343 | v = n | (*c); |
| 344 | n += 0x100; |
| 345 | r = (int)((v >> 2) ^ v) & 0x0f; |
| 346 | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */ |
| 347 | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r)); |
| 348 | ret &= 0xFFFFFFFFL; |
| 349 | ret ^= v * v; |
| 350 | c++; |
| 351 | } |
| 352 | return (ret >> 16) ^ ret; |
| 353 | } |
| 354 | |
| 355 | unsigned long openssl_lh_strcasehash(const char *c) |
| 356 | { |
| 357 | unsigned long ret = 0; |
| 358 | long n; |
| 359 | unsigned long v; |
| 360 | int r; |
| 361 | |
| 362 | if (c == NULL || *c == '\0') |
| 363 | return ret; |
| 364 | |
| 365 | for (n = 0x100; *c != '\0'; n += 0x100) { |
| 366 | v = n | ossl_tolower(*c); |
| 367 | r = (int)((v >> 2) ^ v) & 0x0f; |
| 368 | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */ |
| 369 | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r)); |
| 370 | ret &= 0xFFFFFFFFL; |
| 371 | ret ^= v * v; |
| 372 | c++; |
| 373 | } |
| 374 | return (ret >> 16) ^ ret; |
| 375 | } |
| 376 | |
| 377 | unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh) |
| 378 | { |
| 379 | return lh ? lh->num_items : 0; |
| 380 | } |
| 381 | |
| 382 | unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh) |
| 383 | { |
| 384 | return lh->down_load; |
| 385 | } |
| 386 | |
| 387 | void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load) |
| 388 | { |
| 389 | lh->down_load = down_load; |
| 390 | } |
| 391 | |
| 392 | int OPENSSL_LH_error(OPENSSL_LHASH *lh) |
| 393 | { |
| 394 | return lh->error; |
| 395 | } |