blob: 7260678b4392f8cc14b82cb3b9077337edf6279f [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
7#include "cpupri.h"
8
xf.li7ccf8372024-03-07 00:08:02 -08009#ifdef CONFIG_SCHED_DEBUG
10# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
11#else
12# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
13#endif
14
lh9ed821d2023-04-07 01:36:19 -070015extern __read_mostly int scheduler_running;
16
17/*
18 * Convert user-nice values [ -20 ... 0 ... 19 ]
19 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
20 * and back.
21 */
22#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
23#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
24#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
25
26/*
27 * 'User priority' is the nice value converted to something we
28 * can work with better when scaling various scheduler parameters,
29 * it's a [ 0 ... 39 ] range.
30 */
31#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
32#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
33#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
34
35/*
36 * Helpers for converting nanosecond timing to jiffy resolution
37 */
38#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
39
40#define NICE_0_LOAD SCHED_LOAD_SCALE
41#define NICE_0_SHIFT SCHED_LOAD_SHIFT
42
43/*
44 * These are the 'tuning knobs' of the scheduler:
45 */
46
47/*
48 * single value that denotes runtime == period, ie unlimited time.
49 */
50#define RUNTIME_INF ((u64)~0ULL)
51
52static inline int rt_policy(int policy)
53{
54 if (policy == SCHED_FIFO || policy == SCHED_RR)
55 return 1;
56 return 0;
57}
58
59static inline int task_has_rt_policy(struct task_struct *p)
60{
61 return rt_policy(p->policy);
62}
63
64/*
65 * This is the priority-queue data structure of the RT scheduling class:
66 */
67struct rt_prio_array {
68 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
69 struct list_head queue[MAX_RT_PRIO];
70};
71
72struct rt_bandwidth {
73 /* nests inside the rq lock: */
74 raw_spinlock_t rt_runtime_lock;
75 ktime_t rt_period;
76 u64 rt_runtime;
77 struct hrtimer rt_period_timer;
78};
79
80extern struct mutex sched_domains_mutex;
81
82#ifdef CONFIG_CGROUP_SCHED
83
84#include <linux/cgroup.h>
85
86struct cfs_rq;
87struct rt_rq;
88
89extern struct list_head task_groups;
90
91struct cfs_bandwidth {
92#ifdef CONFIG_CFS_BANDWIDTH
93 raw_spinlock_t lock;
94 ktime_t period;
95 u64 quota, runtime;
96 s64 hierarchal_quota;
97 u64 runtime_expires;
98
99 int idle, timer_active;
100 struct hrtimer period_timer, slack_timer;
101 struct list_head throttled_cfs_rq;
102
103 /* statistics */
104 int nr_periods, nr_throttled;
105 u64 throttled_time;
106#endif
107};
108
109/* task group related information */
110struct task_group {
111 struct cgroup_subsys_state css;
112
113#ifdef CONFIG_FAIR_GROUP_SCHED
114 /* schedulable entities of this group on each cpu */
115 struct sched_entity **se;
116 /* runqueue "owned" by this group on each cpu */
117 struct cfs_rq **cfs_rq;
118 unsigned long shares;
119
120 atomic_t load_weight;
121#endif
122
123#ifdef CONFIG_RT_GROUP_SCHED
124 struct sched_rt_entity **rt_se;
125 struct rt_rq **rt_rq;
126
127 struct rt_bandwidth rt_bandwidth;
128#endif
129
130 struct rcu_head rcu;
131 struct list_head list;
132
133 struct task_group *parent;
134 struct list_head siblings;
135 struct list_head children;
136
137#ifdef CONFIG_SCHED_AUTOGROUP
138 struct autogroup *autogroup;
139#endif
140
141 struct cfs_bandwidth cfs_bandwidth;
142};
143
144#ifdef CONFIG_FAIR_GROUP_SCHED
145#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
146
147/*
148 * A weight of 0 or 1 can cause arithmetics problems.
149 * A weight of a cfs_rq is the sum of weights of which entities
150 * are queued on this cfs_rq, so a weight of a entity should not be
151 * too large, so as the shares value of a task group.
152 * (The default weight is 1024 - so there's no practical
153 * limitation from this.)
154 */
155#define MIN_SHARES (1UL << 1)
156#define MAX_SHARES (1UL << 18)
157#endif
158
159/* Default task group.
160 * Every task in system belong to this group at bootup.
161 */
162extern struct task_group root_task_group;
163
164typedef int (*tg_visitor)(struct task_group *, void *);
165
166extern int walk_tg_tree_from(struct task_group *from,
167 tg_visitor down, tg_visitor up, void *data);
168
169/*
170 * Iterate the full tree, calling @down when first entering a node and @up when
171 * leaving it for the final time.
172 *
173 * Caller must hold rcu_lock or sufficient equivalent.
174 */
175static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
176{
177 return walk_tg_tree_from(&root_task_group, down, up, data);
178}
179
180extern int tg_nop(struct task_group *tg, void *data);
181
182extern void free_fair_sched_group(struct task_group *tg);
183extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
184extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
185extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
186 struct sched_entity *se, int cpu,
187 struct sched_entity *parent);
188extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
189extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
190
191extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
192extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
193extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
194
195extern void free_rt_sched_group(struct task_group *tg);
196extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
197extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
198 struct sched_rt_entity *rt_se, int cpu,
199 struct sched_rt_entity *parent);
200
201#else /* CONFIG_CGROUP_SCHED */
202
203struct cfs_bandwidth { };
204
205#endif /* CONFIG_CGROUP_SCHED */
206
207/* CFS-related fields in a runqueue */
208struct cfs_rq {
209 struct load_weight load;
210 unsigned long nr_running, h_nr_running;
211
212 u64 exec_clock;
213 u64 min_vruntime;
214#ifndef CONFIG_64BIT
215 u64 min_vruntime_copy;
216#endif
217
218 struct rb_root tasks_timeline;
219 struct rb_node *rb_leftmost;
220
221 /*
222 * 'curr' points to currently running entity on this cfs_rq.
223 * It is set to NULL otherwise (i.e when none are currently running).
224 */
225 struct sched_entity *curr, *next, *last, *skip;
226
227#ifdef CONFIG_SCHED_DEBUG
228 unsigned int nr_spread_over;
229#endif
230
231#ifdef CONFIG_FAIR_GROUP_SCHED
232 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
233
234 /*
235 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
236 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
237 * (like users, containers etc.)
238 *
239 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
240 * list is used during load balance.
241 */
242 int on_list;
243 struct list_head leaf_cfs_rq_list;
244 struct task_group *tg; /* group that "owns" this runqueue */
245
246#ifdef CONFIG_SMP
247 /*
248 * h_load = weight * f(tg)
249 *
250 * Where f(tg) is the recursive weight fraction assigned to
251 * this group.
252 */
253 unsigned long h_load;
254
255 /*
256 * Maintaining per-cpu shares distribution for group scheduling
257 *
258 * load_stamp is the last time we updated the load average
259 * load_last is the last time we updated the load average and saw load
260 * load_unacc_exec_time is currently unaccounted execution time
261 */
262 u64 load_avg;
263 u64 load_period;
264 u64 load_stamp, load_last, load_unacc_exec_time;
265
266 unsigned long load_contribution;
267#endif /* CONFIG_SMP */
268#ifdef CONFIG_CFS_BANDWIDTH
269 int runtime_enabled;
270 u64 runtime_expires;
271 s64 runtime_remaining;
272
273 u64 throttled_timestamp;
274 int throttled, throttle_count;
275 struct list_head throttled_list;
276#endif /* CONFIG_CFS_BANDWIDTH */
277#endif /* CONFIG_FAIR_GROUP_SCHED */
278};
279
280static inline int rt_bandwidth_enabled(void)
281{
282 return sysctl_sched_rt_runtime >= 0;
283}
284
285/* Real-Time classes' related field in a runqueue: */
286struct rt_rq {
287 struct rt_prio_array active;
288 unsigned long rt_nr_running;
289#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
290 struct {
291 int curr; /* highest queued rt task prio */
292#ifdef CONFIG_SMP
293 int next; /* next highest */
294#endif
295 } highest_prio;
296#endif
297#ifdef CONFIG_SMP
298 unsigned long rt_nr_migratory;
299 unsigned long rt_nr_total;
300 int overloaded;
301 struct plist_head pushable_tasks;
302#endif
303 int rt_throttled;
304 u64 rt_time;
305 u64 rt_runtime;
306 /* Nests inside the rq lock: */
307 raw_spinlock_t rt_runtime_lock;
308
309#ifdef CONFIG_RT_GROUP_SCHED
310 unsigned long rt_nr_boosted;
311
312 struct rq *rq;
313 struct list_head leaf_rt_rq_list;
314 struct task_group *tg;
315#endif
316};
317
318#ifdef CONFIG_SMP
319
320/*
321 * We add the notion of a root-domain which will be used to define per-domain
322 * variables. Each exclusive cpuset essentially defines an island domain by
323 * fully partitioning the member cpus from any other cpuset. Whenever a new
324 * exclusive cpuset is created, we also create and attach a new root-domain
325 * object.
326 *
327 */
328struct root_domain {
329 atomic_t refcount;
330 atomic_t rto_count;
331 struct rcu_head rcu;
332 cpumask_var_t span;
333 cpumask_var_t online;
334
335 /*
336 * The "RT overload" flag: it gets set if a CPU has more than
337 * one runnable RT task.
338 */
339 cpumask_var_t rto_mask;
340 struct cpupri cpupri;
341};
342
343extern struct root_domain def_root_domain;
344
345#endif /* CONFIG_SMP */
346
347/*
348 * This is the main, per-CPU runqueue data structure.
349 *
350 * Locking rule: those places that want to lock multiple runqueues
351 * (such as the load balancing or the thread migration code), lock
352 * acquire operations must be ordered by ascending &runqueue.
353 */
354struct rq {
355 /* runqueue lock: */
356 raw_spinlock_t lock;
357
358 /*
359 * nr_running and cpu_load should be in the same cacheline because
360 * remote CPUs use both these fields when doing load calculation.
361 */
362 unsigned long nr_running;
363 #define CPU_LOAD_IDX_MAX 5
364 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
365 unsigned long last_load_update_tick;
366#ifdef CONFIG_NO_HZ
367 u64 nohz_stamp;
368 unsigned long nohz_flags;
369#endif
370 int skip_clock_update;
371
372 /* capture load from *all* tasks on this cpu: */
373 struct load_weight load;
374 unsigned long nr_load_updates;
375 u64 nr_switches;
376
377 struct cfs_rq cfs;
378 struct rt_rq rt;
379
380#ifdef CONFIG_FAIR_GROUP_SCHED
381 /* list of leaf cfs_rq on this cpu: */
382 struct list_head leaf_cfs_rq_list;
383#endif
384#ifdef CONFIG_RT_GROUP_SCHED
385 struct list_head leaf_rt_rq_list;
386#endif
387
388 /*
389 * This is part of a global counter where only the total sum
390 * over all CPUs matters. A task can increase this counter on
391 * one CPU and if it got migrated afterwards it may decrease
392 * it on another CPU. Always updated under the runqueue lock:
393 */
394 unsigned long nr_uninterruptible;
395
396 struct task_struct *curr, *idle, *stop;
397 unsigned long next_balance;
398 struct mm_struct *prev_mm;
399
400 u64 clock;
401 u64 clock_task;
402
403 atomic_t nr_iowait;
404
405#ifdef CONFIG_SMP
406 struct root_domain *rd;
407 struct sched_domain *sd;
408
409 unsigned long cpu_power;
410
411 unsigned char idle_balance;
412 /* For active balancing */
413 int post_schedule;
414 int active_balance;
415 int push_cpu;
416 struct cpu_stop_work active_balance_work;
417 /* cpu of this runqueue: */
418 int cpu;
419 int online;
420
421 struct list_head cfs_tasks;
422
423 u64 rt_avg;
424 u64 age_stamp;
425 u64 idle_stamp;
426 u64 avg_idle;
427#endif
428
429#ifdef CONFIG_IRQ_TIME_ACCOUNTING
430 u64 prev_irq_time;
431#endif
432#ifdef CONFIG_PARAVIRT
433 u64 prev_steal_time;
434#endif
435#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
436 u64 prev_steal_time_rq;
437#endif
438
439 /* calc_load related fields */
440 unsigned long calc_load_update;
441 long calc_load_active;
442
443#ifdef CONFIG_SCHED_HRTICK
444#ifdef CONFIG_SMP
445 int hrtick_csd_pending;
446 struct call_single_data hrtick_csd;
447#endif
448 struct hrtimer hrtick_timer;
449#endif
450
451#ifdef CONFIG_SCHEDSTATS
452 /* latency stats */
453 struct sched_info rq_sched_info;
454 unsigned long long rq_cpu_time;
455 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
456
457 /* sys_sched_yield() stats */
458 unsigned int yld_count;
459
460 /* schedule() stats */
461 unsigned int sched_count;
462 unsigned int sched_goidle;
463
464 /* try_to_wake_up() stats */
465 unsigned int ttwu_count;
466 unsigned int ttwu_local;
467#endif
468
469#ifdef CONFIG_SMP
470 struct llist_head wake_list;
471#endif
472};
473
474static inline int cpu_of(struct rq *rq)
475{
476#ifdef CONFIG_SMP
477 return rq->cpu;
478#else
479 return 0;
480#endif
481}
482
483DECLARE_PER_CPU(struct rq, runqueues);
484
485#ifdef CONFIG_STACK_SIZE
486extern struct thread_info * current_kernel_thread;
487#endif
488
489#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
490#define this_rq() (&__get_cpu_var(runqueues))
491#define task_rq(p) cpu_rq(task_cpu(p))
492#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
493#define raw_rq() (&__raw_get_cpu_var(runqueues))
494
495#ifdef CONFIG_SMP
496
497#define rcu_dereference_check_sched_domain(p) \
498 rcu_dereference_check((p), \
499 lockdep_is_held(&sched_domains_mutex))
500
501/*
502 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
503 * See detach_destroy_domains: synchronize_sched for details.
504 *
505 * The domain tree of any CPU may only be accessed from within
506 * preempt-disabled sections.
507 */
508#define for_each_domain(cpu, __sd) \
509 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
510 __sd; __sd = __sd->parent)
511
512#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
513
514/**
515 * highest_flag_domain - Return highest sched_domain containing flag.
516 * @cpu: The cpu whose highest level of sched domain is to
517 * be returned.
518 * @flag: The flag to check for the highest sched_domain
519 * for the given cpu.
520 *
521 * Returns the highest sched_domain of a cpu which contains the given flag.
522 */
523static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
524{
525 struct sched_domain *sd, *hsd = NULL;
526
527 for_each_domain(cpu, sd) {
528 if (!(sd->flags & flag))
529 break;
530 hsd = sd;
531 }
532
533 return hsd;
534}
535
536DECLARE_PER_CPU(struct sched_domain *, sd_llc);
537DECLARE_PER_CPU(int, sd_llc_id);
538
539#endif /* CONFIG_SMP */
540
541#include "stats.h"
542#include "auto_group.h"
543
544#ifdef CONFIG_CGROUP_SCHED
545
546/*
547 * Return the group to which this tasks belongs.
548 *
549 * We cannot use task_subsys_state() and friends because the cgroup
550 * subsystem changes that value before the cgroup_subsys::attach() method
551 * is called, therefore we cannot pin it and might observe the wrong value.
552 *
553 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
554 * core changes this before calling sched_move_task().
555 *
556 * Instead we use a 'copy' which is updated from sched_move_task() while
557 * holding both task_struct::pi_lock and rq::lock.
558 */
559static inline struct task_group *task_group(struct task_struct *p)
560{
561 return p->sched_task_group;
562}
563
564/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
565static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
566{
567#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
568 struct task_group *tg = task_group(p);
569#endif
570
571#ifdef CONFIG_FAIR_GROUP_SCHED
572 p->se.cfs_rq = tg->cfs_rq[cpu];
573 p->se.parent = tg->se[cpu];
574#endif
575
576#ifdef CONFIG_RT_GROUP_SCHED
577 p->rt.rt_rq = tg->rt_rq[cpu];
578 p->rt.parent = tg->rt_se[cpu];
579#endif
580}
581
582#else /* CONFIG_CGROUP_SCHED */
583
584static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
585static inline struct task_group *task_group(struct task_struct *p)
586{
587 return NULL;
588}
589
590#endif /* CONFIG_CGROUP_SCHED */
591
592static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
593{
594 set_task_rq(p, cpu);
595#ifdef CONFIG_SMP
596 /*
597 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
598 * successfuly executed on another CPU. We must ensure that updates of
599 * per-task data have been completed by this moment.
600 */
601 smp_wmb();
602 task_thread_info(p)->cpu = cpu;
603#endif
604}
605
606/*
607 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
608 */
609#ifdef CONFIG_SCHED_DEBUG
610# include <linux/static_key.h>
611# define const_debug __read_mostly
612#else
613# define const_debug const
614#endif
615
616extern const_debug unsigned int sysctl_sched_features;
617
618#define SCHED_FEAT(name, enabled) \
619 __SCHED_FEAT_##name ,
620
621enum {
622#include "features.h"
623 __SCHED_FEAT_NR,
624};
625
626#undef SCHED_FEAT
627
628#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
629static __always_inline bool static_branch__true(struct static_key *key)
630{
631 return static_key_true(key); /* Not out of line branch. */
632}
633
634static __always_inline bool static_branch__false(struct static_key *key)
635{
636 return static_key_false(key); /* Out of line branch. */
637}
638
639#define SCHED_FEAT(name, enabled) \
640static __always_inline bool static_branch_##name(struct static_key *key) \
641{ \
642 return static_branch__##enabled(key); \
643}
644
645#include "features.h"
646
647#undef SCHED_FEAT
648
649extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
650#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
651#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
652#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
653#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
654
655static inline u64 global_rt_period(void)
656{
657 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
658}
659
660static inline u64 global_rt_runtime(void)
661{
662 if (sysctl_sched_rt_runtime < 0)
663 return RUNTIME_INF;
664
665 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
666}
667
668
669
670static inline int task_current(struct rq *rq, struct task_struct *p)
671{
672 return rq->curr == p;
673}
674
675static inline int task_running(struct rq *rq, struct task_struct *p)
676{
677#ifdef CONFIG_SMP
678 return p->on_cpu;
679#else
680 return task_current(rq, p);
681#endif
682}
683
684
685#ifndef prepare_arch_switch
686# define prepare_arch_switch(next) do { } while (0)
687#endif
688#ifndef finish_arch_switch
689# define finish_arch_switch(prev) do { } while (0)
690#endif
691#ifndef finish_arch_post_lock_switch
692# define finish_arch_post_lock_switch() do { } while (0)
693#endif
694
695#ifndef __ARCH_WANT_UNLOCKED_CTXSW
696static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
697{
698#ifdef CONFIG_SMP
699 /*
700 * We can optimise this out completely for !SMP, because the
701 * SMP rebalancing from interrupt is the only thing that cares
702 * here.
703 */
704 next->on_cpu = 1;
705#endif
706}
707
708static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
709{
710#ifdef CONFIG_SMP
711 /*
712 * After ->on_cpu is cleared, the task can be moved to a different CPU.
713 * We must ensure this doesn't happen until the switch is completely
714 * finished.
715 */
716 smp_wmb();
717 prev->on_cpu = 0;
718#endif
719#ifdef CONFIG_DEBUG_SPINLOCK
720 /* this is a valid case when another task releases the spinlock */
721 rq->lock.owner = current;
722#endif
723 /*
724 * If we are tracking spinlock dependencies then we have to
725 * fix up the runqueue lock - which gets 'carried over' from
726 * prev into current:
727 */
728 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
729
730 raw_spin_unlock_irq(&rq->lock);
731}
732
733#else /* __ARCH_WANT_UNLOCKED_CTXSW */
734static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
735{
736#ifdef CONFIG_SMP
737 /*
738 * We can optimise this out completely for !SMP, because the
739 * SMP rebalancing from interrupt is the only thing that cares
740 * here.
741 */
742 next->on_cpu = 1;
743#endif
744#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
745 raw_spin_unlock_irq(&rq->lock);
746#else
747 raw_spin_unlock(&rq->lock);
748#endif
749}
750
751static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
752{
753#ifdef CONFIG_SMP
754 /*
755 * After ->on_cpu is cleared, the task can be moved to a different CPU.
756 * We must ensure this doesn't happen until the switch is completely
757 * finished.
758 */
759 smp_wmb();
760 prev->on_cpu = 0;
761#endif
762#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
763 local_irq_enable();
764#endif
765}
766#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
767
768
769static inline void update_load_add(struct load_weight *lw, unsigned long inc)
770{
771 lw->weight += inc;
772 lw->inv_weight = 0;
773}
774
775static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
776{
777 lw->weight -= dec;
778 lw->inv_weight = 0;
779}
780
781static inline void update_load_set(struct load_weight *lw, unsigned long w)
782{
783 lw->weight = w;
784 lw->inv_weight = 0;
785}
786
787/*
788 * To aid in avoiding the subversion of "niceness" due to uneven distribution
789 * of tasks with abnormal "nice" values across CPUs the contribution that
790 * each task makes to its run queue's load is weighted according to its
791 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
792 * scaled version of the new time slice allocation that they receive on time
793 * slice expiry etc.
794 */
795
796#define WEIGHT_IDLEPRIO 3
797#define WMULT_IDLEPRIO 1431655765
798
799/*
800 * Nice levels are multiplicative, with a gentle 10% change for every
801 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
802 * nice 1, it will get ~10% less CPU time than another CPU-bound task
803 * that remained on nice 0.
804 *
805 * The "10% effect" is relative and cumulative: from _any_ nice level,
806 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
807 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
808 * If a task goes up by ~10% and another task goes down by ~10% then
809 * the relative distance between them is ~25%.)
810 */
811static const int prio_to_weight[40] = {
812 /* -20 */ 88761, 71755, 56483, 46273, 36291,
813 /* -15 */ 29154, 23254, 18705, 14949, 11916,
814 /* -10 */ 9548, 7620, 6100, 4904, 3906,
815 /* -5 */ 3121, 2501, 1991, 1586, 1277,
816 /* 0 */ 1024, 820, 655, 526, 423,
817 /* 5 */ 335, 272, 215, 172, 137,
818 /* 10 */ 110, 87, 70, 56, 45,
819 /* 15 */ 36, 29, 23, 18, 15,
820};
821
822/*
823 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
824 *
825 * In cases where the weight does not change often, we can use the
826 * precalculated inverse to speed up arithmetics by turning divisions
827 * into multiplications:
828 */
829static const u32 prio_to_wmult[40] = {
830 /* -20 */ 48388, 59856, 76040, 92818, 118348,
831 /* -15 */ 147320, 184698, 229616, 287308, 360437,
832 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
833 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
834 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
835 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
836 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
837 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
838};
839
840/* Time spent by the tasks of the cpu accounting group executing in ... */
841enum cpuacct_stat_index {
842 CPUACCT_STAT_USER, /* ... user mode */
843 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
844
845 CPUACCT_STAT_NSTATS,
846};
847
848
849#define sched_class_highest (&stop_sched_class)
850#define for_each_class(class) \
851 for (class = sched_class_highest; class; class = class->next)
852
853extern const struct sched_class stop_sched_class;
854extern const struct sched_class rt_sched_class;
855extern const struct sched_class fair_sched_class;
856extern const struct sched_class idle_sched_class;
857
858
859#ifdef CONFIG_SMP
860
861extern void trigger_load_balance(struct rq *rq, int cpu);
862extern void idle_balance(int this_cpu, struct rq *this_rq);
863
864#else /* CONFIG_SMP */
865
866static inline void idle_balance(int cpu, struct rq *rq)
867{
868}
869
870#endif
871
872extern void sysrq_sched_debug_show(void);
873extern void sched_init_granularity(void);
874extern void update_max_interval(void);
875extern void update_group_power(struct sched_domain *sd, int cpu);
876extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
877extern void init_sched_rt_class(void);
878extern void init_sched_fair_class(void);
879
880extern void resched_task(struct task_struct *p);
881extern void resched_cpu(int cpu);
882
883extern struct rt_bandwidth def_rt_bandwidth;
884extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
885
886extern void update_idle_cpu_load(struct rq *this_rq);
887
888#ifdef CONFIG_CGROUP_CPUACCT
889#include <linux/cgroup.h>
890/* track cpu usage of a group of tasks and its child groups */
891struct cpuacct {
892 struct cgroup_subsys_state css;
893 /* cpuusage holds pointer to a u64-type object on every cpu */
894 u64 __percpu *cpuusage;
895 struct kernel_cpustat __percpu *cpustat;
896};
897
898/* return cpu accounting group corresponding to this container */
899static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
900{
901 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
902 struct cpuacct, css);
903}
904
905/* return cpu accounting group to which this task belongs */
906static inline struct cpuacct *task_ca(struct task_struct *tsk)
907{
908 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
909 struct cpuacct, css);
910}
911
912static inline struct cpuacct *parent_ca(struct cpuacct *ca)
913{
914 if (!ca || !ca->css.cgroup->parent)
915 return NULL;
916 return cgroup_ca(ca->css.cgroup->parent);
917}
918
919extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
920#else
921static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
922#endif
923
924static inline void inc_nr_running(struct rq *rq)
925{
926 rq->nr_running++;
927}
928
929static inline void dec_nr_running(struct rq *rq)
930{
931 rq->nr_running--;
932}
933
934extern void update_rq_clock(struct rq *rq);
935
936extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
937extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
938
939extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
940
941extern const_debug unsigned int sysctl_sched_time_avg;
942extern const_debug unsigned int sysctl_sched_nr_migrate;
943extern const_debug unsigned int sysctl_sched_migration_cost;
944
945static inline u64 sched_avg_period(void)
946{
947 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
948}
949
950#ifdef CONFIG_SCHED_HRTICK
951
952/*
953 * Use hrtick when:
954 * - enabled by features
955 * - hrtimer is actually high res
956 */
957static inline int hrtick_enabled(struct rq *rq)
958{
959 if (!sched_feat(HRTICK))
960 return 0;
961 if (!cpu_active(cpu_of(rq)))
962 return 0;
963 return hrtimer_is_hres_active(&rq->hrtick_timer);
964}
965
966void hrtick_start(struct rq *rq, u64 delay);
967
968#else
969
970static inline int hrtick_enabled(struct rq *rq)
971{
972 return 0;
973}
974
975#endif /* CONFIG_SCHED_HRTICK */
976
977#ifdef CONFIG_SMP
978extern void sched_avg_update(struct rq *rq);
979static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
980{
981 rq->rt_avg += rt_delta;
982 sched_avg_update(rq);
983}
984#else
985static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
986static inline void sched_avg_update(struct rq *rq) { }
987#endif
988
989extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
990
991#ifdef CONFIG_SMP
992#ifdef CONFIG_PREEMPT
993
994static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
995
996/*
997 * fair double_lock_balance: Safely acquires both rq->locks in a fair
998 * way at the expense of forcing extra atomic operations in all
999 * invocations. This assures that the double_lock is acquired using the
1000 * same underlying policy as the spinlock_t on this architecture, which
1001 * reduces latency compared to the unfair variant below. However, it
1002 * also adds more overhead and therefore may reduce throughput.
1003 */
1004static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1005 __releases(this_rq->lock)
1006 __acquires(busiest->lock)
1007 __acquires(this_rq->lock)
1008{
1009 raw_spin_unlock(&this_rq->lock);
1010 double_rq_lock(this_rq, busiest);
1011
1012 return 1;
1013}
1014
1015#else
1016/*
1017 * Unfair double_lock_balance: Optimizes throughput at the expense of
1018 * latency by eliminating extra atomic operations when the locks are
1019 * already in proper order on entry. This favors lower cpu-ids and will
1020 * grant the double lock to lower cpus over higher ids under contention,
1021 * regardless of entry order into the function.
1022 */
1023static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1024 __releases(this_rq->lock)
1025 __acquires(busiest->lock)
1026 __acquires(this_rq->lock)
1027{
1028 int ret = 0;
1029
1030 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1031 if (busiest < this_rq) {
1032 raw_spin_unlock(&this_rq->lock);
1033 raw_spin_lock(&busiest->lock);
1034 raw_spin_lock_nested(&this_rq->lock,
1035 SINGLE_DEPTH_NESTING);
1036 ret = 1;
1037 } else
1038 raw_spin_lock_nested(&busiest->lock,
1039 SINGLE_DEPTH_NESTING);
1040 }
1041 return ret;
1042}
1043
1044#endif /* CONFIG_PREEMPT */
1045
1046/*
1047 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1048 */
1049static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1050{
1051 if (unlikely(!irqs_disabled())) {
1052 /* printk() doesn't work good under rq->lock */
1053 raw_spin_unlock(&this_rq->lock);
1054 BUG_ON(1);
1055 }
1056
1057 return _double_lock_balance(this_rq, busiest);
1058}
1059
1060static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1061 __releases(busiest->lock)
1062{
1063 raw_spin_unlock(&busiest->lock);
1064 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1065}
1066
1067/*
1068 * double_rq_lock - safely lock two runqueues
1069 *
1070 * Note this does not disable interrupts like task_rq_lock,
1071 * you need to do so manually before calling.
1072 */
1073static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1074 __acquires(rq1->lock)
1075 __acquires(rq2->lock)
1076{
1077 BUG_ON(!irqs_disabled());
1078 if (rq1 == rq2) {
1079 raw_spin_lock(&rq1->lock);
1080 __acquire(rq2->lock); /* Fake it out ;) */
1081 } else {
1082 if (rq1 < rq2) {
1083 raw_spin_lock(&rq1->lock);
1084 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1085 } else {
1086 raw_spin_lock(&rq2->lock);
1087 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1088 }
1089 }
1090}
1091
1092/*
1093 * double_rq_unlock - safely unlock two runqueues
1094 *
1095 * Note this does not restore interrupts like task_rq_unlock,
1096 * you need to do so manually after calling.
1097 */
1098static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1099 __releases(rq1->lock)
1100 __releases(rq2->lock)
1101{
1102 raw_spin_unlock(&rq1->lock);
1103 if (rq1 != rq2)
1104 raw_spin_unlock(&rq2->lock);
1105 else
1106 __release(rq2->lock);
1107}
1108
1109#else /* CONFIG_SMP */
1110
1111/*
1112 * double_rq_lock - safely lock two runqueues
1113 *
1114 * Note this does not disable interrupts like task_rq_lock,
1115 * you need to do so manually before calling.
1116 */
1117static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1118 __acquires(rq1->lock)
1119 __acquires(rq2->lock)
1120{
1121 BUG_ON(!irqs_disabled());
1122 BUG_ON(rq1 != rq2);
1123 raw_spin_lock(&rq1->lock);
1124 __acquire(rq2->lock); /* Fake it out ;) */
1125}
1126
1127/*
1128 * double_rq_unlock - safely unlock two runqueues
1129 *
1130 * Note this does not restore interrupts like task_rq_unlock,
1131 * you need to do so manually after calling.
1132 */
1133static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1134 __releases(rq1->lock)
1135 __releases(rq2->lock)
1136{
1137 BUG_ON(rq1 != rq2);
1138 raw_spin_unlock(&rq1->lock);
1139 __release(rq2->lock);
1140}
1141
1142#endif
1143
1144extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1145extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1146extern void print_cfs_stats(struct seq_file *m, int cpu);
1147extern void print_rt_stats(struct seq_file *m, int cpu);
1148
1149extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1150extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1151
1152extern void cfs_bandwidth_usage_inc(void);
1153extern void cfs_bandwidth_usage_dec(void);
1154
1155#ifdef CONFIG_NO_HZ
1156enum rq_nohz_flag_bits {
1157 NOHZ_TICK_STOPPED,
1158 NOHZ_BALANCE_KICK,
1159 NOHZ_IDLE,
1160};
1161
1162#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1163#endif