lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #ifndef HEADER_BN_H |
| 12 | # define HEADER_BN_H |
| 13 | |
| 14 | # include <openssl/e_os2.h> |
| 15 | # ifndef OPENSSL_NO_STDIO |
| 16 | # include <stdio.h> |
| 17 | # endif |
| 18 | # include <openssl/opensslconf.h> |
| 19 | # include <openssl/ossl_typ.h> |
| 20 | # include <openssl/crypto.h> |
| 21 | # include <openssl/bnerr.h> |
| 22 | |
| 23 | #ifdef __cplusplus |
| 24 | extern "C" { |
| 25 | #endif |
| 26 | |
| 27 | /* |
| 28 | * 64-bit processor with LP64 ABI |
| 29 | */ |
| 30 | # ifdef SIXTY_FOUR_BIT_LONG |
| 31 | # define BN_ULONG unsigned long |
| 32 | # define BN_BYTES 8 |
| 33 | # endif |
| 34 | |
| 35 | /* |
| 36 | * 64-bit processor other than LP64 ABI |
| 37 | */ |
| 38 | # ifdef SIXTY_FOUR_BIT |
| 39 | # define BN_ULONG unsigned long long |
| 40 | # define BN_BYTES 8 |
| 41 | # endif |
| 42 | |
| 43 | # ifdef THIRTY_TWO_BIT |
| 44 | # define BN_ULONG unsigned int |
| 45 | # define BN_BYTES 4 |
| 46 | # endif |
| 47 | |
| 48 | # define BN_BITS2 (BN_BYTES * 8) |
| 49 | # define BN_BITS (BN_BITS2 * 2) |
| 50 | # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1)) |
| 51 | |
| 52 | # define BN_FLG_MALLOCED 0x01 |
| 53 | # define BN_FLG_STATIC_DATA 0x02 |
| 54 | |
| 55 | /* |
| 56 | * avoid leaking exponent information through timing, |
| 57 | * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, |
| 58 | * BN_div() will call BN_div_no_branch, |
| 59 | * BN_mod_inverse() will call bn_mod_inverse_no_branch. |
| 60 | */ |
| 61 | # define BN_FLG_CONSTTIME 0x04 |
| 62 | # define BN_FLG_SECURE 0x08 |
| 63 | |
| 64 | # if OPENSSL_API_COMPAT < 0x00908000L |
| 65 | /* deprecated name for the flag */ |
| 66 | # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME |
| 67 | # define BN_FLG_FREE 0x8000 /* used for debugging */ |
| 68 | # endif |
| 69 | |
| 70 | void BN_set_flags(BIGNUM *b, int n); |
| 71 | int BN_get_flags(const BIGNUM *b, int n); |
| 72 | |
| 73 | /* Values for |top| in BN_rand() */ |
| 74 | #define BN_RAND_TOP_ANY -1 |
| 75 | #define BN_RAND_TOP_ONE 0 |
| 76 | #define BN_RAND_TOP_TWO 1 |
| 77 | |
| 78 | /* Values for |bottom| in BN_rand() */ |
| 79 | #define BN_RAND_BOTTOM_ANY 0 |
| 80 | #define BN_RAND_BOTTOM_ODD 1 |
| 81 | |
| 82 | /* |
| 83 | * get a clone of a BIGNUM with changed flags, for *temporary* use only (the |
| 84 | * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The |
| 85 | * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that |
| 86 | * has not been otherwise initialised or used. |
| 87 | */ |
| 88 | void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags); |
| 89 | |
| 90 | /* Wrapper function to make using BN_GENCB easier */ |
| 91 | int BN_GENCB_call(BN_GENCB *cb, int a, int b); |
| 92 | |
| 93 | BN_GENCB *BN_GENCB_new(void); |
| 94 | void BN_GENCB_free(BN_GENCB *cb); |
| 95 | |
| 96 | /* Populate a BN_GENCB structure with an "old"-style callback */ |
| 97 | void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *), |
| 98 | void *cb_arg); |
| 99 | |
| 100 | /* Populate a BN_GENCB structure with a "new"-style callback */ |
| 101 | void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *), |
| 102 | void *cb_arg); |
| 103 | |
| 104 | void *BN_GENCB_get_arg(BN_GENCB *cb); |
| 105 | |
| 106 | # define BN_prime_checks 0 /* default: select number of iterations based |
| 107 | * on the size of the number */ |
| 108 | |
| 109 | /* |
| 110 | * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations |
| 111 | * that will be done for checking that a random number is probably prime. The |
| 112 | * error rate for accepting a composite number as prime depends on the size of |
| 113 | * the prime |b|. The error rates used are for calculating an RSA key with 2 primes, |
| 114 | * and so the level is what you would expect for a key of double the size of the |
| 115 | * prime. |
| 116 | * |
| 117 | * This table is generated using the algorithm of FIPS PUB 186-4 |
| 118 | * Digital Signature Standard (DSS), section F.1, page 117. |
| 119 | * (https://dx.doi.org/10.6028/NIST.FIPS.186-4) |
| 120 | * |
| 121 | * The following magma script was used to generate the output: |
| 122 | * securitybits:=125; |
| 123 | * k:=1024; |
| 124 | * for t:=1 to 65 do |
| 125 | * for M:=3 to Floor(2*Sqrt(k-1)-1) do |
| 126 | * S:=0; |
| 127 | * // Sum over m |
| 128 | * for m:=3 to M do |
| 129 | * s:=0; |
| 130 | * // Sum over j |
| 131 | * for j:=2 to m do |
| 132 | * s+:=(RealField(32)!2)^-(j+(k-1)/j); |
| 133 | * end for; |
| 134 | * S+:=2^(m-(m-1)*t)*s; |
| 135 | * end for; |
| 136 | * A:=2^(k-2-M*t); |
| 137 | * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; |
| 138 | * pkt:=2.00743*Log(2)*k*2^-k*(A+B); |
| 139 | * seclevel:=Floor(-Log(2,pkt)); |
| 140 | * if seclevel ge securitybits then |
| 141 | * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M; |
| 142 | * break; |
| 143 | * end if; |
| 144 | * end for; |
| 145 | * if seclevel ge securitybits then break; end if; |
| 146 | * end for; |
| 147 | * |
| 148 | * It can be run online at: |
| 149 | * http://magma.maths.usyd.edu.au/calc |
| 150 | * |
| 151 | * And will output: |
| 152 | * k: 1024, security: 129 bits (t: 6, M: 23) |
| 153 | * |
| 154 | * k is the number of bits of the prime, securitybits is the level we want to |
| 155 | * reach. |
| 156 | * |
| 157 | * prime length | RSA key size | # MR tests | security level |
| 158 | * -------------+--------------|------------+--------------- |
| 159 | * (b) >= 6394 | >= 12788 | 3 | 256 bit |
| 160 | * (b) >= 3747 | >= 7494 | 3 | 192 bit |
| 161 | * (b) >= 1345 | >= 2690 | 4 | 128 bit |
| 162 | * (b) >= 1080 | >= 2160 | 5 | 128 bit |
| 163 | * (b) >= 852 | >= 1704 | 5 | 112 bit |
| 164 | * (b) >= 476 | >= 952 | 5 | 80 bit |
| 165 | * (b) >= 400 | >= 800 | 6 | 80 bit |
| 166 | * (b) >= 347 | >= 694 | 7 | 80 bit |
| 167 | * (b) >= 308 | >= 616 | 8 | 80 bit |
| 168 | * (b) >= 55 | >= 110 | 27 | 64 bit |
| 169 | * (b) >= 6 | >= 12 | 34 | 64 bit |
| 170 | */ |
| 171 | |
| 172 | # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \ |
| 173 | (b) >= 1345 ? 4 : \ |
| 174 | (b) >= 476 ? 5 : \ |
| 175 | (b) >= 400 ? 6 : \ |
| 176 | (b) >= 347 ? 7 : \ |
| 177 | (b) >= 308 ? 8 : \ |
| 178 | (b) >= 55 ? 27 : \ |
| 179 | /* b >= 6 */ 34) |
| 180 | |
| 181 | # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) |
| 182 | |
| 183 | int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w); |
| 184 | int BN_is_zero(const BIGNUM *a); |
| 185 | int BN_is_one(const BIGNUM *a); |
| 186 | int BN_is_word(const BIGNUM *a, const BN_ULONG w); |
| 187 | int BN_is_odd(const BIGNUM *a); |
| 188 | |
| 189 | # define BN_one(a) (BN_set_word((a),1)) |
| 190 | |
| 191 | void BN_zero_ex(BIGNUM *a); |
| 192 | |
| 193 | # if OPENSSL_API_COMPAT >= 0x00908000L |
| 194 | # define BN_zero(a) BN_zero_ex(a) |
| 195 | # else |
| 196 | # define BN_zero(a) (BN_set_word((a),0)) |
| 197 | # endif |
| 198 | |
| 199 | const BIGNUM *BN_value_one(void); |
| 200 | char *BN_options(void); |
| 201 | BN_CTX *BN_CTX_new(void); |
| 202 | BN_CTX *BN_CTX_secure_new(void); |
| 203 | void BN_CTX_free(BN_CTX *c); |
| 204 | void BN_CTX_start(BN_CTX *ctx); |
| 205 | BIGNUM *BN_CTX_get(BN_CTX *ctx); |
| 206 | void BN_CTX_end(BN_CTX *ctx); |
| 207 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); |
| 208 | int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom); |
| 209 | int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); |
| 210 | int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range); |
| 211 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); |
| 212 | int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); |
| 213 | int BN_num_bits(const BIGNUM *a); |
| 214 | int BN_num_bits_word(BN_ULONG l); |
| 215 | int BN_security_bits(int L, int N); |
| 216 | BIGNUM *BN_new(void); |
| 217 | BIGNUM *BN_secure_new(void); |
| 218 | void BN_clear_free(BIGNUM *a); |
| 219 | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); |
| 220 | void BN_swap(BIGNUM *a, BIGNUM *b); |
| 221 | BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret); |
| 222 | int BN_bn2bin(const BIGNUM *a, unsigned char *to); |
| 223 | int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen); |
| 224 | BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret); |
| 225 | int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen); |
| 226 | BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret); |
| 227 | int BN_bn2mpi(const BIGNUM *a, unsigned char *to); |
| 228 | int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| 229 | int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| 230 | int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| 231 | int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| 232 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
| 233 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); |
| 234 | /** BN_set_negative sets sign of a BIGNUM |
| 235 | * \param b pointer to the BIGNUM object |
| 236 | * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise |
| 237 | */ |
| 238 | void BN_set_negative(BIGNUM *b, int n); |
| 239 | /** BN_is_negative returns 1 if the BIGNUM is negative |
| 240 | * \param b pointer to the BIGNUM object |
| 241 | * \return 1 if a < 0 and 0 otherwise |
| 242 | */ |
| 243 | int BN_is_negative(const BIGNUM *b); |
| 244 | |
| 245 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, |
| 246 | BN_CTX *ctx); |
| 247 | # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) |
| 248 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); |
| 249 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
| 250 | BN_CTX *ctx); |
| 251 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 252 | const BIGNUM *m); |
| 253 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
| 254 | BN_CTX *ctx); |
| 255 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 256 | const BIGNUM *m); |
| 257 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
| 258 | BN_CTX *ctx); |
| 259 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); |
| 260 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); |
| 261 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); |
| 262 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, |
| 263 | BN_CTX *ctx); |
| 264 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); |
| 265 | |
| 266 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); |
| 267 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); |
| 268 | int BN_mul_word(BIGNUM *a, BN_ULONG w); |
| 269 | int BN_add_word(BIGNUM *a, BN_ULONG w); |
| 270 | int BN_sub_word(BIGNUM *a, BN_ULONG w); |
| 271 | int BN_set_word(BIGNUM *a, BN_ULONG w); |
| 272 | BN_ULONG BN_get_word(const BIGNUM *a); |
| 273 | |
| 274 | int BN_cmp(const BIGNUM *a, const BIGNUM *b); |
| 275 | void BN_free(BIGNUM *a); |
| 276 | int BN_is_bit_set(const BIGNUM *a, int n); |
| 277 | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); |
| 278 | int BN_lshift1(BIGNUM *r, const BIGNUM *a); |
| 279 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
| 280 | |
| 281 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| 282 | const BIGNUM *m, BN_CTX *ctx); |
| 283 | int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| 284 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
| 285 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| 286 | const BIGNUM *m, BN_CTX *ctx, |
| 287 | BN_MONT_CTX *in_mont); |
| 288 | int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, |
| 289 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
| 290 | int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, |
| 291 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, |
| 292 | BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
| 293 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| 294 | const BIGNUM *m, BN_CTX *ctx); |
| 295 | |
| 296 | int BN_mask_bits(BIGNUM *a, int n); |
| 297 | # ifndef OPENSSL_NO_STDIO |
| 298 | int BN_print_fp(FILE *fp, const BIGNUM *a); |
| 299 | # endif |
| 300 | int BN_print(BIO *bio, const BIGNUM *a); |
| 301 | int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); |
| 302 | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); |
| 303 | int BN_rshift1(BIGNUM *r, const BIGNUM *a); |
| 304 | void BN_clear(BIGNUM *a); |
| 305 | BIGNUM *BN_dup(const BIGNUM *a); |
| 306 | int BN_ucmp(const BIGNUM *a, const BIGNUM *b); |
| 307 | int BN_set_bit(BIGNUM *a, int n); |
| 308 | int BN_clear_bit(BIGNUM *a, int n); |
| 309 | char *BN_bn2hex(const BIGNUM *a); |
| 310 | char *BN_bn2dec(const BIGNUM *a); |
| 311 | int BN_hex2bn(BIGNUM **a, const char *str); |
| 312 | int BN_dec2bn(BIGNUM **a, const char *str); |
| 313 | int BN_asc2bn(BIGNUM **a, const char *str); |
| 314 | int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
| 315 | int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns |
| 316 | * -2 for |
| 317 | * error */ |
| 318 | BIGNUM *BN_mod_inverse(BIGNUM *ret, |
| 319 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); |
| 320 | BIGNUM *BN_mod_sqrt(BIGNUM *ret, |
| 321 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); |
| 322 | |
| 323 | void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); |
| 324 | |
| 325 | /* Deprecated versions */ |
| 326 | DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, |
| 327 | const BIGNUM *add, |
| 328 | const BIGNUM *rem, |
| 329 | void (*callback) (int, int, |
| 330 | void *), |
| 331 | void *cb_arg)) |
| 332 | DEPRECATEDIN_0_9_8(int |
| 333 | BN_is_prime(const BIGNUM *p, int nchecks, |
| 334 | void (*callback) (int, int, void *), |
| 335 | BN_CTX *ctx, void *cb_arg)) |
| 336 | DEPRECATEDIN_0_9_8(int |
| 337 | BN_is_prime_fasttest(const BIGNUM *p, int nchecks, |
| 338 | void (*callback) (int, int, void *), |
| 339 | BN_CTX *ctx, void *cb_arg, |
| 340 | int do_trial_division)) |
| 341 | |
| 342 | /* Newer versions */ |
| 343 | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, |
| 344 | const BIGNUM *rem, BN_GENCB *cb); |
| 345 | int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb); |
| 346 | int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, |
| 347 | int do_trial_division, BN_GENCB *cb); |
| 348 | |
| 349 | int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); |
| 350 | |
| 351 | int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
| 352 | const BIGNUM *Xp, const BIGNUM *Xp1, |
| 353 | const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, |
| 354 | BN_GENCB *cb); |
| 355 | int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, |
| 356 | BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, |
| 357 | BN_CTX *ctx, BN_GENCB *cb); |
| 358 | |
| 359 | BN_MONT_CTX *BN_MONT_CTX_new(void); |
| 360 | int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 361 | BN_MONT_CTX *mont, BN_CTX *ctx); |
| 362 | int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, |
| 363 | BN_CTX *ctx); |
| 364 | int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, |
| 365 | BN_CTX *ctx); |
| 366 | void BN_MONT_CTX_free(BN_MONT_CTX *mont); |
| 367 | int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx); |
| 368 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from); |
| 369 | BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock, |
| 370 | const BIGNUM *mod, BN_CTX *ctx); |
| 371 | |
| 372 | /* BN_BLINDING flags */ |
| 373 | # define BN_BLINDING_NO_UPDATE 0x00000001 |
| 374 | # define BN_BLINDING_NO_RECREATE 0x00000002 |
| 375 | |
| 376 | BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod); |
| 377 | void BN_BLINDING_free(BN_BLINDING *b); |
| 378 | int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx); |
| 379 | int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); |
| 380 | int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); |
| 381 | int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); |
| 382 | int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, |
| 383 | BN_CTX *); |
| 384 | |
| 385 | int BN_BLINDING_is_current_thread(BN_BLINDING *b); |
| 386 | void BN_BLINDING_set_current_thread(BN_BLINDING *b); |
| 387 | int BN_BLINDING_lock(BN_BLINDING *b); |
| 388 | int BN_BLINDING_unlock(BN_BLINDING *b); |
| 389 | |
| 390 | unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); |
| 391 | void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); |
| 392 | BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, |
| 393 | const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, |
| 394 | int (*bn_mod_exp) (BIGNUM *r, |
| 395 | const BIGNUM *a, |
| 396 | const BIGNUM *p, |
| 397 | const BIGNUM *m, |
| 398 | BN_CTX *ctx, |
| 399 | BN_MONT_CTX *m_ctx), |
| 400 | BN_MONT_CTX *m_ctx); |
| 401 | |
| 402 | DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont)) |
| 403 | DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3 |
| 404 | * mont */ |
| 405 | |
| 406 | BN_RECP_CTX *BN_RECP_CTX_new(void); |
| 407 | void BN_RECP_CTX_free(BN_RECP_CTX *recp); |
| 408 | int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx); |
| 409 | int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, |
| 410 | BN_RECP_CTX *recp, BN_CTX *ctx); |
| 411 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| 412 | const BIGNUM *m, BN_CTX *ctx); |
| 413 | int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, |
| 414 | BN_RECP_CTX *recp, BN_CTX *ctx); |
| 415 | |
| 416 | # ifndef OPENSSL_NO_EC2M |
| 417 | |
| 418 | /* |
| 419 | * Functions for arithmetic over binary polynomials represented by BIGNUMs. |
| 420 | * The BIGNUM::neg property of BIGNUMs representing binary polynomials is |
| 421 | * ignored. Note that input arguments are not const so that their bit arrays |
| 422 | * can be expanded to the appropriate size if needed. |
| 423 | */ |
| 424 | |
| 425 | /* |
| 426 | * r = a + b |
| 427 | */ |
| 428 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| 429 | # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) |
| 430 | /* |
| 431 | * r=a mod p |
| 432 | */ |
| 433 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); |
| 434 | /* r = (a * b) mod p */ |
| 435 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 436 | const BIGNUM *p, BN_CTX *ctx); |
| 437 | /* r = (a * a) mod p */ |
| 438 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
| 439 | /* r = (1 / b) mod p */ |
| 440 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); |
| 441 | /* r = (a / b) mod p */ |
| 442 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 443 | const BIGNUM *p, BN_CTX *ctx); |
| 444 | /* r = (a ^ b) mod p */ |
| 445 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 446 | const BIGNUM *p, BN_CTX *ctx); |
| 447 | /* r = sqrt(a) mod p */ |
| 448 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| 449 | BN_CTX *ctx); |
| 450 | /* r^2 + r = a mod p */ |
| 451 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| 452 | BN_CTX *ctx); |
| 453 | # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) |
| 454 | /*- |
| 455 | * Some functions allow for representation of the irreducible polynomials |
| 456 | * as an unsigned int[], say p. The irreducible f(t) is then of the form: |
| 457 | * t^p[0] + t^p[1] + ... + t^p[k] |
| 458 | * where m = p[0] > p[1] > ... > p[k] = 0. |
| 459 | */ |
| 460 | /* r = a mod p */ |
| 461 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); |
| 462 | /* r = (a * b) mod p */ |
| 463 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 464 | const int p[], BN_CTX *ctx); |
| 465 | /* r = (a * a) mod p */ |
| 466 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
| 467 | BN_CTX *ctx); |
| 468 | /* r = (1 / b) mod p */ |
| 469 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], |
| 470 | BN_CTX *ctx); |
| 471 | /* r = (a / b) mod p */ |
| 472 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 473 | const int p[], BN_CTX *ctx); |
| 474 | /* r = (a ^ b) mod p */ |
| 475 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 476 | const int p[], BN_CTX *ctx); |
| 477 | /* r = sqrt(a) mod p */ |
| 478 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, |
| 479 | const int p[], BN_CTX *ctx); |
| 480 | /* r^2 + r = a mod p */ |
| 481 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, |
| 482 | const int p[], BN_CTX *ctx); |
| 483 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); |
| 484 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a); |
| 485 | |
| 486 | # endif |
| 487 | |
| 488 | /* |
| 489 | * faster mod functions for the 'NIST primes' 0 <= a < p^2 |
| 490 | */ |
| 491 | int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
| 492 | int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
| 493 | int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
| 494 | int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
| 495 | int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
| 496 | |
| 497 | const BIGNUM *BN_get0_nist_prime_192(void); |
| 498 | const BIGNUM *BN_get0_nist_prime_224(void); |
| 499 | const BIGNUM *BN_get0_nist_prime_256(void); |
| 500 | const BIGNUM *BN_get0_nist_prime_384(void); |
| 501 | const BIGNUM *BN_get0_nist_prime_521(void); |
| 502 | |
| 503 | int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a, |
| 504 | const BIGNUM *field, BN_CTX *ctx); |
| 505 | |
| 506 | int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, |
| 507 | const BIGNUM *priv, const unsigned char *message, |
| 508 | size_t message_len, BN_CTX *ctx); |
| 509 | |
| 510 | /* Primes from RFC 2409 */ |
| 511 | BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn); |
| 512 | BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn); |
| 513 | |
| 514 | /* Primes from RFC 3526 */ |
| 515 | BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn); |
| 516 | BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn); |
| 517 | BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn); |
| 518 | BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn); |
| 519 | BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn); |
| 520 | BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn); |
| 521 | |
| 522 | # if OPENSSL_API_COMPAT < 0x10100000L |
| 523 | # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768 |
| 524 | # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024 |
| 525 | # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536 |
| 526 | # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048 |
| 527 | # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072 |
| 528 | # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096 |
| 529 | # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144 |
| 530 | # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192 |
| 531 | # endif |
| 532 | |
| 533 | int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom); |
| 534 | |
| 535 | |
| 536 | # ifdef __cplusplus |
| 537 | } |
| 538 | # endif |
| 539 | #endif |