blob: 9cc95fd91931b1190bf9d0e0f33eb09cf70fa20e [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
21 * Adrian Hunter
22 * Zoltan Sogor
23 */
24
25/*
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
33 *
34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
36 * the underlying flash is able to program at a time, and writing in
37 * @c->max_write_size units should presumably be faster. Obviously,
38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39 * @c->max_write_size bytes in size for maximum performance. However, when a
40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41 * boundary) which contains data is written, not the whole write-buffer,
42 * because this is more space-efficient.
43 *
44 * This optimization adds few complications to the code. Indeed, on the one
45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
47 * other hand, we do not want to waste space when synchronizing the write
48 * buffer, so during synchronization we writes in smaller chunks. And this makes
49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
52 * write-buffer size (@wbuf->size).
53 *
54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55 * mutexes defined inside these objects. Since sometimes upper-level code
56 * has to lock the write-buffer (e.g. journal space reservation code), many
57 * functions related to write-buffers have "nolock" suffix which means that the
58 * caller has to lock the write-buffer before calling this function.
59 *
60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61 * aligned, UBIFS starts the next node from the aligned address, and the padded
62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
63 * bytes in those small gaps. Common headers of nodes store real node lengths,
64 * not aligned lengths. Indexing nodes also store real lengths in branches.
65 *
66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67 * uses padding nodes or padding bytes, if the padding node does not fit.
68 *
69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70 * they are read from the flash media.
71 */
72
73#include <linux/crc32.h>
74#include <linux/slab.h>
75#include "ubifs.h"
76
77/**
78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
79 * @c: UBIFS file-system description object
80 * @err: error code which is the reason of switching to R/O mode
81 */
82void ubifs_ro_mode(struct ubifs_info *c, int err)
83{
84 if (!c->ro_error) {
85 c->ro_error = 1;
86 c->no_chk_data_crc = 0;
87 c->vfs_sb->s_flags |= MS_RDONLY;
88 ubifs_warn("switched to read-only mode, error %d", err);
89 dump_stack();
90 panic("ubifs_ro_mode!");
91 }
92}
93
94/*
95 * Below are simple wrappers over UBI I/O functions which include some
96 * additional checks and UBIFS debugging stuff. See corresponding UBI function
97 * for more information.
98 */
99
100int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
101 int len, int even_ebadmsg)
102{
103 int err;
104
105 err = ubi_read(c->ubi, lnum, buf, offs, len);
106 /*
107 * In case of %-EBADMSG print the error message only if the
108 * @even_ebadmsg is true.
109 */
110 if (err && (err != -EBADMSG || even_ebadmsg)) {
111 ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
112 len, lnum, offs, err);
113 dbg_dump_stack();
114 }
115 return err;
116}
117
118int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
119 int len, int dtype)
120{
121 int err;
122
123 ubifs_assert(!c->ro_media && !c->ro_mount);
124 if (c->ro_error)
125 return -EROFS;
126 if (!dbg_is_tst_rcvry(c))
127 err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
128 else
129 err = dbg_leb_write(c, lnum, buf, offs, len, dtype);
130 if (err) {
131 ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
132 len, lnum, offs, err);
133 ubifs_ro_mode(c, err);
134 dbg_dump_stack();
135 }
136 return err;
137}
138
139int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len,
140 int dtype)
141{
142 int err;
143
144 ubifs_assert(!c->ro_media && !c->ro_mount);
145 if (c->ro_error)
146 return -EROFS;
147 if (!dbg_is_tst_rcvry(c))
148 err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
149 else
150 err = dbg_leb_change(c, lnum, buf, len, dtype);
151 if (err) {
152 ubifs_err("changing %d bytes in LEB %d failed, error %d",
153 len, lnum, err);
154 ubifs_ro_mode(c, err);
155 dbg_dump_stack();
156 }
157 return err;
158}
159
160int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
161{
162 int err;
163
164 ubifs_assert(!c->ro_media && !c->ro_mount);
165 if (c->ro_error)
166 return -EROFS;
167 if (!dbg_is_tst_rcvry(c))
168 err = ubi_leb_unmap(c->ubi, lnum);
169 else
170 err = dbg_leb_unmap(c, lnum);
171 if (err) {
172 ubifs_err("unmap LEB %d failed, error %d", lnum, err);
173 ubifs_ro_mode(c, err);
174 dbg_dump_stack();
175 }
176 return err;
177}
178
179int ubifs_leb_map(struct ubifs_info *c, int lnum, int dtype)
180{
181 int err;
182
183 ubifs_assert(!c->ro_media && !c->ro_mount);
184 if (c->ro_error)
185 return -EROFS;
186 if (!dbg_is_tst_rcvry(c))
187 err = ubi_leb_map(c->ubi, lnum, dtype);
188 else
189 err = dbg_leb_map(c, lnum, dtype);
190 if (err) {
191 ubifs_err("mapping LEB %d failed, error %d", lnum, err);
192 ubifs_ro_mode(c, err);
193 dbg_dump_stack();
194 }
195 return err;
196}
197
198int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
199{
200 int err;
201
202 err = ubi_is_mapped(c->ubi, lnum);
203 if (err < 0) {
204 ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
205 lnum, err);
206 dbg_dump_stack();
207 }
208 return err;
209}
210
211/**
212 * ubifs_check_node - check node.
213 * @c: UBIFS file-system description object
214 * @buf: node to check
215 * @lnum: logical eraseblock number
216 * @offs: offset within the logical eraseblock
217 * @quiet: print no messages
218 * @must_chk_crc: indicates whether to always check the CRC
219 *
220 * This function checks node magic number and CRC checksum. This function also
221 * validates node length to prevent UBIFS from becoming crazy when an attacker
222 * feeds it a file-system image with incorrect nodes. For example, too large
223 * node length in the common header could cause UBIFS to read memory outside of
224 * allocated buffer when checking the CRC checksum.
225 *
226 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
227 * true, which is controlled by corresponding UBIFS mount option. However, if
228 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
229 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
230 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
231 * is checked. This is because during mounting or re-mounting from R/O mode to
232 * R/W mode we may read journal nodes (when replying the journal or doing the
233 * recovery) and the journal nodes may potentially be corrupted, so checking is
234 * required.
235 *
236 * This function returns zero in case of success and %-EUCLEAN in case of bad
237 * CRC or magic.
238 */
239int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
240 int offs, int quiet, int must_chk_crc)
241{
242 int err = -EINVAL, type, node_len;
243 uint32_t crc, node_crc, magic;
244 const struct ubifs_ch *ch = buf;
245
246 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
247 ubifs_assert(!(offs & 7) && offs < c->leb_size);
248
249 magic = le32_to_cpu(ch->magic);
250 if (magic != UBIFS_NODE_MAGIC) {
251 if (!quiet)
252 ubifs_err("bad magic %#08x, expected %#08x",
253 magic, UBIFS_NODE_MAGIC);
254 err = -EUCLEAN;
255 goto out;
256 }
257
258 type = ch->node_type;
259 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
260 if (!quiet)
261 ubifs_err("bad node type %d", type);
262 goto out;
263 }
264
265 node_len = le32_to_cpu(ch->len);
266 if (node_len + offs > c->leb_size)
267 goto out_len;
268
269 if (c->ranges[type].max_len == 0) {
270 if (node_len != c->ranges[type].len)
271 goto out_len;
272 } else if (node_len < c->ranges[type].min_len ||
273 node_len > c->ranges[type].max_len)
274 goto out_len;
275
276 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
277 !c->remounting_rw && c->no_chk_data_crc)
278 return 0;
279
280 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
281 node_crc = le32_to_cpu(ch->crc);
282 if (crc != node_crc) {
283 if (!quiet)
284 ubifs_err("bad CRC: calculated %#08x, read %#08x",
285 crc, node_crc);
286 err = -EUCLEAN;
287 goto out;
288 }
289
290 return 0;
291
292out_len:
293 if (!quiet)
294 ubifs_err("bad node length %d", node_len);
295out:
296 if (!quiet) {
297 ubifs_err("bad node at LEB %d:%d", lnum, offs);
298 dbg_dump_node(c, buf);
299 dbg_dump_stack();
300 }
301 return err;
302}
303
304/**
305 * ubifs_pad - pad flash space.
306 * @c: UBIFS file-system description object
307 * @buf: buffer to put padding to
308 * @pad: how many bytes to pad
309 *
310 * The flash media obliges us to write only in chunks of %c->min_io_size and
311 * when we have to write less data we add padding node to the write-buffer and
312 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
313 * media is being scanned. If the amount of wasted space is not enough to fit a
314 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
315 * pattern (%UBIFS_PADDING_BYTE).
316 *
317 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
318 * used.
319 */
320void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
321{
322 uint32_t crc;
323
324 ubifs_assert(pad >= 0 && !(pad & 7));
325
326 if (pad >= UBIFS_PAD_NODE_SZ) {
327 struct ubifs_ch *ch = buf;
328 struct ubifs_pad_node *pad_node = buf;
329
330 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
331 ch->node_type = UBIFS_PAD_NODE;
332 ch->group_type = UBIFS_NO_NODE_GROUP;
333 ch->padding[0] = ch->padding[1] = 0;
334 ch->sqnum = 0;
335 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
336 pad -= UBIFS_PAD_NODE_SZ;
337 pad_node->pad_len = cpu_to_le32(pad);
338 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
339 ch->crc = cpu_to_le32(crc);
340 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
341 } else if (pad > 0)
342 /* Too little space, padding node won't fit */
343 memset(buf, UBIFS_PADDING_BYTE, pad);
344}
345
346/**
347 * next_sqnum - get next sequence number.
348 * @c: UBIFS file-system description object
349 */
350static unsigned long long next_sqnum(struct ubifs_info *c)
351{
352 unsigned long long sqnum;
353
354 spin_lock(&c->cnt_lock);
355 sqnum = ++c->max_sqnum;
356 spin_unlock(&c->cnt_lock);
357
358 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
359 if (sqnum >= SQNUM_WATERMARK) {
360 ubifs_err("sequence number overflow %llu, end of life",
361 sqnum);
362 ubifs_ro_mode(c, -EINVAL);
363 }
364 ubifs_warn("running out of sequence numbers, end of life soon");
365 }
366
367 return sqnum;
368}
369
370/**
371 * ubifs_prepare_node - prepare node to be written to flash.
372 * @c: UBIFS file-system description object
373 * @node: the node to pad
374 * @len: node length
375 * @pad: if the buffer has to be padded
376 *
377 * This function prepares node at @node to be written to the media - it
378 * calculates node CRC, fills the common header, and adds proper padding up to
379 * the next minimum I/O unit if @pad is not zero.
380 */
381void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
382{
383 uint32_t crc;
384 struct ubifs_ch *ch = node;
385 unsigned long long sqnum = next_sqnum(c);
386
387 ubifs_assert(len >= UBIFS_CH_SZ);
388
389 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
390 ch->len = cpu_to_le32(len);
391 ch->group_type = UBIFS_NO_NODE_GROUP;
392 ch->sqnum = cpu_to_le64(sqnum);
393 ch->padding[0] = ch->padding[1] = 0;
394 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
395 ch->crc = cpu_to_le32(crc);
396
397 if (pad) {
398 len = ALIGN(len, 8);
399 pad = ALIGN(len, c->min_io_size) - len;
400 ubifs_pad(c, node + len, pad);
401 }
402}
403
404/**
405 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
406 * @c: UBIFS file-system description object
407 * @node: the node to pad
408 * @len: node length
409 * @last: indicates the last node of the group
410 *
411 * This function prepares node at @node to be written to the media - it
412 * calculates node CRC and fills the common header.
413 */
414void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
415{
416 uint32_t crc;
417 struct ubifs_ch *ch = node;
418 unsigned long long sqnum = next_sqnum(c);
419
420 ubifs_assert(len >= UBIFS_CH_SZ);
421
422 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
423 ch->len = cpu_to_le32(len);
424 if (last)
425 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
426 else
427 ch->group_type = UBIFS_IN_NODE_GROUP;
428 ch->sqnum = cpu_to_le64(sqnum);
429 ch->padding[0] = ch->padding[1] = 0;
430 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
431 ch->crc = cpu_to_le32(crc);
432}
433
434/**
435 * wbuf_timer_callback - write-buffer timer callback function.
436 * @data: timer data (write-buffer descriptor)
437 *
438 * This function is called when the write-buffer timer expires.
439 */
440static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
441{
442 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
443
444 dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
445 wbuf->need_sync = 1;
446 wbuf->c->need_wbuf_sync = 1;
447 ubifs_wake_up_bgt(wbuf->c);
448 return HRTIMER_NORESTART;
449}
450
451/**
452 * new_wbuf_timer - start new write-buffer timer.
453 * @wbuf: write-buffer descriptor
454 */
455static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
456{
457 ubifs_assert(!hrtimer_active(&wbuf->timer));
458
459 if (wbuf->no_timer)
460 return;
461 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
462 dbg_jhead(wbuf->jhead),
463 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
464 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
465 USEC_PER_SEC));
466 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
467 HRTIMER_MODE_REL);
468}
469
470/**
471 * cancel_wbuf_timer - cancel write-buffer timer.
472 * @wbuf: write-buffer descriptor
473 */
474static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
475{
476 if (wbuf->no_timer)
477 return;
478 wbuf->need_sync = 0;
479 hrtimer_cancel(&wbuf->timer);
480}
481
482/**
483 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
484 * @wbuf: write-buffer to synchronize
485 *
486 * This function synchronizes write-buffer @buf and returns zero in case of
487 * success or a negative error code in case of failure.
488 *
489 * Note, although write-buffers are of @c->max_write_size, this function does
490 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
491 * if the write-buffer is only partially filled with data, only the used part
492 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
493 * This way we waste less space.
494 */
495int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
496{
497 struct ubifs_info *c = wbuf->c;
498 int err, dirt, sync_len;
499
500 cancel_wbuf_timer_nolock(wbuf);
501 if (!wbuf->used || wbuf->lnum == -1)
502 /* Write-buffer is empty or not seeked */
503 return 0;
504
505 dbg_io("LEB %d:%d, %d bytes, jhead %s",
506 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
507 ubifs_assert(!(wbuf->avail & 7));
508 ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
509 ubifs_assert(wbuf->size >= c->min_io_size);
510 ubifs_assert(wbuf->size <= c->max_write_size);
511 ubifs_assert(wbuf->size % c->min_io_size == 0);
512 ubifs_assert(!c->ro_media && !c->ro_mount);
513 if (c->leb_size - wbuf->offs >= c->max_write_size)
514 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
515
516 if (c->ro_error)
517 return -EROFS;
518
519 /*
520 * Do not write whole write buffer but write only the minimum necessary
521 * amount of min. I/O units.
522 */
523 sync_len = ALIGN(wbuf->used, c->min_io_size);
524 dirt = sync_len - wbuf->used;
525 if (dirt)
526 ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
527 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len,
528 wbuf->dtype);
529 if (err)
530 return err;
531
532 spin_lock(&wbuf->lock);
533 wbuf->offs += sync_len;
534 /*
535 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
536 * But our goal is to optimize writes and make sure we write in
537 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
538 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
539 * sure that @wbuf->offs + @wbuf->size is aligned to
540 * @c->max_write_size. This way we make sure that after next
541 * write-buffer flush we are again at the optimal offset (aligned to
542 * @c->max_write_size).
543 */
544 if (c->leb_size - wbuf->offs < c->max_write_size)
545 wbuf->size = c->leb_size - wbuf->offs;
546 else if (wbuf->offs & (c->max_write_size - 1))
547 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
548 else
549 wbuf->size = c->max_write_size;
550 wbuf->avail = wbuf->size;
551 wbuf->used = 0;
552 wbuf->next_ino = 0;
553 spin_unlock(&wbuf->lock);
554
555 if (wbuf->sync_callback)
556 err = wbuf->sync_callback(c, wbuf->lnum,
557 c->leb_size - wbuf->offs, dirt);
558 return err;
559}
560
561/**
562 * ubifs_wbuf_seek_nolock - seek write-buffer.
563 * @wbuf: write-buffer
564 * @lnum: logical eraseblock number to seek to
565 * @offs: logical eraseblock offset to seek to
566 * @dtype: data type
567 *
568 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
569 * The write-buffer has to be empty. Returns zero in case of success and a
570 * negative error code in case of failure.
571 */
572int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
573 int dtype)
574{
575 const struct ubifs_info *c = wbuf->c;
576
577 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
578 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
579 ubifs_assert(offs >= 0 && offs <= c->leb_size);
580 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
581 ubifs_assert(lnum != wbuf->lnum);
582 ubifs_assert(wbuf->used == 0);
583
584 spin_lock(&wbuf->lock);
585 wbuf->lnum = lnum;
586 wbuf->offs = offs;
587 if (c->leb_size - wbuf->offs < c->max_write_size)
588 wbuf->size = c->leb_size - wbuf->offs;
589 else if (wbuf->offs & (c->max_write_size - 1))
590 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
591 else
592 wbuf->size = c->max_write_size;
593 wbuf->avail = wbuf->size;
594 wbuf->used = 0;
595 spin_unlock(&wbuf->lock);
596 wbuf->dtype = dtype;
597
598 return 0;
599}
600
601/**
602 * ubifs_bg_wbufs_sync - synchronize write-buffers.
603 * @c: UBIFS file-system description object
604 *
605 * This function is called by background thread to synchronize write-buffers.
606 * Returns zero in case of success and a negative error code in case of
607 * failure.
608 */
609int ubifs_bg_wbufs_sync(struct ubifs_info *c)
610{
611 int err, i;
612
613 ubifs_assert(!c->ro_media && !c->ro_mount);
614 if (!c->need_wbuf_sync)
615 return 0;
616 c->need_wbuf_sync = 0;
617
618 if (c->ro_error) {
619 err = -EROFS;
620 goto out_timers;
621 }
622
623 dbg_io("synchronize");
624 for (i = 0; i < c->jhead_cnt; i++) {
625 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
626
627 cond_resched();
628
629 /*
630 * If the mutex is locked then wbuf is being changed, so
631 * synchronization is not necessary.
632 */
633 if (mutex_is_locked(&wbuf->io_mutex))
634 continue;
635
636 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
637 if (!wbuf->need_sync) {
638 mutex_unlock(&wbuf->io_mutex);
639 continue;
640 }
641
642 err = ubifs_wbuf_sync_nolock(wbuf);
643 mutex_unlock(&wbuf->io_mutex);
644 if (err) {
645 ubifs_err("cannot sync write-buffer, error %d", err);
646 ubifs_ro_mode(c, err);
647 goto out_timers;
648 }
649 }
650
651 return 0;
652
653out_timers:
654 /* Cancel all timers to prevent repeated errors */
655 for (i = 0; i < c->jhead_cnt; i++) {
656 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
657
658 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
659 cancel_wbuf_timer_nolock(wbuf);
660 mutex_unlock(&wbuf->io_mutex);
661 }
662 return err;
663}
664
665/**
666 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
667 * @wbuf: write-buffer
668 * @buf: node to write
669 * @len: node length
670 *
671 * This function writes data to flash via write-buffer @wbuf. This means that
672 * the last piece of the node won't reach the flash media immediately if it
673 * does not take whole max. write unit (@c->max_write_size). Instead, the node
674 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
675 * because more data are appended to the write-buffer).
676 *
677 * This function returns zero in case of success and a negative error code in
678 * case of failure. If the node cannot be written because there is no more
679 * space in this logical eraseblock, %-ENOSPC is returned.
680 */
681int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
682{
683 struct ubifs_info *c = wbuf->c;
684 int err, written, n, aligned_len = ALIGN(len, 8);
685
686 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
687 dbg_ntype(((struct ubifs_ch *)buf)->node_type),
688 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
689 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
690 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
691 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
692 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
693 ubifs_assert(wbuf->size >= c->min_io_size);
694 ubifs_assert(wbuf->size <= c->max_write_size);
695 ubifs_assert(wbuf->size % c->min_io_size == 0);
696 ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
697 ubifs_assert(!c->ro_media && !c->ro_mount);
698 ubifs_assert(!c->space_fixup);
699 if (c->leb_size - wbuf->offs >= c->max_write_size)
700 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
701
702 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
703 err = -ENOSPC;
704 goto out;
705 }
706
707 cancel_wbuf_timer_nolock(wbuf);
708
709 if (c->ro_error)
710 return -EROFS;
711
712 if (aligned_len <= wbuf->avail) {
713 /*
714 * The node is not very large and fits entirely within
715 * write-buffer.
716 */
717 memcpy(wbuf->buf + wbuf->used, buf, len);
718
719 if (aligned_len == wbuf->avail) {
720 dbg_io("flush jhead %s wbuf to LEB %d:%d",
721 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
722 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
723 wbuf->offs, wbuf->size,
724 wbuf->dtype);
725 if (err)
726 goto out;
727
728 spin_lock(&wbuf->lock);
729 wbuf->offs += wbuf->size;
730 if (c->leb_size - wbuf->offs >= c->max_write_size)
731 wbuf->size = c->max_write_size;
732 else
733 wbuf->size = c->leb_size - wbuf->offs;
734 wbuf->avail = wbuf->size;
735 wbuf->used = 0;
736 wbuf->next_ino = 0;
737 spin_unlock(&wbuf->lock);
738 } else {
739 spin_lock(&wbuf->lock);
740 wbuf->avail -= aligned_len;
741 wbuf->used += aligned_len;
742 spin_unlock(&wbuf->lock);
743 }
744
745 goto exit;
746 }
747
748 written = 0;
749
750 if (wbuf->used) {
751 /*
752 * The node is large enough and does not fit entirely within
753 * current available space. We have to fill and flush
754 * write-buffer and switch to the next max. write unit.
755 */
756 dbg_io("flush jhead %s wbuf to LEB %d:%d",
757 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
758 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
759 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
760 wbuf->size, wbuf->dtype);
761 if (err)
762 goto out;
763
764 wbuf->offs += wbuf->size;
765 len -= wbuf->avail;
766 aligned_len -= wbuf->avail;
767 written += wbuf->avail;
768 } else if (wbuf->offs & (c->max_write_size - 1)) {
769 /*
770 * The write-buffer offset is not aligned to
771 * @c->max_write_size and @wbuf->size is less than
772 * @c->max_write_size. Write @wbuf->size bytes to make sure the
773 * following writes are done in optimal @c->max_write_size
774 * chunks.
775 */
776 dbg_io("write %d bytes to LEB %d:%d",
777 wbuf->size, wbuf->lnum, wbuf->offs);
778 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
779 wbuf->size, wbuf->dtype);
780 if (err)
781 goto out;
782
783 wbuf->offs += wbuf->size;
784 len -= wbuf->size;
785 aligned_len -= wbuf->size;
786 written += wbuf->size;
787 }
788
789 /*
790 * The remaining data may take more whole max. write units, so write the
791 * remains multiple to max. write unit size directly to the flash media.
792 * We align node length to 8-byte boundary because we anyway flash wbuf
793 * if the remaining space is less than 8 bytes.
794 */
795 n = aligned_len >> c->max_write_shift;
796 if (n) {
797 n <<= c->max_write_shift;
798 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
799 wbuf->offs);
800 err = ubifs_leb_write(c, wbuf->lnum, buf + written,
801 wbuf->offs, n, wbuf->dtype);
802 if (err)
803 goto out;
804 wbuf->offs += n;
805 aligned_len -= n;
806 len -= n;
807 written += n;
808 }
809
810 spin_lock(&wbuf->lock);
811 if (aligned_len)
812 /*
813 * And now we have what's left and what does not take whole
814 * max. write unit, so write it to the write-buffer and we are
815 * done.
816 */
817 memcpy(wbuf->buf, buf + written, len);
818
819 if (c->leb_size - wbuf->offs >= c->max_write_size)
820 wbuf->size = c->max_write_size;
821 else
822 wbuf->size = c->leb_size - wbuf->offs;
823 wbuf->avail = wbuf->size - aligned_len;
824 wbuf->used = aligned_len;
825 wbuf->next_ino = 0;
826 spin_unlock(&wbuf->lock);
827
828exit:
829 if (wbuf->sync_callback) {
830 int free = c->leb_size - wbuf->offs - wbuf->used;
831
832 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
833 if (err)
834 goto out;
835 }
836
837 if (wbuf->used)
838 new_wbuf_timer_nolock(wbuf);
839
840 return 0;
841
842out:
843 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
844 len, wbuf->lnum, wbuf->offs, err);
845 dbg_dump_node(c, buf);
846 dbg_dump_stack();
847 dbg_dump_leb(c, wbuf->lnum);
848 return err;
849}
850
851/**
852 * ubifs_write_node - write node to the media.
853 * @c: UBIFS file-system description object
854 * @buf: the node to write
855 * @len: node length
856 * @lnum: logical eraseblock number
857 * @offs: offset within the logical eraseblock
858 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
859 *
860 * This function automatically fills node magic number, assigns sequence
861 * number, and calculates node CRC checksum. The length of the @buf buffer has
862 * to be aligned to the minimal I/O unit size. This function automatically
863 * appends padding node and padding bytes if needed. Returns zero in case of
864 * success and a negative error code in case of failure.
865 */
866int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
867 int offs, int dtype)
868{
869 int err, buf_len = ALIGN(len, c->min_io_size);
870
871 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
872 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
873 buf_len);
874 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
875 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
876 ubifs_assert(!c->ro_media && !c->ro_mount);
877 ubifs_assert(!c->space_fixup);
878
879 if (c->ro_error)
880 return -EROFS;
881
882 ubifs_prepare_node(c, buf, len, 1);
883 err = ubifs_leb_write(c, lnum, buf, offs, buf_len, dtype);
884 if (err)
885 dbg_dump_node(c, buf);
886
887 return err;
888}
889
890/**
891 * ubifs_read_node_wbuf - read node from the media or write-buffer.
892 * @wbuf: wbuf to check for un-written data
893 * @buf: buffer to read to
894 * @type: node type
895 * @len: node length
896 * @lnum: logical eraseblock number
897 * @offs: offset within the logical eraseblock
898 *
899 * This function reads a node of known type and length, checks it and stores
900 * in @buf. If the node partially or fully sits in the write-buffer, this
901 * function takes data from the buffer, otherwise it reads the flash media.
902 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
903 * error code in case of failure.
904 */
905int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
906 int lnum, int offs)
907{
908 const struct ubifs_info *c = wbuf->c;
909 int err, rlen, overlap;
910 struct ubifs_ch *ch = buf;
911
912 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
913 dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
914 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
915 ubifs_assert(!(offs & 7) && offs < c->leb_size);
916 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
917
918 spin_lock(&wbuf->lock);
919 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
920 if (!overlap) {
921 /* We may safely unlock the write-buffer and read the data */
922 spin_unlock(&wbuf->lock);
923 return ubifs_read_node(c, buf, type, len, lnum, offs);
924 }
925
926 /* Don't read under wbuf */
927 rlen = wbuf->offs - offs;
928 if (rlen < 0)
929 rlen = 0;
930
931 /* Copy the rest from the write-buffer */
932 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
933 spin_unlock(&wbuf->lock);
934
935 if (rlen > 0) {
936 /* Read everything that goes before write-buffer */
937 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
938 if (err && err != -EBADMSG)
939 return err;
940 }
941
942 if (type != ch->node_type) {
943 ubifs_err("bad node type (%d but expected %d)",
944 ch->node_type, type);
945 goto out;
946 }
947
948 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
949 if (err) {
950 ubifs_err("expected node type %d", type);
951 return err;
952 }
953
954 rlen = le32_to_cpu(ch->len);
955 if (rlen != len) {
956 ubifs_err("bad node length %d, expected %d", rlen, len);
957 goto out;
958 }
959
960 return 0;
961
962out:
963 ubifs_err("bad node at LEB %d:%d", lnum, offs);
964 dbg_dump_node(c, buf);
965 dbg_dump_stack();
966 return -EINVAL;
967}
968
969/**
970 * ubifs_read_node - read node.
971 * @c: UBIFS file-system description object
972 * @buf: buffer to read to
973 * @type: node type
974 * @len: node length (not aligned)
975 * @lnum: logical eraseblock number
976 * @offs: offset within the logical eraseblock
977 *
978 * This function reads a node of known type and and length, checks it and
979 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
980 * and a negative error code in case of failure.
981 */
982int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
983 int lnum, int offs)
984{
985 int err, l;
986 struct ubifs_ch *ch = buf;
987
988 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
989 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
990 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
991 ubifs_assert(!(offs & 7) && offs < c->leb_size);
992 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
993
994 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
995 if (err && err != -EBADMSG)
996 return err;
997
998 if (type != ch->node_type) {
999 ubifs_err("bad node type (%d but expected %d)",
1000 ch->node_type, type);
1001 goto out;
1002 }
1003
1004 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1005 if (err) {
1006 ubifs_err("expected node type %d", type);
1007 return err;
1008 }
1009
1010 l = le32_to_cpu(ch->len);
1011 if (l != len) {
1012 ubifs_err("bad node length %d, expected %d", l, len);
1013 goto out;
1014 }
1015
1016 return 0;
1017
1018out:
1019 ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
1020 ubi_is_mapped(c->ubi, lnum));
1021 dbg_dump_node(c, buf);
1022 dbg_dump_stack();
1023 return -EINVAL;
1024}
1025
1026/**
1027 * ubifs_wbuf_init - initialize write-buffer.
1028 * @c: UBIFS file-system description object
1029 * @wbuf: write-buffer to initialize
1030 *
1031 * This function initializes write-buffer. Returns zero in case of success
1032 * %-ENOMEM in case of failure.
1033 */
1034int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1035{
1036 size_t size;
1037
1038 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1039 if (!wbuf->buf)
1040 return -ENOMEM;
1041
1042 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1043 wbuf->inodes = kmalloc(size, GFP_KERNEL);
1044 if (!wbuf->inodes) {
1045 kfree(wbuf->buf);
1046 wbuf->buf = NULL;
1047 return -ENOMEM;
1048 }
1049
1050 wbuf->used = 0;
1051 wbuf->lnum = wbuf->offs = -1;
1052 /*
1053 * If the LEB starts at the max. write size aligned address, then
1054 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1055 * set it to something smaller so that it ends at the closest max.
1056 * write size boundary.
1057 */
1058 size = c->max_write_size - (c->leb_start % c->max_write_size);
1059 wbuf->avail = wbuf->size = size;
1060 wbuf->dtype = UBI_UNKNOWN;
1061 wbuf->sync_callback = NULL;
1062 mutex_init(&wbuf->io_mutex);
1063 spin_lock_init(&wbuf->lock);
1064 wbuf->c = c;
1065 wbuf->next_ino = 0;
1066
1067 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1068 wbuf->timer.function = wbuf_timer_callback_nolock;
1069 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1070 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1071 wbuf->delta *= 1000000000ULL;
1072 ubifs_assert(wbuf->delta <= ULONG_MAX);
1073 return 0;
1074}
1075
1076/**
1077 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1078 * @wbuf: the write-buffer where to add
1079 * @inum: the inode number
1080 *
1081 * This function adds an inode number to the inode array of the write-buffer.
1082 */
1083void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1084{
1085 if (!wbuf->buf)
1086 /* NOR flash or something similar */
1087 return;
1088
1089 spin_lock(&wbuf->lock);
1090 if (wbuf->used)
1091 wbuf->inodes[wbuf->next_ino++] = inum;
1092 spin_unlock(&wbuf->lock);
1093}
1094
1095/**
1096 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1097 * @wbuf: the write-buffer
1098 * @inum: the inode number
1099 *
1100 * This function returns with %1 if the write-buffer contains some data from the
1101 * given inode otherwise it returns with %0.
1102 */
1103static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1104{
1105 int i, ret = 0;
1106
1107 spin_lock(&wbuf->lock);
1108 for (i = 0; i < wbuf->next_ino; i++)
1109 if (inum == wbuf->inodes[i]) {
1110 ret = 1;
1111 break;
1112 }
1113 spin_unlock(&wbuf->lock);
1114
1115 return ret;
1116}
1117
1118/**
1119 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1120 * @c: UBIFS file-system description object
1121 * @inode: inode to synchronize
1122 *
1123 * This function synchronizes write-buffers which contain nodes belonging to
1124 * @inode. Returns zero in case of success and a negative error code in case of
1125 * failure.
1126 */
1127int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1128{
1129 int i, err = 0;
1130
1131 for (i = 0; i < c->jhead_cnt; i++) {
1132 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1133
1134 if (i == GCHD)
1135 /*
1136 * GC head is special, do not look at it. Even if the
1137 * head contains something related to this inode, it is
1138 * a _copy_ of corresponding on-flash node which sits
1139 * somewhere else.
1140 */
1141 continue;
1142
1143 if (!wbuf_has_ino(wbuf, inode->i_ino))
1144 continue;
1145
1146 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1147 if (wbuf_has_ino(wbuf, inode->i_ino))
1148 err = ubifs_wbuf_sync_nolock(wbuf);
1149 mutex_unlock(&wbuf->io_mutex);
1150
1151 if (err) {
1152 ubifs_ro_mode(c, err);
1153 return err;
1154 }
1155 }
1156 return 0;
1157}