blob: c74827c5ba787e943b19d25873017fa731e881c0 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/export.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <linux/atomic.h>
100
101#include <linux/kmemcheck.h>
102#include <linux/kmemleak.h>
103#include <linux/memory_hotplug.h>
104
105/*
106 * Kmemleak configuration and common defines.
107 */
108#define MAX_TRACE 16 /* stack trace length */
109#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
110#define SECS_FIRST_SCAN 60 /* delay before the first scan */
111#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
112#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
113
114#define BYTES_PER_POINTER sizeof(void *)
115
116/* GFP bitmask for kmemleak internal allocations */
117#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 __GFP_NOWARN)
120
121/* scanning area inside a memory block */
122struct kmemleak_scan_area {
123 struct hlist_node node;
124 unsigned long start;
125 size_t size;
126};
127
128#define KMEMLEAK_GREY 0
129#define KMEMLEAK_BLACK -1
130
131/*
132 * Structure holding the metadata for each allocated memory block.
133 * Modifications to such objects should be made while holding the
134 * object->lock. Insertions or deletions from object_list, gray_list or
135 * tree_node are already protected by the corresponding locks or mutex (see
136 * the notes on locking above). These objects are reference-counted
137 * (use_count) and freed using the RCU mechanism.
138 */
139struct kmemleak_object {
140 spinlock_t lock;
141 unsigned long flags; /* object status flags */
142 struct list_head object_list;
143 struct list_head gray_list;
144 struct prio_tree_node tree_node;
145 struct rcu_head rcu; /* object_list lockless traversal */
146 /* object usage count; object freed when use_count == 0 */
147 atomic_t use_count;
148 unsigned long pointer;
149 size_t size;
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
154 /* checksum for detecting modified objects */
155 u32 checksum;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163};
164
165/* flag representing the memory block allocation status */
166#define OBJECT_ALLOCATED (1 << 0)
167/* flag set after the first reporting of an unreference object */
168#define OBJECT_REPORTED (1 << 1)
169/* flag set to not scan the object */
170#define OBJECT_NO_SCAN (1 << 2)
171
172/* number of bytes to print per line; must be 16 or 32 */
173#define HEX_ROW_SIZE 16
174/* number of bytes to print at a time (1, 2, 4, 8) */
175#define HEX_GROUP_SIZE 1
176/* include ASCII after the hex output */
177#define HEX_ASCII 1
178/* max number of lines to be printed */
179#define HEX_MAX_LINES 2
180
181/* the list of all allocated objects */
182static LIST_HEAD(object_list);
183/* the list of gray-colored objects (see color_gray comment below) */
184static LIST_HEAD(gray_list);
185/* prio search tree for object boundaries */
186static struct prio_tree_root object_tree_root;
187/* rw_lock protecting the access to object_list and prio_tree_root */
188static DEFINE_RWLOCK(kmemleak_lock);
189
190/* allocation caches for kmemleak internal data */
191static struct kmem_cache *object_cache;
192static struct kmem_cache *scan_area_cache;
193
194/* set if tracing memory operations is enabled */
195static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
196/* same as above but only for the kmemleak_free() callback */
197static int kmemleak_free_enabled;
198/* set in the late_initcall if there were no errors */
199static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
200/* enables or disables early logging of the memory operations */
201static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
202/* set if a kmemleak warning was issued */
203static atomic_t kmemleak_warning = ATOMIC_INIT(0);
204/* set if a fatal kmemleak error has occurred */
205static atomic_t kmemleak_error = ATOMIC_INIT(0);
206
207/* minimum and maximum address that may be valid pointers */
208static unsigned long min_addr = ULONG_MAX;
209static unsigned long max_addr;
210
211static struct task_struct *scan_thread;
212/* used to avoid reporting of recently allocated objects */
213static unsigned long jiffies_min_age;
214static unsigned long jiffies_last_scan;
215/* delay between automatic memory scannings */
216static signed long jiffies_scan_wait;
217/* enables or disables the task stacks scanning */
218static int kmemleak_stack_scan = 1;
219/* protects the memory scanning, parameters and debug/kmemleak file access */
220static DEFINE_MUTEX(scan_mutex);
221/* setting kmemleak=on, will set this var, skipping the disable */
222static int kmemleak_skip_disable;
223
224
225/*
226 * Early object allocation/freeing logging. Kmemleak is initialized after the
227 * kernel allocator. However, both the kernel allocator and kmemleak may
228 * allocate memory blocks which need to be tracked. Kmemleak defines an
229 * arbitrary buffer to hold the allocation/freeing information before it is
230 * fully initialized.
231 */
232
233/* kmemleak operation type for early logging */
234enum {
235 KMEMLEAK_ALLOC,
236 KMEMLEAK_ALLOC_PERCPU,
237 KMEMLEAK_FREE,
238 KMEMLEAK_FREE_PART,
239 KMEMLEAK_FREE_PERCPU,
240 KMEMLEAK_NOT_LEAK,
241 KMEMLEAK_IGNORE,
242 KMEMLEAK_SCAN_AREA,
243 KMEMLEAK_NO_SCAN
244};
245
246/*
247 * Structure holding the information passed to kmemleak callbacks during the
248 * early logging.
249 */
250struct early_log {
251 int op_type; /* kmemleak operation type */
252 const void *ptr; /* allocated/freed memory block */
253 size_t size; /* memory block size */
254 int min_count; /* minimum reference count */
255 unsigned long trace[MAX_TRACE]; /* stack trace */
256 unsigned int trace_len; /* stack trace length */
257};
258
259/* early logging buffer and current position */
260static struct early_log
261 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
262static int crt_early_log __initdata;
263
264static void kmemleak_disable(void);
265
266/*
267 * Print a warning and dump the stack trace.
268 */
269#define kmemleak_warn(x...) do { \
270 pr_warning(x); \
271 dump_stack(); \
272 atomic_set(&kmemleak_warning, 1); \
273} while (0)
274
275/*
276 * Macro invoked when a serious kmemleak condition occurred and cannot be
277 * recovered from. Kmemleak will be disabled and further allocation/freeing
278 * tracing no longer available.
279 */
280#define kmemleak_stop(x...) do { \
281 kmemleak_warn(x); \
282 kmemleak_disable(); \
283} while (0)
284
285/*
286 * Printing of the objects hex dump to the seq file. The number of lines to be
287 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
288 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
289 * with the object->lock held.
290 */
291static void hex_dump_object(struct seq_file *seq,
292 struct kmemleak_object *object)
293{
294 const u8 *ptr = (const u8 *)object->pointer;
295 int i, len, remaining;
296 unsigned char linebuf[HEX_ROW_SIZE * 5];
297
298 /* limit the number of lines to HEX_MAX_LINES */
299 remaining = len =
300 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
301
302 seq_printf(seq, " hex dump (first %d bytes):\n", len);
303 for (i = 0; i < len; i += HEX_ROW_SIZE) {
304 int linelen = min(remaining, HEX_ROW_SIZE);
305
306 remaining -= HEX_ROW_SIZE;
307 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
308 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
309 HEX_ASCII);
310 seq_printf(seq, " %s\n", linebuf);
311 }
312}
313
314/*
315 * Object colors, encoded with count and min_count:
316 * - white - orphan object, not enough references to it (count < min_count)
317 * - gray - not orphan, not marked as false positive (min_count == 0) or
318 * sufficient references to it (count >= min_count)
319 * - black - ignore, it doesn't contain references (e.g. text section)
320 * (min_count == -1). No function defined for this color.
321 * Newly created objects don't have any color assigned (object->count == -1)
322 * before the next memory scan when they become white.
323 */
324static bool color_white(const struct kmemleak_object *object)
325{
326 return object->count != KMEMLEAK_BLACK &&
327 object->count < object->min_count;
328}
329
330static bool color_gray(const struct kmemleak_object *object)
331{
332 return object->min_count != KMEMLEAK_BLACK &&
333 object->count >= object->min_count;
334}
335
336/*
337 * Objects are considered unreferenced only if their color is white, they have
338 * not be deleted and have a minimum age to avoid false positives caused by
339 * pointers temporarily stored in CPU registers.
340 */
341static bool unreferenced_object(struct kmemleak_object *object)
342{
343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 time_before_eq(object->jiffies + jiffies_min_age,
345 jiffies_last_scan);
346}
347
348/*
349 * Printing of the unreferenced objects information to the seq file. The
350 * print_unreferenced function must be called with the object->lock held.
351 */
352static void print_unreferenced(struct seq_file *seq,
353 struct kmemleak_object *object)
354{
355 int i;
356 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
357
358 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
359 object->pointer, object->size);
360 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
361 object->comm, object->pid, object->jiffies,
362 msecs_age / 1000, msecs_age % 1000);
363 hex_dump_object(seq, object);
364 seq_printf(seq, " backtrace:\n");
365
366 for (i = 0; i < object->trace_len; i++) {
367 void *ptr = (void *)object->trace[i];
368 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
369 }
370}
371
372/*
373 * Print the kmemleak_object information. This function is used mainly for
374 * debugging special cases when kmemleak operations. It must be called with
375 * the object->lock held.
376 */
377static void dump_object_info(struct kmemleak_object *object)
378{
379 struct stack_trace trace;
380
381 trace.nr_entries = object->trace_len;
382 trace.entries = object->trace;
383
384 pr_notice("Object 0x%08lx (size %zu):\n",
385 object->tree_node.start, object->size);
386 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
387 object->comm, object->pid, object->jiffies);
388 pr_notice(" min_count = %d\n", object->min_count);
389 pr_notice(" count = %d\n", object->count);
390 pr_notice(" flags = 0x%lx\n", object->flags);
391 pr_notice(" checksum = %d\n", object->checksum);
392 pr_notice(" backtrace:\n");
393 print_stack_trace(&trace, 4);
394}
395
396/*
397 * Look-up a memory block metadata (kmemleak_object) in the priority search
398 * tree based on a pointer value. If alias is 0, only values pointing to the
399 * beginning of the memory block are allowed. The kmemleak_lock must be held
400 * when calling this function.
401 */
402static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
403{
404 struct prio_tree_node *node;
405 struct prio_tree_iter iter;
406 struct kmemleak_object *object;
407
408 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
409 node = prio_tree_next(&iter);
410 if (node) {
411 object = prio_tree_entry(node, struct kmemleak_object,
412 tree_node);
413 if (!alias && object->pointer != ptr) {
414 kmemleak_warn("Found object by alias at 0x%08lx\n",
415 ptr);
416 dump_object_info(object);
417 object = NULL;
418 }
419 } else
420 object = NULL;
421
422 return object;
423}
424
425/*
426 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
427 * that once an object's use_count reached 0, the RCU freeing was already
428 * registered and the object should no longer be used. This function must be
429 * called under the protection of rcu_read_lock().
430 */
431static int get_object(struct kmemleak_object *object)
432{
433 return atomic_inc_not_zero(&object->use_count);
434}
435
436/*
437 * RCU callback to free a kmemleak_object.
438 */
439static void free_object_rcu(struct rcu_head *rcu)
440{
441 struct hlist_node *elem, *tmp;
442 struct kmemleak_scan_area *area;
443 struct kmemleak_object *object =
444 container_of(rcu, struct kmemleak_object, rcu);
445
446 /*
447 * Once use_count is 0 (guaranteed by put_object), there is no other
448 * code accessing this object, hence no need for locking.
449 */
450 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
451 hlist_del(elem);
452 kmem_cache_free(scan_area_cache, area);
453 }
454 kmem_cache_free(object_cache, object);
455}
456
457/*
458 * Decrement the object use_count. Once the count is 0, free the object using
459 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
460 * delete_object() path, the delayed RCU freeing ensures that there is no
461 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
462 * is also possible.
463 */
464static void put_object(struct kmemleak_object *object)
465{
466 if (!atomic_dec_and_test(&object->use_count))
467 return;
468
469 /* should only get here after delete_object was called */
470 WARN_ON(object->flags & OBJECT_ALLOCATED);
471
472 call_rcu(&object->rcu, free_object_rcu);
473}
474
475/*
476 * Look up an object in the prio search tree and increase its use_count.
477 */
478static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
479{
480 unsigned long flags;
481 struct kmemleak_object *object = NULL;
482
483 rcu_read_lock();
484 read_lock_irqsave(&kmemleak_lock, flags);
485 if (ptr >= min_addr && ptr < max_addr)
486 object = lookup_object(ptr, alias);
487 read_unlock_irqrestore(&kmemleak_lock, flags);
488
489 /* check whether the object is still available */
490 if (object && !get_object(object))
491 object = NULL;
492 rcu_read_unlock();
493
494 return object;
495}
496
497/*
498 * Save stack trace to the given array of MAX_TRACE size.
499 */
500static int __save_stack_trace(unsigned long *trace)
501{
502 struct stack_trace stack_trace;
503
504 stack_trace.max_entries = MAX_TRACE;
505 stack_trace.nr_entries = 0;
506 stack_trace.entries = trace;
507 stack_trace.skip = 2;
508 save_stack_trace(&stack_trace);
509
510 return stack_trace.nr_entries;
511}
512
513/*
514 * Create the metadata (struct kmemleak_object) corresponding to an allocated
515 * memory block and add it to the object_list and object_tree_root.
516 */
517static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
518 int min_count, gfp_t gfp)
519{
520 unsigned long flags;
521 struct kmemleak_object *object;
522 struct prio_tree_node *node;
523
524 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
525 if (!object) {
526 pr_warning("Cannot allocate a kmemleak_object structure\n");
527 kmemleak_disable();
528 return NULL;
529 }
530
531 INIT_LIST_HEAD(&object->object_list);
532 INIT_LIST_HEAD(&object->gray_list);
533 INIT_HLIST_HEAD(&object->area_list);
534 spin_lock_init(&object->lock);
535 atomic_set(&object->use_count, 1);
536 object->flags = OBJECT_ALLOCATED;
537 object->pointer = ptr;
538 object->size = size;
539 object->min_count = min_count;
540 object->count = 0; /* white color initially */
541 object->jiffies = jiffies;
542 object->checksum = 0;
543
544 /* task information */
545 if (in_irq()) {
546 object->pid = 0;
547 strncpy(object->comm, "hardirq", sizeof(object->comm));
548 } else if (in_softirq()) {
549 object->pid = 0;
550 strncpy(object->comm, "softirq", sizeof(object->comm));
551 } else {
552 object->pid = current->pid;
553 /*
554 * There is a small chance of a race with set_task_comm(),
555 * however using get_task_comm() here may cause locking
556 * dependency issues with current->alloc_lock. In the worst
557 * case, the command line is not correct.
558 */
559 strncpy(object->comm, current->comm, sizeof(object->comm));
560 }
561
562 /* kernel backtrace */
563 object->trace_len = __save_stack_trace(object->trace);
564
565 INIT_PRIO_TREE_NODE(&object->tree_node);
566 object->tree_node.start = ptr;
567 object->tree_node.last = ptr + size - 1;
568
569 write_lock_irqsave(&kmemleak_lock, flags);
570
571 min_addr = min(min_addr, ptr);
572 max_addr = max(max_addr, ptr + size);
573 node = prio_tree_insert(&object_tree_root, &object->tree_node);
574 /*
575 * The code calling the kernel does not yet have the pointer to the
576 * memory block to be able to free it. However, we still hold the
577 * kmemleak_lock here in case parts of the kernel started freeing
578 * random memory blocks.
579 */
580 if (node != &object->tree_node) {
581 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
582 "(already existing)\n", ptr);
583 object = lookup_object(ptr, 1);
584 spin_lock(&object->lock);
585 dump_object_info(object);
586 spin_unlock(&object->lock);
587
588 goto out;
589 }
590 list_add_tail_rcu(&object->object_list, &object_list);
591out:
592 write_unlock_irqrestore(&kmemleak_lock, flags);
593 return object;
594}
595
596/*
597 * Remove the metadata (struct kmemleak_object) for a memory block from the
598 * object_list and object_tree_root and decrement its use_count.
599 */
600static void __delete_object(struct kmemleak_object *object)
601{
602 unsigned long flags;
603
604 write_lock_irqsave(&kmemleak_lock, flags);
605 prio_tree_remove(&object_tree_root, &object->tree_node);
606 list_del_rcu(&object->object_list);
607 write_unlock_irqrestore(&kmemleak_lock, flags);
608
609 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
610 WARN_ON(atomic_read(&object->use_count) < 2);
611
612 /*
613 * Locking here also ensures that the corresponding memory block
614 * cannot be freed when it is being scanned.
615 */
616 spin_lock_irqsave(&object->lock, flags);
617 object->flags &= ~OBJECT_ALLOCATED;
618 spin_unlock_irqrestore(&object->lock, flags);
619 put_object(object);
620}
621
622/*
623 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
624 * delete it.
625 */
626static void delete_object_full(unsigned long ptr)
627{
628 struct kmemleak_object *object;
629
630 object = find_and_get_object(ptr, 0);
631 if (!object) {
632#ifdef DEBUG
633 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
634 ptr);
635#endif
636 return;
637 }
638 __delete_object(object);
639 put_object(object);
640}
641
642/*
643 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
644 * delete it. If the memory block is partially freed, the function may create
645 * additional metadata for the remaining parts of the block.
646 */
647static void delete_object_part(unsigned long ptr, size_t size)
648{
649 struct kmemleak_object *object;
650 unsigned long start, end;
651
652 object = find_and_get_object(ptr, 1);
653 if (!object) {
654#ifdef DEBUG
655 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
656 "(size %zu)\n", ptr, size);
657#endif
658 return;
659 }
660 __delete_object(object);
661
662 /*
663 * Create one or two objects that may result from the memory block
664 * split. Note that partial freeing is only done by free_bootmem() and
665 * this happens before kmemleak_init() is called. The path below is
666 * only executed during early log recording in kmemleak_init(), so
667 * GFP_KERNEL is enough.
668 */
669 start = object->pointer;
670 end = object->pointer + object->size;
671 if (ptr > start)
672 create_object(start, ptr - start, object->min_count,
673 GFP_KERNEL);
674 if (ptr + size < end)
675 create_object(ptr + size, end - ptr - size, object->min_count,
676 GFP_KERNEL);
677
678 put_object(object);
679}
680
681static void __paint_it(struct kmemleak_object *object, int color)
682{
683 object->min_count = color;
684 if (color == KMEMLEAK_BLACK)
685 object->flags |= OBJECT_NO_SCAN;
686}
687
688static void paint_it(struct kmemleak_object *object, int color)
689{
690 unsigned long flags;
691
692 spin_lock_irqsave(&object->lock, flags);
693 __paint_it(object, color);
694 spin_unlock_irqrestore(&object->lock, flags);
695}
696
697static void paint_ptr(unsigned long ptr, int color)
698{
699 struct kmemleak_object *object;
700
701 object = find_and_get_object(ptr, 0);
702 if (!object) {
703 kmemleak_warn("Trying to color unknown object "
704 "at 0x%08lx as %s\n", ptr,
705 (color == KMEMLEAK_GREY) ? "Grey" :
706 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
707 return;
708 }
709 paint_it(object, color);
710 put_object(object);
711}
712
713/*
714 * Mark an object permanently as gray-colored so that it can no longer be
715 * reported as a leak. This is used in general to mark a false positive.
716 */
717static void make_gray_object(unsigned long ptr)
718{
719 paint_ptr(ptr, KMEMLEAK_GREY);
720}
721
722/*
723 * Mark the object as black-colored so that it is ignored from scans and
724 * reporting.
725 */
726static void make_black_object(unsigned long ptr)
727{
728 paint_ptr(ptr, KMEMLEAK_BLACK);
729}
730
731/*
732 * Add a scanning area to the object. If at least one such area is added,
733 * kmemleak will only scan these ranges rather than the whole memory block.
734 */
735static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
736{
737 unsigned long flags;
738 struct kmemleak_object *object;
739 struct kmemleak_scan_area *area;
740
741 object = find_and_get_object(ptr, 1);
742 if (!object) {
743 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
744 ptr);
745 return;
746 }
747
748 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
749 if (!area) {
750 pr_warning("Cannot allocate a scan area\n");
751 goto out;
752 }
753
754 spin_lock_irqsave(&object->lock, flags);
755 if (size == SIZE_MAX) {
756 size = object->pointer + object->size - ptr;
757 } else if (ptr + size > object->pointer + object->size) {
758 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
759 dump_object_info(object);
760 kmem_cache_free(scan_area_cache, area);
761 goto out_unlock;
762 }
763
764 INIT_HLIST_NODE(&area->node);
765 area->start = ptr;
766 area->size = size;
767
768 hlist_add_head(&area->node, &object->area_list);
769out_unlock:
770 spin_unlock_irqrestore(&object->lock, flags);
771out:
772 put_object(object);
773}
774
775/*
776 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
777 * pointer. Such object will not be scanned by kmemleak but references to it
778 * are searched.
779 */
780static void object_no_scan(unsigned long ptr)
781{
782 unsigned long flags;
783 struct kmemleak_object *object;
784
785 object = find_and_get_object(ptr, 0);
786 if (!object) {
787 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
788 return;
789 }
790
791 spin_lock_irqsave(&object->lock, flags);
792 object->flags |= OBJECT_NO_SCAN;
793 spin_unlock_irqrestore(&object->lock, flags);
794 put_object(object);
795}
796
797/*
798 * Log an early kmemleak_* call to the early_log buffer. These calls will be
799 * processed later once kmemleak is fully initialized.
800 */
801static void __init log_early(int op_type, const void *ptr, size_t size,
802 int min_count)
803{
804 unsigned long flags;
805 struct early_log *log;
806
807 if (atomic_read(&kmemleak_error)) {
808 /* kmemleak stopped recording, just count the requests */
809 crt_early_log++;
810 return;
811 }
812
813 if (crt_early_log >= ARRAY_SIZE(early_log)) {
814 kmemleak_disable();
815 return;
816 }
817
818 /*
819 * There is no need for locking since the kernel is still in UP mode
820 * at this stage. Disabling the IRQs is enough.
821 */
822 local_irq_save(flags);
823 log = &early_log[crt_early_log];
824 log->op_type = op_type;
825 log->ptr = ptr;
826 log->size = size;
827 log->min_count = min_count;
828 log->trace_len = __save_stack_trace(log->trace);
829 crt_early_log++;
830 local_irq_restore(flags);
831}
832
833/*
834 * Log an early allocated block and populate the stack trace.
835 */
836static void early_alloc(struct early_log *log)
837{
838 struct kmemleak_object *object;
839 unsigned long flags;
840 int i;
841
842 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
843 return;
844
845 /*
846 * RCU locking needed to ensure object is not freed via put_object().
847 */
848 rcu_read_lock();
849 object = create_object((unsigned long)log->ptr, log->size,
850 log->min_count, GFP_ATOMIC);
851 if (!object)
852 goto out;
853 spin_lock_irqsave(&object->lock, flags);
854 for (i = 0; i < log->trace_len; i++)
855 object->trace[i] = log->trace[i];
856 object->trace_len = log->trace_len;
857 spin_unlock_irqrestore(&object->lock, flags);
858out:
859 rcu_read_unlock();
860}
861
862/*
863 * Log an early allocated block and populate the stack trace.
864 */
865static void early_alloc_percpu(struct early_log *log)
866{
867 unsigned int cpu;
868 const void __percpu *ptr = log->ptr;
869
870 for_each_possible_cpu(cpu) {
871 log->ptr = per_cpu_ptr(ptr, cpu);
872 early_alloc(log);
873 }
874}
875
876/**
877 * kmemleak_alloc - register a newly allocated object
878 * @ptr: pointer to beginning of the object
879 * @size: size of the object
880 * @min_count: minimum number of references to this object. If during memory
881 * scanning a number of references less than @min_count is found,
882 * the object is reported as a memory leak. If @min_count is 0,
883 * the object is never reported as a leak. If @min_count is -1,
884 * the object is ignored (not scanned and not reported as a leak)
885 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
886 *
887 * This function is called from the kernel allocators when a new object
888 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
889 */
890void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
891 gfp_t gfp)
892{
893 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
894
895 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
896 create_object((unsigned long)ptr, size, min_count, gfp);
897 else if (atomic_read(&kmemleak_early_log))
898 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
899}
900EXPORT_SYMBOL_GPL(kmemleak_alloc);
901
902/**
903 * kmemleak_alloc_percpu - register a newly allocated __percpu object
904 * @ptr: __percpu pointer to beginning of the object
905 * @size: size of the object
906 *
907 * This function is called from the kernel percpu allocator when a new object
908 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
909 * allocation.
910 */
911void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
912{
913 unsigned int cpu;
914
915 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
916
917 /*
918 * Percpu allocations are only scanned and not reported as leaks
919 * (min_count is set to 0).
920 */
921 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
922 for_each_possible_cpu(cpu)
923 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
924 size, 0, GFP_KERNEL);
925 else if (atomic_read(&kmemleak_early_log))
926 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
927}
928EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
929
930/**
931 * kmemleak_free - unregister a previously registered object
932 * @ptr: pointer to beginning of the object
933 *
934 * This function is called from the kernel allocators when an object (memory
935 * block) is freed (kmem_cache_free, kfree, vfree etc.).
936 */
937void __ref kmemleak_free(const void *ptr)
938{
939 pr_debug("%s(0x%p)\n", __func__, ptr);
940
941 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
942 delete_object_full((unsigned long)ptr);
943 else if (atomic_read(&kmemleak_early_log))
944 log_early(KMEMLEAK_FREE, ptr, 0, 0);
945}
946EXPORT_SYMBOL_GPL(kmemleak_free);
947
948/**
949 * kmemleak_free_part - partially unregister a previously registered object
950 * @ptr: pointer to the beginning or inside the object. This also
951 * represents the start of the range to be freed
952 * @size: size to be unregistered
953 *
954 * This function is called when only a part of a memory block is freed
955 * (usually from the bootmem allocator).
956 */
957void __ref kmemleak_free_part(const void *ptr, size_t size)
958{
959 pr_debug("%s(0x%p)\n", __func__, ptr);
960
961 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
962 delete_object_part((unsigned long)ptr, size);
963 else if (atomic_read(&kmemleak_early_log))
964 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
965}
966EXPORT_SYMBOL_GPL(kmemleak_free_part);
967
968/**
969 * kmemleak_free_percpu - unregister a previously registered __percpu object
970 * @ptr: __percpu pointer to beginning of the object
971 *
972 * This function is called from the kernel percpu allocator when an object
973 * (memory block) is freed (free_percpu).
974 */
975void __ref kmemleak_free_percpu(const void __percpu *ptr)
976{
977 unsigned int cpu;
978
979 pr_debug("%s(0x%p)\n", __func__, ptr);
980
981 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
982 for_each_possible_cpu(cpu)
983 delete_object_full((unsigned long)per_cpu_ptr(ptr,
984 cpu));
985 else if (atomic_read(&kmemleak_early_log))
986 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
987}
988EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
989
990/**
991 * kmemleak_not_leak - mark an allocated object as false positive
992 * @ptr: pointer to beginning of the object
993 *
994 * Calling this function on an object will cause the memory block to no longer
995 * be reported as leak and always be scanned.
996 */
997void __ref kmemleak_not_leak(const void *ptr)
998{
999 pr_debug("%s(0x%p)\n", __func__, ptr);
1000
1001 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1002 make_gray_object((unsigned long)ptr);
1003 else if (atomic_read(&kmemleak_early_log))
1004 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1005}
1006EXPORT_SYMBOL(kmemleak_not_leak);
1007
1008/**
1009 * kmemleak_ignore - ignore an allocated object
1010 * @ptr: pointer to beginning of the object
1011 *
1012 * Calling this function on an object will cause the memory block to be
1013 * ignored (not scanned and not reported as a leak). This is usually done when
1014 * it is known that the corresponding block is not a leak and does not contain
1015 * any references to other allocated memory blocks.
1016 */
1017void __ref kmemleak_ignore(const void *ptr)
1018{
1019 pr_debug("%s(0x%p)\n", __func__, ptr);
1020
1021 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1022 make_black_object((unsigned long)ptr);
1023 else if (atomic_read(&kmemleak_early_log))
1024 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1025}
1026EXPORT_SYMBOL(kmemleak_ignore);
1027
1028/**
1029 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1030 * @ptr: pointer to beginning or inside the object. This also
1031 * represents the start of the scan area
1032 * @size: size of the scan area
1033 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1034 *
1035 * This function is used when it is known that only certain parts of an object
1036 * contain references to other objects. Kmemleak will only scan these areas
1037 * reducing the number false negatives.
1038 */
1039void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1040{
1041 pr_debug("%s(0x%p)\n", __func__, ptr);
1042
1043 if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
1044 add_scan_area((unsigned long)ptr, size, gfp);
1045 else if (atomic_read(&kmemleak_early_log))
1046 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1047}
1048EXPORT_SYMBOL(kmemleak_scan_area);
1049
1050/**
1051 * kmemleak_no_scan - do not scan an allocated object
1052 * @ptr: pointer to beginning of the object
1053 *
1054 * This function notifies kmemleak not to scan the given memory block. Useful
1055 * in situations where it is known that the given object does not contain any
1056 * references to other objects. Kmemleak will not scan such objects reducing
1057 * the number of false negatives.
1058 */
1059void __ref kmemleak_no_scan(const void *ptr)
1060{
1061 pr_debug("%s(0x%p)\n", __func__, ptr);
1062
1063 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1064 object_no_scan((unsigned long)ptr);
1065 else if (atomic_read(&kmemleak_early_log))
1066 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1067}
1068EXPORT_SYMBOL(kmemleak_no_scan);
1069
1070/*
1071 * Update an object's checksum and return true if it was modified.
1072 */
1073static bool update_checksum(struct kmemleak_object *object)
1074{
1075 u32 old_csum = object->checksum;
1076
1077 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1078 return false;
1079
1080 object->checksum = crc32(0, (void *)object->pointer, object->size);
1081 return object->checksum != old_csum;
1082}
1083
1084/*
1085 * Memory scanning is a long process and it needs to be interruptable. This
1086 * function checks whether such interrupt condition occurred.
1087 */
1088static int scan_should_stop(void)
1089{
1090 if (!atomic_read(&kmemleak_enabled))
1091 return 1;
1092
1093 /*
1094 * This function may be called from either process or kthread context,
1095 * hence the need to check for both stop conditions.
1096 */
1097 if (current->mm)
1098 return signal_pending(current);
1099 else
1100 return kthread_should_stop();
1101
1102 return 0;
1103}
1104
1105/*
1106 * Scan a memory block (exclusive range) for valid pointers and add those
1107 * found to the gray list.
1108 */
1109static void scan_block(void *_start, void *_end,
1110 struct kmemleak_object *scanned, int allow_resched)
1111{
1112 unsigned long *ptr;
1113 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1114 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1115
1116 for (ptr = start; ptr < end; ptr++) {
1117 struct kmemleak_object *object;
1118 unsigned long flags;
1119 unsigned long pointer;
1120
1121 if (allow_resched)
1122 cond_resched();
1123 if (scan_should_stop())
1124 break;
1125
1126 /* don't scan uninitialized memory */
1127 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1128 BYTES_PER_POINTER))
1129 continue;
1130
1131 pointer = *ptr;
1132
1133 object = find_and_get_object(pointer, 1);
1134 if (!object)
1135 continue;
1136 if (object == scanned) {
1137 /* self referenced, ignore */
1138 put_object(object);
1139 continue;
1140 }
1141
1142 /*
1143 * Avoid the lockdep recursive warning on object->lock being
1144 * previously acquired in scan_object(). These locks are
1145 * enclosed by scan_mutex.
1146 */
1147 spin_lock_irqsave_nested(&object->lock, flags,
1148 SINGLE_DEPTH_NESTING);
1149 if (!color_white(object)) {
1150 /* non-orphan, ignored or new */
1151 spin_unlock_irqrestore(&object->lock, flags);
1152 put_object(object);
1153 continue;
1154 }
1155
1156 /*
1157 * Increase the object's reference count (number of pointers
1158 * to the memory block). If this count reaches the required
1159 * minimum, the object's color will become gray and it will be
1160 * added to the gray_list.
1161 */
1162 object->count++;
1163 if (color_gray(object)) {
1164 list_add_tail(&object->gray_list, &gray_list);
1165 spin_unlock_irqrestore(&object->lock, flags);
1166 continue;
1167 }
1168
1169 spin_unlock_irqrestore(&object->lock, flags);
1170 put_object(object);
1171 }
1172}
1173
1174/*
1175 * Scan a memory block corresponding to a kmemleak_object. A condition is
1176 * that object->use_count >= 1.
1177 */
1178static void scan_object(struct kmemleak_object *object)
1179{
1180 struct kmemleak_scan_area *area;
1181 struct hlist_node *elem;
1182 unsigned long flags;
1183
1184 /*
1185 * Once the object->lock is acquired, the corresponding memory block
1186 * cannot be freed (the same lock is acquired in delete_object).
1187 */
1188 spin_lock_irqsave(&object->lock, flags);
1189 if (object->flags & OBJECT_NO_SCAN)
1190 goto out;
1191 if (!(object->flags & OBJECT_ALLOCATED))
1192 /* already freed object */
1193 goto out;
1194 if (hlist_empty(&object->area_list)) {
1195 void *start = (void *)object->pointer;
1196 void *end = (void *)(object->pointer + object->size);
1197
1198 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1199 !(object->flags & OBJECT_NO_SCAN)) {
1200 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1201 object, 0);
1202 start += MAX_SCAN_SIZE;
1203
1204 spin_unlock_irqrestore(&object->lock, flags);
1205 cond_resched();
1206 spin_lock_irqsave(&object->lock, flags);
1207 }
1208 } else
1209 hlist_for_each_entry(area, elem, &object->area_list, node)
1210 scan_block((void *)area->start,
1211 (void *)(area->start + area->size),
1212 object, 0);
1213out:
1214 spin_unlock_irqrestore(&object->lock, flags);
1215}
1216
1217/*
1218 * Scan the objects already referenced (gray objects). More objects will be
1219 * referenced and, if there are no memory leaks, all the objects are scanned.
1220 */
1221static void scan_gray_list(void)
1222{
1223 struct kmemleak_object *object, *tmp;
1224
1225 /*
1226 * The list traversal is safe for both tail additions and removals
1227 * from inside the loop. The kmemleak objects cannot be freed from
1228 * outside the loop because their use_count was incremented.
1229 */
1230 object = list_entry(gray_list.next, typeof(*object), gray_list);
1231 while (&object->gray_list != &gray_list) {
1232 cond_resched();
1233
1234 /* may add new objects to the list */
1235 if (!scan_should_stop())
1236 scan_object(object);
1237
1238 tmp = list_entry(object->gray_list.next, typeof(*object),
1239 gray_list);
1240
1241 /* remove the object from the list and release it */
1242 list_del(&object->gray_list);
1243 put_object(object);
1244
1245 object = tmp;
1246 }
1247 WARN_ON(!list_empty(&gray_list));
1248}
1249
1250/*
1251 * Scan data sections and all the referenced memory blocks allocated via the
1252 * kernel's standard allocators. This function must be called with the
1253 * scan_mutex held.
1254 */
1255static void kmemleak_scan(void)
1256{
1257 unsigned long flags;
1258 struct kmemleak_object *object;
1259 int i;
1260 int new_leaks = 0;
1261
1262 jiffies_last_scan = jiffies;
1263
1264 /* prepare the kmemleak_object's */
1265 rcu_read_lock();
1266 list_for_each_entry_rcu(object, &object_list, object_list) {
1267 spin_lock_irqsave(&object->lock, flags);
1268#ifdef DEBUG
1269 /*
1270 * With a few exceptions there should be a maximum of
1271 * 1 reference to any object at this point.
1272 */
1273 if (atomic_read(&object->use_count) > 1) {
1274 pr_debug("object->use_count = %d\n",
1275 atomic_read(&object->use_count));
1276 dump_object_info(object);
1277 }
1278#endif
1279 /* reset the reference count (whiten the object) */
1280 object->count = 0;
1281 if (color_gray(object) && get_object(object))
1282 list_add_tail(&object->gray_list, &gray_list);
1283
1284 spin_unlock_irqrestore(&object->lock, flags);
1285 }
1286 rcu_read_unlock();
1287
1288 /* data/bss scanning */
1289 scan_block(_sdata, _edata, NULL, 1);
1290 scan_block(__bss_start, __bss_stop, NULL, 1);
1291
1292#ifdef CONFIG_SMP
1293 /* per-cpu sections scanning */
1294 for_each_possible_cpu(i)
1295 scan_block(__per_cpu_start + per_cpu_offset(i),
1296 __per_cpu_end + per_cpu_offset(i), NULL, 1);
1297#endif
1298
1299 /*
1300 * Struct page scanning for each node.
1301 */
1302 lock_memory_hotplug();
1303 for_each_online_node(i) {
1304 pg_data_t *pgdat = NODE_DATA(i);
1305 unsigned long start_pfn = pgdat->node_start_pfn;
1306 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1307 unsigned long pfn;
1308
1309 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1310 struct page *page;
1311
1312 if (!pfn_valid(pfn))
1313 continue;
1314 page = pfn_to_page(pfn);
1315 /* only scan if page is in use */
1316 if (page_count(page) == 0)
1317 continue;
1318 scan_block(page, page + 1, NULL, 1);
1319 }
1320 }
1321 unlock_memory_hotplug();
1322
1323 /*
1324 * Scanning the task stacks (may introduce false negatives).
1325 */
1326 if (kmemleak_stack_scan) {
1327 struct task_struct *p, *g;
1328
1329 read_lock(&tasklist_lock);
1330 do_each_thread(g, p) {
1331 scan_block(task_stack_page(p), task_stack_page(p) +
1332 THREAD_SIZE, NULL, 0);
1333 } while_each_thread(g, p);
1334 read_unlock(&tasklist_lock);
1335 }
1336
1337 /*
1338 * Scan the objects already referenced from the sections scanned
1339 * above.
1340 */
1341 scan_gray_list();
1342
1343 /*
1344 * Check for new or unreferenced objects modified since the previous
1345 * scan and color them gray until the next scan.
1346 */
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(object, &object_list, object_list) {
1349 spin_lock_irqsave(&object->lock, flags);
1350 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1351 && update_checksum(object) && get_object(object)) {
1352 /* color it gray temporarily */
1353 object->count = object->min_count;
1354 list_add_tail(&object->gray_list, &gray_list);
1355 }
1356 spin_unlock_irqrestore(&object->lock, flags);
1357 }
1358 rcu_read_unlock();
1359
1360 /*
1361 * Re-scan the gray list for modified unreferenced objects.
1362 */
1363 scan_gray_list();
1364
1365 /*
1366 * If scanning was stopped do not report any new unreferenced objects.
1367 */
1368 if (scan_should_stop())
1369 return;
1370
1371 /*
1372 * Scanning result reporting.
1373 */
1374 rcu_read_lock();
1375 list_for_each_entry_rcu(object, &object_list, object_list) {
1376 spin_lock_irqsave(&object->lock, flags);
1377 if (unreferenced_object(object) &&
1378 !(object->flags & OBJECT_REPORTED)) {
1379 object->flags |= OBJECT_REPORTED;
1380 new_leaks++;
1381 }
1382 spin_unlock_irqrestore(&object->lock, flags);
1383 }
1384 rcu_read_unlock();
1385
1386 if (new_leaks)
1387 pr_info("%d new suspected memory leaks (see "
1388 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1389
1390}
1391
1392/*
1393 * Thread function performing automatic memory scanning. Unreferenced objects
1394 * at the end of a memory scan are reported but only the first time.
1395 */
1396static int kmemleak_scan_thread(void *arg)
1397{
1398 static int first_run = 1;
1399
1400 pr_info("Automatic memory scanning thread started\n");
1401 set_user_nice(current, 10);
1402
1403 /*
1404 * Wait before the first scan to allow the system to fully initialize.
1405 */
1406 if (first_run) {
1407 first_run = 0;
1408 ssleep(SECS_FIRST_SCAN);
1409 }
1410
1411 while (!kthread_should_stop()) {
1412 signed long timeout = jiffies_scan_wait;
1413
1414 mutex_lock(&scan_mutex);
1415 kmemleak_scan();
1416 mutex_unlock(&scan_mutex);
1417
1418 /* wait before the next scan */
1419 while (timeout && !kthread_should_stop())
1420 timeout = schedule_timeout_interruptible(timeout);
1421 }
1422
1423 pr_info("Automatic memory scanning thread ended\n");
1424
1425 return 0;
1426}
1427
1428/*
1429 * Start the automatic memory scanning thread. This function must be called
1430 * with the scan_mutex held.
1431 */
1432static void start_scan_thread(void)
1433{
1434 if (scan_thread)
1435 return;
1436 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1437 if (IS_ERR(scan_thread)) {
1438 pr_warning("Failed to create the scan thread\n");
1439 scan_thread = NULL;
1440 }
1441}
1442
1443/*
1444 * Stop the automatic memory scanning thread. This function must be called
1445 * with the scan_mutex held.
1446 */
1447static void stop_scan_thread(void)
1448{
1449 if (scan_thread) {
1450 kthread_stop(scan_thread);
1451 scan_thread = NULL;
1452 }
1453}
1454
1455/*
1456 * Iterate over the object_list and return the first valid object at or after
1457 * the required position with its use_count incremented. The function triggers
1458 * a memory scanning when the pos argument points to the first position.
1459 */
1460static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1461{
1462 struct kmemleak_object *object;
1463 loff_t n = *pos;
1464 int err;
1465
1466 err = mutex_lock_interruptible(&scan_mutex);
1467 if (err < 0)
1468 return ERR_PTR(err);
1469
1470 rcu_read_lock();
1471 list_for_each_entry_rcu(object, &object_list, object_list) {
1472 if (n-- > 0)
1473 continue;
1474 if (get_object(object))
1475 goto out;
1476 }
1477 object = NULL;
1478out:
1479 return object;
1480}
1481
1482/*
1483 * Return the next object in the object_list. The function decrements the
1484 * use_count of the previous object and increases that of the next one.
1485 */
1486static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1487{
1488 struct kmemleak_object *prev_obj = v;
1489 struct kmemleak_object *next_obj = NULL;
1490 struct list_head *n = &prev_obj->object_list;
1491
1492 ++(*pos);
1493
1494 list_for_each_continue_rcu(n, &object_list) {
1495 struct kmemleak_object *obj =
1496 list_entry(n, struct kmemleak_object, object_list);
1497 if (get_object(obj)) {
1498 next_obj = obj;
1499 break;
1500 }
1501 }
1502
1503 put_object(prev_obj);
1504 return next_obj;
1505}
1506
1507/*
1508 * Decrement the use_count of the last object required, if any.
1509 */
1510static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1511{
1512 if (!IS_ERR(v)) {
1513 /*
1514 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1515 * waiting was interrupted, so only release it if !IS_ERR.
1516 */
1517 rcu_read_unlock();
1518 mutex_unlock(&scan_mutex);
1519 if (v)
1520 put_object(v);
1521 }
1522}
1523
1524/*
1525 * Print the information for an unreferenced object to the seq file.
1526 */
1527static int kmemleak_seq_show(struct seq_file *seq, void *v)
1528{
1529 struct kmemleak_object *object = v;
1530 unsigned long flags;
1531
1532 spin_lock_irqsave(&object->lock, flags);
1533 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1534 print_unreferenced(seq, object);
1535 spin_unlock_irqrestore(&object->lock, flags);
1536 return 0;
1537}
1538
1539static const struct seq_operations kmemleak_seq_ops = {
1540 .start = kmemleak_seq_start,
1541 .next = kmemleak_seq_next,
1542 .stop = kmemleak_seq_stop,
1543 .show = kmemleak_seq_show,
1544};
1545
1546static int kmemleak_open(struct inode *inode, struct file *file)
1547{
1548 return seq_open(file, &kmemleak_seq_ops);
1549}
1550
1551static int kmemleak_release(struct inode *inode, struct file *file)
1552{
1553 return seq_release(inode, file);
1554}
1555
1556static int dump_str_object_info(const char *str)
1557{
1558 unsigned long flags;
1559 struct kmemleak_object *object;
1560 unsigned long addr;
1561
1562 addr= simple_strtoul(str, NULL, 0);
1563 object = find_and_get_object(addr, 0);
1564 if (!object) {
1565 pr_info("Unknown object at 0x%08lx\n", addr);
1566 return -EINVAL;
1567 }
1568
1569 spin_lock_irqsave(&object->lock, flags);
1570 dump_object_info(object);
1571 spin_unlock_irqrestore(&object->lock, flags);
1572
1573 put_object(object);
1574 return 0;
1575}
1576
1577/*
1578 * We use grey instead of black to ensure we can do future scans on the same
1579 * objects. If we did not do future scans these black objects could
1580 * potentially contain references to newly allocated objects in the future and
1581 * we'd end up with false positives.
1582 */
1583static void kmemleak_clear(void)
1584{
1585 struct kmemleak_object *object;
1586 unsigned long flags;
1587
1588 rcu_read_lock();
1589 list_for_each_entry_rcu(object, &object_list, object_list) {
1590 spin_lock_irqsave(&object->lock, flags);
1591 if ((object->flags & OBJECT_REPORTED) &&
1592 unreferenced_object(object))
1593 __paint_it(object, KMEMLEAK_GREY);
1594 spin_unlock_irqrestore(&object->lock, flags);
1595 }
1596 rcu_read_unlock();
1597}
1598
1599/*
1600 * File write operation to configure kmemleak at run-time. The following
1601 * commands can be written to the /sys/kernel/debug/kmemleak file:
1602 * off - disable kmemleak (irreversible)
1603 * stack=on - enable the task stacks scanning
1604 * stack=off - disable the tasks stacks scanning
1605 * scan=on - start the automatic memory scanning thread
1606 * scan=off - stop the automatic memory scanning thread
1607 * scan=... - set the automatic memory scanning period in seconds (0 to
1608 * disable it)
1609 * scan - trigger a memory scan
1610 * clear - mark all current reported unreferenced kmemleak objects as
1611 * grey to ignore printing them
1612 * dump=... - dump information about the object found at the given address
1613 */
1614static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1615 size_t size, loff_t *ppos)
1616{
1617 char buf[64];
1618 int buf_size;
1619 int ret;
1620
1621 if (!atomic_read(&kmemleak_enabled))
1622 return -EBUSY;
1623
1624 buf_size = min(size, (sizeof(buf) - 1));
1625 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1626 return -EFAULT;
1627 buf[buf_size] = 0;
1628
1629 ret = mutex_lock_interruptible(&scan_mutex);
1630 if (ret < 0)
1631 return ret;
1632
1633 if (strncmp(buf, "off", 3) == 0)
1634 kmemleak_disable();
1635 else if (strncmp(buf, "stack=on", 8) == 0)
1636 kmemleak_stack_scan = 1;
1637 else if (strncmp(buf, "stack=off", 9) == 0)
1638 kmemleak_stack_scan = 0;
1639 else if (strncmp(buf, "scan=on", 7) == 0)
1640 start_scan_thread();
1641 else if (strncmp(buf, "scan=off", 8) == 0)
1642 stop_scan_thread();
1643 else if (strncmp(buf, "scan=", 5) == 0) {
1644 unsigned long secs;
1645
1646 ret = strict_strtoul(buf + 5, 0, &secs);
1647 if (ret < 0)
1648 goto out;
1649 stop_scan_thread();
1650 if (secs) {
1651 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1652 start_scan_thread();
1653 }
1654 } else if (strncmp(buf, "scan", 4) == 0)
1655 kmemleak_scan();
1656 else if (strncmp(buf, "clear", 5) == 0)
1657 kmemleak_clear();
1658 else if (strncmp(buf, "dump=", 5) == 0)
1659 ret = dump_str_object_info(buf + 5);
1660 else
1661 ret = -EINVAL;
1662
1663out:
1664 mutex_unlock(&scan_mutex);
1665 if (ret < 0)
1666 return ret;
1667
1668 /* ignore the rest of the buffer, only one command at a time */
1669 *ppos += size;
1670 return size;
1671}
1672
1673static const struct file_operations kmemleak_fops = {
1674 .owner = THIS_MODULE,
1675 .open = kmemleak_open,
1676 .read = seq_read,
1677 .write = kmemleak_write,
1678 .llseek = seq_lseek,
1679 .release = kmemleak_release,
1680};
1681
1682/*
1683 * Stop the memory scanning thread and free the kmemleak internal objects if
1684 * no previous scan thread (otherwise, kmemleak may still have some useful
1685 * information on memory leaks).
1686 */
1687static void kmemleak_do_cleanup(struct work_struct *work)
1688{
1689 struct kmemleak_object *object;
1690 bool cleanup = scan_thread == NULL;
1691
1692 mutex_lock(&scan_mutex);
1693 stop_scan_thread();
1694
1695 /*
1696 * Once the scan thread has stopped, it is safe to no longer track
1697 * object freeing. Ordering of the scan thread stopping and the memory
1698 * accesses below is guaranteed by the kthread_stop() function.
1699 */
1700 kmemleak_free_enabled = 0;
1701
1702 if (cleanup) {
1703 rcu_read_lock();
1704 list_for_each_entry_rcu(object, &object_list, object_list)
1705 delete_object_full(object->pointer);
1706 rcu_read_unlock();
1707 }
1708 mutex_unlock(&scan_mutex);
1709}
1710
1711static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1712
1713/*
1714 * Disable kmemleak. No memory allocation/freeing will be traced once this
1715 * function is called. Disabling kmemleak is an irreversible operation.
1716 */
1717static void kmemleak_disable(void)
1718{
1719 /* atomically check whether it was already invoked */
1720 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1721 return;
1722
1723 /* stop any memory operation tracing */
1724 atomic_set(&kmemleak_enabled, 0);
1725
1726 /* check whether it is too early for a kernel thread */
1727 if (atomic_read(&kmemleak_initialized))
1728 schedule_work(&cleanup_work);
1729 else
1730 kmemleak_free_enabled = 0;
1731
1732 pr_info("Kernel memory leak detector disabled\n");
1733}
1734
1735/*
1736 * Allow boot-time kmemleak disabling (enabled by default).
1737 */
1738static int kmemleak_boot_config(char *str)
1739{
1740 if (!str)
1741 return -EINVAL;
1742 if (strcmp(str, "off") == 0)
1743 kmemleak_disable();
1744 else if (strcmp(str, "on") == 0)
1745 kmemleak_skip_disable = 1;
1746 else
1747 return -EINVAL;
1748 return 0;
1749}
1750early_param("kmemleak", kmemleak_boot_config);
1751
1752static void __init print_log_trace(struct early_log *log)
1753{
1754 struct stack_trace trace;
1755
1756 trace.nr_entries = log->trace_len;
1757 trace.entries = log->trace;
1758
1759 pr_notice("Early log backtrace:\n");
1760 print_stack_trace(&trace, 2);
1761}
1762
1763/*
1764 * Kmemleak initialization.
1765 */
1766void __init kmemleak_init(void)
1767{
1768 int i;
1769 unsigned long flags;
1770
1771#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1772 if (!kmemleak_skip_disable) {
1773 atomic_set(&kmemleak_early_log, 0);
1774 kmemleak_disable();
1775 return;
1776 }
1777#endif
1778
1779 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1780 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1781
1782 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1783 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1784 INIT_PRIO_TREE_ROOT(&object_tree_root);
1785
1786 if (crt_early_log >= ARRAY_SIZE(early_log))
1787 pr_warning("Early log buffer exceeded (%d), please increase "
1788 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1789
1790 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1791 local_irq_save(flags);
1792 atomic_set(&kmemleak_early_log, 0);
1793 if (atomic_read(&kmemleak_error)) {
1794 local_irq_restore(flags);
1795 return;
1796 } else {
1797 atomic_set(&kmemleak_enabled, 1);
1798 kmemleak_free_enabled = 1;
1799 }
1800 local_irq_restore(flags);
1801
1802 /*
1803 * This is the point where tracking allocations is safe. Automatic
1804 * scanning is started during the late initcall. Add the early logged
1805 * callbacks to the kmemleak infrastructure.
1806 */
1807 for (i = 0; i < crt_early_log; i++) {
1808 struct early_log *log = &early_log[i];
1809
1810 switch (log->op_type) {
1811 case KMEMLEAK_ALLOC:
1812 early_alloc(log);
1813 break;
1814 case KMEMLEAK_ALLOC_PERCPU:
1815 early_alloc_percpu(log);
1816 break;
1817 case KMEMLEAK_FREE:
1818 kmemleak_free(log->ptr);
1819 break;
1820 case KMEMLEAK_FREE_PART:
1821 kmemleak_free_part(log->ptr, log->size);
1822 break;
1823 case KMEMLEAK_FREE_PERCPU:
1824 kmemleak_free_percpu(log->ptr);
1825 break;
1826 case KMEMLEAK_NOT_LEAK:
1827 kmemleak_not_leak(log->ptr);
1828 break;
1829 case KMEMLEAK_IGNORE:
1830 kmemleak_ignore(log->ptr);
1831 break;
1832 case KMEMLEAK_SCAN_AREA:
1833 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1834 break;
1835 case KMEMLEAK_NO_SCAN:
1836 kmemleak_no_scan(log->ptr);
1837 break;
1838 default:
1839 kmemleak_warn("Unknown early log operation: %d\n",
1840 log->op_type);
1841 }
1842
1843 if (atomic_read(&kmemleak_warning)) {
1844 print_log_trace(log);
1845 atomic_set(&kmemleak_warning, 0);
1846 }
1847 }
1848}
1849
1850/*
1851 * Late initialization function.
1852 */
1853static int __init kmemleak_late_init(void)
1854{
1855 struct dentry *dentry;
1856
1857 atomic_set(&kmemleak_initialized, 1);
1858
1859 if (atomic_read(&kmemleak_error)) {
1860 /*
1861 * Some error occurred and kmemleak was disabled. There is a
1862 * small chance that kmemleak_disable() was called immediately
1863 * after setting kmemleak_initialized and we may end up with
1864 * two clean-up threads but serialized by scan_mutex.
1865 */
1866 schedule_work(&cleanup_work);
1867 return -ENOMEM;
1868 }
1869
1870 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1871 &kmemleak_fops);
1872 if (!dentry)
1873 pr_warning("Failed to create the debugfs kmemleak file\n");
1874 mutex_lock(&scan_mutex);
1875 start_scan_thread();
1876 mutex_unlock(&scan_mutex);
1877
1878 pr_info("Kernel memory leak detector initialized\n");
1879
1880 return 0;
1881}
1882late_initcall(kmemleak_late_init);