| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Compute complex base 10 logarithm. | 
|  | 2 | Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | 3 | This file is part of the GNU C Library. | 
|  | 4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | 
|  | 5 |  | 
|  | 6 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 7 | modify it under the terms of the GNU Lesser General Public | 
|  | 8 | License as published by the Free Software Foundation; either | 
|  | 9 | version 2.1 of the License, or (at your option) any later version. | 
|  | 10 |  | 
|  | 11 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 14 | Lesser General Public License for more details. | 
|  | 15 |  | 
|  | 16 | You should have received a copy of the GNU Lesser General Public | 
|  | 17 | License along with the GNU C Library; if not, see | 
|  | 18 | <http://www.gnu.org/licenses/>.  */ | 
|  | 19 |  | 
|  | 20 | #include <complex.h> | 
|  | 21 | #include <math.h> | 
|  | 22 | #include <math_private.h> | 
|  | 23 | #include <float.h> | 
|  | 24 |  | 
|  | 25 | /* log_10 (2).  */ | 
|  | 26 | #define M_LOG10_2f 0.3010299956639811952137388947244930267682f | 
|  | 27 |  | 
|  | 28 | /* pi * log10 (e).  */ | 
|  | 29 | #define M_PI_LOG10Ef 1.364376353841841347485783625431355770210f | 
|  | 30 |  | 
|  | 31 | __complex__ float | 
|  | 32 | __clog10f (__complex__ float x) | 
|  | 33 | { | 
|  | 34 | __complex__ float result; | 
|  | 35 | int rcls = fpclassify (__real__ x); | 
|  | 36 | int icls = fpclassify (__imag__ x); | 
|  | 37 |  | 
|  | 38 | if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) | 
|  | 39 | { | 
|  | 40 | /* Real and imaginary part are 0.0.  */ | 
|  | 41 | __imag__ result = signbit (__real__ x) ? M_PI_LOG10Ef : 0.0; | 
|  | 42 | __imag__ result = __copysignf (__imag__ result, __imag__ x); | 
|  | 43 | /* Yes, the following line raises an exception.  */ | 
|  | 44 | __real__ result = -1.0 / fabsf (__real__ x); | 
|  | 45 | } | 
|  | 46 | else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) | 
|  | 47 | { | 
|  | 48 | /* Neither real nor imaginary part is NaN.  */ | 
|  | 49 | float absx = fabsf (__real__ x), absy = fabsf (__imag__ x); | 
|  | 50 | int scale = 0; | 
|  | 51 |  | 
|  | 52 | if (absx < absy) | 
|  | 53 | { | 
|  | 54 | float t = absx; | 
|  | 55 | absx = absy; | 
|  | 56 | absy = t; | 
|  | 57 | } | 
|  | 58 |  | 
|  | 59 | if (absx > FLT_MAX / 2.0f) | 
|  | 60 | { | 
|  | 61 | scale = -1; | 
|  | 62 | absx = __scalbnf (absx, scale); | 
|  | 63 | absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f); | 
|  | 64 | } | 
|  | 65 | else if (absx < FLT_MIN && absy < FLT_MIN) | 
|  | 66 | { | 
|  | 67 | scale = FLT_MANT_DIG; | 
|  | 68 | absx = __scalbnf (absx, scale); | 
|  | 69 | absy = __scalbnf (absy, scale); | 
|  | 70 | } | 
|  | 71 |  | 
|  | 72 | if (absx == 1.0f && scale == 0) | 
|  | 73 | { | 
|  | 74 | __real__ result = __log1pf (absy * absy) * ((float) M_LOG10E / 2.0f); | 
|  | 75 | math_check_force_underflow_nonneg (__real__ result); | 
|  | 76 | } | 
|  | 77 | else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0) | 
|  | 78 | { | 
|  | 79 | float d2m1 = (absx - 1.0f) * (absx + 1.0f); | 
|  | 80 | if (absy >= FLT_EPSILON) | 
|  | 81 | d2m1 += absy * absy; | 
|  | 82 | __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); | 
|  | 83 | } | 
|  | 84 | else if (absx < 1.0f | 
|  | 85 | && absx >= 0.5f | 
|  | 86 | && absy < FLT_EPSILON / 2.0f | 
|  | 87 | && scale == 0) | 
|  | 88 | { | 
|  | 89 | float d2m1 = (absx - 1.0f) * (absx + 1.0f); | 
|  | 90 | __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); | 
|  | 91 | } | 
|  | 92 | else if (absx < 1.0f | 
|  | 93 | && absx >= 0.5f | 
|  | 94 | && scale == 0 | 
|  | 95 | && absx * absx + absy * absy >= 0.5f) | 
|  | 96 | { | 
|  | 97 | float d2m1 = __x2y2m1f (absx, absy); | 
|  | 98 | __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); | 
|  | 99 | } | 
|  | 100 | else | 
|  | 101 | { | 
|  | 102 | float d = __ieee754_hypotf (absx, absy); | 
|  | 103 | __real__ result = __ieee754_log10f (d) - scale * M_LOG10_2f; | 
|  | 104 | } | 
|  | 105 |  | 
|  | 106 | __imag__ result = M_LOG10E * __ieee754_atan2f (__imag__ x, __real__ x); | 
|  | 107 | } | 
|  | 108 | else | 
|  | 109 | { | 
|  | 110 | __imag__ result = __nanf (""); | 
|  | 111 | if (rcls == FP_INFINITE || icls == FP_INFINITE) | 
|  | 112 | /* Real or imaginary part is infinite.  */ | 
|  | 113 | __real__ result = HUGE_VALF; | 
|  | 114 | else | 
|  | 115 | __real__ result = __nanf (""); | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | return result; | 
|  | 119 | } | 
|  | 120 | #ifndef __clog10f | 
|  | 121 | weak_alias (__clog10f, clog10f) | 
|  | 122 | #endif |