lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * SLOB Allocator: Simple List Of Blocks |
| 3 | * |
| 4 | * Matt Mackall <mpm@selenic.com> 12/30/03 |
| 5 | * |
| 6 | * NUMA support by Paul Mundt, 2007. |
| 7 | * |
| 8 | * How SLOB works: |
| 9 | * |
| 10 | * The core of SLOB is a traditional K&R style heap allocator, with |
| 11 | * support for returning aligned objects. The granularity of this |
| 12 | * allocator is as little as 2 bytes, however typically most architectures |
| 13 | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. |
| 14 | * |
| 15 | * The slob heap is a set of linked list of pages from alloc_pages(), |
| 16 | * and within each page, there is a singly-linked list of free blocks |
| 17 | * (slob_t). The heap is grown on demand. To reduce fragmentation, |
| 18 | * heap pages are segregated into three lists, with objects less than |
| 19 | * 256 bytes, objects less than 1024 bytes, and all other objects. |
| 20 | * |
| 21 | * Allocation from heap involves first searching for a page with |
| 22 | * sufficient free blocks (using a next-fit-like approach) followed by |
| 23 | * a first-fit scan of the page. Deallocation inserts objects back |
| 24 | * into the free list in address order, so this is effectively an |
| 25 | * address-ordered first fit. |
| 26 | * |
| 27 | * Above this is an implementation of kmalloc/kfree. Blocks returned |
| 28 | * from kmalloc are prepended with a 4-byte header with the kmalloc size. |
| 29 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
| 30 | * alloc_pages() directly, allocating compound pages so the page order |
| 31 | * does not have to be separately tracked, and also stores the exact |
| 32 | * allocation size in page->private so that it can be used to accurately |
| 33 | * provide ksize(). These objects are detected in kfree() because slob_page() |
| 34 | * is false for them. |
| 35 | * |
| 36 | * SLAB is emulated on top of SLOB by simply calling constructors and |
| 37 | * destructors for every SLAB allocation. Objects are returned with the |
| 38 | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which |
| 39 | * case the low-level allocator will fragment blocks to create the proper |
| 40 | * alignment. Again, objects of page-size or greater are allocated by |
| 41 | * calling alloc_pages(). As SLAB objects know their size, no separate |
| 42 | * size bookkeeping is necessary and there is essentially no allocation |
| 43 | * space overhead, and compound pages aren't needed for multi-page |
| 44 | * allocations. |
| 45 | * |
| 46 | * NUMA support in SLOB is fairly simplistic, pushing most of the real |
| 47 | * logic down to the page allocator, and simply doing the node accounting |
| 48 | * on the upper levels. In the event that a node id is explicitly |
| 49 | * provided, alloc_pages_exact_node() with the specified node id is used |
| 50 | * instead. The common case (or when the node id isn't explicitly provided) |
| 51 | * will default to the current node, as per numa_node_id(). |
| 52 | * |
| 53 | * Node aware pages are still inserted in to the global freelist, and |
| 54 | * these are scanned for by matching against the node id encoded in the |
| 55 | * page flags. As a result, block allocations that can be satisfied from |
| 56 | * the freelist will only be done so on pages residing on the same node, |
| 57 | * in order to prevent random node placement. |
| 58 | */ |
| 59 | |
| 60 | #include <linux/kernel.h> |
| 61 | #include <linux/slab.h> |
| 62 | #include <linux/mm.h> |
| 63 | #include <linux/swap.h> /* struct reclaim_state */ |
| 64 | #include <linux/cache.h> |
| 65 | #include <linux/init.h> |
| 66 | #include <linux/export.h> |
| 67 | #include <linux/rcupdate.h> |
| 68 | #include <linux/list.h> |
| 69 | #include <linux/kmemleak.h> |
| 70 | |
| 71 | #include <trace/events/kmem.h> |
| 72 | |
| 73 | #include <linux/atomic.h> |
| 74 | |
| 75 | #ifdef CONFIG_KMALLOC_TRACKER |
| 76 | #include <linux/mem_tracker_def.h> |
| 77 | #endif |
| 78 | |
| 79 | #ifdef CONFIG_DEBUG_SLOB_MARK_HEAD |
| 80 | |
| 81 | #define BYTES_PER_RECORD (sizeof(void *)) |
| 82 | #define RECORD_MAGIC 0xdeaddead |
| 83 | #define RECORD_COUNT 4 |
| 84 | |
| 85 | static void **dbg_userrecord(void *mem,int index) |
| 86 | { |
| 87 | return (void **)(mem + index * BYTES_PER_RECORD); |
| 88 | } |
| 89 | |
| 90 | static void **dbg_userhead(void *mem) |
| 91 | { |
| 92 | return (void **)(mem - RECORD_COUNT * BYTES_PER_RECORD); |
| 93 | } |
| 94 | #endif |
| 95 | |
| 96 | /* |
| 97 | * slob_block has a field 'units', which indicates size of block if +ve, |
| 98 | * or offset of next block if -ve (in SLOB_UNITs). |
| 99 | * |
| 100 | * Free blocks of size 1 unit simply contain the offset of the next block. |
| 101 | * Those with larger size contain their size in the first SLOB_UNIT of |
| 102 | * memory, and the offset of the next free block in the second SLOB_UNIT. |
| 103 | */ |
| 104 | #if PAGE_SIZE <= (32767 * 2) |
| 105 | typedef s16 slobidx_t; |
| 106 | #else |
| 107 | typedef s32 slobidx_t; |
| 108 | #endif |
| 109 | |
| 110 | struct slob_block { |
| 111 | slobidx_t units; |
| 112 | }; |
| 113 | typedef struct slob_block slob_t; |
| 114 | |
| 115 | /* |
| 116 | * We use struct page fields to manage some slob allocation aspects, |
| 117 | * however to avoid the horrible mess in include/linux/mm_types.h, we'll |
| 118 | * just define our own struct page type variant here. |
| 119 | */ |
| 120 | struct slob_page { |
| 121 | union { |
| 122 | struct { |
| 123 | unsigned long flags; /* mandatory */ |
| 124 | unsigned long index; /* mandatory */ |
| 125 | slobidx_t units; /* free units left in page */ |
| 126 | unsigned long pad[2]; |
| 127 | slob_t *free; /* first free slob_t in page */ |
| 128 | struct list_head list; /* linked list of free pages */ |
| 129 | }; |
| 130 | struct page page; |
| 131 | }; |
| 132 | }; |
| 133 | |
| 134 | unsigned int g_slob_kmalloc_pages; |
| 135 | unsigned int g_slob_kmem_cache_pages; |
| 136 | raw_spinlock_t g_slob_kmalloc_spin_lock = (raw_spinlock_t) __RAW_SPIN_LOCK_INITIALIZER (g_slob_kmalloc_spin_lock); |
| 137 | raw_spinlock_t g_slob_kmem_cache_spin_lock = (raw_spinlock_t) __RAW_SPIN_LOCK_INITIALIZER (g_slob_kmem_cache_spin_lock); |
| 138 | |
| 139 | static inline void struct_slob_page_wrong_size(void) |
| 140 | { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); } |
| 141 | |
| 142 | /* |
| 143 | * free_slob_page: call before a slob_page is returned to the page allocator. |
| 144 | */ |
| 145 | static inline void free_slob_page(struct slob_page *sp) |
| 146 | { |
| 147 | reset_page_mapcount(&sp->page); |
| 148 | sp->page.mapping = NULL; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * All partially free slob pages go on these lists. |
| 153 | */ |
| 154 | #define SLOB_BREAK1 256 |
| 155 | #define SLOB_BREAK2 1024 |
| 156 | static LIST_HEAD(free_slob_small); |
| 157 | static LIST_HEAD(free_slob_medium); |
| 158 | static LIST_HEAD(free_slob_large); |
| 159 | |
| 160 | /* |
| 161 | * is_slob_page: True for all slob pages (false for bigblock pages) |
| 162 | */ |
| 163 | static inline int is_slob_page(struct slob_page *sp) |
| 164 | { |
| 165 | return PageSlab((struct page *)sp); |
| 166 | } |
| 167 | |
| 168 | static inline void set_slob_page(struct slob_page *sp) |
| 169 | { |
| 170 | __SetPageSlab((struct page *)sp); |
| 171 | } |
| 172 | |
| 173 | static inline void clear_slob_page(struct slob_page *sp) |
| 174 | { |
| 175 | __ClearPageSlab((struct page *)sp); |
| 176 | } |
| 177 | |
| 178 | static inline struct slob_page *slob_page(const void *addr) |
| 179 | { |
| 180 | return (struct slob_page *)virt_to_page(addr); |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * slob_page_free: true for pages on free_slob_pages list. |
| 185 | */ |
| 186 | static inline int slob_page_free(struct slob_page *sp) |
| 187 | { |
| 188 | return PageSlobFree((struct page *)sp); |
| 189 | } |
| 190 | |
| 191 | static void set_slob_page_free(struct slob_page *sp, struct list_head *list) |
| 192 | { |
| 193 | list_add(&sp->list, list); |
| 194 | __SetPageSlobFree((struct page *)sp); |
| 195 | } |
| 196 | |
| 197 | static inline void clear_slob_page_free(struct slob_page *sp) |
| 198 | { |
| 199 | list_del(&sp->list); |
| 200 | __ClearPageSlobFree((struct page *)sp); |
| 201 | } |
| 202 | |
| 203 | #ifdef CONFIG_SLOB_OPT |
| 204 | #define SLOB_CHUNK_SHIFT (L1_CACHE_SHIFT) |
| 205 | #define SLOB_CHUNK_SIZE (1 << (SLOB_CHUNK_SHIFT)) |
| 206 | #define SLOB_LIST_NUM (PAGE_SIZE >> (SLOB_CHUNK_SHIFT)) |
| 207 | #define SLOB_LIST_LIMIT (0) |
| 208 | |
| 209 | |
| 210 | struct slob_item_info |
| 211 | { |
| 212 | struct list_head slob_list; |
| 213 | int count; |
| 214 | }; |
| 215 | struct slob_item_info slob_sizes[SLOB_LIST_NUM]; |
| 216 | #else |
| 217 | #define SLOB_CHUNK_SHIFT (L1_CACHE_SHIFT) |
| 218 | #define SLOB_CHUNK_SIZE (1 << (SLOB_CHUNK_SHIFT)) |
| 219 | #define SLOB_LIST_NUM ((PAGE_SIZE >> (SLOB_CHUNK_SHIFT))) |
| 220 | struct list_head slob_sizes[SLOB_LIST_NUM]; |
| 221 | #endif |
| 222 | static inline void set_slob_page_list_index(struct slob_page *sp, unsigned long index) |
| 223 | { |
| 224 | sp->index = index; |
| 225 | } |
| 226 | #ifdef CONFIG_SLOB_OPT |
| 227 | static inline struct slob_item_info *get_slob_page_list_head(struct slob_page *sp) |
| 228 | { |
| 229 | return &slob_sizes[sp->index]; |
| 230 | } |
| 231 | #else |
| 232 | static inline struct list_head *get_slob_page_list_head(struct slob_page *sp) |
| 233 | { |
| 234 | return &slob_sizes[sp->index]; |
| 235 | } |
| 236 | #endif |
| 237 | static inline void clear_slob_page_list_index(struct slob_page *sp) |
| 238 | { |
| 239 | sp->index = 0; |
| 240 | } |
| 241 | |
| 242 | #define SLOB_UNIT sizeof(slob_t) |
| 243 | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) |
| 244 | #define SLOB_ALIGN L1_CACHE_BYTES |
| 245 | |
| 246 | /* |
| 247 | * struct slob_rcu is inserted at the tail of allocated slob blocks, which |
| 248 | * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free |
| 249 | * the block using call_rcu. |
| 250 | */ |
| 251 | struct slob_rcu { |
| 252 | struct rcu_head head; |
| 253 | int size; |
| 254 | }; |
| 255 | |
| 256 | /* |
| 257 | * slob_lock protects all slob allocator structures. |
| 258 | */ |
| 259 | static DEFINE_SPINLOCK(slob_lock); |
| 260 | |
| 261 | /* |
| 262 | * Encode the given size and next info into a free slob block s. |
| 263 | */ |
| 264 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) |
| 265 | { |
| 266 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
| 267 | slobidx_t offset = next - base; |
| 268 | |
| 269 | if (size > 1) { |
| 270 | s[0].units = size; |
| 271 | s[1].units = offset; |
| 272 | } else |
| 273 | s[0].units = -offset; |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * Return the size of a slob block. |
| 278 | */ |
| 279 | static slobidx_t slob_units(slob_t *s) |
| 280 | { |
| 281 | if (s->units > 0) |
| 282 | return s->units; |
| 283 | return 1; |
| 284 | } |
| 285 | |
| 286 | /* |
| 287 | * Return the next free slob block pointer after this one. |
| 288 | */ |
| 289 | static slob_t *slob_next(slob_t *s) |
| 290 | { |
| 291 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
| 292 | slobidx_t next; |
| 293 | |
| 294 | if (s[0].units < 0) |
| 295 | next = -s[0].units; |
| 296 | else |
| 297 | next = s[1].units; |
| 298 | return base+next; |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * Returns true if s is the last free block in its page. |
| 303 | */ |
| 304 | static int slob_last(slob_t *s) |
| 305 | { |
| 306 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); |
| 307 | } |
| 308 | |
| 309 | static void *slob_new_pages(gfp_t gfp, int order, int node) |
| 310 | { |
| 311 | void *page; |
| 312 | |
| 313 | #ifdef CONFIG_NUMA |
| 314 | if (node != -1) |
| 315 | page = alloc_pages_exact_node(node, gfp, order); |
| 316 | else |
| 317 | #endif |
| 318 | page = alloc_pages(gfp, order); |
| 319 | |
| 320 | if (!page) |
| 321 | return NULL; |
| 322 | |
| 323 | return page_address(page); |
| 324 | } |
| 325 | |
| 326 | static void slob_free_pages(void *b, int order) |
| 327 | { |
| 328 | if (current->reclaim_state) |
| 329 | current->reclaim_state->reclaimed_slab += 1 << order; |
| 330 | free_pages((unsigned long)b, order); |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * Allocate a slob block within a given slob_page sp. |
| 335 | */ |
| 336 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) |
| 337 | { |
| 338 | slob_t *prev, *cur, *aligned = NULL; |
| 339 | int delta = 0, units = SLOB_UNITS(size); |
| 340 | |
| 341 | for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { |
| 342 | slobidx_t avail = slob_units(cur); |
| 343 | |
| 344 | if (align) { |
| 345 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); |
| 346 | delta = aligned - cur; |
| 347 | } |
| 348 | if (avail >= units + delta) { /* room enough? */ |
| 349 | slob_t *next; |
| 350 | |
| 351 | if (delta) { /* need to fragment head to align? */ |
| 352 | next = slob_next(cur); |
| 353 | set_slob(aligned, avail - delta, next); |
| 354 | set_slob(cur, delta, aligned); |
| 355 | prev = cur; |
| 356 | cur = aligned; |
| 357 | avail = slob_units(cur); |
| 358 | } |
| 359 | |
| 360 | next = slob_next(cur); |
| 361 | if (avail == units) { /* exact fit? unlink. */ |
| 362 | if (prev) |
| 363 | set_slob(prev, slob_units(prev), next); |
| 364 | else |
| 365 | sp->free = next; |
| 366 | } else { /* fragment */ |
| 367 | if (prev) |
| 368 | set_slob(prev, slob_units(prev), cur + units); |
| 369 | else |
| 370 | sp->free = cur + units; |
| 371 | set_slob(cur + units, avail - units, next); |
| 372 | } |
| 373 | |
| 374 | sp->units -= units; |
| 375 | if (!sp->units |
| 376 | #ifdef CONFIG_SLOB_OPT |
| 377 | && size != PAGE_SIZE |
| 378 | #endif |
| 379 | ) |
| 380 | clear_slob_page_free(sp); |
| 381 | return cur; |
| 382 | } |
| 383 | if (slob_last(cur)) |
| 384 | return NULL; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | void slob_sizes_init(void) |
| 389 | { |
| 390 | int i; |
| 391 | |
| 392 | for (i = 0; i < SLOB_LIST_NUM; i++) |
| 393 | { |
| 394 | #ifdef CONFIG_SLOB_OPT |
| 395 | INIT_LIST_HEAD(&slob_sizes[i].slob_list); |
| 396 | #else |
| 397 | INIT_LIST_HEAD(&slob_sizes[i]); |
| 398 | #endif |
| 399 | } |
| 400 | |
| 401 | } |
| 402 | |
| 403 | static struct list_head *find_general_slob_list(size_t size, size_t *general_size, unsigned long *index) |
| 404 | { |
| 405 | int slob_index = 0; |
| 406 | |
| 407 | if (size & (SLOB_CHUNK_SIZE - 1)) |
| 408 | slob_index = size >> SLOB_CHUNK_SHIFT; |
| 409 | else |
| 410 | slob_index = (size >> SLOB_CHUNK_SHIFT) - 1; |
| 411 | |
| 412 | *general_size = (slob_index + 1) << SLOB_CHUNK_SHIFT; |
| 413 | *index = slob_index; |
| 414 | return &(slob_sizes[slob_index]); |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * slob_alloc: entry point into the slob allocator. |
| 419 | */ |
| 420 | static void *slob_alloc_general(size_t size, gfp_t gfp, int align, int node) |
| 421 | { |
| 422 | unsigned long index; |
| 423 | size_t general_size; |
| 424 | struct slob_page *sp; |
| 425 | struct list_head *prev; |
| 426 | #ifdef CONFIG_SLOB_OPT |
| 427 | struct slob_item_info *slob_list; |
| 428 | #else |
| 429 | struct list_head *slob_list; |
| 430 | #endif |
| 431 | slob_t *b = NULL; |
| 432 | unsigned long flags; |
| 433 | |
| 434 | if (size < PAGE_SIZE) |
| 435 | slob_list = find_general_slob_list(size, &general_size, &index); |
| 436 | else |
| 437 | panic("slob alloc error"); |
| 438 | |
| 439 | size = general_size; |
| 440 | spin_lock_irqsave(&slob_lock, flags); |
| 441 | /* Iterate through each partially free page, try to find room */ |
| 442 | #ifdef CONFIG_SLOB_OPT |
| 443 | if (size ==PAGE_SIZE && slob_list->count ==0 ) |
| 444 | goto alloc_out; |
| 445 | |
| 446 | list_for_each_entry(sp, &(slob_list->slob_list), list) { |
| 447 | #else |
| 448 | list_for_each_entry(sp, slob_list, list) { |
| 449 | #endif |
| 450 | #ifdef CONFIG_NUMA |
| 451 | /* |
| 452 | * If there's a node specification, search for a partial |
| 453 | * page with a matching node id in the freelist. |
| 454 | */ |
| 455 | if (node != -1 && page_to_nid(&sp->page) != node) |
| 456 | continue; |
| 457 | #endif |
| 458 | /* Enough room on this page? */ |
| 459 | if (sp->units < SLOB_UNITS(size)) |
| 460 | continue; |
| 461 | |
| 462 | #ifdef CONFIG_SLOB_OPT |
| 463 | /*if it is a free block,count--*/ |
| 464 | if (sp->units == SLOB_UNITS(PAGE_SIZE)) |
| 465 | slob_list->count--; |
| 466 | #endif |
| 467 | /* Attempt to alloc */ |
| 468 | prev = sp->list.prev; |
| 469 | b = slob_page_alloc(sp, size, align); |
| 470 | if (!b) |
| 471 | continue; |
| 472 | |
| 473 | /* Improve fragment distribution and reduce our average |
| 474 | * search time by starting our next search here. (see |
| 475 | * Knuth vol 1, sec 2.5, pg 449) */ |
| 476 | #ifdef CONFIG_SLOB_OPT |
| 477 | if (prev != slob_list->slob_list.prev && |
| 478 | slob_list->slob_list.next != prev->next) |
| 479 | list_move_tail(&(slob_list->slob_list), prev->next); |
| 480 | #else |
| 481 | if (prev != slob_list->prev && |
| 482 | slob_list->next != prev->next) |
| 483 | list_move_tail(slob_list, prev->next); |
| 484 | #endif |
| 485 | break; |
| 486 | } |
| 487 | alloc_out: |
| 488 | spin_unlock_irqrestore(&slob_lock, flags); |
| 489 | |
| 490 | /* Not enough space: must allocate a new page */ |
| 491 | if (!b) { |
| 492 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
| 493 | if (!b) |
| 494 | return NULL; |
| 495 | raw_spin_lock_irqsave(&g_slob_kmalloc_spin_lock, flags); |
| 496 | g_slob_kmalloc_pages++; |
| 497 | raw_spin_unlock_irqrestore(&g_slob_kmalloc_spin_lock, flags); |
| 498 | sp = slob_page(b); |
| 499 | set_slob_page(sp); |
| 500 | |
| 501 | spin_lock_irqsave(&slob_lock, flags); |
| 502 | sp->units = SLOB_UNITS(PAGE_SIZE); |
| 503 | sp->free = b; |
| 504 | INIT_LIST_HEAD(&sp->list); |
| 505 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); |
| 506 | #ifdef CONFIG_SLOB_OPT |
| 507 | set_slob_page_free(sp, &(slob_list->slob_list)); |
| 508 | #else |
| 509 | set_slob_page_free(sp, slob_list); |
| 510 | #endif |
| 511 | b = slob_page_alloc(sp, size, align); |
| 512 | BUG_ON(!b); |
| 513 | set_slob_page_list_index(sp, index); |
| 514 | spin_unlock_irqrestore(&slob_lock, flags); |
| 515 | } |
| 516 | if (unlikely((gfp & __GFP_ZERO) && b)) |
| 517 | memset(b, 0, size); |
| 518 | return b; |
| 519 | } |
| 520 | |
| 521 | static size_t slob_find_general_size(struct slob_page *sp) |
| 522 | { |
| 523 | return (sp->index + 1) << SLOB_CHUNK_SHIFT; |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * slob_free: entry point into the slob allocator. |
| 528 | */ |
| 529 | static void slob_free_general(const void *block, struct slob_page *sp) |
| 530 | { |
| 531 | size_t size; |
| 532 | slob_t *prev, *next, *b = (slob_t *)block; |
| 533 | slobidx_t units; |
| 534 | unsigned long flags; |
| 535 | #ifdef CONFIG_SLOB_OPT |
| 536 | struct slob_item_info *slob_list; |
| 537 | #else |
| 538 | struct list_head *slob_list; |
| 539 | #endif |
| 540 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
| 541 | return; |
| 542 | |
| 543 | slob_list = get_slob_page_list_head(sp); |
| 544 | size = slob_find_general_size(sp); |
| 545 | |
| 546 | units = SLOB_UNITS(size); |
| 547 | |
| 548 | spin_lock_irqsave(&slob_lock, flags); |
| 549 | |
| 550 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
| 551 | #ifdef CONFIG_SLOB_OPT |
| 552 | if (slob_list->count < SLOB_LIST_LIMIT && slob_page_free(sp)){ |
| 553 | sp->units += units; |
| 554 | sp->free = page_address((struct page *)sp); |
| 555 | set_slob(sp->free, SLOB_UNITS(PAGE_SIZE), sp->free + SLOB_UNITS(PAGE_SIZE)); |
| 556 | slob_list->count++; |
| 557 | // if (slob_list->slob_list.next != &sp->list) |
| 558 | // list_move(&sp->list, &(slob_list->slob_list)); |
| 559 | |
| 560 | spin_unlock_irqrestore(&slob_lock, flags); |
| 561 | return; |
| 562 | } |
| 563 | #endif |
| 564 | /* Go directly to page allocator. Do not pass slob allocator */ |
| 565 | if (slob_page_free(sp)) |
| 566 | clear_slob_page_free(sp); |
| 567 | spin_unlock_irqrestore(&slob_lock, flags); |
| 568 | clear_slob_page(sp); |
| 569 | clear_slob_page_list_index(sp); |
| 570 | free_slob_page(sp); |
| 571 | slob_free_pages(b, 0); |
| 572 | raw_spin_lock_irqsave(&g_slob_kmalloc_spin_lock, flags); |
| 573 | g_slob_kmalloc_pages--; |
| 574 | raw_spin_unlock_irqrestore(&g_slob_kmalloc_spin_lock, flags); |
| 575 | return; |
| 576 | } |
| 577 | |
| 578 | if (!slob_page_free(sp)) { |
| 579 | /* This slob page is about to become partially free. Easy! */ |
| 580 | sp->units = units; |
| 581 | sp->free = b; |
| 582 | set_slob(b, units, |
| 583 | (void *)((unsigned long)(b + |
| 584 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); |
| 585 | #ifdef CONFIG_SLOB_OPT |
| 586 | set_slob_page_free(sp, &(slob_list->slob_list)); |
| 587 | #else |
| 588 | set_slob_page_free(sp, slob_list); |
| 589 | #endif |
| 590 | goto out; |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * Otherwise the page is already partially free, so find reinsertion |
| 595 | * point. |
| 596 | */ |
| 597 | sp->units += units; |
| 598 | |
| 599 | if (b < sp->free) { |
| 600 | if (b + units == sp->free) { |
| 601 | units += slob_units(sp->free); |
| 602 | sp->free = slob_next(sp->free); |
| 603 | } |
| 604 | set_slob(b, units, sp->free); |
| 605 | sp->free = b; |
| 606 | } else { |
| 607 | prev = sp->free; |
| 608 | next = slob_next(prev); |
| 609 | while (b > next) { |
| 610 | prev = next; |
| 611 | next = slob_next(prev); |
| 612 | } |
| 613 | |
| 614 | if (unlikely((b == prev) || (b == next))) |
| 615 | panic("slob: double free error!\n"); |
| 616 | |
| 617 | if (!slob_last(prev) && b + units == next) { |
| 618 | units += slob_units(next); |
| 619 | set_slob(b, units, slob_next(next)); |
| 620 | } else |
| 621 | set_slob(b, units, next); |
| 622 | |
| 623 | if (prev + slob_units(prev) == b) { |
| 624 | units = slob_units(b) + slob_units(prev); |
| 625 | set_slob(prev, units, slob_next(b)); |
| 626 | } else |
| 627 | set_slob(prev, slob_units(prev), b); |
| 628 | } |
| 629 | #ifdef CONFIG_SLOB_OPT |
| 630 | if (slob_list->slob_list.next != &sp->list) |
| 631 | list_move(&sp->list, &(slob_list->slob_list)); |
| 632 | #else |
| 633 | if (slob_list->next != &sp->list) |
| 634 | list_move(&sp->list, slob_list); |
| 635 | #endif |
| 636 | out: |
| 637 | spin_unlock_irqrestore(&slob_lock, flags); |
| 638 | } |
| 639 | |
| 640 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) |
| 641 | { |
| 642 | struct slob_page *sp; |
| 643 | struct list_head *prev; |
| 644 | struct list_head *slob_list; |
| 645 | slob_t *b = NULL; |
| 646 | unsigned long flags; |
| 647 | |
| 648 | if (size < SLOB_BREAK1) |
| 649 | slob_list = &free_slob_small; |
| 650 | else if (size < SLOB_BREAK2) |
| 651 | slob_list = &free_slob_medium; |
| 652 | else |
| 653 | slob_list = &free_slob_large; |
| 654 | |
| 655 | spin_lock_irqsave(&slob_lock, flags); |
| 656 | /* Iterate through each partially free page, try to find room */ |
| 657 | list_for_each_entry(sp, slob_list, list) { |
| 658 | #ifdef CONFIG_NUMA |
| 659 | /* |
| 660 | * If there's a node specification, search for a partial |
| 661 | * page with a matching node id in the freelist. |
| 662 | */ |
| 663 | if (node != -1 && page_to_nid(&sp->page) != node) |
| 664 | continue; |
| 665 | #endif |
| 666 | /* Enough room on this page? */ |
| 667 | if (sp->units < SLOB_UNITS(size)) |
| 668 | continue; |
| 669 | |
| 670 | /* Attempt to alloc */ |
| 671 | prev = sp->list.prev; |
| 672 | b = slob_page_alloc(sp, size, align); |
| 673 | if (!b) |
| 674 | continue; |
| 675 | |
| 676 | /* Improve fragment distribution and reduce our average |
| 677 | * search time by starting our next search here. (see |
| 678 | * Knuth vol 1, sec 2.5, pg 449) */ |
| 679 | if (prev != slob_list->prev && |
| 680 | slob_list->next != prev->next) |
| 681 | list_move_tail(slob_list, prev->next); |
| 682 | break; |
| 683 | } |
| 684 | spin_unlock_irqrestore(&slob_lock, flags); |
| 685 | |
| 686 | /* Not enough space: must allocate a new page */ |
| 687 | if (!b) { |
| 688 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
| 689 | if (!b) |
| 690 | return NULL; |
| 691 | raw_spin_lock_irqsave(&g_slob_kmem_cache_spin_lock, flags); |
| 692 | g_slob_kmem_cache_pages++; |
| 693 | raw_spin_unlock_irqrestore(&g_slob_kmem_cache_spin_lock, flags); |
| 694 | sp = slob_page(b); |
| 695 | set_slob_page(sp); |
| 696 | |
| 697 | spin_lock_irqsave(&slob_lock, flags); |
| 698 | sp->units = SLOB_UNITS(PAGE_SIZE); |
| 699 | sp->free = b; |
| 700 | INIT_LIST_HEAD(&sp->list); |
| 701 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); |
| 702 | set_slob_page_free(sp, slob_list); |
| 703 | b = slob_page_alloc(sp, size, align); |
| 704 | BUG_ON(!b); |
| 705 | spin_unlock_irqrestore(&slob_lock, flags); |
| 706 | } |
| 707 | if (unlikely((gfp & __GFP_ZERO) && b)) |
| 708 | memset(b, 0, size); |
| 709 | return b; |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * slob_free: entry point into the slob allocator. |
| 714 | */ |
| 715 | static void slob_free(void *block, int size) |
| 716 | { |
| 717 | struct slob_page *sp; |
| 718 | slob_t *prev, *next, *b = (slob_t *)block; |
| 719 | slobidx_t units; |
| 720 | unsigned long flags; |
| 721 | struct list_head *slob_list; |
| 722 | |
| 723 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
| 724 | return; |
| 725 | BUG_ON(!size); |
| 726 | |
| 727 | sp = slob_page(block); |
| 728 | units = SLOB_UNITS(size); |
| 729 | |
| 730 | spin_lock_irqsave(&slob_lock, flags); |
| 731 | |
| 732 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
| 733 | /* Go directly to page allocator. Do not pass slob allocator */ |
| 734 | if (slob_page_free(sp)) |
| 735 | clear_slob_page_free(sp); |
| 736 | spin_unlock_irqrestore(&slob_lock, flags); |
| 737 | clear_slob_page(sp); |
| 738 | free_slob_page(sp); |
| 739 | slob_free_pages(b, 0); |
| 740 | raw_spin_lock_irqsave(&g_slob_kmem_cache_spin_lock, flags); |
| 741 | g_slob_kmem_cache_pages--; |
| 742 | raw_spin_unlock_irqrestore(&g_slob_kmem_cache_spin_lock, flags); |
| 743 | return; |
| 744 | } |
| 745 | |
| 746 | if (!slob_page_free(sp)) { |
| 747 | /* This slob page is about to become partially free. Easy! */ |
| 748 | sp->units = units; |
| 749 | sp->free = b; |
| 750 | set_slob(b, units, |
| 751 | (void *)((unsigned long)(b + |
| 752 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); |
| 753 | if (size < SLOB_BREAK1) |
| 754 | slob_list = &free_slob_small; |
| 755 | else if (size < SLOB_BREAK2) |
| 756 | slob_list = &free_slob_medium; |
| 757 | else |
| 758 | slob_list = &free_slob_large; |
| 759 | set_slob_page_free(sp, slob_list); |
| 760 | goto out; |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * Otherwise the page is already partially free, so find reinsertion |
| 765 | * point. |
| 766 | */ |
| 767 | sp->units += units; |
| 768 | |
| 769 | if (b < sp->free) { |
| 770 | if (b + units == sp->free) { |
| 771 | units += slob_units(sp->free); |
| 772 | sp->free = slob_next(sp->free); |
| 773 | } |
| 774 | set_slob(b, units, sp->free); |
| 775 | sp->free = b; |
| 776 | } else { |
| 777 | prev = sp->free; |
| 778 | next = slob_next(prev); |
| 779 | while (b > next) { |
| 780 | prev = next; |
| 781 | next = slob_next(prev); |
| 782 | } |
| 783 | |
| 784 | if (!slob_last(prev) && b + units == next) { |
| 785 | units += slob_units(next); |
| 786 | set_slob(b, units, slob_next(next)); |
| 787 | } else |
| 788 | set_slob(b, units, next); |
| 789 | |
| 790 | if (prev + slob_units(prev) == b) { |
| 791 | units = slob_units(b) + slob_units(prev); |
| 792 | set_slob(prev, units, slob_next(b)); |
| 793 | } else |
| 794 | set_slob(prev, slob_units(prev), b); |
| 795 | } |
| 796 | out: |
| 797 | spin_unlock_irqrestore(&slob_lock, flags); |
| 798 | } |
| 799 | |
| 800 | /* |
| 801 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. |
| 802 | */ |
| 803 | |
| 804 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) |
| 805 | { |
| 806 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
| 807 | void *ret; |
| 808 | unsigned long flags; |
| 809 | |
| 810 | if (!size) |
| 811 | return ZERO_SIZE_PTR; |
| 812 | |
| 813 | gfp &= gfp_allowed_mask; |
| 814 | |
| 815 | lockdep_trace_alloc(gfp); |
| 816 | |
| 817 | #ifdef CONFIG_DEBUG_SLOB_MARK_HEAD |
| 818 | if (size < PAGE_SIZE) |
| 819 | size += RECORD_COUNT * BYTES_PER_RECORD; |
| 820 | #endif |
| 821 | |
| 822 | #ifdef CONFIG_KMALLOC_TRACKER |
| 823 | size += HEAP_SUFFIX_SIZE; |
| 824 | #endif |
| 825 | |
| 826 | if (size < PAGE_SIZE) { |
| 827 | if (!size) |
| 828 | return ZERO_SIZE_PTR; |
| 829 | |
| 830 | ret = slob_alloc_general(size, gfp, align, node); |
| 831 | |
| 832 | trace_kmalloc_node(_RET_IP_, ret, |
| 833 | size, size, gfp, node); |
| 834 | |
| 835 | #ifdef CONFIG_DEBUG_SLOB_MARK_HEAD |
| 836 | if (ret) { |
| 837 | *dbg_userrecord(ret,0) = (void *)RECORD_MAGIC; |
| 838 | *dbg_userrecord(ret,1) = __builtin_return_address(0); |
| 839 | *dbg_userrecord(ret,2) = current; |
| 840 | ret = (void *)dbg_userrecord(ret,RECORD_COUNT); |
| 841 | } |
| 842 | |
| 843 | #endif |
| 844 | |
| 845 | #ifdef CONFIG_KMALLOC_TRACKER |
| 846 | if (ret) { |
| 847 | kmalloc_alloc_tracker(ret, KMALLOC_ORIGINAL_SIZE(size)); |
| 848 | return KMALLOC_SETUP(ret); |
| 849 | } |
| 850 | #endif |
| 851 | } else { |
| 852 | unsigned int order = get_order(size); |
| 853 | |
| 854 | if (likely(order)) |
| 855 | gfp |= __GFP_COMP; |
| 856 | ret = slob_new_pages(gfp, order, node); |
| 857 | if (ret) { |
| 858 | struct page *page; |
| 859 | page = virt_to_page(ret); |
| 860 | page->private = size; |
| 861 | raw_spin_lock_irqsave(&g_slob_kmalloc_spin_lock, flags); |
| 862 | g_slob_kmalloc_pages += (1 << order); |
| 863 | raw_spin_unlock_irqrestore(&g_slob_kmalloc_spin_lock, flags); |
| 864 | } |
| 865 | |
| 866 | trace_kmalloc_node(_RET_IP_, ret, |
| 867 | size, PAGE_SIZE << order, gfp, node); |
| 868 | } |
| 869 | |
| 870 | kmemleak_alloc(ret, size, 1, gfp); |
| 871 | return ret; |
| 872 | } |
| 873 | EXPORT_SYMBOL(__kmalloc_node); |
| 874 | |
| 875 | void kfree(const void *block) |
| 876 | { |
| 877 | struct slob_page *sp; |
| 878 | unsigned long flags; |
| 879 | |
| 880 | trace_kfree(_RET_IP_, block); |
| 881 | |
| 882 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
| 883 | return; |
| 884 | kmemleak_free(block); |
| 885 | |
| 886 | #ifdef CONFIG_KMALLOC_TRACKER |
| 887 | int entry = 0; |
| 888 | void *mem = NULL; |
| 889 | |
| 890 | sp = slob_page(block); |
| 891 | if (is_slob_page(sp)) { |
| 892 | |
| 893 | mem = KMALLOC_BASE(block); |
| 894 | entry = *(size_t *)(mem); |
| 895 | |
| 896 | if ((entry != 0) && (MEM_TRUE == check_node_entry(entry))) { |
| 897 | mem_free_tracker((void *)entry, MEM_TRACKER_TYPE_KMALLOC); |
| 898 | }else |
| 899 | panic("mem out!!"); |
| 900 | slob_free_general(mem, sp); |
lh | 758261d | 2023-07-13 05:52:04 -0700 | [diff] [blame] | 901 | } else { |
| 902 | struct page *page; |
| 903 | unsigned int order; |
| 904 | page = &sp->page; |
| 905 | order = get_order(page->private); |
| 906 | raw_spin_lock_irqsave(&g_slob_kmalloc_spin_lock, flags); |
| 907 | g_slob_kmalloc_pages -= (1 << order); |
| 908 | raw_spin_unlock_irqrestore(&g_slob_kmalloc_spin_lock, flags); |
lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 909 | put_page(&sp->page); |
lh | 758261d | 2023-07-13 05:52:04 -0700 | [diff] [blame] | 910 | } |
lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 911 | #else |
| 912 | sp = slob_page(block); |
| 913 | if (is_slob_page(sp)) { |
| 914 | #ifdef CONFIG_DEBUG_SLOB_MARK_HEAD |
| 915 | if (*dbg_userhead(block) == (void *)RECORD_MAGIC) { |
| 916 | block = (void *)dbg_userhead(block); |
| 917 | } else |
| 918 | panic("memmory corruption!!"); |
| 919 | #endif |
| 920 | slob_free_general(block, sp); |
| 921 | } else { |
| 922 | struct page *page; |
| 923 | unsigned int order; |
| 924 | page = &sp->page; |
| 925 | order = get_order(page->private); |
| 926 | raw_spin_lock_irqsave(&g_slob_kmalloc_spin_lock, flags); |
| 927 | g_slob_kmalloc_pages -= (1 << order); |
| 928 | raw_spin_unlock_irqrestore(&g_slob_kmalloc_spin_lock, flags); |
| 929 | put_page(&sp->page); |
| 930 | } |
| 931 | #endif |
| 932 | |
| 933 | } |
| 934 | EXPORT_SYMBOL(kfree); |
| 935 | |
| 936 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ |
| 937 | size_t ksize(const void *block) |
| 938 | { |
| 939 | struct slob_page *sp; |
| 940 | |
| 941 | BUG_ON(!block); |
| 942 | if (unlikely(block == ZERO_SIZE_PTR)) |
| 943 | return 0; |
| 944 | |
| 945 | sp = slob_page(block); |
| 946 | if (is_slob_page(sp)) { |
| 947 | #ifdef CONFIG_SLOB_OPT |
| 948 | struct slob_item_info *slob_list; |
| 949 | #else |
| 950 | struct list_head *slob_list; |
| 951 | #endif |
| 952 | slob_list = get_slob_page_list_head(sp); |
| 953 | |
| 954 | #ifdef CONFIG_KMALLOC_TRACKER |
xf.li | be70461 | 2024-05-28 19:09:12 -0700 | [diff] [blame] | 955 | return (slob_find_general_size(sp) - HEAP_SUFFIX_SIZE); |
lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 956 | #endif |
| 957 | |
| 958 | #ifdef CONFIG_DEBUG_SLOB_MARK_HEAD |
| 959 | return (slob_find_general_size(sp) - RECORD_COUNT * BYTES_PER_RECORD); |
| 960 | #else |
| 961 | return slob_find_general_size(sp); |
| 962 | #endif |
| 963 | |
| 964 | } else |
| 965 | return sp->page.private; |
| 966 | } |
| 967 | EXPORT_SYMBOL(ksize); |
| 968 | |
| 969 | struct kmem_cache { |
| 970 | unsigned int size, align; |
| 971 | unsigned long flags; |
| 972 | const char *name; |
| 973 | void (*ctor)(void *); |
| 974 | }; |
| 975 | |
| 976 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
| 977 | size_t align, unsigned long flags, void (*ctor)(void *)) |
| 978 | { |
| 979 | struct kmem_cache *c; |
| 980 | |
| 981 | c = slob_alloc(sizeof(struct kmem_cache), |
| 982 | GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1); |
| 983 | |
| 984 | if (c) { |
| 985 | c->name = name; |
| 986 | c->size = size; |
| 987 | if (flags & SLAB_DESTROY_BY_RCU) { |
| 988 | /* leave room for rcu footer at the end of object */ |
| 989 | c->size += sizeof(struct slob_rcu); |
| 990 | } |
| 991 | c->flags = flags; |
| 992 | c->ctor = ctor; |
| 993 | /* ignore alignment unless it's forced */ |
| 994 | c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; |
| 995 | if (c->align < ARCH_SLAB_MINALIGN) |
| 996 | c->align = ARCH_SLAB_MINALIGN; |
| 997 | if (c->align < align) |
| 998 | c->align = align; |
| 999 | } else if (flags & SLAB_PANIC) |
| 1000 | panic("Cannot create slab cache %s\n", name); |
| 1001 | |
| 1002 | kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL); |
| 1003 | return c; |
| 1004 | } |
| 1005 | EXPORT_SYMBOL(kmem_cache_create); |
| 1006 | |
| 1007 | void kmem_cache_destroy(struct kmem_cache *c) |
| 1008 | { |
| 1009 | kmemleak_free(c); |
| 1010 | if (c->flags & SLAB_DESTROY_BY_RCU) |
| 1011 | rcu_barrier(); |
| 1012 | slob_free(c, sizeof(struct kmem_cache)); |
| 1013 | } |
| 1014 | EXPORT_SYMBOL(kmem_cache_destroy); |
| 1015 | |
| 1016 | static unsigned int align(unsigned int i) |
| 1017 | { |
| 1018 | return (i + 7) & ~7u; |
| 1019 | } |
| 1020 | void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) |
| 1021 | { |
| 1022 | void *b; |
| 1023 | |
| 1024 | flags &= gfp_allowed_mask; |
| 1025 | unsigned long spin_flags; |
| 1026 | |
| 1027 | lockdep_trace_alloc(flags); |
| 1028 | |
| 1029 | if (c->size < PAGE_SIZE) { |
| 1030 | //b = slob_alloc(c->size, flags, c->align, node); |
| 1031 | c->size = align(c->size);/*align 8*/ |
| 1032 | c->align = 0; |
| 1033 | b = slob_alloc(c->size, flags, 0, node);/*already align 8*/ |
| 1034 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
| 1035 | SLOB_UNITS(c->size) * SLOB_UNIT, |
| 1036 | flags, node); |
| 1037 | } else { |
| 1038 | b = slob_new_pages(flags, get_order(c->size), node); |
| 1039 | if(b) { |
| 1040 | raw_spin_lock_irqsave(&g_slob_kmem_cache_spin_lock, spin_flags); |
| 1041 | g_slob_kmem_cache_pages += (1 << get_order(c->size)); |
| 1042 | raw_spin_unlock_irqrestore(&g_slob_kmem_cache_spin_lock, spin_flags); |
| 1043 | } |
| 1044 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
| 1045 | PAGE_SIZE << get_order(c->size), |
| 1046 | flags, node); |
| 1047 | } |
| 1048 | if (c->ctor) |
| 1049 | c->ctor(b); |
| 1050 | |
| 1051 | kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); |
| 1052 | return b; |
| 1053 | } |
| 1054 | |
| 1055 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
| 1056 | static void __kmem_cache_free(void *b, int size) |
| 1057 | { |
| 1058 | unsigned long flags; |
| 1059 | if (size < PAGE_SIZE) |
| 1060 | slob_free(b, size); |
| 1061 | else { |
| 1062 | slob_free_pages(b, get_order(size)); |
| 1063 | raw_spin_lock_irqsave(&g_slob_kmem_cache_spin_lock, flags); |
| 1064 | g_slob_kmem_cache_pages -= (1 << get_order(size)); |
| 1065 | raw_spin_unlock_irqrestore(&g_slob_kmem_cache_spin_lock, flags); |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | static void kmem_rcu_free(struct rcu_head *head) |
| 1070 | { |
| 1071 | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; |
| 1072 | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); |
| 1073 | |
| 1074 | __kmem_cache_free(b, slob_rcu->size); |
| 1075 | } |
| 1076 | |
| 1077 | void kmem_cache_free(struct kmem_cache *c, void *b) |
| 1078 | { |
| 1079 | kmemleak_free_recursive(b, c->flags); |
| 1080 | |
| 1081 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { |
| 1082 | struct slob_rcu *slob_rcu; |
| 1083 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); |
| 1084 | slob_rcu->size = c->size; |
| 1085 | call_rcu(&slob_rcu->head, kmem_rcu_free); |
| 1086 | } else { |
| 1087 | __kmem_cache_free(b, c->size); |
| 1088 | } |
| 1089 | |
| 1090 | trace_kmem_cache_free(_RET_IP_, b); |
| 1091 | } |
| 1092 | EXPORT_SYMBOL(kmem_cache_free); |
| 1093 | |
| 1094 | unsigned int kmem_cache_size(struct kmem_cache *c) |
| 1095 | { |
| 1096 | return c->size; |
| 1097 | } |
| 1098 | EXPORT_SYMBOL(kmem_cache_size); |
| 1099 | |
| 1100 | int kmem_cache_shrink(struct kmem_cache *d) |
| 1101 | { |
| 1102 | #ifdef CONFIG_SLOB_OPT |
| 1103 | int i; |
| 1104 | unsigned long flags; |
| 1105 | struct slob_page *sp,*n; |
| 1106 | |
| 1107 | for (i = 0; i < SLOB_LIST_NUM; i++){ |
| 1108 | if (slob_sizes[i].count == 0) |
| 1109 | continue; |
| 1110 | spin_lock_irqsave(&slob_lock, flags); |
| 1111 | |
| 1112 | list_for_each_entry_safe(sp, n, &(slob_sizes[i].slob_list), list) { |
| 1113 | if (sp->units == SLOB_UNITS(PAGE_SIZE)){ |
| 1114 | if (slob_page_free(sp)) |
| 1115 | clear_slob_page_free(sp); |
| 1116 | clear_slob_page(sp); |
| 1117 | clear_slob_page_list_index(sp); |
| 1118 | free_slob_page(sp); |
| 1119 | slob_free_pages(page_address((struct page*)sp), 0); |
| 1120 | } |
| 1121 | } |
| 1122 | slob_sizes[i].count = 0; |
| 1123 | spin_unlock_irqrestore(&slob_lock, flags); |
| 1124 | |
| 1125 | } |
| 1126 | #endif |
| 1127 | return 0; |
| 1128 | } |
| 1129 | EXPORT_SYMBOL(kmem_cache_shrink); |
| 1130 | |
| 1131 | static unsigned int slob_ready __read_mostly; |
| 1132 | |
| 1133 | int slab_is_available(void) |
| 1134 | { |
| 1135 | return slob_ready; |
| 1136 | } |
| 1137 | |
| 1138 | void __init kmem_cache_init(void) |
| 1139 | { |
| 1140 | slob_ready = 1; |
| 1141 | } |
| 1142 | |
| 1143 | void __init kmem_cache_init_late(void) |
| 1144 | { |
| 1145 | /* Nothing to do */ |
| 1146 | } |