xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame^] | 1 | /* Convert using charmaps and possibly iconv(). |
| 2 | Copyright (C) 2001-2016 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2001. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify |
| 7 | it under the terms of the GNU General Public License as published |
| 8 | by the Free Software Foundation; version 2 of the License, or |
| 9 | (at your option) any later version. |
| 10 | |
| 11 | This program is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | GNU General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with this program; if not, see <http://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <assert.h> |
| 20 | #include <errno.h> |
| 21 | #include <error.h> |
| 22 | #include <fcntl.h> |
| 23 | #include <iconv.h> |
| 24 | #include <libintl.h> |
| 25 | #include <stdio.h> |
| 26 | #include <stdlib.h> |
| 27 | #include <unistd.h> |
| 28 | #include <stdint.h> |
| 29 | #include <sys/mman.h> |
| 30 | #include <sys/stat.h> |
| 31 | |
| 32 | #include "iconv_prog.h" |
| 33 | |
| 34 | |
| 35 | /* Prototypes for a few program-wide used functions. */ |
| 36 | #include <programs/xmalloc.h> |
| 37 | |
| 38 | |
| 39 | struct convtable |
| 40 | { |
| 41 | int term[256 / 8]; |
| 42 | union |
| 43 | { |
| 44 | struct convtable *sub; |
| 45 | struct charseq *out; |
| 46 | } val[256]; |
| 47 | }; |
| 48 | |
| 49 | |
| 50 | static inline struct convtable * |
| 51 | allocate_table (void) |
| 52 | { |
| 53 | return (struct convtable *) xcalloc (1, sizeof (struct convtable)); |
| 54 | } |
| 55 | |
| 56 | |
| 57 | static inline int |
| 58 | is_term (struct convtable *tbl, unsigned int idx) |
| 59 | { |
| 60 | return tbl->term[idx / 8] & (1 << (idx % 8)); |
| 61 | } |
| 62 | |
| 63 | |
| 64 | static inline void |
| 65 | clear_term (struct convtable *tbl, unsigned int idx) |
| 66 | { |
| 67 | tbl->term[idx / 8] &= ~(1 << (idx % 8)); |
| 68 | } |
| 69 | |
| 70 | |
| 71 | static inline void |
| 72 | set_term (struct convtable *tbl, unsigned int idx) |
| 73 | { |
| 74 | tbl->term[idx / 8] |= 1 << (idx % 8); |
| 75 | } |
| 76 | |
| 77 | |
| 78 | /* Generate the conversion table. */ |
| 79 | static struct convtable *use_from_charmap (struct charmap_t *from_charmap, |
| 80 | const char *to_code); |
| 81 | static struct convtable *use_to_charmap (const char *from_code, |
| 82 | struct charmap_t *to_charmap); |
| 83 | static struct convtable *use_both_charmaps (struct charmap_t *from_charmap, |
| 84 | struct charmap_t *to_charmap); |
| 85 | |
| 86 | /* Prototypes for the functions doing the actual work. */ |
| 87 | static int process_block (struct convtable *tbl, char *addr, size_t len, |
| 88 | FILE *output); |
| 89 | static int process_fd (struct convtable *tbl, int fd, FILE *output); |
| 90 | static int process_file (struct convtable *tbl, FILE *input, FILE *output); |
| 91 | |
| 92 | |
| 93 | int |
| 94 | charmap_conversion (const char *from_code, struct charmap_t *from_charmap, |
| 95 | const char *to_code, struct charmap_t *to_charmap, |
| 96 | int argc, int remaining, char *argv[], |
| 97 | const char *output_file) |
| 98 | { |
| 99 | struct convtable *cvtbl; |
| 100 | int status = EXIT_SUCCESS; |
| 101 | |
| 102 | /* We have three different cases to handle: |
| 103 | |
| 104 | - both, from_charmap and to_charmap, are available. This means we |
| 105 | can assume that the symbolic names match and use them to create |
| 106 | the mapping. |
| 107 | |
| 108 | - only from_charmap is available. In this case we can only hope that |
| 109 | the symbolic names used are of the <Uxxxx> form in which case we |
| 110 | can use a UCS4->"to_code" iconv() conversion for the second step. |
| 111 | |
| 112 | - only to_charmap is available. This is similar, only that we would |
| 113 | use iconv() for the "to_code"->UCS4 conversion. |
| 114 | |
| 115 | We first create a table which maps input bytes into output bytes. |
| 116 | Once this is done we can handle all three of the cases above |
| 117 | equally. */ |
| 118 | if (from_charmap != NULL) |
| 119 | { |
| 120 | if (to_charmap == NULL) |
| 121 | cvtbl = use_from_charmap (from_charmap, to_code); |
| 122 | else |
| 123 | cvtbl = use_both_charmaps (from_charmap, to_charmap); |
| 124 | } |
| 125 | else |
| 126 | { |
| 127 | assert (to_charmap != NULL); |
| 128 | cvtbl = use_to_charmap (from_code, to_charmap); |
| 129 | } |
| 130 | |
| 131 | /* If we couldn't generate a table stop now. */ |
| 132 | if (cvtbl == NULL) |
| 133 | return EXIT_FAILURE; |
| 134 | |
| 135 | /* Determine output file. */ |
| 136 | FILE *output; |
| 137 | if (output_file != NULL && strcmp (output_file, "-") != 0) |
| 138 | { |
| 139 | output = fopen (output_file, "w"); |
| 140 | if (output == NULL) |
| 141 | error (EXIT_FAILURE, errno, _("cannot open output file")); |
| 142 | } |
| 143 | else |
| 144 | output = stdout; |
| 145 | |
| 146 | /* We can now start the conversion. */ |
| 147 | if (remaining == argc) |
| 148 | { |
| 149 | if (process_file (cvtbl, stdin, output) != 0) |
| 150 | status = EXIT_FAILURE; |
| 151 | } |
| 152 | else |
| 153 | do |
| 154 | { |
| 155 | int fd; |
| 156 | |
| 157 | if (verbose) |
| 158 | printf ("%s:\n", argv[remaining]); |
| 159 | if (strcmp (argv[remaining], "-") == 0) |
| 160 | fd = 0; |
| 161 | else |
| 162 | { |
| 163 | fd = open (argv[remaining], O_RDONLY); |
| 164 | |
| 165 | if (fd == -1) |
| 166 | { |
| 167 | error (0, errno, _("cannot open input file `%s'"), |
| 168 | argv[remaining]); |
| 169 | status = EXIT_FAILURE; |
| 170 | continue; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | #ifdef _POSIX_MAPPED_FILES |
| 175 | struct stat64 st; |
| 176 | char *addr; |
| 177 | /* We have possibilities for reading the input file. First try |
| 178 | to mmap() it since this will provide the fastest solution. */ |
| 179 | if (fstat64 (fd, &st) == 0 |
| 180 | && ((addr = mmap (NULL, st.st_size, PROT_READ, MAP_PRIVATE, |
| 181 | fd, 0)) != MAP_FAILED)) |
| 182 | { |
| 183 | /* Yes, we can use mmap(). The descriptor is not needed |
| 184 | anymore. */ |
| 185 | if (close (fd) != 0) |
| 186 | error (EXIT_FAILURE, errno, |
| 187 | _("error while closing input `%s'"), argv[remaining]); |
| 188 | |
| 189 | if (process_block (cvtbl, addr, st.st_size, output) < 0) |
| 190 | { |
| 191 | /* Something went wrong. */ |
| 192 | status = EXIT_FAILURE; |
| 193 | |
| 194 | /* We don't need the input data anymore. */ |
| 195 | munmap ((void *) addr, st.st_size); |
| 196 | |
| 197 | /* We cannot go on with producing output since it might |
| 198 | lead to problem because the last output might leave |
| 199 | the output stream in an undefined state. */ |
| 200 | break; |
| 201 | } |
| 202 | |
| 203 | /* We don't need the input data anymore. */ |
| 204 | munmap ((void *) addr, st.st_size); |
| 205 | } |
| 206 | else |
| 207 | #endif /* _POSIX_MAPPED_FILES */ |
| 208 | { |
| 209 | /* Read the file in pieces. */ |
| 210 | if (process_fd (cvtbl, fd, output) != 0) |
| 211 | { |
| 212 | /* Something went wrong. */ |
| 213 | status = EXIT_FAILURE; |
| 214 | |
| 215 | /* We don't need the input file anymore. */ |
| 216 | close (fd); |
| 217 | |
| 218 | /* We cannot go on with producing output since it might |
| 219 | lead to problem because the last output might leave |
| 220 | the output stream in an undefined state. */ |
| 221 | break; |
| 222 | } |
| 223 | |
| 224 | /* Now close the file. */ |
| 225 | close (fd); |
| 226 | } |
| 227 | } |
| 228 | while (++remaining < argc); |
| 229 | |
| 230 | /* All done. */ |
| 231 | return status; |
| 232 | } |
| 233 | |
| 234 | |
| 235 | /* Add the IN->OUT mapping to TBL. OUT is potentially stored in the table. |
| 236 | IN is used only here, so it need not be kept live afterwards. */ |
| 237 | static void |
| 238 | add_bytes (struct convtable *tbl, const struct charseq *in, struct charseq *out) |
| 239 | { |
| 240 | int n = 0; |
| 241 | unsigned int byte; |
| 242 | |
| 243 | assert (in->nbytes > 0); |
| 244 | |
| 245 | byte = ((unsigned char *) in->bytes)[n]; |
| 246 | while (n + 1 < in->nbytes) |
| 247 | { |
| 248 | if (is_term (tbl, byte) || tbl->val[byte].sub == NULL) |
| 249 | { |
| 250 | /* Note that we simply ignore a definition for a byte sequence |
| 251 | which is also the prefix for a longer one. */ |
| 252 | clear_term (tbl, byte); |
| 253 | tbl->val[byte].sub = |
| 254 | (struct convtable *) xcalloc (1, sizeof (struct convtable)); |
| 255 | } |
| 256 | |
| 257 | tbl = tbl->val[byte].sub; |
| 258 | |
| 259 | byte = ((unsigned char *) in->bytes)[++n]; |
| 260 | } |
| 261 | |
| 262 | /* Only add the new sequence if there is none yet and the byte sequence |
| 263 | is not part of an even longer one. */ |
| 264 | if (! is_term (tbl, byte) && tbl->val[byte].sub == NULL) |
| 265 | { |
| 266 | set_term (tbl, byte); |
| 267 | tbl->val[byte].out = out; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | /* Try to convert SEQ from WCHAR_T format using CD. |
| 272 | Returns a malloc'd struct or NULL. */ |
| 273 | static struct charseq * |
| 274 | convert_charseq (iconv_t cd, const struct charseq *seq) |
| 275 | { |
| 276 | struct charseq *result = NULL; |
| 277 | |
| 278 | if (seq->ucs4 != UNINITIALIZED_CHAR_VALUE) |
| 279 | { |
| 280 | /* There is a chance. Try the iconv module. */ |
| 281 | wchar_t inbuf[1] = { seq->ucs4 }; |
| 282 | unsigned char outbuf[64]; |
| 283 | char *inptr = (char *) inbuf; |
| 284 | size_t inlen = sizeof (inbuf); |
| 285 | char *outptr = (char *) outbuf; |
| 286 | size_t outlen = sizeof (outbuf); |
| 287 | |
| 288 | (void) iconv (cd, &inptr, &inlen, &outptr, &outlen); |
| 289 | |
| 290 | if (outptr != (char *) outbuf) |
| 291 | { |
| 292 | /* We got some output. Good, use it. */ |
| 293 | outlen = sizeof (outbuf) - outlen; |
| 294 | assert ((char *) outbuf + outlen == outptr); |
| 295 | |
| 296 | result = xmalloc (sizeof (struct charseq) + outlen); |
| 297 | result->name = seq->name; |
| 298 | result->ucs4 = seq->ucs4; |
| 299 | result->nbytes = outlen; |
| 300 | memcpy (result->bytes, outbuf, outlen); |
| 301 | } |
| 302 | |
| 303 | /* Clear any possible state left behind. */ |
| 304 | (void) iconv (cd, NULL, NULL, NULL, NULL); |
| 305 | } |
| 306 | |
| 307 | return result; |
| 308 | } |
| 309 | |
| 310 | |
| 311 | static struct convtable * |
| 312 | use_from_charmap (struct charmap_t *from_charmap, const char *to_code) |
| 313 | { |
| 314 | /* We iterate over all entries in the from_charmap and for those which |
| 315 | have a known UCS4 representation we use an iconv() call to determine |
| 316 | the mapping to the to_code charset. */ |
| 317 | struct convtable *rettbl; |
| 318 | iconv_t cd; |
| 319 | void *ptr = NULL; |
| 320 | const void *key; |
| 321 | size_t keylen; |
| 322 | void *data; |
| 323 | |
| 324 | cd = iconv_open (to_code, "WCHAR_T"); |
| 325 | if (cd == (iconv_t) -1) |
| 326 | /* We cannot do anything. */ |
| 327 | return NULL; |
| 328 | |
| 329 | rettbl = allocate_table (); |
| 330 | |
| 331 | while (iterate_table (&from_charmap->char_table, &ptr, &key, &keylen, &data) |
| 332 | >= 0) |
| 333 | { |
| 334 | struct charseq *in = data; |
| 335 | struct charseq *newp = convert_charseq (cd, in); |
| 336 | if (newp != NULL) |
| 337 | add_bytes (rettbl, in, newp); |
| 338 | } |
| 339 | |
| 340 | iconv_close (cd); |
| 341 | |
| 342 | return rettbl; |
| 343 | } |
| 344 | |
| 345 | |
| 346 | static struct convtable * |
| 347 | use_to_charmap (const char *from_code, struct charmap_t *to_charmap) |
| 348 | { |
| 349 | /* We iterate over all entries in the to_charmap and for those which |
| 350 | have a known UCS4 representation we use an iconv() call to determine |
| 351 | the mapping to the from_code charset. */ |
| 352 | struct convtable *rettbl; |
| 353 | iconv_t cd; |
| 354 | void *ptr = NULL; |
| 355 | const void *key; |
| 356 | size_t keylen; |
| 357 | void *data; |
| 358 | |
| 359 | /* Note that the conversion we use here is the reverse direction. Without |
| 360 | exhaustive search we cannot figure out which input yields the UCS4 |
| 361 | character we are looking for. Therefore we determine it the other |
| 362 | way round. */ |
| 363 | cd = iconv_open (from_code, "WCHAR_T"); |
| 364 | if (cd == (iconv_t) -1) |
| 365 | /* We cannot do anything. */ |
| 366 | return NULL; |
| 367 | |
| 368 | rettbl = allocate_table (); |
| 369 | |
| 370 | while (iterate_table (&to_charmap->char_table, &ptr, &key, &keylen, &data) |
| 371 | >= 0) |
| 372 | { |
| 373 | struct charseq *out = data; |
| 374 | struct charseq *newp = convert_charseq (cd, out); |
| 375 | if (newp != NULL) |
| 376 | { |
| 377 | add_bytes (rettbl, newp, out); |
| 378 | free (newp); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | iconv_close (cd); |
| 383 | |
| 384 | return rettbl; |
| 385 | } |
| 386 | |
| 387 | |
| 388 | static struct convtable * |
| 389 | use_both_charmaps (struct charmap_t *from_charmap, |
| 390 | struct charmap_t *to_charmap) |
| 391 | { |
| 392 | /* In this case we iterate over all the entries in the from_charmap, |
| 393 | determine the internal name, and find an appropriate entry in the |
| 394 | to_charmap (if it exists). */ |
| 395 | struct convtable *rettbl = allocate_table (); |
| 396 | void *ptr = NULL; |
| 397 | const void *key; |
| 398 | size_t keylen; |
| 399 | void *data; |
| 400 | |
| 401 | while (iterate_table (&from_charmap->char_table, &ptr, &key, &keylen, &data) |
| 402 | >= 0) |
| 403 | { |
| 404 | struct charseq *in = (struct charseq *) data; |
| 405 | struct charseq *out = charmap_find_value (to_charmap, key, keylen); |
| 406 | |
| 407 | if (out != NULL) |
| 408 | add_bytes (rettbl, in, out); |
| 409 | } |
| 410 | |
| 411 | return rettbl; |
| 412 | } |
| 413 | |
| 414 | |
| 415 | static int |
| 416 | process_block (struct convtable *tbl, char *addr, size_t len, FILE *output) |
| 417 | { |
| 418 | size_t n = 0; |
| 419 | |
| 420 | while (n < len) |
| 421 | { |
| 422 | struct convtable *cur = tbl; |
| 423 | unsigned char *curp = (unsigned char *) addr; |
| 424 | unsigned int byte = *curp; |
| 425 | int cnt; |
| 426 | struct charseq *out; |
| 427 | |
| 428 | while (! is_term (cur, byte)) |
| 429 | if (cur->val[byte].sub == NULL) |
| 430 | { |
| 431 | /* This is an invalid sequence. Skip the first byte if we are |
| 432 | ignoring errors. Otherwise punt. */ |
| 433 | if (! omit_invalid) |
| 434 | { |
| 435 | error (0, 0, _("illegal input sequence at position %Zd"), n); |
| 436 | return -1; |
| 437 | } |
| 438 | |
| 439 | n -= curp - (unsigned char *) addr; |
| 440 | |
| 441 | byte = *(curp = (unsigned char *) ++addr); |
| 442 | if (++n >= len) |
| 443 | /* All converted. */ |
| 444 | return 0; |
| 445 | |
| 446 | cur = tbl; |
| 447 | } |
| 448 | else |
| 449 | { |
| 450 | cur = cur->val[byte].sub; |
| 451 | |
| 452 | if (++n >= len) |
| 453 | { |
| 454 | error (0, 0, _("\ |
| 455 | incomplete character or shift sequence at end of buffer")); |
| 456 | return -1; |
| 457 | } |
| 458 | |
| 459 | byte = *++curp; |
| 460 | } |
| 461 | |
| 462 | /* We found a final byte. Write the output bytes. */ |
| 463 | out = cur->val[byte].out; |
| 464 | for (cnt = 0; cnt < out->nbytes; ++cnt) |
| 465 | fputc_unlocked (out->bytes[cnt], output); |
| 466 | |
| 467 | addr = (char *) curp + 1; |
| 468 | ++n; |
| 469 | } |
| 470 | |
| 471 | return 0; |
| 472 | } |
| 473 | |
| 474 | |
| 475 | static int |
| 476 | process_fd (struct convtable *tbl, int fd, FILE *output) |
| 477 | { |
| 478 | /* We have a problem with reading from a descriptor since we must not |
| 479 | provide the iconv() function an incomplete character or shift |
| 480 | sequence at the end of the buffer. Since we have to deal with |
| 481 | arbitrary encodings we must read the whole text in a buffer and |
| 482 | process it in one step. */ |
| 483 | static char *inbuf = NULL; |
| 484 | static size_t maxlen = 0; |
| 485 | char *inptr = inbuf; |
| 486 | size_t actlen = 0; |
| 487 | |
| 488 | while (actlen < maxlen) |
| 489 | { |
| 490 | ssize_t n = read (fd, inptr, maxlen - actlen); |
| 491 | |
| 492 | if (n == 0) |
| 493 | /* No more text to read. */ |
| 494 | break; |
| 495 | |
| 496 | if (n == -1) |
| 497 | { |
| 498 | /* Error while reading. */ |
| 499 | error (0, errno, _("error while reading the input")); |
| 500 | return -1; |
| 501 | } |
| 502 | |
| 503 | inptr += n; |
| 504 | actlen += n; |
| 505 | } |
| 506 | |
| 507 | if (actlen == maxlen) |
| 508 | while (1) |
| 509 | { |
| 510 | ssize_t n; |
| 511 | char *new_inbuf; |
| 512 | |
| 513 | /* Increase the buffer. */ |
| 514 | new_inbuf = (char *) realloc (inbuf, maxlen + 32768); |
| 515 | if (new_inbuf == NULL) |
| 516 | { |
| 517 | error (0, errno, _("unable to allocate buffer for input")); |
| 518 | return -1; |
| 519 | } |
| 520 | inbuf = new_inbuf; |
| 521 | maxlen += 32768; |
| 522 | inptr = inbuf + actlen; |
| 523 | |
| 524 | do |
| 525 | { |
| 526 | n = read (fd, inptr, maxlen - actlen); |
| 527 | |
| 528 | if (n == 0) |
| 529 | /* No more text to read. */ |
| 530 | break; |
| 531 | |
| 532 | if (n == -1) |
| 533 | { |
| 534 | /* Error while reading. */ |
| 535 | error (0, errno, _("error while reading the input")); |
| 536 | return -1; |
| 537 | } |
| 538 | |
| 539 | inptr += n; |
| 540 | actlen += n; |
| 541 | } |
| 542 | while (actlen < maxlen); |
| 543 | |
| 544 | if (n == 0) |
| 545 | /* Break again so we leave both loops. */ |
| 546 | break; |
| 547 | } |
| 548 | |
| 549 | /* Now we have all the input in the buffer. Process it in one run. */ |
| 550 | return process_block (tbl, inbuf, actlen, output); |
| 551 | } |
| 552 | |
| 553 | |
| 554 | static int |
| 555 | process_file (struct convtable *tbl, FILE *input, FILE *output) |
| 556 | { |
| 557 | /* This should be safe since we use this function only for `stdin' and |
| 558 | we haven't read anything so far. */ |
| 559 | return process_fd (tbl, fileno (input), output); |
| 560 | } |