xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame^] | 1 | /* Return arc hyperbole sine for long double value, with the imaginary |
| 2 | part of the result possibly adjusted for use in computing other |
| 3 | functions. |
| 4 | Copyright (C) 1997-2016 Free Software Foundation, Inc. |
| 5 | This file is part of the GNU C Library. |
| 6 | |
| 7 | The GNU C Library is free software; you can redistribute it and/or |
| 8 | modify it under the terms of the GNU Lesser General Public |
| 9 | License as published by the Free Software Foundation; either |
| 10 | version 2.1 of the License, or (at your option) any later version. |
| 11 | |
| 12 | The GNU C Library is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 15 | Lesser General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU Lesser General Public |
| 18 | License along with the GNU C Library; if not, see |
| 19 | <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | #include <complex.h> |
| 22 | #include <math.h> |
| 23 | #include <math_private.h> |
| 24 | #include <float.h> |
| 25 | |
| 26 | /* To avoid spurious overflows, use this definition to treat IBM long |
| 27 | double as approximating an IEEE-style format. */ |
| 28 | #if LDBL_MANT_DIG == 106 |
| 29 | # undef LDBL_EPSILON |
| 30 | # define LDBL_EPSILON 0x1p-106L |
| 31 | #endif |
| 32 | |
| 33 | /* Return the complex inverse hyperbolic sine of finite nonzero Z, |
| 34 | with the imaginary part of the result subtracted from pi/2 if ADJ |
| 35 | is nonzero. */ |
| 36 | |
| 37 | __complex__ long double |
| 38 | __kernel_casinhl (__complex__ long double x, int adj) |
| 39 | { |
| 40 | __complex__ long double res; |
| 41 | long double rx, ix; |
| 42 | __complex__ long double y; |
| 43 | |
| 44 | /* Avoid cancellation by reducing to the first quadrant. */ |
| 45 | rx = fabsl (__real__ x); |
| 46 | ix = fabsl (__imag__ x); |
| 47 | |
| 48 | if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON) |
| 49 | { |
| 50 | /* For large x in the first quadrant, x + csqrt (1 + x * x) |
| 51 | is sufficiently close to 2 * x to make no significant |
| 52 | difference to the result; avoid possible overflow from |
| 53 | the squaring and addition. */ |
| 54 | __real__ y = rx; |
| 55 | __imag__ y = ix; |
| 56 | |
| 57 | if (adj) |
| 58 | { |
| 59 | long double t = __real__ y; |
| 60 | __real__ y = __copysignl (__imag__ y, __imag__ x); |
| 61 | __imag__ y = t; |
| 62 | } |
| 63 | |
| 64 | res = __clogl (y); |
| 65 | __real__ res += M_LN2l; |
| 66 | } |
| 67 | else if (rx >= 0.5L && ix < LDBL_EPSILON / 8.0L) |
| 68 | { |
| 69 | long double s = __ieee754_hypotl (1.0L, rx); |
| 70 | |
| 71 | __real__ res = __ieee754_logl (rx + s); |
| 72 | if (adj) |
| 73 | __imag__ res = __ieee754_atan2l (s, __imag__ x); |
| 74 | else |
| 75 | __imag__ res = __ieee754_atan2l (ix, s); |
| 76 | } |
| 77 | else if (rx < LDBL_EPSILON / 8.0L && ix >= 1.5L) |
| 78 | { |
| 79 | long double s = __ieee754_sqrtl ((ix + 1.0L) * (ix - 1.0L)); |
| 80 | |
| 81 | __real__ res = __ieee754_logl (ix + s); |
| 82 | if (adj) |
| 83 | __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x)); |
| 84 | else |
| 85 | __imag__ res = __ieee754_atan2l (s, rx); |
| 86 | } |
| 87 | else if (ix > 1.0L && ix < 1.5L && rx < 0.5L) |
| 88 | { |
| 89 | if (rx < LDBL_EPSILON * LDBL_EPSILON) |
| 90 | { |
| 91 | long double ix2m1 = (ix + 1.0L) * (ix - 1.0L); |
| 92 | long double s = __ieee754_sqrtl (ix2m1); |
| 93 | |
| 94 | __real__ res = __log1pl (2.0L * (ix2m1 + ix * s)) / 2.0L; |
| 95 | if (adj) |
| 96 | __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x)); |
| 97 | else |
| 98 | __imag__ res = __ieee754_atan2l (s, rx); |
| 99 | } |
| 100 | else |
| 101 | { |
| 102 | long double ix2m1 = (ix + 1.0L) * (ix - 1.0L); |
| 103 | long double rx2 = rx * rx; |
| 104 | long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix); |
| 105 | long double d = __ieee754_sqrtl (ix2m1 * ix2m1 + f); |
| 106 | long double dp = d + ix2m1; |
| 107 | long double dm = f / dp; |
| 108 | long double r1 = __ieee754_sqrtl ((dm + rx2) / 2.0L); |
| 109 | long double r2 = rx * ix / r1; |
| 110 | |
| 111 | __real__ res |
| 112 | = __log1pl (rx2 + dp + 2.0L * (rx * r1 + ix * r2)) / 2.0L; |
| 113 | if (adj) |
| 114 | __imag__ res = __ieee754_atan2l (rx + r1, __copysignl (ix + r2, |
| 115 | __imag__ x)); |
| 116 | else |
| 117 | __imag__ res = __ieee754_atan2l (ix + r2, rx + r1); |
| 118 | } |
| 119 | } |
| 120 | else if (ix == 1.0L && rx < 0.5L) |
| 121 | { |
| 122 | if (rx < LDBL_EPSILON / 8.0L) |
| 123 | { |
| 124 | __real__ res = __log1pl (2.0L * (rx + __ieee754_sqrtl (rx))) / 2.0L; |
| 125 | if (adj) |
| 126 | __imag__ res = __ieee754_atan2l (__ieee754_sqrtl (rx), |
| 127 | __copysignl (1.0L, __imag__ x)); |
| 128 | else |
| 129 | __imag__ res = __ieee754_atan2l (1.0L, __ieee754_sqrtl (rx)); |
| 130 | } |
| 131 | else |
| 132 | { |
| 133 | long double d = rx * __ieee754_sqrtl (4.0L + rx * rx); |
| 134 | long double s1 = __ieee754_sqrtl ((d + rx * rx) / 2.0L); |
| 135 | long double s2 = __ieee754_sqrtl ((d - rx * rx) / 2.0L); |
| 136 | |
| 137 | __real__ res = __log1pl (rx * rx + d + 2.0L * (rx * s1 + s2)) / 2.0L; |
| 138 | if (adj) |
| 139 | __imag__ res = __ieee754_atan2l (rx + s1, |
| 140 | __copysignl (1.0L + s2, |
| 141 | __imag__ x)); |
| 142 | else |
| 143 | __imag__ res = __ieee754_atan2l (1.0L + s2, rx + s1); |
| 144 | } |
| 145 | } |
| 146 | else if (ix < 1.0L && rx < 0.5L) |
| 147 | { |
| 148 | if (ix >= LDBL_EPSILON) |
| 149 | { |
| 150 | if (rx < LDBL_EPSILON * LDBL_EPSILON) |
| 151 | { |
| 152 | long double onemix2 = (1.0L + ix) * (1.0L - ix); |
| 153 | long double s = __ieee754_sqrtl (onemix2); |
| 154 | |
| 155 | __real__ res = __log1pl (2.0L * rx / s) / 2.0L; |
| 156 | if (adj) |
| 157 | __imag__ res = __ieee754_atan2l (s, __imag__ x); |
| 158 | else |
| 159 | __imag__ res = __ieee754_atan2l (ix, s); |
| 160 | } |
| 161 | else |
| 162 | { |
| 163 | long double onemix2 = (1.0L + ix) * (1.0L - ix); |
| 164 | long double rx2 = rx * rx; |
| 165 | long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix); |
| 166 | long double d = __ieee754_sqrtl (onemix2 * onemix2 + f); |
| 167 | long double dp = d + onemix2; |
| 168 | long double dm = f / dp; |
| 169 | long double r1 = __ieee754_sqrtl ((dp + rx2) / 2.0L); |
| 170 | long double r2 = rx * ix / r1; |
| 171 | |
| 172 | __real__ res |
| 173 | = __log1pl (rx2 + dm + 2.0L * (rx * r1 + ix * r2)) / 2.0L; |
| 174 | if (adj) |
| 175 | __imag__ res = __ieee754_atan2l (rx + r1, |
| 176 | __copysignl (ix + r2, |
| 177 | __imag__ x)); |
| 178 | else |
| 179 | __imag__ res = __ieee754_atan2l (ix + r2, rx + r1); |
| 180 | } |
| 181 | } |
| 182 | else |
| 183 | { |
| 184 | long double s = __ieee754_hypotl (1.0L, rx); |
| 185 | |
| 186 | __real__ res = __log1pl (2.0L * rx * (rx + s)) / 2.0L; |
| 187 | if (adj) |
| 188 | __imag__ res = __ieee754_atan2l (s, __imag__ x); |
| 189 | else |
| 190 | __imag__ res = __ieee754_atan2l (ix, s); |
| 191 | } |
| 192 | math_check_force_underflow_nonneg (__real__ res); |
| 193 | } |
| 194 | else |
| 195 | { |
| 196 | __real__ y = (rx - ix) * (rx + ix) + 1.0L; |
| 197 | __imag__ y = 2.0L * rx * ix; |
| 198 | |
| 199 | y = __csqrtl (y); |
| 200 | |
| 201 | __real__ y += rx; |
| 202 | __imag__ y += ix; |
| 203 | |
| 204 | if (adj) |
| 205 | { |
| 206 | long double t = __real__ y; |
| 207 | __real__ y = __copysignl (__imag__ y, __imag__ x); |
| 208 | __imag__ y = t; |
| 209 | } |
| 210 | |
| 211 | res = __clogl (y); |
| 212 | } |
| 213 | |
| 214 | /* Give results the correct sign for the original argument. */ |
| 215 | __real__ res = __copysignl (__real__ res, __real__ x); |
| 216 | __imag__ res = __copysignl (__imag__ res, (adj ? 1.0L : __imag__ x)); |
| 217 | |
| 218 | return res; |
| 219 | } |